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Abstract—Improving cache performance requires understanding cache behavior. However, measuring cache performance for one or

two data input sets provides little insight into how cache behavior varies across all data input sets and all cache configurations. This

paper uses locality analysis to generate a parameterized model of program cache behavior. Given a cache size and associativity, this

model predicts the miss rate for arbitrary data input set sizes. This model also identifies critical data input sizes where cache behavior

exhibits marked changes. Experiments show this technique is within 2 percent of the hit rate for set associative caches on a set of

floating-point and integer programs using array and pointer-based data structures. Building on the new model, this paper presents an

interactive visualization tool that uses a three-dimensional plot to show miss rate changes across program data sizes and cache sizes

and its use in evaluating compiler transformations. Other uses of this visualization tool include assisting machine and benchmark-set

design. The tool can be accessed on the Web at http://www.cs.rochester.edu/research/locality.

Index Terms—Cache memories, modeling techniques, performance analysis and design aids, compilers, optimization.
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1 INTRODUCTION

THE efficiency of a computer system in executing a
program is highly dependent on the effectiveness of the

memory hierarchy to supply requested data quickly.
However, since the structure of the processor’s memory
hierarchy is almost always fixed, the overall efficiency
depends on how well the program reference pattern
matches the given cache structure. The memory reference
pattern of the program itself depends on the particular data
set used for input. Thus, it is necessary to understand the
fundamental memory reference behavior of a program
across all input data sets to determine how effective the
memory hierarchy will be at efficiently supporting the
program in general.

The effectiveness of memory cache hierarchies depends on

the locality of data accesses in the programs. Past work

mainly provides three ways of locality analysis: by a

compiler, which models loop nests but is not as effective for

dynamic control flow and data indirection; by frequency

profiling, which analyzes a program for select inputs but does

not predict the behavior change in other inputs; or by runtime

analysis, which cannot afford to analyze every access to every

data. None of these methods adequately provides the

capability of predicting the memory reference patterns across
a broad range of programs and data input sizes.

Characterizing cache behavior has generally taken the
form of varying the cache characteristics and measuring
behavior for a given program with a particular data input
set. The architecturally defining features of a cache design
are its size, associativity, and cache line (block) size.
Techniques have been developed to simulate a wide range
of cache sizes [1] and associativities [2] simultaneously.
Currently missing is a similar method to efficiently explore
a broad range of cache line sizes, though the limited range
of line sizes traditionally considered means brute force
exploration may be sufficient for the time being.

A fourth dimension little discussed is how cache
behavior for a given cache configuration (size, associativity,
and line size) varies as the program data set varies. We
show this exploration space graphically in Fig. 1. The three-
dimensional space varies cache size on one axis, associa-
tivity on another, and program data set size on a third, for a
fixed line size. While prior work on cache characterization
techniques addresses how to quickly explore the planar
space delineated by the size and associativity axes, this
paper describes how to extend the exploration along the
program data set size axis in an efficient manner. The
method utilizes data reuse signature patterns, a fundamental
quality of program behavior [3].

Data reuse signature patterns are defined by measure-
ments of a program’s data reuse distance. In sequential
execution, reuse distance is the number of distinct data
elements accessed between two consecutive references to
the same element. The reuse distance is a measure of the
capacity that a fully associative cache must have for the
subsequent access to hit in the cache. Thus, reuse distance
accurately describes access behavior to a fully associative
cache. We analyze the reuse pattern of cache blocks as a
prestep for cache miss prediction.
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We present a method for predicting program miss rates
across a wide range of program data set and cache sizes.
This technique uses reuse distance information from two
input data sets of different sizes, then extracts a parameter-
ized model of the program’s fundamental data reuse
pattern. Regression with additional training input data sets
can further improve the accuracy of the model. We present
a method to convert the data reuse distance information
into cache miss rates for any input size and for any size of
fully associative cache. We demonstrate that this method
accurately depicts memory reference behavior and cache
performance. The predictions are accurate across a wide
range of data sets that vary in size by many orders of
magnitude. We show the technique provides good approx-
imations even for caches of limited associativity.

A primary strength of this method is that, unlike static
compiler analysis, the method is general, so it easily
accommodates programs with data indirection or complex
dynamic control flow. However, not all programs exhibit
predictable access patterns, though a surprising number of
applications do. Also, the cache blocking factor is not
currently part of the model. Thus, all measurements and
predictions are made relative to a specified blocking factor,
which is 32 bytes in our experiments.

Building on the new model, this paper presents a
visualization tool that uses three-dimensional plots to show
how the miss rate changes across program input sizes and
cache sizes. The tool has many uses. First, critical input data
set sizes can be identified where the miss rate changes
dramatically for a given cache. Second, these critical input
data sizes can be well beyond the size of some of the available
benchmark reference data sets; thus, the critical data set sizes
are unlikely to be discovered by profiling or runtime
sampling methods. Third, some applications have inputs
which are difficult to generate in various sizes, e.g., Tomcatv
takes a model as input. The predicted miss rate curves
provide insight into program behavior that may not be
practical to generate by any other means. Fourth, although we
focus on sequential applications in this paper, this technique
can be applied in a parallel environment to model the
memory behavior of individual processes or threads.

This paper demonstrates the visualization tool in compiler
evaluation. It measures the effect of a program transforma-
tion not just for one program execution on a single machine
but for all program inputs for all cache configurations. In
addition, the paper discusses other uses of the tool in cost-
effective cache design and benchmark set design.

The rest of the paper is organized as follows: In Section 2,
we demonstrate how to predict program reference patterns

and convert this information to a cache miss rate. Section 3
measures the accuracy of miss rate prediction. Section 4
presents the visualization tool and its uses. Related work is
discussed in Section 5 and we conclude in Section 6.

2 CACHE MISS RATE ESTIMATION

We analyze program locality based on the concept of reuse
distance. The essence of reuse distance is a measurement of the
volume of the intervening data between two accesses, which
can be approximated in near constant time for each access
with a guaranteed accuracy [3]. This quality is independent of
the granularity of data elements. In this paper, we treat each
distinct cache block as a basic data element.

Fig. 2 is a histogram of reuse distances for a program.
References are grouped by the number of cache blocks
referenced between subsequent accesses (i.e., the reuse
distance) and the distribution is normalized to the total
number of references. The number of intervening cache
blocks between two consecutive accesses to a cache block,
along with cache size, determines whether the second
access hits in a fully associative LRU cache. This is the basis
for our prediction model. In Fig. 2, the fraction of references
to the left of the mark C will hit in a fully associative cache
having capacity of C blocks or greater. For set associative
caches, reuse distance is still an important hint to cache
behavior [4].

Our approach to predicting the cache miss ratio for a
given program across different data inputs consists of two
main steps. The first step is to model the program locality as
predictable reuse distance patterns; the second step is to
estimate the miss rate according to the obtained patterns.

2.1 Locality Pattern Recognition

This section summarizes our prior results from [3], [5], upon
which our cache model is based. The reuse histogram depicts
the locality behavior of a program showing the percentage of
memory accesses with a given reuse distance. In profiling, we
use Atom [6] to instrument the program and link to the
analyzer, as described in [3], to collect reuse distance
information. Pattern recognition is used to discover the
parameterized general model for program locality behavior
from the reuse histograms generated during profiling.

2.1.1 Forming Reference Groups

The reuse distance histogram is composed of references to
cache blocks that often exhibit a pattern. The pattern might
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Fig. 1. Cache behavior exploration space.

Fig. 2. Reuse distance histogram example.



be a constant reuse distance, e.g., sequential accesses to a
block while stepping through an array. The histogram can
include patterns that are proportional to the data set size,
where the data set size is the number of unique cache lines
accessed by the program. For example, reuses of the first
access to a block may be related to the square root of the
size of a two-dimensional array. The histogram is an
aggregation of all accesses and, thus, includes many types
of patterns. The modeling technique classifies portions of
the histogram into groups and models each group by a
function type.

The difficulty is how to tease apart which references are
represented by the different function types. The following
technique is a heuristic that works well experimentally. In this
technique, we compare the reuse histograms from two runs of
the program having two different sizes of data sets. For each
histogram, we form G ¼ 1; 000 groups by assigning
0.1 percent of the histogram to a group, starting from the
shortest reuse distance and moving toward the largest. The
dotted lines in Fig. 3a (qualitatively) show a partitioning. An
implicit assumption is that references of like reuse
distance can be modeled by a similar function type.

To estimate a function for how a group’s reuse distance
varies with data set size requires at least two sample points
for each group. Thus, we pair the ith groups from the two
runs, ðg1

i ; g
2
i Þ. First, note that the number of references in

each run of the program is quite different, but each group
represents 1

G of the total references of the respective run.
Thus, each group has the same fraction of references. This
presumes that the proportion of each class of reference
remains the same for different inputs, which is largely true
for all programs we tested, as indicated by the experimental
data presented in Section 3. We justify this pairing of
groups with the observation that reuse patterns are a
function of data size, s, and this component dominates in
determining the reuse distance. For a nontrivial data size,
the result is that the groups become sorted from left to right
by functions of increasing power of s, e.g., reuse distance
increases more rapidly for groups based on s than for those
based on

ffiffiffi

s
p

.
In Fig. 3b, we show three groups and the reuse distance

histogram for two runs. In the second run, the movement of
the groups is shown relative to the first run. The estimated
function types are also shown. The first group, gi, does not
move between the runs, so its reuse distance is independent of
the data set size (constant). On the other hand, gj has a square
root relationship to the data size, Oð

ffiffiffi

s
p
Þ and gk has a linear

relationship, OðsÞ. Dividing the histogram into 1,000 groups
limits the error from any single estimated model. The final
model is a parameterized set of 1,000 functions. The method
of determining the functions is presented next.

2.1.2 Recognizing Individual Patterns

Given two histograms with different data sizes, the pattern
recognition step constructs a formula for each group of
references. Let d1

i be the distance of the ith group in the first
histogram, d2

i be the distance of the ith group in the second
histogram, s1 be the data size of the first run, and s2 the
data size of the second run. The pattern for this group is a
linear fitting based on the data size. Specifically, we want to

find the two coefficients, ci and ei, that satisfy the following

two equations:

d1
i ¼ ci þ ei � fiðs1Þ; ð1Þ

d2
i ¼ ci þ ei � fiðs2Þ: ð2Þ

Assuming the function fi is known, the two coefficients

uniquely determine the distance for any other data size. The

pattern is more accurate if more profiles are collected for the

linear fitting. The minimal number of inputs is two.
The formula is based on an important fact about reuse

distance: In any program, the largest reuse distance cannot

exceed the size of program data. Therefore, the function fi can

be linear at most, so the pattern is a linear or sublinear

function of data size and not a general polynomial function.

We consider the following choices for fi: The first is

pconstðsÞ ¼ 0. We call such a formula a constant pattern

because reuse distance does not change with data size. The

ZHONG ET AL.: MISS RATE PREDICTION ACROSS PROGRAM INPUTS AND CACHE CONFIGURATIONS 3

Fig. 3. Estimating reuse distance functions for each group.

(a) Partitionings histogram into groups. (b) Pairing groups.



second is plinearðsÞ ¼ s, a linear pattern. The constant and
linear patterns are the lower and upper bounds of the
distance patterns. Between them are sublinear patterns, for
which we consider three: p1=2ðsÞ ¼ s1=2, p1=3ðsÞ ¼ s1=3, and
p2=3ðsÞ ¼ s2=3. The first occurs in two-dimensional problems
such as matrix computation. The other two occur in three-
dimensional problems such as physics simulation. We
could consider higher dimension problems in the same
way, but we did not find a need in the programs we tested.

For each group pair ðg1
i ; g

2
i Þ, we calculate the ratio of their

average distance, d2
i =d

1
i , and pick fi to be the pattern

function, p, such that pðs2Þ=pðs1Þ is closest to d2
i =d

1
i . Here, p

is one of the patterns described in the last paragraph.

2.1.3 Resolving Coefficients Based on Regression

According to the regression theory, more data can reduce
the effect of noise and reveal a pattern closer to the true
pattern [7]. Hence, using more than two training inputs in
our analysis may produce a better prediction because it
reduces the noise from imprecise reuse distance measure-
ment and reference histogram construction.

The extension is straightforward. For each input, we
have an equation as shown in (3). For each bin, instead of
two linear equations for two unknowns, we have as many
equations as the number of training runs. We use the least
square regression [7] to determine the best values for the two
unknowns. We explored regression on three to six training
inputs in our previous experiments [5]. In this paper, four
training inputs are used in regression. Although more
training data can lead to better results, they also lengthen
the profiling process.

di ¼ ci þ ei � fiðsÞ: ð3Þ

2.1.4 Recording the Overall Model

We select large enough sizes of profiling inputs so that it is
unlikely that references having different patterns will
become mixed in the same group. The overall model of
the program is the aggregation of the individual fitted
functions for each group. The details for the set of functions
making up the model are recorded in the data structures
defined in Fig. 4.

2.2 Cache Miss Rate Estimation

After generating the locality model of a program, we can
use the model to predict the locality behavior for any data

input size s. We predict the reuse distance for each group gi
via their particular formula, as shown by (3). The overall
reuse distance distribution is the aggregation of the reuse
distance of each group. For any given size of a fully
associative LRU cache, we estimate the capacity miss rate
directly from the reuse distance distribution. The groups
with a reuse distance larger than or equal to the given cache
size will be capacity misses. The number of these groups
gives an estimate of the miss rate. The detailed algorithms
for reuse distance prediction and cache miss rate estimation
are described in Fig. 5.

From our locality model, we can also derive the
maximum possible miss rate of a program for a given
cache size. Here, we consider two important properties of
the reuse distance model. First, only references with a reuse
distance larger than or equal to the cache size are cache
misses. References with a shorter reuse distance will hit in
cache because of temporal locality. The second property is
that reuse distances of references having linear or sublinear
patterns monotonically increase with the input size. The
distances of references having a constant pattern, on the
other hand, are independent of the input size. From these
two facts, we can infer that, for a certain cache size, if we
increase the program data input size, the cache miss rate
may remain the same or increase, but it will never decrease.
Furthermore, the maximum miss rate will be reached when
the input size is large enough so that all references with a
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Fig. 4. Locality model definition.

Fig. 5. Cache miss rate estimation.



nonconstant pattern have a reuse distance larger than the
cache size.

Fig. 6 shows the main algorithm to predict the maximum
cache miss rate and the corresponding threshold input size
for a given cache of sizec blocks. Suppose, among the total
G groups (G ¼ 1; 000 for all our results), the number of
reference groups with a pattern dependent on data size s isGs

and the number of groups having a pattern independent of
data size (constant) with a fixed reuse distance greater than
the capacity of the cache is Gc, the maximum miss rate is
calculated as Miss Ratemax ¼ ðGs þGcÞ=G.

The threshold input size ðTsÞ is the smallest input size in
which the cache miss rate reaches the maximum value for
the program and the given cache configuration. To estimate
its value, we only need to consider the single nonconstant
reference group having the shortest reuse distance. The
maximum miss rate occurs when this group, gj, has a reuse
distance greater than or equal to the cache size, dj � sizec.
By manipulating (3), we can directly calculate the required
input data size from this condition:

Ts ¼ f�1
j ððC � cjÞ=ejÞ: ð4Þ

If the model only contains the constant pattern, the cache
miss rate is the same for all inputs. In this case, ej is zero
and generates a meaningless null threshold input. The

threshold input size Ts is useful since it is the smallest input
that generates the worst case hit ratio for a fully associative
cache (we address limited associativity in Section 3.2).

Model accuracy verification. Only two input sets are
necessary to generate a miss rate model for a program.
However, if more input sets are measured, multiple models
can be generated from pairwise groupings and the predic-
tions evaluated for the excluded data set sizes. For example,
for three data set sizes, A, B, and C, three combinations of
pairs are possible, ðA;BÞ, ðA;CÞ, and ðB;CÞ. The data sets
used for verification would be C, B, and A, respectively.
Thus, a degree of confidence for the model can be measured
with limited exploration of the data set space.

3 ACCURACY OF MISS RATE PREDICTION

3.1 Methodology

We use the cache simulator Cheetah [8] included in the
SimpleScalar 3.0 toolset [9] to collect cache miss statistics.
Cache configurations are fully associative cache, 1, 2, 4, and
8-ways and all with a 32-byte block size. We use Atom [6] to
instrument the binary to collect the addresses of all loads
and stores and feed them to Cheetah.

The model predicts capacity miss ratios. The fraction of
compulsory misses cannot be predicted, in general, because
of data dependent features such as a variable number of
iterations over the data. However, the relative fraction of
compulsory misses is small when there is significant data
reuse and can be ignored without significant impact on the
miss rate. In our results, the compulsory misses make up an
average of 0.7 percent of the accesses and account for less
than 10 percent of the misses.

To evaluate our prediction, we postprocess the data
collected by Cheetah and extract the number of capacity and
conflict misses, but exclude the compulsory misses. We call
the extracted miss rate the reuse miss rate and calculate it
from the number of accesses ðNtotalÞ and the number of
compulsory misses ðNcompulsoryÞ:

reuse miss rate ¼ ðmiss rate�NtotalÞ �Ncompulsory

Ntotal �Ncompulsory
:

In the results, all reported miss rates belong to reuse miss
rate. The sizes of the two target caches are 64 KB and 1 MB,
which represent reasonable sizes for the first and second
level caches, respectively.

Table 1 lists tested benchmarks from the Spec95, Spec2K,
NAS, and Olden benchmark suites. A program must take
inputs of many different sizes for evaluation. The reuse
behaviors for other Spec programs have been studied [3].
Their pattern is as predictable as the ones shown next. For
example, the miss rate prediction for Go and Vortex from
Spec95 would be a constant line similar to Gcc, which we will
examine in detail. The rest of the Olden programs are not
included because it is difficult to construct multiple inputs
with varying data sizes. Nevertheless, the current set of
programs represent common data access patterns: Applu,
Swim, Tomcatv, SP, FFT, and ADI represent scientific
programs operating on array data, and Gcc, Li, BH, and
EM3D represent integer programs operating on pointer data.

For each test program, the third column of Table 1 shows
the main patterns identified for each of the programs. The
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table also shows the accuracy of our prediction scheme for
reuse distance. Let xi and yi be the size of the ith group in
predicted and measured histograms. The cumulative
difference, E, is the sum of differences jyi � xij for all i. In
the worst case, E is 200 percent. We use 1� E=2 as the
accuracy. It measures the overlapping parts of the two
histograms, ranging from 0 percent (no match) to
100 percent (perfect match). To show the accuracy of our
prediction of reuse distance, we choose three inputs for
each benchmark, as listed in Column 4. Columns 5 and 6
summarize these inputs by data input size in cache blocks
and the total number of memory references. Based on the
profiled results of the two smaller inputs, we predict the
reuse distance distribution for the largest input. We also
predict the middle one based on the smallest and largest
inputs. The results are given in the last column.

We use original or modified inputs from Spec95/2K for
all Spec benchmarks except for Li. The ref input of Spec95/Li
contains a set of lisp programs that need to be loaded one
by one in a certain order. Since more than three inputs are
necessary for evaluation and regression-based pattern
recognition, we collected the lisp programs from [10] and
composed different combinations of these programs as
additional inputs. In Table 1, input combination-all includes
a total of 54 lisp programs while input combination-prefix-L
includes eight programs with a name starting with letter l.

3.2 Accuracy Across Program Inputs

3.2.1 Fully Associative Cache Results

Shown in Figs. 7, 8, and 9 are the predicted and measured
cache miss curves for each of the 10 applications, assuming
a fully associative cache. In each pairing, the upper graph is
the estimate for a 64 KB (2K blocks) cache and the lower
graph is the estimate for a 1 MB (32K blocks) cache. The
input data set size is varied along the x-axis and the miss
rate percentage along the y-axis. The data size is given in
cache blocks; multiplying by 32 converts the range to bytes.
The data set size is the number of unique cache lines
accessed by the program. The range on the y-axis is the
same in all graphs, but the range on the x-axis varies and is
shown in log scale except for the ones for Gcc.

The most noticeable feature is that each graph has one or
more inputs in which the miss rate exhibits a sharp jump.
These jumps occur at input data set sizes where another
portion of the reuse histogram dependent on s moves
beyond the cache size. Thus, the maximum miss rate of an
application occurs further out in the 1 MB cache compared
to the 64 KB cache. At input data sizes that achieve the
maximum miss rate, all hits in the cache are due to the
portion of the reuses with a constant reuse distance within
the cache size.

Each graph shows four curves for the given benchmark
and cache size: three estimated based on different training
inputs and one measured with the Cheetah simulator [8].

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 3, MARCH 2007
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We pick a set of four training inputs for every benchmark
and make three different predictions: The first is from the
two smallest inputs, the second from the smallest and the
largest inputs, and the last one from regression analysis on

all four inputs. To compare their accuracy, a fourth curve is
added to show the measured miss rate for the fully
associative cache. Figs. 7, 8, and 9 show the three prediction
curves overlap or differ very little in the early part, but
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diverge when the input size becomes very large. Unfortu-
nately, the divergence points are much beyond the data size
that we can simulate and check. Note that the x-axis is in a
logarithmic scale.

What is evident is that most applications exhibit
interesting behavior beyond what we were able to simulate
for this paper. This difficulty highlights a benefit of our
approach: A parameterized model of cache behavior can
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Fig. 8. Estimated miss rates for ADI, SP, EM3D, BH, 64 KB and 1 MB caches.



reveal data set sizes where interesting cache behavior
occurs and where program analysis should be focused. In
fact, only for ADI with a 64 KB cache were we successful in
simulating a wide enough data set range to capture all
interesting cache behavior predicted by the models. The
predictions from the smallest and the largest inputs and
from the regression analysis are more accurate than those
from the two smallest inputs.

Gcc is notable in its lack of features. The constant pattern
has the best fit. In Gcc, the working data set size is related to
the per function size. Since the input programs all have
similarly sized functions (though programs may have a
different number of functions), the reuse distance pattern is
insensitive to the total program size. The graphs show
horizontal lines for both the 64 KB and 1 MB caches (the
lines are on the zero mark for a 1 MB cache).

3.2.2 Limited Associativity Cache Results

Reuse distance is based on a fully associative cache design
implementing LRU replacement. However, fully associative
hardware caches are impractical to implement, so the
caches typically have limited associativity from direct-
mapped to 8-way. In Figs. 10, 11, and 12, we verify the cache
miss rate predictions of our model to actual miss rates from
detailed cache simulations. We show the results for each
application for both 64 KB and 1 MB cache sizes. Each graph
has six curves plotted: direct-mapped, 2-way, 4-way, 8-way,
fully associative, and the predicted miss rate. The predicted
curve is the same as the regression-based prediction shown
in Figs. 7, 8, and 9.

Overall, it is difficult to separate the different lines in
each of the plots because the curves across different

configurations are so similar. However, this also demon-
strates that our modeling technique makes accurate predic-
tions. Fig. 13 summarizes the relative hit rate error across all
the applications and cache configurations. We use the
relative error for hit rate instead of miss rate as the measure
because hit rate is more stable than the miss rate in regions
where the miss rate is near zero.

From Fig. 13, the average relative error is less than
1 percent between the model and a simulated fully
associative cache (FA). The error is below 2 percent for all
applications when the cache associativity is 4-way or
greater. Two applications, Tomcatv and Swim, have a higher
relative error (max 7.9 percent) when the associativity is
small. Referring back to Fig. 10, the direct mapped cache
plots for both applications have noticeably worse miss rates.
These additional misses are conflict misses which full
associativity eliminates. The overall accuracy, despite
ignoring conflict misses, is due to the fact that, in many
applications, the miss rate is dominated by capacity misses
[11]. Similarly, the error in absolute miss rate is less than
1 percent for fully associative cache and always below
2 percent when the cache associativity is 4-way or greater.

The prediction method does not distinguish program
inputs that have the same data size. Different layouts of the
same data may lead to very different cache performance. In
fact, our technique cannot predict or even measure the
quality of the data layout in a program. The reason that the
prediction results are accurate is that the quality of the data
layout does not change significantly across different inputs
of a program. This is true for both the scientific programs
and pointer-intensive programs we tested.

ZHONG ET AL.: MISS RATE PREDICTION ACROSS PROGRAM INPUTS AND CACHE CONFIGURATIONS 9
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The program ADI exhibits interesting behavior in Fig. 11.

For a cache size of 1 MB, the model predicts a dramatic rise

in the miss rate between data set sizes of 20K and 40K cache

blocks, i.e., 640 KB and 1.28 MB. This is the point at which

the cache’s 1 MB capacity is exceeded. However, the direct

mapped cache’s miss rate exhibits a slower rise between the
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Fig. 10. Verification miss rate estimates Tomactv, Swim, Applu, FFT, 64 KB and 1 MB caches.



30K and 70K cache blocks, i.e., 960 KB and 2.1 MB. The

reason for the improved miss rate is that the fully

associative cache LRU policy displaces blocks that will be

used in the relatively near future because of insufficient

capacity. In the direct mapped cache, however, the limited

mapping of blocks results in blocks being replaced
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randomly relative to their access order, which happens to

improve the miss rate overall for a limited data set range.

3.3 Accuracy Across Cache Configurations

We now measure the prediction accuracy across various

cache sizes. We pick three programs, BH, EM3D, and Swim,

that are representative and omit the rest. Fig. 14 shows the

comparisons of cache miss rate predictions to actual miss

rates when the size of the cache varies. The data size we use

for this comparison is the one that has the largest error of

those in Figs. 10 and 11.

The data points shown in Fig. 14 are purely predictions

using models generated in the prior section without

running the program inputs, let alone simulating them on

different cache sizes. Yet, most predictions match the

simulation results closely, as shown by the first two graphs.

What is remarkable is the high accuracy even for small

cache sizes, starting from k blocks for k-way associative

cache, where k is between 1 and 8. Not all predictions are as

accurate. We pick the worst case—the second smallest test

input for Swim—and show its poor prediction accuracy for

direct-mapped and set-associative caches in the third graph.

However, this is an extreme case. Most predictions are

accurate, similarly to those shown in the first two graphs.
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Fig. 12. Verification miss rate estimates Gcc and Li, 64 KB and 1 MB caches.

Fig. 13. Relative hit rate error. (a) 64 KB cache. (b) 1 MB cache.



4 CACHE MISS RATE VISUALIZATION AND USES

Since two-dimensional graphs cannot show miss rates for

all program inputs and cache configurations at the same

time, this section presents a Web-based tool that displays

miss rates as a three-dimensional plot. We use this tool to

evaluate a compiler and discuss other uses in machine and

benchmark-set design.

4.1 A Visualization Tool

The interactive tool displays the miss rates of a program

across program inputs and cache configurations. By varying

the cache size (x-axis) and the data size (y-axis), the tool

generates a 3D graph of the miss rates covering a broad

region of interest. The miss rate surface is formed by

connecting every three adjacent points (along the x and y

directions) to approximate, via linear interpolation, the miss

rates over the region. While a 3D graphing aids in quick

exploration over a large combination of cache and data

sizes, two-dimensional graphs can also be generated for a

specific cache or data set size. Appendix I, which can be

found on the Computer Society Digital Library at http://

computer.org/tc/archives.htm, gives examples of both 3D

and 2D outputs of our tool as well as a detailed description

of the tool interface.
The visualization tool can be accessed via the Internet at

http://www.cs.rochester.edu/research/locality with any

browser equipped with Java 1.4 JVM and Java 3D. The

system currently runs on practically all x86 machines

(Windows, Linux), Sun, SGI, and IBM platforms.

4.2 Compiler Evaluation

Typically, compiler transformations are evaluated by

testing programs for a few inputs on a few machines.

While running on real systems allows accurate measure-

ment of a complete system, the few results cannot reliably

predict the effect on other program inputs and on other

machines. By using miss-rate prediction, a compiler writer

can examine memory behavior across all program inputs

and all cache sizes. The visualization tool is a convenient

method for quickly summarizing the results to see if a

certain compiler transformation will provide better perfor-

mance on a certain memory hierarchy.

To demonstrate this use, we use the visualization tool to

evaluate two aggressive compiler transformations: reuse-

based loop fusion and data regrouping [12]. Ding and

Kennedy showed that these transformations recombined all

loops and reshuffled all arrays and, as a result, reduced the

number of cache misses by 50 percent on average. A similar

fusion method was later used in the Intel Itanium compiler

and helped to improve the 14 Spec2K FP benchmarks by, on

average, 12 percent [13]. Both studies used a single input on

a single machine. The graphs in Fig. 15 show the effect of

the transformations on Swim for a range of inputs and cache

sizes. The base version is generated by the Alpha compiler

using the highest optimization level (-O5). The other two

are transformed versions by reuse-based loop fusion and by

a combination of loop fusion and data regrouping.
The graphs in Fig. 15 are scaled identically on all axes to

simplify comparisons (lower is better). The different shapes

in the plots show the improvement from the transforma-

tions is not uniform for Swim. The improvement is greater

for larger data inputs and the difference is greater for the

combined transformation than for loop fusion alone. A

similar comparison of Tomcatv is included in Appendix II,

which can be found on the Computer Society Digital

Library at http://computer.org/tc/archives.htm. Since the

data in Fig. 15 are predictions, their accuracy was evaluated

using the same techniques as discussed in Section 3 and

found to be accurate. Only with the miss-rate prediction

and the visualization tool could we, for the first time, fully

observe the input and machine-dependent effect of compi-

ler transformations.
Although the tool helps to evaluate a compiler transfor-

mation, the average miss rate itself is not specific enough to

drive compiler transformations. Still, similar prediction

techniques can be used at a finer granularity. Fang et al.

found an accurate miss-rate prediction for most memory

references in SPEC2Kfp programs [14]. Such prediction is

directly useful to a compiler.

4.3 Other Uses of Miss-Rate Prediction

By predicting complete program and machine behavior, the

tool can help to build cost-effective computer systems and

to design better benchmark suites.
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Fig. 14. Verification miss rate estimates for (a) BH, (b) EM3D, and (c) Swim with constant data size on direct-map, two-way, four-way, eight-way, and

fully associative caches of all sizes.



4.3.1 Cost-Effective Memory Hierarchy Design

Today’s computing centers often use thousands of proces-
sors to run a few large applications. Rather than having to
simulate numerous inputs and extrapolating how the
system would perform from those runs, designers could
save both time and money by being able to see the change in
miss rates as cache size changes. Additional uses include:

1. allowing customers to quickly determine a balance
between price and performance for memory
configurations,

2. evaluating the cache performance of data sets too
large to simulate on any existing machine,

3. providing insight into existing systems used to
execute new or larger applications, and

4. determining whether a new system upgrade can
provide improved use of the memory hierarchy.

4.3.2 Benchmark Set Design

With accurate estimates of cache performance across
numerous inputs, benchmark design may be improved to
allow faster evaluation of systems and optimizations. By
building benchmarks that run on values directly after knees
in the data size versus miss rate plots, the smallest possible
data size for a given miss rate could be used in testing. For
two SPEC programs, Table 2 shows the smallest data input
size (labeled mini-ref) that gives a similar cache miss rate
for 64 KB and 1 MB cache as the reference input does. We
obtained the new input size from the miss-rate prediction
from Fig. 7 without testing any additional inputs. The new
input is a factor of 4 or 12 smaller, but its miss rate differs by
no more than 0.6 percent from the larger input. A smaller
input saves time in testing. The right input size depends on

the program as well as the cache configuration. The
prediction tool helps a user to quickly find the smallest
input size that yields a particular cache miss rate.

Eeckhout et al. studied correlations between miss rates of
nine programs across 79 inputs using principal components
analysis followed by hierarchical clustering [15]. Since
program runs in the same cluster had similar behavior,
they could reduce the redundancy in a benchmark set by
picking only one run from each cluster. Our result may
strengthen their method by increasing the coverage. It
suggests that many programs have only a few different
miss rates across all data inputs and a wide range of inputs
may have the same miss rate. The miss-rate prediction can
ensure that a benchmark set includes all miss rates and the
smallest program runs for these miss rates. Furthermore,
the suggestion is parameterized and, therefore, tailored to
any cache configuration being considered.

5 RELATED WORK

Program cache behavior has been extensively studied
mainly from two directions: program analysis and trace-
driven cache simulation.

Dependence analysis analyzes data reuses in loop nests
and can estimate the number of capacity misses in scientific
programs [16], [17], [18], [19]. Other researchers used
various types of array sections to measure data access in
loops and procedures [20], [21], [22], [23], [24]. One
limitation of dependence analysis is that it does not model
cache interference caused by the data layout. An early
technique used efficient heuristics [25]. Recent studies used
precise (though worst-case superexponential) methods [26],
[27], [28] or their fast approximation through sampling [29],
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Fig. 15. Three-dimensional plots of unoptimized and optimized Swim. (a) Original Swim. (b) Fused Swim. (c) Fused Grouped Swim.

TABLE 2
Applu and Swim: Mini-Ref Inputs



[30]. These methods are more powerful, but they are limited
to programs written in loop nests with regular array
subscripts. For full applications, researchers have combined
compiler analysis with cache simulation to measure
reference locality within and between loop nests [11] and
fine-grained reuse and program balance [31].

For regular loop nests, compiler analysis identifies not
only the cache behavior but also its exact causes in the code.
However, compiler analysis is not as effective for programs
with input-dependent control flows and data indirection.
This paper presents an alternative that is fairly accurate,
efficient, and applicable to programs with arbitrary control
flow and data access expressions. At least four compiler
groups have used reuse distance for different purposes: to
study the limit of register reuse [32] and cache reuse [33],
[34], to evaluate the effect of program transformations [4],
[33], [34], [35], and to annotate programs with cache hints to
a processor [36]. The last work used reuse distance profiles
to generate hints in SPEC95 FP benchmarks and improved
performance by 7 percent on an Itanium processor [36]. The
techniques in this paper will allow compiler writers to
estimate cache behavior for data inputs based on a few
profiling runs.

Trace-driven cache simulation has been the primary tool
to evaluate cache design, including the cache size, block
size, associativity, and replacement policy. Mattson et al.
gave a stack algorithm that measured cache misses for all
cache sizes in one simulation [1]. It was later extended to
measure the miss rate in direct-mapped caches and
practical set-associative caches [2]. While these techniques
simulated the entire address trace, many later studies used
sampling to reduce the length of the simulation. Our work
adds another dimension. It estimates the miss rate of data
inputs without running all inputs, including those that
might be too large to run, let alone to simulate.

6 SUMMARY

This paper presents an algorithm for estimating the cache
miss rate of a program for all its input sizes. Based on a few
training runs, the algorithm constructs a parameterized
model that predicts the miss rate of a fully associative cache
with a given cache-block size. By supplying the range of all
input sizes as the parameter, we can predict miss rates for
all data inputs on all sizes of fully associative caches. For a
given cache size, the model also predicts the input size
where the miss rate exhibits marked changes. Our experi-
ments show that the prediction accuracy is always higher
than 99 percent for fully associative caches and better than
98 percent for caches of limited associativity for all but two
programs, excluding compulsory misses. In addition, the
predicted miss rate is either very close or proportional to
the miss rate of direct-map or set-associative cache.
Building on the new model, the paper presents an
interactive visualization tool that shows miss rates across
all program inputs and cache sizes. Since memory hierarchy
performance increasingly determines the performance, cost,
and energy efficiency of modern computer systems, the tool
should help to improve program, machine, and benchmark-
set design and implementation.
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