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Abstract

Consensus is one of the key problems in fault tolerant
distributed computing. A very popular model for solving
consensus is the failure detector model defined by Chandra
and Toueg. However, the failure detector model has limita-
tions. The paper points out these limitations, and suggests
instead a model based on communication predicates, called
HO model. The advantage of the HO model over failure de-
tectors is shown, and the implementation of the HO model is
discussed in the context of a system that alternates between
good periods and bad periods. Two definitions of a good
period are considered. For both definitions, the HO model
allows us to compute the duration of a good period for solv-
ing consensus. Specifically, the model allows us to quantify
the difference between the required length of an initial good
period and the length of a non initial good period.

1. Introduction

Consensus is one of the key problems in fault tolerant
distributed computing. Consensus is related to replication
and appears when implementing atomic broadcast, group
membership, etc. The problem is defined over a set of pro-
cesses Π, where each process pi ∈ Π has an initial value
vi: All processes must agree on a common value that is the
initial value of one of the processes.

Consensus can be impossible to solve, as established
by the FLP impossibility result [13]. Later it has been
shown that consensus can be solved in a partially syn-
chronous system with a majority of correct processes [12].
Roughly speaking, a partially synchronous system is a sys-
tem that is initially asynchronous, but eventually becomes
synchronous.1 Moreover, in a partially synchronous system
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†This is an updated version of the paper that appeared at DSN 2007,
including the full proofs in the appendix.

1This is not the only definition of a partially synchronous system.

links are initially lossy, but eventually become reliable.
The notion of failure detectors has been suggested a few

years later [5]. The failure detector model is defined as an
asynchronous system “augmented” with failure detectors,
which are defined by some completeness and some accu-
racy property (see [5] for details). Over the years failure
detectors have become very popular. The model is today
widely accepted and has become the model mostly used for
expressing consensus algorithms. However, the failure de-
tector model has limitations.

First, failure detectors are not an abstraction of the par-
tially synchronous model (even though this claim has some-
times been made). The reason is that in the partially syn-
chronous model links are initially lossy, while the use of
failure detector to solve a problem requires perpetual reli-
able links.2 When using failure detectors, either the sys-
tem must provide reliable links, or reliable links need to
be implemented on top of the unreliable system links. As a
consequence, the capability of algorithms of tolerating mes-
sage loss — as it is the case for the Paxos algorithm [19] —
cannot be expressed naturally in the failure detector model.
Only a variant of Paxos that assumes reliable links can be
expressed using failure detectors, as done, e.g., in [4].

Second, failure detectors are not well suited to solve con-
sensus in the crash-recovery model, with or without stable
storage [1]. In the crash-recovery model, a process can
crash and later recover. This is in contrast to the crash-stop
model, in which process crashes are permanent. Intuitively,
one would think that solving consensus in the crash-stop
model or in a crash-recovery model should not lead to ma-
jor algorithmic differences. However, the comparison of
(i) the 3S consensus algorithm in the crash-stop model [5]
with (ii) the corresponding algorithm in the crash-recovery
model with stable storage [1] shows that the crash-recovery
algorithm is a much more complicated protocol than the
corresponding crash-stop algorithm. Moreover, the com-
plexity of the crash-recovery consensus algorithm makes it

2Failure detectors lead to the following programming pattern: Process
p (i) waits for a message from process q or (ii) suspects q. If q is not
suspected while the message is lost, p is blocked.
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hard to see that the crash-recovery algorithm is based on the
same basic ideas as the crash-stop algorithm. This leads to
the following question: Is there an inherent gap between the
crash-stop and the crash-recovery model that would explain
the higher complexity of the crash-recovery consensus al-
gorithm?

Third, failure detectors cannot handle Byzantine failures.
The reason is that the definition of a Byzantine behavior is
related to an algorithm: It is impossible to achieve a com-
plete separation of failure detectors from the algorithm us-
ing them. To overcome this problem, the notion of muteness
detectors has been suggested [9, 10, 18]. However, it is not
clear what system model could allow the implementation of
muteness detectors, which is an inherent limitation of the
approach.

These arguments suggest that failure detectors might not
be the ultimate answer to the consensus problem. As an al-
ternative to failure detectors, one could program directly at
the level of the partially synchronous system model. How-
ever, this model provides too low level abstractions. It is in-
deed useful to provide higher level abstractions for express-
ing consensus algorithms. The goal of this paper is to show
that another abstraction, namely communication predicates,
provides a better abstraction than failure detectors for solv-
ing consensus. Specifically, the paper brings an answer to
the question raised in [17], about quantifying the time it
takes the environment to reach round synchronization after
the system has stabilized.

The paper is structured as follows. Section 2 serves as a
motivation to the introduction of communication predicates.
Communication predicates are defined in Section 3. The
implementation of communication predicates is presented
in Section 4. Related work is discussed in Section 5, and
Section 6 concludes the paper. Note that the paper is re-
stricted to benign faults; Byzantine faults will be addressed
in another paper.

2. Fault taxonomy

In this section we discuss the taxonomy of faults, with
the goal to understand the limitation of failure detectors.
The discussion will serve as the basis for the introduction
of the notion of communication predicates.

2.1. Failure detectors and the paradox of
the classical fault taxonomy

Let us come back to the second limitation of failure de-
tectors (see Section 1), namely the gap between solving
consensus with failure detectors in the crash-stop model and
in the crash-recovery model. Our goal is to explain this gap,
and so to understand the limited context in which failure de-
tectors provide a good abstraction.

When looking at process failures, the classical fault tax-
onomy distinguishes, from the most benign to the most se-
vere, (i) crash faults, (ii) send-omission faults, (iii) general-
omission faults (which includes receive-omission faults),
and (iv) malicious faults [22]. It can be observed that this
taxonomy does not distinguish crash faults without recov-
ery (the crash-stop model) and crash faults with recovery
(the crash-recovery model). So, one would expect little dif-
ference when solving consensus in either of these two mod-
els. However, as already mentioned, this is not the case with
failure detectors:

• In the crash-stop model, a standard solution to consen-
sus is the rotating coordinator algorithm that requires
the failure detector 3S and a majority of processes [5].

• Extending this solution to the crash-recovery model is
not easy. It requires the definition of new failure de-
tectors, and the algorithm becomes more complex [1].
This can be observed by comparing the two algorithms
that are given in the appendix of [16].

This observation leads to the following question: What
is the key issue, not captured by the classical fault tax-
onomy, that explains the gap between the crash-stop and
crash-recovery consensus algorithm? The key issue is in the
distinction between permanent faults and transient faults.
Crash-stop is a model with permanent (crash) faults, while
crash-recovery is a model with transient (crash) faults. A
fault taxonomy that does not distinguish between perma-
nent and transient fault is not able to explain the limitation
of the failure detector model. In the next section we sug-
gest another new fault taxonomy that makes the distinction
between permanent and transient fault explicit.

2.2. Alternative fault taxonomy (for benign
faults)

An alternative process fault taxonomy can be organized
along two dimensions. The first dimension distinguishes
between the already discussed permanent (P) and transient
faults (T). The second dimension distinguishes faults that
can hit any process in the system from faults that hit only a
subset of the processes. We use the term static (S) for faults
that can hit only a fixed subset of processes and dynamic3

(D) for all other cases, i.e., faults that can hit all processes.
Combining this two dimensions leads to four classes of

process faults:

• SP: at most f processes out of n are faulty (f<n); a
faulty process is permanently faulty.

• ST: at most f processes out of n are faulty (f<n);
faults are transient.

3This notion of static/dynamic faults was also used by [21].
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• DP: all processes can be faulty; faults are permanent.
• DT: all processes can be faulty; faults are transient.

Among this classes, SP is clearly the most restrictive,
whereas DT is the most general one. The crash-stop fault in
the classical taxonomy corresponds the SP class. The send-
omission and general-omission faults are transient faults. If
we assume that only a subset of processes suffer from send-
omission or general-omission faults, then send-omission
and general-omission faults are classified as ST. Otherwise,
these faults are classified as DT.

This alternative taxonomy is able to capture the distinc-
tion between the crash-stop model and the crash-recovery
model: The crash-stop model corresponds to the class SP,
whereas the crash-recovery model can be classified either
as ST (if some processes never crash) or as DT. Failure de-
tectors are well-suited to handle the SP fault class, but not
to handle dynamic faults. Communication predicates will
allow us to handle SP and DT faults in the same way.

2.3. Transmission faults

It is usual to distinguish between process faults and link
faults. However, the distinction becomes irrelevant with DT
faults. To see this, consider process p sending message m
to process q. Process q might not receive m if (i) p suffers
from a send-omission fault, (ii) the link loses m, or (iii) q
suffers from a receive-omission fault. In case (i) p is the
faulty component, in case (ii) the link lpq is the faulty com-
ponent, in case (iii) q is faulty. However, if the fault is tran-
sient, it may not occur later, for another message m′ sent
by p to q. For this reason, it makes no sense to put the re-
sponsibility of the fault on one of the components (process
p, process q, or link lpq). This observation leads to consider
only transmission faults:4 a transmission fault is a fault that
results in the non reception of some message m.

As we will see in Section 3, communication predi-
cates are based on the notion of transmission faults. As
such, communication predicates — contrary to failure de-
tectors — are able to handle SP and DT fault classes uni-
formly.

3. Communication predicates and algorithms

3.1. Communication predicates

Communication predicates are defined in the context of a
communication-closed round model. An algorithm for this
model comprises, for each round r and process p ∈ Π, a
sending function Sr

p and a transition function T r
p . At be-

ginning of a round r, every process sends a message to all
4The term is taken from [21], in which transmission faults are consid-

ered in the context of synchronous systems.

Algorithm 1 The OneThirdRule algorithm [6].
1: Initialization:
2: xp ← vp

3: Round r:
4: Sr

p :
5: send 〈xp〉 to all processes

6: T r
p :

7: if |HO(p, r)| > 2n/3 then
8: if the values received, except at most bn

3
c, are equal

to x then
9: xp ← x

10: else
11: xp ← smallest xq received
12: if more than 2n/3 values received are equal to x then
13: DECIDE(x)

according to Sr
p(sp), where sp is p’s state at the beginning

of the round. At the end of a round r, p makes a state tran-
sition according to T r

p (~µ, sp), where ~µ is the partial vector
of all messages that have been received by p in round r.

We denote by HO(p, r) the support of ~µ, i.e., the set
of processes (including itself) from which p receives a mes-
sage at round r: HO(p, r) is the heard of set of p in round r.
If q /∈ HO(p, r), then the message sent by q to p in round r
was subject to a transmission failure. Communication pred-
icates are expressed over the sets (HO(p, r))p∈Π,r>0. For
example,

∃r0 > 0, ∀p, q ∈ Π : HO(p, r0) = HO(q, r0)

ensures the existence of some round r0 in which all pro-
cesses hear of the same set of processes. Another exam-
ple is a communication predicate that ensures that in every
round r all processes hear of a majority of processes (n is
the number of processes):

∀r > 0, ∀p ∈ Π : |HO(p, r)| > n/2.

Let A = 〈Sr
p , T r

p 〉 be an HO algorithm. A problem is
solved by a pair 〈A,P〉, where P is a communication pred-
icate. The consensus problem is specified by the following
conditions:

• Integrity: Any decision value is the initial value of
some process.

• Agreement: No two processes decide differently.
• Termination: All processes eventually decide.

The termination condition requires all processes to decide;
a weaker condition is considered later. An example of a
consensus algorithm is given by Algorithm 1.5 The send-
ing function is specified in lines 4–5. When the transition

5We have chosen this algorithm, rather than Paxos or another algorithm,
for its simplicity. It allows us to keep the algorithmic part as simple as
possible.
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function (lines 6–13) is called, messages are available such
that the predicate on the HO sets is guaranteed to hold. The
consensus problem is solved by Algorithm 1 and the com-
munication predicate Potr , given in Table 1 (next page).

Theorem 1. The pair 〈 Algorithm 1,Potr 〉 solves consen-
sus.

Proof. Algorithm 1 never violates the safety properties of
consensus, namely integrity and agreement. For agreement,
if some process decides v at line 13 of round r, then in any
round r′ ≥ r, only v can be assigned to any xp, and hence
only v can be decided. Predicate Potr ensures the liveness
property of consensus (termination). The first part of Potr ,
namely the existence of some round r0 in which all pro-
cesses in Π have the set HO equal to some (large enough)
set Π0, ensures that at the end of round r0 all processes in
Π adopt the same value for xp. The second part of Potr

forces every process p ∈ Π to make a decision at the end of
round rp.

Note that Potr allows rounds in which no messages are
received.

3.2. Restricted scope communication pred-
icates

Section 2.3 has introduced the “transmission fault” ab-
straction, which covers various types of faults. One instan-
tiation is to assume that transmission faults abstract link
faults, send-omission faults and receive-omission faults, but
not process crashes (i.e., processes do not crash). In this
case the predicate Potr , which expresses a condition that
must hold for all processes p ∈ Π, is perfectly adapted.
This interpretation of transmission faults is also consistent
with the termination condition for consensus that requires
all processes to decide.

Let us now assume that transmission faults include in ad-
dition process crashes (without recovery). As already men-
tioned in [6], from the viewpoint of an HO algorithm this
is still not a problem, since a crashed process does not send
any messages and is thus indistinguishable from one that re-
ceives all messages but sends no messages. This holds no
more if we implement the HO machine in a system where
processes may exhibit any sort of benign faults. The prob-
lem can be addressed by restricting the scope of Potr to the
subset Π0, as defined by Prestr

otr , see Table 1 (next page).
Predicate Prestr

otr sets a requirement only for processes
in Π0, and so ensures termination only for processes in Π0.
If processes in Π0 do not crash, while processes in Π \ Π0

crash, then 〈Algorithm 1, Prestr
otr 〉 allow all processes that

do not crash to decide. So we have:

Theorem 2. The pair 〈Algorithm 1,Prestr
otr 〉 ensures the va-

lidity and agreement property of consensus. Moreover, all
processes in Π0 eventually decide.

Proof. Proof of Theorem 1, by replacing Π with Π0.

3.3. Crash-recovery model

Algorithm 1 with predicatePrestr
otr solves consensus with

process crashes (crash-stop), link faults, send-omission, and
receive-omission faults. In Section 2.1 we pointed out the
gap between solving consensus with failure detectors in the
crash-stop vs. the crash-recovery model. The gap disap-
pears with the transmission fault abstraction and commu-
nication predicates.

Without any changes, Algorithm 1 can be used in the
crash-recovery model. Handling of recoveries is done at a
lower layer (cf. Section 4).

4. Achieving predicate Prestr
otr in good periods

We discuss now the implementation of the communi-
cation predicate Prestr

otr introduced in Section 3. Figure 1
shows the algorithmic HO layer, the predicate implemen-
tation layer that we discuss now, and the interface between
these two layers defined by communication predicates. This
illustration shows also that the implementation of the pred-
icates relies on assumptions about the underlying system
(these assumptions define the fault and synchrony hypothe-
sis). Note that “transmission faults” is an abstraction rele-
vant to the upper layer: This abstraction does not appear at
the lower layer.

In our implementation model, the system alternates be-
tween good and bad periods. In a good period the syn-
chrony and fault assumptions hold; in a bad period the be-
havior of the system is arbitrary (but malicious behavior is
excluded). The idea is here to compute the minimal dura-
tion of a good period that allows us to implement the com-
munication predicates, i.e., the minimal duration of a good
period that allow Algorithm 1 to solve consensus.

synch. assumptions
Fault model +Implementation

Predicate

Comm. predicatesHO Algorithm

Figure 1. The two layers.
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Potr :: ∃r0 > 0,∃Π0, |Π0| > 2n/3 : (∀p ∈ Π : HO(p, r0) = Π0) ∧ (∀p ∈ Π, ∃rp > r0 : |HO(p, rp)| > 2n/3) (1)
Prestr

otr :: ∃r0 > 0,∃Π0, |Π0| > 2n/3 : (∀p ∈ Π0 : HO(p, r0) = Π0) ∧ (∀p ∈ Π0,∃rp > r0 : HO(p, rp) ⊇ Π0) (2)

Table 1. Communication predicates

4.1. System model

Our system model is inspired by [12]; the differences
are pointed out at the end of the section. We consider a
message-passing system, and assume the existence of a fic-
titious global real-time clock that measures time with val-
ues from IR (see the remark on the next page for the reason
for considering values from IR rather than integers). The
clock is used only for analysis and is not accessible to the
processes. Processes execute a sequence of atomic steps,
which are either send steps or receive steps. As in [12],
steps take no time (atomic steps), but time elapses between
steps.6 The network can take a make-ready step that is in-
troduced to distinguish a message ready for reception from
a message in transit: (i) Every process has two sets of mes-
sages called networkp and bufferp; (ii) a make-ready step
transfers a message from the first to the second set. Send
steps, receive steps, and make-ready steps are defined to ad-
equately model a real system:

• In a send step, a process p sends a message to either
a single process or to all other processes and makes
some local computation. More precisely, if p executes
sendp(m) to all, then m is put into networks, for all
s ∈ Π.

• In a make-ready step, the network transfers some mes-
sages from networkp into bufferp. More precisely, if
the network executes make-readyp(M) for some sub-
set M ⊆ networkp, all messages m ∈ M are re-
moved from networkp and put into bufferp. Messages
in bufferp are ready for reception by process p.

• In a receive step executed at time t, a process p may
receive a single message that was in bufferp at time t
and makes some local computation. So n receive steps
are needed to receive n messages. If bufferp = ∅ at
the time of a receive step, the empty message λ is re-
ceived. A process p may specify any policy, according
to which the message bufferp is selected for reception
(e.g., “message with the largest round number first”).

We consider that the system alternates between good and
bad periods. In a bad period, processes can crash and re-
cover and suffer from send and receive omission; further-
more links can loose messages. We distinguish three types

6We model a step that “terminates” at time t as an atomic step that
“occurs” at time t.

of good periods, from the strongest to the weakest. All these
definitions refer to a subset π0 of Π. In all the three defini-
tions, the following property π0-sync holds in a good period
for processes in π0:

π0-sync: The subsystem π0 is synchronous, i.e., there is
a known upper and lower bound on the process speed and
a known upper bound on the communication delays among
processes in π0. Formally:

Let I be an open contiguous time interval and R a run.
Processes and links are synchronous during I if there exist
Φ+,Φ−,∆ ∈ IR such that:

• In any contiguous sub-interval of I of length Φ+, every
process in π0 takes at least one step.

• In any open contiguous sub-interval of I of length Φ−,
every process in π0 takes at most one step.

• Consider two processes p, q ∈ π0. If process p exe-
cutes sendp(m) at time t ∈ I , then m ∈ bufferq at
time t + ∆, provided that t + ∆ ∈ I .

The length of the good period is |I|. If I starts at time 0,
we say I is an initial good period. We denote Π \ π0 by π0.
We can now define the three types of good periods:

1. Π-good period: The property π0-sync holds for
π0 = Π. All processes are up, none of these processes
crashes (during the good period).

2. “π0-down” good period: The property π0-sync holds
for π0 ⊆ Π. Processes in π0 do not crash. Processes
in π0 are down and do not recover (during the good
period). Moreover, no messages from processes in π0

are in transit during the good period.

3. “π0-arbitrary” good period: The property π0-sync
holds for π0 ⊆ Π. There are no restrictions on the pro-
cesses in π0 and on the links to and from processes
processes in π0 (during the good period processes in π0

can crash, recover, be asynchronous; links to and from
processes in π0 can lose messages, be asynchronous).

Case 2 includes case 1, and case 1 leads to the same im-
plementation as case 2. Thus we distinguish below only
between case 2 and case 3. For simplicity, we will use the
following notation: We scale all values Φ+,Φ−,∆, and t
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with 1/Φ− and use φ = Φ+/Φ− as the normalized upper
bound of the process speed, δ = ∆/Φ− as the normalized
transmission delay, and τ = t/Φ− as normalized time. Re-
member that φ and δ are “known” values, and note that these
values are unit-less.7

Remark: For our modeling, we have chosen real-values
clocks to represent time. Consider case 3 above, assuming
integer clock values instead. By the definition of Φ+, the
slowest process in π0 takes at least one step in any interval
Φ+. However, with integer clock values, any process can
take at most Φ+ steps in an interval Φ+, independent how
small Φ− is chosen. So, in case 3, processes in π0 cannot
be arbitrarily fast with respect to processes in π0. In other
words, with integer clock values, processes in π0 have some
synchrony relation with respect to processes in π0, which
we wanted to exclude under case 3.

Differences between our system model and DLS [12]:
In [12] the clocks take integer values. We have explained
the reason to consider clocks with real-time values. In [12]
a send step allows a process to send a message only to a
single destination. Our send primitive allows messages to
be broadcast, a facility provided, e.g., by UDP-multicast.
In [12], a receive step allows a process to receive several
messages. Our receive primitive allows reception of a mes-
sage from one single process only, which reflects the fea-
ture, e.g., of UDP. The reception of messages one by one
led us to introduce the make-ready step. Two different syn-
chrony assumptions are considered in [12]: (i) The syn-
chrony bounds are known but hold only eventually; (ii) the
synchrony bounds are not known, but hold from the begin-
ning. We considered option (i), which is needed to com-
pute the minimal length of a good period (in the context of
the implementation of the communication predicates). In
the context of option (i), [12] assumes that the good period
holds eventually forever and that the synchrony assumption
holds on the whole system. We consider the system alter-
nating between good and bad periods, and synchrony as-
sumptions that hold only on a subset π0. We also assume
the more general crash-recovery model, while [12] consid-
ers the crash-stop model. On the other hand, contrary to our
fault model, [12] considers also Byzantine faults.

4.2. Implementation of Prestr
otr

We give now algorithms for implementing the predicate
Prestr

otr in π0-down and π0-arbitrary good periods. It turns
out that both definitions of a good period lead naturally
to the implementation of a predicate that is stronger than

7For obtaining real-time values, the results in this section have thus to
be multiplied by Φ−.

Prestr
otr . We define:

Psu(Π0, r1, r2) :: ∀p ∈ Π0, ∀r ∈ [r1, r2] : HO(p, r) = Π0

Pk (Π0, r1, r2) :: ∀p ∈ Π0, ∀r ∈ [r1, r2] : HO(p, r) ⊇ Π0

P2
otr (Π0) :: ∃r0 > 0 : Psu(Π0, r0, r0)

∧ Pk (Π0, r0+1, r0+1)

P1/1
otr (Π0) :: ∃r0 > 0, ∃r1 > r0 : Psu(Π0, r0, r0)

∧ Pk (Π0, r1, r1)

Predicate Psu(Π0, r1, r2) ensures that rounds from r1

to r2 are so called “space uniform” for the processes in
Π0. Predicate Pk (Π0, r1, r2) ensures a weaker property (k
stands for kernel). Predicate P2

otr (Π0) ensures two consec-
utive rounds such that the first satisfies Psu(Π0,−,−) and
the second Pk (Π0,−,−). Predicate P1/1

otr (Π0) ensures the
same property for two rounds that do not need to be consec-
utive. We clearly have:

(∃Π0, s.t. |Π0|>2n/3 : P2
otr (Π0)) ⇒ Prestr

otr

(∃Π0, s.t. |Π0|>2n/3 : P1/1
otr (Π0)) ⇒ Prestr

otr .

We give below algorithms for Psu(−,−,−) and
Pk (−,−,−), for both definitions of good periods. We also
analyze the timing property of the algorithms under the fol-
lowing two scenarios:

1. Assume that a good period starts at an arbitrary time
tG resp. τG = tG/Φ−. We compute, in the worst
case, the minimal length of the good period needed to
implement the communication predicates. We call this
value minimal length of a good period.

2. We do the same, assuming that a good period starts
from the beginning, i.e., τG = 0. We call this value
minimal length of an initial good period.

Intuitively, scenario 2 allows us to compute the time to
solve consensus in the fault-free case, which is often called
a “nice” run. Scenario 1 allows us a timing analysis of con-
sensus in “not nice” runs.

4.2.1. Ensuring Prestr
otr in a “π0-down” good period

Let us consider a “π0-down” good period that is “long
enough”, with π0 arbitrary. Algorithm 2 implements
Psu(π0,−,−). The function S

rp
p at line 7 returns the mes-

sage to be sent; the send occurs at line 8. Variable ip
(line 9, 11) counts the number of receive steps. If p ex-
ecutes x steps, at least x and at most xφ (normalized) time
has elapsed (see Section 4.1). Process p executes at most
d2δ + (n + 2)φe receive steps, see line 12 (message recep-
tion takes place at line 14; non-empty messages are added to
the set msgsRcvp, see line 16). Process p executes receive
steps (1) until d2δ + (n + 2)φe receive steps have been ex-
ecuted, or (2) if p receives a message from a round r′ larger
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Algorithm 2 Ensuring Psu(π0,−,−) with a ‘π0-down”
good period

1: Reception policy: Highest round number first
2: msgsRcvp ← ∅ {set of messages received}
3: rp ← 1 {round number}
4: next rp ← 1 {next round number}
5: sp ← initp {state of the consensus algorithm}
6: while true do
7: msg ← S

rp
p (sp)

8: send 〈msg, rp〉 to all
9: ip ← 0

10: while next rp = rp do
11: ip ← ip + 1
12: if ip ≥ 2δ + (n + 2)φ then
13: next rp ← rp + 1;
14: receive a message
15: if message is 〈msg, r′〉 from q then
16: msgsRcvp ← msgsRcvp ∪ {〈msg, r′, q〉}
17: if r′ > rp then
18: next rp ← r′

19: R← {〈msg′, q′〉 | 〈msg′, rp, q′〉 ∈ msgsRcvp}
20: sp ← T

rp
p (R, sp)

21: forall r′ in [rp+1, next rp−1] do sp ← T r′
p (∅, sp)

22: rp ← next rp

than rp. In both cases the state transition function T
rp
p is

executed with the set R of messages received in round rp

(line 20). Then the state transition function T
rp
p is executed

for all rounds rp + 1 to next rp − 1 with an empty set of
messages.8

In order to cope with recoveries after crashes, variables
rp and sp are stored on stable storage. In case of a recovery,
the algorithm starts on line 6, with msgsRcvp and next rp

reinitialized. Reading variables on stable storage is ineffi-
cient. The implementation can be made more efficient by
keeping a copy of the variables in main memory: a read op-
eration reads the in memory copy, a write operation updates
the in memory and the stable storage copies. Upon recov-
ery, the in memory copy is reset with the value of the stable
copy.9

Algorithm 2 is not optimized regarding space, i.e., the set
msgsRcvp grows forever. Obviously, messages for round
smaller than rp can safely be discarded. To keep the pre-
sentation short, we did not include this simple optimization.

It should be noted that Algorithm 2 relies exclusively on
messages sent by the upper algorithmic layer: Algorithm 2
does not send any additional message.

We prove Algorithm 2 in two steps. First we prove that
there exists r > 0 such that, for any x > 0, Algorithm 2 en-
sures Psu(π0, r, r+x−1), assuming a “long enough” good

8This is required only if T
rp
p (∅, sp) 6= sp. Calling the sending func-

tion S
rp
p is not needed, since the function does not change the state sp.

9We could express this formally as a variant of Algorithm 2, but the
space constraints prevent us from doing this.

period. Then we compute the minimal duration of a good
period to ensure P2

otr (π0), and the minimal duration of two
good periods to ensure P1/1

otr (π0). Note that by the defini-
tion of a π0-down good period, all processes in π0 are down
in a good period, and no messages from these processes are
in transit in the good period. In other words, processes in
π0 can simply be ignored.

Theorem 3. With Algorithm 2, the minimal length of a good
period to achieve Psu(π0, ρ0, ρ0+x−1) is:

(x + 1)(2δ + (n + 2)φ + 1)φ + δ + φ.

The proof, also for all other theorems of this paper,
can be found in [16]. The following Corollary follows di-
rectly from Theorem 3 with x=1 and x=2, and the fact that
Psu(−,−,−) ⇒ Pk (−,−,−):

Corollary 4. For implementing P2
otr (π0) with Algorithm 2,

we need one “π0-down” good period of length

(6δ + 3nφ + 6φ + 3)φ + δ + φ.

For implementing P1/1
otr (π0) with Algorithm 2, we need two

“π0-down” good periods of length

(4δ + 2nφ + 4φ + 2)φ + δ + φ.

Corollary B.1 shows an interesting trade-off in terms of
the length of a good period. The next theorem gives us the
minimal length of an initial good period:

Theorem 5. With Algorithm 2, the minimal length of an
initial good period to achieve Psu(π0, 1, x) is:

x(2δ + (n + 2)φ + 1)φ.

As already pointed out, Theorem 5 is related to so-called
“nice” runs, while Theorem 3 is related to “not nice” runs.
This second case has not been addressed in the literature
with a time analysis as done here (see Section 5). The re-
sults show a factor of approximately 3/2 between the two
cases for the relevant value x = 2.

4.2.2. Ensuring Prestr
otr in a “π0-arbitrary” good period

In this section we consider a π0-arbitrary good period.
Compared with the previous section, the problem is more
complex. We proceed in two steps. First we show
how to implement the predicate Pk (π0,−,−). Second,
we show how to obtain the predicate Psu(π0,−,−) from
Pk (π0,−,−). Note that we introduce here a parameter f
defined such that |π0| = n − f . The implementation of
Pk (π0,−,−) requires f < n/2.

7



a) Implementing Pk (π0,−,−)

The algorithm for implementing Pk (π0,−,−) is given as
Algorithm 3. It uses two different types of messages, INIT
messages and ROUND messages. Processes express the in-
tention to enter a new round ρ with an 〈INIT, ρ,−〉message.
If a process receives at least f + 1 INIT messages for some
round ρ, it starts round ρ and sends a 〈ROUND, ρ,−〉 mes-
sage. A process in round ρ that receives a ROUND message
for a higher round ρ′ enters immediately round ρ′. This
ensures fast synchronization at the beginning of a good pe-
riod, and is one of the major differences of this algorithm
compared to Byzantine clock synchronization algorithms.

The reception policy for Algorithm 3 (line 1) is a little bit
more complicated than for Algorithm 2. Algorithm 3 has to
ensure that a fast process with a large round number r′ is not
able to prevent messages from other processes with lower
round numbers r < r′ from being received. The reception
policy is as follows: At the ith receive step, the message
with the highest round number from process pi mod n is se-
lected for reception. If no such message exists, an arbitrary
message is selected.

As for the previous algorithm, variables rp and sp are
assumed to be on stable storage (possibly with a copy in
volatile memory) and the algorithm starts after a recovery
in line 6, with msgsRcvp and next rp reinitialized.

We prove the following results:

Theorem 6. With Algorithm 3 and f < n/2, the minimal
length of a good period to achieve Pk (π0, ρ0, ρ0+x−1) is

(x+2)[(2δ+2nφ+φ)φ+δ+nφ+2φ]+(2δ+2nφ+φ)φ

Theorem 7. With Algorithm 3 and f < n/2, the minimal
length of an initial good period to implement Pk (π0, 1, x)
is:

(x−1)[(2δ+2nφ+φ)φ+δ+nφ+2φ]+(2δ+2nφ+φ)φ+φ.

b) Implementing Psu(π0,−,−) from Pk (π0,−,−)

We show now that f+1 rounds that satisfy Pk (π0,−,−),
with |π0| = n−f , allow us to construct one macro-round
that satisfies Psu(π0,−,−). The “translation” is given by
Algorithm 4, which is derived from a similar translation
in [6]. Let r1, . . . , rf+1 denote the sequence of the f + 1
rounds that form a macro-round R. In round r1, every pro-
cess p sends its message for macro-round R (line 7). In
all subsequent rounds r2, . . . , rf+1 messages previously re-
ceived are relayed (line 7). In round rf+1 (i.e., r ≡ 0
(mod f+1), see line 9), the set of messages of macro-round
R to be received by p are computed (lines 13 and 14).

Algorithm 3 EnsuringPk (π0, , ) with a “π0-arbitrary” good
period

1: Reception policy: The highest round message from each
process in a round robin fashion

2: msgsRcvp ← ∅
3: rp ← 1
4: next rp ← 1
5: sp ← initp

6: while true do
7: msg ← S

rp
p (sp)

8: send 〈ROUND, rp, msg〉 to all
9: i← 0

10: while next rp = rp do
11: receive a message
12: if message is 〈ROUND, msg, r′〉 or 〈INIT, msg, r′ + 1〉

from q then
13: msgsRcvp ← msgsRcvp ∪ {〈msg, r′, q〉}
14: if r′ > rp then
15: next rp ← r′

16: if received f+1 messages 〈INIT, rp+1,−〉 from distinct
processes then

17: next rp ← max{rp + 1, next rp}
18: i← i + 1
19: if i ≥ 2δ + (2n + 1)φ then
20: send 〈INIT, rp + 1, msg〉 to all
21: R← {〈msg′, q′〉 | 〈msg′, rp, q′〉 ∈ msgsRcvp}
22: sp ← T

rp
p (R, sp)

23: forall r′ in [rp+1, next rp−1] do sp ← T r′
p (∅, sp)

24: rp ← next rp

c) Putting it all together

When combining Algorithm 3 and Algorithm 4, the func-
tion S

rp
p ( ) called in Algorithm 3 refers to line 7 of Algo-

rithm 4. Similarly, the function T
rp
p ( ) called in Algorithm 3

refers to the lines 9 to 17 of Algorithm 4. The functions Sr
p

and T r
p in Algorithm 4 refer to the sending phase and state

transition phase of Algorithm 1.
We compute now the minimal duration of a good period

to ensure P2
otr (π0) (considering instead P1/1

otr (π0) is not a
valuable alternative here):

1. We need first f + 1 rounds that satisfy Pk (−,−,−)
to implement one macro-round that satisfies
Psu(−,−,−) (Algorithm 4).

2. Then we need one round that satisfies Pk (−,−,−).

For 1, the worst case happens when the good period starts
immediately after the beginning of a macro-round. In
this worst case, Psu(−,−,−) requires two macro-rounds.
Since one macro-round consists of f+1 rounds, in the worst
case we need 2(f+1) rounds. Item 2 adds one round. So we
end up with a minimal duration of 2f +3 rounds. Applying
Theorem 6, we get the minimal length of a good period:

(2f +5)[(2δ+2nφ+φ)φ+δ+nφ+2φ]+(2δ+2nφ+φ)φ.
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Algorithm 4 Ensuring Psu(π0,−,−) with Pk (π0,−,−)

(adapted from [6]).
1: Variables:
2: Listenp, initially Π {set of processes}
3: NewHOp {set of processes}
4: Knownp, initially {〈SRp

p (sp), p〉}
{set of 〈message, process〉 }

5: Round r:
6: Sr

p :
7: send 〈Knownp〉 to all processes

8: T r
p :

9: Listenp ← Listenp ∩ {q | 〈Knownq〉 received}
10: if r 6≡ 0 (mod f+1) then
11: Knownp ← Knownp ∪

S
q∈Listenp

Knownq

12: else
13: NewHOp ← {s | 〈−, s〉 ∈ Knownq for n− f

processes q ∈ Listenp}
14: R← {〈msg, s〉 | s ∈ NewHOp}
15: sp ← T

Rp
p (R, sp)

16: Listenp ← Π

17: Knownp ← {〈SRp
p (sp), p〉}

5 Related work

The paper addresses several issues that appear in the lit-
erature. We now point out the key differences.

The HO model was proposed in [6]. The paper es-
tablishes relationship among several communication pred-
icates and identifies the weakest predicate, among the class
of predicates with non-empty kernel rounds, for solving
consensus. The paper also expresses well-known consen-
sus algorithms (or variants) and new ones in the HO model,
with the goal of showing the expressiveness of the model.
The implementation of communication predicates is not ad-
dressed in [6], nor is the ability of the model to handle uni-
formly crash-stop and crash-recovery models, and the rea-
son for that. In [7] the HO model is used to express a new
consensus algorithm.

The HO model generalizes the round model of [12], but
does not reintroduce failure detectors as done in [14] and
in [17]. The implementation in [12], contrary to ours, ex-
plicitly refers to some “common notion of time” and relies
on a distributed clock synchronization algorithm.

It has been sometimes claimed that the partial syn-
chrony model has been superseded by the failure detector
model [5]. In out opinion this claim is only partially cor-
rect. The models that extend the failure detector model, e.g.,
[14, 17], all inherit from the limitations of failure detectors
pointed out in Section 1.

The issue of performance of consensus following asyn-
chronous periods is considered in [11, 17]. In [17] the fo-
cus is on number of rounds rather than time; [11] considers

time. Moreover, in [17] the authors write that being able
to quantify the time it takes the environment to reach round
synchronization after the system has stabilized is an inter-
esting subject for further studies. This question is answered
here. In [11] and [17] the synchronous period is defined
only by properties of links: Processes are always considered
to be synchronous. This is in contrast to our definition of
π0-arbitrary good period, where only a subset of processes
are assumed to be synchronous. This definition opens the
door to the analysis of the duration of good periods with
Byzantine processes. Our algorithm shares some similari-
ties with the Byzantine clock synchronization of [23]. How-
ever, the algorithm in [23] assumes reliable links; adapting
the algorithm to message loss, we end up with the algorithm
of [12].

The notion of good and bad period appears in [8], but the
issue of the length of a good period for solving consensus
is not addressed. Restricting the scope of synchrony, as we
do in good periods, has been considered in other settings,
e.g., [15] and [2, 3]. However, in all these papers the issue
of synchrony is implicitly restricted to links (i.e., process
synchrony is not addressed). This is not the case in our
definition of π0-arbitrary good period.

The Paxos algorithm [19] does not assume reliable links
and, because of this, works under the crash-recovery model
with stable storage. However, the condition for liveness is
not expressed by a clean abstraction as done by communi-
cation predicates in the HO model (a consensus algorithm à
la Paxos in the HO model can be found in [6]). The same
comment applies to [11], where the system must stabilize
before consensus is reached. System stabilization is not re-
quired with π0-arbitrary good periods: the HO model pro-
vides a clean separation of concerns between the HO algo-
rithmic layer and the predicate implementation layer, which
allows a finer definition of good periods, and so a finer tim-
ing analysis. As pointed out in Section 3, we have chosen
here an algorithm that is simpler than Paxos to illustrate as
simply as possible the approach based on communication
predicates.

The notion of transmission faults was suggested in [21],
however only in the context of synchronous systems. Vary-
ing the quorums for “init” and round messages — in the
context of π0-arbitrary good periods — was to our knowl-
edge done first in [20, 24], but for other fault scenarios.

6 Conclusion

Abstractions are essential when solving difficult prob-
lems. Failure detectors provide a nice abstraction for solv-
ing the difficult consensus problem; this explains why they
have been widely adopted. However, transient and dynamic
faults show the limitations of the failure detector approach:
For example, solving consensus in the crash-stop model and
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in the crash-recovery model leads to significantly different
solutions. The HO model provides a different abstraction,
namely the “communication predicates”, which allow us to
handle uniformly static, dynamic, transient, and permanent
faults and so overcome the limitations of failure detectors.
Moreover, the HO model allows a nice and concise expres-
sion of consensus algorithms.

Similarly to failure detectors, solving consensus in the
HO model leads to distinguish two layers: The “algorith-
mic” layer and the “abstraction” layer (the layer at which
the abstraction is implemented). In the case of failure de-
tectors, the abstraction layer must ensure the properties of
the failure detectors, based on assumptions of the underly-
ing system. The same holds for communication predicates.
However, while communication predicates are based on the
very general notion of transmission faults, failure detector
assume the limited notion of process crash faults. The com-
munication predicate layer defines a larger “playground”
than the failure detector playground, in which more issues
can be addressed. Specifically, the communication predi-
cate approach has allowed us to bring an answer the ques-
tion raised in [17], about quantifying the time it takes to
reach round synchronization after the system has stabilized.
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Appendix
A Solving Consensus with failure detectors: crash-stop vs. crash-recovery

We give the consensus algorithms for the crash-stop (Chandra and Toueg [5]) and the crash-recovery model (Aguilera et
al. [1]), as discussed in Section 2.

A.1 Crash-stop algorithm

Algorithm 5 Chandra and Toueg [5]: Solving consensus in the crash-stop model with 3S
1: procedure propose(vp)
2: estimatep ← vp {p’s estimate of the decision value}
3: statep ← undecided
4: rp ← 0 {p’s current round number}
5: tsp ← 0 {last the round in which p updated estimatep , initially 0}

6: while statep = undecided do
7: rp ← rp + 1
8: cp ← (rp mod n) + 1 {cp is the current coordinator}

9: Phase 1:
10: send (p, rp, estimatep, tsp) to cp

11: Phase 2:
12: if p = cp then
13: wait until [for d (n+1)

2 e processes q: received (q, rp, estimateq, tsq) from q]
14: msgsp[rp]← {(q, rp, estimateq, tsq) | p received (q, rp, eatimateq, tsq) from q}
15: t← largest tsq such that (q, rp, estimateq, tsq) ∈ msgsp[rp]
16: estimatep ← select one estimateq such that (q, rp, estimateq, t) ∈ msgsp[rp]
17: send (p, rp, estimatep) to all

18: Phase 3:
19: wait until [received (cp, rp, estimatecp ) from cp or cp ∈ Dp] {query the failure detector}

20: if received (cp, rp, estimatecp ) from cp then
21: estimatep ← estimatecp
22: tsp ← rp

23: send (p, rp, ack) to cp

24: else
25: send (p, rp, nack) to cp {p suspects that cp crashed}

26: Phase 4:
27: if p = cp then
28: wait until [for d (n+1)

2 e processes q: received (q, rp, ack) or (q, rp, nack)]

29: if for d (n+1)
2 e processes q: received (q, rp, ack) then

30: R-broadcast(p, rp, estimatep, decide) to all

31: when R-deliver(q, rq, estimateq, decide) for the first time
32: if statep = undecided then
33: statep ← decided
34: decide(estimateq)
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A.2 Crash-recovery algorithm

Algorithm 6 Aguilera et al. [1]: Solving consensus in the crash-recovery model with 3Su

1: Initialization:
2: for all q ∈ Π \ {p} do xmitmsg[q]← ⊥

3: To s-send m to q:
4: if q 6= p then xmitmsg[q]← m; send m to q else simulate receive m from p

5: Task retransmit:
6: repeat forever
7: for all q ∈ Π \ {p} do if xmitmsg[q] 6= ⊥ then send xmitmsg[q] to q

8: upon propose(vp):
9: (rp, estimatep, tsp)← (1, vp, 0)

10: fork task {4phases, retransmit}

11: Task 4phases:
12: store {rp}; cp ← (rp mod n + 1; fork task {skip round, participant}
13: if p = cp then fork task coordinator

14: Task coordinator:
15: {Phase NEWROUND}
16: if tsp 6= rp then
17: s-send (rp, NEWROUND) to all
18: wait until [ received (rp, estimateq, tsq,
19: ESTIMATE) from d(n + 1)/2e processes ]
20: t← largest tsq such that p received
21: (rp, estimateq, tsq, ESTIMATE)
22: estimatep ← select one estimateq such that
23: p received (rp, estimateq, t, ESTIMATE)
24: tsp ← rp

25: store {estimatep, tsp}

26: {Phase NEWESTIMATE}
27: s-send (rp, estimatep, NEWESTIMATE) to all
28: wait until [ received (rp, ACK) from
29: from d(n + 1)/2e processes ]
30: s-send (estimatep, DECIDE) to all

31: Task participant:
32: {Phase ESTIMATE}
33: if tsp 6= rp then
34: s-send (rp, estimateq, t, ESTIMATE) to cp

35: wait until [ received (rp, estimatecp ,

36: NEWESTIMATE) from cp ]
37: if p 6= cp then
38: (estimatep, tsp)← (estimatecp , rp)

39: store {estimatep, tsp}

40: {Phase ACK}
41: s-send (rp, ACK) to cp

42: Task skip round:
43: d← Dp {query 3Su}
44: if cp ∈ d.trustlist then
45: repeat d′ ← Dp {query 3Su}
46: until [ cp /∈ d′.trustlist or d.epoch[cp] < d′.epoch[cp] or received some message (r, . . .) such that r > rp ]
47: terminate task {4phases, participant, coordinator} {abort current round}
48: repeat d← Dp until d.trustlist 6= ∅ {query 3Su to go to a higher round}
49: rp ← the smallest r > rp such that [(r mod n) + 1] ∈ d.trustlist and r ≥ max{r′ | p received (r′, . . .)}
50: fork task 4phases

51: upon receive m from q do:
52: if m = (estimate, DECIDE) and decide(−) has not yet occurred then {check stable storage about decide}
53: DECIDE(estimate) {decide is logged into stable storage}
54: terminate task {skip round, 4phases, participant, coordinator, retransmit}
55: if m 6= (−, decide) and decide(estimate) has occurred then {check stable storage about decide}
56: send (estimate, DECIDE) to q

57: upon recovery:
58: for all q ∈ Π \ {p} do xmitmsg[q]← ⊥
59: if propose(vp) has occurred and decide(−) has not occurred then {check st. storage about propose and decide}
60: retrieve {rp, estimatep, tsp}
61: if rp = ⊥ then rp ← 1; if estimatep = ⊥ then (estimatep, tsp)← (vp, 0)
62: fork task {4phases, retransmit}
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B Proofs for the duration of a good period

B.1 Proofs for Section 4.2.1

Let in the sequel ρ0 denote the largest round number such
that no process has sent a message for round ρ0 by time τG,
but some process has send a message for round ρ0 − 1.

Proposition B.1. For implementing P2
otr (π0) with Algo-

rithm 2, we need one “π0-down” good period of length

(6δ + 3nφ + 6φ + 2)φ + δ + φ.

For implementing P1/1
otr (π0) with Algorithm 2, we need two

“π0-down” good period of length

(4δ + 2nφ + 4φ + 1)φ + δ + φ.

Proof. Follows directly from Theorem 3 below.

Lemma B.2. For each round number ρ, if a message for
round ρ + 1 is sent by some process then there is a process
that sent previously a message for round ρ.

Proof. Assume by contradiction that no message for round
ρ is sent, but for round ρ + 1. The first message for round
ρ+1 is sent by some process p only if p received a message
for round ρ + 1 (impossible, since it is by assumption the
first message), or when p has taken sufficient receive steps
in round ρ, which starts always with sending a message for
ρ. A contradiction.

Lemma B.3. By time τG + (2δ + (n + 2)φ + 1)φ some
process sends a message for round ρ0.

Proof. Let p be the (not necessarily unique) process that
has sent a message with the highest round number (equal to
ρ0−1) at time τG. By the definition of ρ0 such a process
exists. Because of line 12, p takes at most 2δ + (n + 2)φ
receive steps, before sending a new round message (one
send step). By the synchrony assumptions, p takes at least
one step in every time interval of length φ, so executing
2δ +(n+2)φ+1 steps takes at most (2δ +(n+2)φ+1)φ
time units. So p sends a message for a new round no later
than τG +(2δ +(n+2)φ+1)φ (*). By Lemma B.2 a mes-
sage is sent for round ρ0 (**). The result follows from (*)
and (**).

Lemma B.4. Let p be the first (not necessarily unique) pro-
cess that sends at time τ ≥ τG a message for a round
ρ ≥ ρ0. Then no process sends a round ρ + 1 message
before time τ + 2δ + (n + 2)φ + 1.

Proof. Assume by contradiction a process q that is the first
to send a round ρ+1 message before time τ+2δ+(n+2)φ+
1. A process can enter round ρ+1, if (a) it receives a round
ρ + 1 message, or (b) it makes 2δ + (n + 2)φ receive steps

in round r. (a) cannot be the case, since q is by assumption
the first process in round ρ + 1. In case (b), making 2δ +
(n+2)φ receive steps and a send step for sending the round
ρ + 1 message takes at least 2δ + (n + 2)φ + 1 time, so
the send step in round ρ + 1 can be at the earliest at time
τ + 2δ + (n + 2)φ + 1. A contradiction.

Lemma B.5. Let p be the first (not necessarily unique) pro-
cess that sends a message for a new round ρ > ρ0 at some
time τ > τG. Then every process q ∈ π0 sends a round ρ
message by time τ + δ + 2φ.

Proof. Since we are in a good period, the message sent by
p in round ρ is in bufferq by time τ +δ (*). By Lemma B.4,
there is no round ρ′ > ρ message in the system before time
τ + 2δ + (n + 2)φ + 1 (**). The reception policy “highest
round first” together with (*) and (**) ensure that by time
τ + δ + φ some round ρ message (not necessarily the one
from p) is received by q. Because of lines 17–18, q switches
to round ρ and executes a send step for round ρ. The send
steps takes at most φ time units, i.e., q sends a round ρ mes-
sage by time τ + δ + 2φ.

Lemma B.6. For all rounds ρ ≥ ρ0, if some process sends
a round ρ message, every process in π0 executes line 20 with
R containing the round ρ message from every process in π0,
presuming we are still in the good period at this time.

Proof. Let τ be the time where some process p ∈ π0 sends
a round ρ message. By Lemma B.5, every other process q ∈
π0 sends a round ρ message mρ

q by time τ+δ+2φ. Message
mρ

q is in buffers for all s ∈ π0 by time rt = τ +2δ+2φ. At
time rt, processes in π0 have taken at most 2δ + 2φ receive
steps in round ρ. By Lemma B.4, no messages for higher
rounds are in the system before τ + 2δ + (n + 2)φ + 1. So
after rt, every process in π0 takes at least n more receive
steps in round ρ, and executes line 20 with mρ

q in R.

Theorem 3. With Algorithm 2, the minimal length of a good
period to achieve Psu(π0, ρ0, ρ0+x−1) is:

(x + 1)(2δ + (n + 2)φ + 1)φ + δ + φ.

Proof. By Lemma B.6, for all rounds ρ ≥ ρ0, Psu(π0, ρ, ρ)
holds. So it remains to compute the length of each of these
rounds.

For each round ρ > ρ0, every process in π0 takes exactly
1 send step and 2δ+(n+2)φ receive steps. Since each step
takes at most φ time units, each round ρ > ρ0 takes at most
(2δ + (n + 2)φ + 1)φ time units.

It remains to compute the time at which processes in π0

ends round ρ0. By Lemma B.3, by time τG + (2δ + (n +
2)φ + 1)φ, a message for round ρ0 is sent. By Lemma B.5,
by time τG + (2δ + (n + 2)φ + 1)φ + δ + 2φ every process
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sends a round ρ0 message. Then every process takes 2δ +
(n + 2)φ receive steps. Each of these receive steps take at
most φ time units. So all processes have taken their receive
steps for round ρ0 by time τG + 2(2δ + (n + 2)φ + 1)φ +
δ + φ.

Theorem 5. With Algorithm 2, the minimal length of an
initial good period to achieve space uniformity for x con-
secutive rounds is:

x(2δ + (n + 2)φ + 1)φ.

Proof. The result follows directly from the length of a
round in a good period computed in the proof of Theo-
rem 3.

B.2 Proofs for Section 4.2.2

For the proof of correctness, we assume that a good pe-
riod starts at time τG and lasts forever. We denote with “a
round message for ρ” a message 〈ROUND, ρ,−〉, and with
“an init message for ρ” a message 〈INIT, ρ,−〉, respectively.
Further, let ρ0 be the round number of the highest round
message that has been sent by any process. The timeout of
the algorithm is abbreviated with τ0 = 2δ + (2n + 1)φ.

Lemma B.7. For any time τ , let F (τ) be the set of f + 1
processes that have the highest round number among all
processes, and let ρmin(τ), resp. ρmax(τ), be the small-
est, resp. largest, round number in F (τ). Then ρmax(τ) −
ρmin(τ) ≤ 1.

Proof. Assume by contradiction that there is a process in
F (τ) with round number ρ < ρmax(τ)−1. Let p be the first
process in round ρmax(τ). To enter this round, p has to re-
ceive either (a) a message 〈ROUND, ρmax(τ),−〉 (line 12),
(2) a message 〈INIT, ρmax(τ)+1,−〉 (line 12), or (3) f + 1
messages 〈INIT, ρmax(τ),−〉 (line 16). (a) and (b) cannot
be the case, since p is by assumption the first process in
round ρmax(τ). Case (c) is not possible, since by assump-
tion, less than f +1 processes are in a round greater or equal
ρmax(τ)−1. So p cannot be in round ρmax(τ), a contradic-
tion.

Lemma B.8. Every process in π0 sends message
〈ROUND, ρ0,−〉 by time τG + 3τ0φ + 3δ + 3nφ + 6φ.

Proof. We first show that every process in π0 sends mes-
sage 〈ROUND, ρ0−1,−〉 by time τG+2τ0φ+2δ+2nφ+4φ.
For this, we distinguish two cases.

For the first case, assume that there is a process p ∈ π0

with rp = ρ0 − 1 at time τG. Then after at most τ0 receive
steps, p sends 〈INIT, ρ0,−〉, which is by time τG +τ0φ+φ.
Because we are in a good period and p ∈ π0, 〈INIT, ρ0,−〉
is ready for reception at each process q ∈ π0 at most δ time

later; because of the reception policy, and since there are no
messages with a higher round number from p, 〈INIT, ρ0,−〉
is received by q by time τG + τ0φ + δ + nφ + φ. At most φ
times later q sends 〈ROUND, ρ0−1,−〉, and we are done.

For the second case, where there is no process in π0 with
round number ρ0 − 1, we can conclude from Lemma B.7,
that there is at least some process p ∈ π0, with rp = ρ0−2.
By the same argument as above, every process in π0 re-
ceives 〈INIT, ρ0−1,−〉 by time τG +τ0φ+δ+nφ+φ, then
(optionally, since this might have happened already before)
sends 〈ROUND, ρ0−2,−〉 and takes at most τ0 receive steps
before sending 〈INIT, ρ0−1,−〉. Thus, by time τG +2τ0φ+
δ + nφ + 3φ, every process in π0 sends 〈INIT, ρ0−1,−〉.
Because of |π0| = n − f , every process in π0 receives
thus more than f messages 〈INIT, ρ0−1,−〉 and sends thus
〈ROUND, ρ0−1,−〉 by time τG + 2τ0φ + 2δ + 2nφ + 4φ.

In both cases, since 〈ROUND, ρ0−1,−〉 is sent by every
process in π0 by time τG + 2τ0φ + 2δ + 2nφ + 4φ, but
after τG, after at most τ0 receive steps (which takes at most
τ0φ time units), every process sends 〈INIT, ρ0,−〉, which
takes at most Φ time. This message is ready for reception
at each process in π0 at most δ time later, and because of
the reception policy, because there are no messages with a
higher round number from p, this message is received at
most nφ time later. At most φ times later 〈ROUND, ρ0,−〉
is sent. The Lemma follows.

Lemma B.9. Let p ∈ Π be the first (not necessarily unique)
process that sends at time τ ≥ τG message 〈ROUND, ρ,−〉
with ρ ≥ ρ0. Then no process sends 〈ROUND, ρ+1,−〉
before time τ + τ0 + 1. Moreover, no process sends
〈INIT, ρ+2,−〉 before time τ + τ0 + 1.

Proof. For the ROUND message, assume by contradic-
tion that process q ∈ Π is the first process that sends
〈ROUND, ρ+1,−〉 before time τ+τ0+1. Process q can send
this message if it (a) receives a message 〈ROUND, ρ+1,−〉,
(b) a message 〈INIT, ρ+2,−〉, or (c) f + 1 messages
〈INIT, ρ+1,−〉. Cases (a) and (b) are excluded, since q is by
assumption the first process in round ρ+1. In case (c), since
|π0| = n−f , at least one of the messages 〈INIT, ρ+1,−〉 is
from a process in π0. In order to send 〈INIT, ρ+1,−〉, a
process makes τ0 receive steps in round ρ, which takes for
processes in π0 at least τ0 time, plus the send step that costs
at least one time unit. So message 〈ROUND, ρ+1,−〉 is sent
by q at the earliest at time τ + τ0 + 1. A contradiction.

For the INIT message the result follows from the fact
that a message 〈INIT, ρ+2,−〉 is only sent after a message
〈ROUND, ρ+1,−〉.

Lemma B.10. Let p be the first (not necessarily unique)
process from π0 that sends message 〈ROUND, ρ,−〉 with
ρ ≥ ρ0 at some time τ ≥ τG. Then every other process in
π0 sends message 〈ROUND, ρ+1,−〉 by time τ +δ+nφ+φ.
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Proof. Since we are in a good period, the message sent by
p in round ρ is in bufferq by time τ +δ (*). By Lemma B.9,
there is no message 〈ROUND, ρ′,−〉 with ρ′ > ρ in the sys-
tem before time τ +τ0+1. Since τ0 = 2δ+2nφ+φ no such
message is the system before time τ +2δ+2nφ+φ+1 (**).
The reception policy “highest round first from each process
in a round robin fashion” together with (*) and (**), en-
sures that by time τ +δ+nφ some message 〈ROUND, ρ,−〉
(not necessarily the one from p) is received by q. Be-
cause of lines 14–15, q switches to round ρ and sends
message 〈ROUND, ρ,−〉. The send step takes at most φ
time units, i.e., q sends message 〈ROUND, ρ,−〉 by time
τ + δ + (n + 1)φ.

Lemma B.11. For all rounds ρ ≥ ρ0, if some process
p ∈ π0 sends message 〈ROUND, ρ,−〉, every process q ∈
π0 executes line 20 with R containing the round message
〈ROUND, ρ,−〉 from every process in π0, presuming we are
still in the good period at this time.

Proof. Let τ be the time where some process p ∈ π0 sends
message 〈ROUND, ρ,−〉. By Lemma B.10, every other pro-
cess q ∈ π0 sends message mρ

q = 〈ROUND, ρ,−〉 by time
τ + δ + nφ + φ. Message mρ

q is in buffers for all s ∈ π0

by time τρ = τ + 2δ + nφ + φ. At time τρ, processes in
π0 have taken at most 2δ + nφ + φ receive steps in round
ρ. By Lemma B.9, no messages for higher rounds are in the
system before τ + 2δ + (2n + 1)φ + 1. So after τρ, every
process in π0 takes at least n more receive steps in round ρ,
and executes line 22 with mρ

q in R.

Theorem 6. With Algorithm 3 and f < n/2, the minimal
length of a good period to achieve Pk (π0, ρ0 + 1, ρ0+x) is

(x + 2)[τ0φ + δ + nφ + 2φ] + τ0φ =

= (x+2)[(2δ+2nφ+φ)φ+δ+2nφ+2φ]+(2δ+2nφ+φ)φ.

Proof. By Lemma B.11, for x ≥ 1, the predicate
Pk (π0, ρ0 + 1, ρ0 +x) holds. It remains to compute the
length of each of these rounds.

According to Lemma B.8, the last process starts round ρ0

by time τG +3τ0φ+3δ+3nφ+6φ. For each round ρ ≥ ρ0,
every process in π0 takes at most τ0 receive steps and one
send step for message 〈ROUND, ρ,−〉. This leads to at most
τ0φ+φ time units. Then we have the sending and reception
of the INIT messages: one send step (at most φ time units),
the transmission (at most δ), and at most n receive steps
(f + 1 < n). We get a total of τ0φ + δ + nφ + 2φ for a
round. However, the INIT messages can be ignored for the
last round, resulting in a duration of τ0φ + φ for the last
round. The result follows.

Theorem 7. With Algorithm 3 and f < n/2, the minimal
length of an initial good period to implement Pk (π0, 1, x)
is:

(x− 1)[τ0φ + δ + nφ + 2φ] + τ0φ + φ.

Proof. The result follows directly from the length of a
round in a good period computed the proof of Theorem 6,
and taking into account, as in the proof of Theorem 6, that
the INIT messages can be ignored for the last round.

C Proof of Algorithm 4

Algorithm 4 can more easily presented as a translation,
as formally defined in [6]. For sake of self-containment and
conciseness, we chose for Algorithm 4 a presentation in the
system level model instead of introducing the concept of a
translation.

For an introduction into translations we refer to [6]. It is
easy to see that Algorithm 4 is obtained from the translation
in Algorithm 7, by changing Knownp, which is a set of
〈message, process〉 in Algorithm 4, to be a set of processes
in Algorithm 7.

Algorithm 7 Translating Pk (−,−,−) to Psu(−,−,−)

(adapted from [6]).
1: Initialization:
2: Listenp ∈ 2Π, initially Π
3: NewHOp ∈ 2Π

4: Knownp ∈ 2Π, initially {p}

5: Round r:
6: Sr

p :
7: send 〈Knownp〉 to all processes

8: T r
p :

9: Listenp ← Listenp ∩HO(p, r)
10: if r 6≡ 0 (mod f+1) then
11: Knownp ← Knownp ∪

S
q∈Listenp

Knownq

12: else
13: NewHOp ← {s | s ∈ Knownq for n− f processes

q ∈ Listenp}
14: Listenp ← Π
15: Knownp ← {p}

Thus we have to show only the correctness of Algo-
rithm 7, which can be done in a more elegant way.

We extend the proof in Section 4.3 of [6] to show that
Algorithm 7 translatesPk (Π0, r1, r1+f) toPsu(Π0,R,R)
in f + 1 rounds, where f = n − |Π0|. The proof is taken
from [6] and modified at a few crucial points. In contrast to
[6], we have to assume n > 2f .

We fix a macro-roundR and introduce some piece of no-
tation relative to R. Let r1, . . . , rf+1 denote the sequence
of the f + 1 rounds that form R. Let KΠ0(R) denote the
Π0-restricted kernel of macro-round R, i.e.,
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KΠ0(R) =
rf +1⋂
r=r1

KΠ0(r).

We further define the restricted co-kernel coKΠ0(R) =
Π \KΠ0(R).

Lemma C.1. If Pk (Π0, r1, rf ) holds, then coKΠ0(R) ∩
Π0 = ∅.

Proof. If Pk (Π0, r1, rf ) holds, we have Π0 ⊆ KΠ0(R).
The results follows directly from the definition of
coKΠ0(R).

We say that process p knows process s at round r if s ∈
Known

(r)
p . If s ∈ Known(r)

p \Known(r−1)
p , q ∈ Listenr

p,
and s ∈ Known(r−1)

q , then we say that p hears of s from q
at round r. Finally, process s is said to be good (at macro-
round R) if s is known by all processes in Π0 at round rf ;
otherwise s is bad. In other words, the set of good processes
is defined by

Good =
⋂

p∈Π0

Known(rf )
p .

Lemma C.2.

KΠ0(R) ⊆
⋂

r∈Π0,r∈{r1,...,rf+1}

Listen(r)
p

Proof. It is immediately from the definition of Listenp that
for any process p,

rf⋂
r=1

Listen(r)
p =

rf⋂
r=1

HO(p, r)

and
HO(p, rf+1) ⊆ Listenrf+1

p .

The result follows directly.

Lemma C.3. Any process p in KΠ0(R) is a good process.

Proof. Let p be any process in KΠ0(R). By lines 15 and
11, it follows that all processes in Π0 know p at the end of
round rf . This shows that p is a good process.

Lemma C.4. If a process p ∈ Π0 hears of some process s
at round rk, then there exist k − 1 processes p1, . . . , pk−1,
each different from p and s, such that p1 hears of s from s at
round r1, p2 hears of s from p1 at round r2, . . . , pk−1 hears
of s from pk−2 at round rk−1 and p hears of s from pk−1 at
round rk. Moreover, processes p1, . . . , pk−2 and s belong
to coKΠ0(R).

Proof. Since p hears of process s at round rk, there exists
some process pk−1, such that pk−1 ∈ Listen(rk)

p and s ∈
Known(rk−1)

pk−1
. Since Listenp is non-increasing, pk−1 ∈

Listen(rk−1)
p . This implies that pk−1 hears of s at round

rk−1 since p does not know s at this round. In turn, there
exists some process pk−2, such that pk−2 ∈ Listen(rk−1)

pk−1
,

and s ∈ Known(rk−2)
pk−2

. From

s ∈ Known(rk−2)
pk−2

and s /∈ Known(rk−1)
p ,

we deduce that pk−2 /∈ Listen(rk−1)
p . By Lemma C.2 and

p ∈ Π0, we have pk−2 ∈ coKΠ0(R).
Step by step, we exhibit k−1 processes p1 . . . pk−1, such

that for any index i, 1 ≤ i ≤ k − 1,

s /∈ Known(ri−1)
pi

, s ∈ Known(ri)
pi

, and pi−1 ∈ Listen(ri)
pi

.

For any index i such that 2 ≤ i ≤ k − 1, we have both

s ∈ Known(ri−1)
pi−1

and s /∈ Known(ri)
p .

Therefore, pi−1 /∈ Listen(ri)
p . By Lemma C.2 and p ∈ Π0,

we deduce that pi−1 belongs to coKΠ0(R). Similarly, we
have

s /∈ Known(r1)
p ,

and so s belongs to coKΠ0(R), too. Thus it follows that all
the processes p1, . . . , pk−2, and s are in coKΠ0(R).

Lemma C.5. If process p ∈ Π0 knows some bad process s
at the end of round rf+1, then p has heard of s by the end
of the round rf , i.e.,

∀p ∈ Π0 : s ∈ Knownrf +1
p ∧s /∈ Good ⇒ s ∈ Known(rf )

p .

Proof. Let s be a bad process; so there exists some process
q ∈ Π0 such that s /∈ Known(rf )

q . Suppose for contra-
diction that p hears of s at round rf+1. By Lemma C.4,
there are f processes p1, . . . , pf each different from both
p and s such that p hears of s from pf at round rf+1, and
processes p1, . . . , pf−1, and s are all in coKΠ0(R) Since
s /∈ Known(rf )

q , Listenq contains neither p nor pf at this
round. Therefore p and pf are also in coKΠ0(R). So
|coKΠ0(R)| is larger than f . By Lemma C.1, we have
in this case |Π0| < n − f which contradicts the fact that
|Π0| = n− f .

Lemma C.6. A process is good iff it is known by some pro-
cess in Π0, i.e.,

s ∈ Good ⇔ ∃p ∈ Π0 : s ∈ Known(rf )
p

Proof. By definition, a good process is known by all pro-
cesses in Π0 at round rf .

Conversely, let s be any process known by some process
p ∈ Π0 at round rf . Assume, for the sake of contradiction,
that s is bad. Since p ∈ Π0, every process q ∈ Π0 receives
a message from p at round rf+1, and so Knownq contains
s at the end of round rf+1. By Lemma C.5, we deduce
that every process in Π0 already knows s at round rf . This
contradicts that s is a bad process.
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Lemma C.7. For any process p ∈ Π0, at the end of round
rf+1, NewHOp is composed of all the good processes, i.e.,
NewHO (rf +1)

p = Good .

Proof. We have Good ⊆ NewHO (rf +1)
p , since by def-

inition of Good , for all processes q ∈ Π0, Good ⊆
Known

(rf +1)
q .

Conversely, let s be any process in NewHO (rf +1)
p ; by

line 13, s is known at round rf by n − f processes in

Listen(rf +1)
p , which includes because of n > 2f also a

process from Π0. By Lemma C.6, it follows that s is a good
process.

Therefore we have:

Theorem 8. For n > 2f , Algorithm 7 is a f +1 translation
of Pk (Π0,−,−) into Psu(Π0,−,−).
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