
 

  
Abstract— This paper presents the research activities carried 

out within the scope of the Liaison project. Most of the work has 
been performed on WiFi location. WiFi is nowadays widely 
deployed in buildings such as hotels, hospitals, airports, train 
stations, public buildings, etc. Using this infrastructure to locate 
terminals connected to the wireless LAN is expected to have a 
low cost. Methods presented in this paper include fingerprinting 
and tracking through particle filter constrained on a Voronoi 
diagram and TOA based on data frames and acknowledgments 
at the link level. Other technologies have also been researched: 
A-GNSS to handle the transition between outdoors and indoors, 
UWB in ad-hoc mode to cope with possible lacks of 
infrastructure and inertial MEMS to increase the availability 
and robustness of the overall system. 

I. INTRODUCTION 

A. Location Based Services 
Recently, there has been a growing interest on location-

based services (LBS). LBS are addressed particularly to 
mobile networks. They can be defined as services that adapt 
to a user's location and situation: location is a crucial input 
for these applications. LBS explore the ability of technology 
to know where the user is and shape the information provided 
accordingly. 

Presently, many LBS have already been deployed and 
others that have been designed are ready for commercial 
implementation. A few of the most interesting ones are 
described below. 
• Information services.  
• Navigation.  
• Workforce management 
• Lone worker applications 
• Children tracking. 
• Medical alert.  

Location services can be classified according to technical 
parameters. In the case of LBS, QoS parameters are usually 
proposed. Several parameters may be used to measure QoS in 
a LBS. The 3GPP proposes quantifying QoS according to two 
parameters: minimum accuracy and maximum response time. 
Minimum accuracy refers to the maximum error that the LBS 
supports. Usually, customer position is delivered to the 
location client as a information pair: position and location 
area. The position represents the estimated position, while the 
location area sets the boundaries of possible error range. 

 
 

Maximum response time is defined as the maximum time that 
the LBS takes until its completion. These two parameters are 
included in all QoS definitions for LBS. However, several 
parameters may be added, depending on the scenario. For 
instance, availability indicates the coverage expected by the 
user, i.e. the percentage of time and space in which the LBS 
is operative. 

B. Indoor location 
Outdoors is the typical scenario for GPS positioning and 

tracking. When the terminal to be located has an open view of 
the sky, GPS is expected to give good or even excellent 
accuracy. Difficulties with GPS positioning usually occur in 
urban canyons and indoors, where it is difficult or impossible 
to acquire the necessary satellites for a position computation. 
Recently, research has been intensified on location systems 
that use the cellular network to provide the terminal’s 
position. Both GSM and UMTS allow positioning with good 
or excellent accuracy with the only requirement of a good 
number of base stations at sight. This is actually the case in 
urban canyons, since urban areas are typically well covered by 
cellular networks. Also in light indoors (e.g. close to 
windows) a good accuracy can be provided. But, when the 
terminal to be located goes several meters indoors or is 
surrounded by obstacles, such as walls, penetration of the 
signals coming from several base stations is difficult due to 
attenuation. Problems are found in medium to deep indoors, 
electrically noisy indoor scenarios, subterranean places (e.g. 
parking), and others. 

II. FINGERPRINTING IN WLAN 

Many outdoor systems are based on time measurements. 
Thus, the mobile can calculate the distance separating him 
from the base stations or satellites. 

However getting this kind of information with off-the-shelf 
WiFi equipments is almost impossible. The only available 
information is the signal strength received from each access 
point (AP). Indeed, the received signal strength is measured 
and is one of the outputs of the card. Such information is 
available because the APs send beacons periodically. Mobile 
devices use those beacons to handle the roaming inside the 
network. Given this consideration, it is possible to get a list of 
the received power coming from all the APs covering the area 
where the mobile is moving. 
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A. WiFi Cell ID, signal strength and fingerprinting 
The simplest approach for locating a mobile device in a 

WLAN environment is to approximate its position by the 
position of the access point received at that position with the 
strongest signal strength. The major benefit of such a system 
is its simplicity, but its main drawback is its large estimation 
error. The accuracy is proportional to the range of access 
points which is within 25 and 50 meters for indoor 
environments [10]. Using a propagation model [8][9] to turn 
RSS measurements into distances, did not provide satisfying 
results when these range were introduced in a multilateration 
algorithm. [11] introduces a different approach for locating 
the device in indoor environments by using the radio signal 
strength fingerprinting. 

Fingerprinting positioning is a quite different technique. It 
consists in having some signal power footprints or signatures 
that define a position in the environment. This signature is 
made of the received signal powers from different access 
points that cover the environment. A first step, called training 
for profiling, is necessary to build this mapping between 
collected received signal strength and certain positions in the 
building. This leads to a database that is used during the 
positioning phase. Building the footprint database can be 
done in two ways. A first method is to do on-site 
measurements for some reference positions in the building 
with a user terminal. An alternative approach is based on 
collecting limited on-site measurements and introducing them 
in a tunable propagation model that would use them to fit 
some of its parameters. Then, this propagation model gives 
an extensive coverage map for each AP. However, the poor 
results obtained earlier with the use of the propagation model, 
did not invite us to focus on such a model. Neural networks 
are another learning method for improving propagation 
models over time [12]. It was decided to carry on with the use 
of the data collected to build the database. Ray tracing tools 
represent another solution to build such a database, but they 
are very complex tools. Moreover, a good knowledge of the 
radio environment (knowledge of the presence and position of 
all the APs is needed) to cope with the interfering issue. 
However, such information is not always available due to the 
fast growing emergence of this technology in indoor 
environments. 

Once this prerequisite step is accomplished, it is necessary 
to do the reversing operation, which will deliver the position 
associated to an instantaneous collected tuple of received 
signal strengths. Different techniques can fit these 
requirements. 

1) k-closest neighbors fingerprinting: This algorithm goes 
through the database and picks the k  referenced positions 
that match the best the observed received signal strength 
tuple. The criterion that is commonly retained is the 
Euclidian distance (in signal space) metric. If 
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where ( ),j i iRSS x y  is the mean value recorded in the 

database for the access point whose MAC Address is noted 
" j " at the position ( ),i ix y . 

The set kN  of the database positions having the smallest 

errors is built with an iterative process as follows: 
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where ℑ  is the set of positions recorded in the database. 
This set contains k  positions. Finally, the position of the 

mobile is considered to be the barycenter of those k  selected 
positions. 
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The main advantage of this method is its simplicity to set it 
up. However the accuracy highly depends on the granularity 
of the reference database [13]. A better accuracy can be 
achieved with finer grids, but a finer grid means a larger 
database what is more time-costly. 

However, the signal strength fluctuations (Figure 1) 
introduce many unexpected jumps in the final trajectory. 

Removing those jumps can be done by using a filter. 
Kalman filter and particle filter are often used in parameter 
estimating problems and tracking. This last filter will be 
introduced in the next section, and the benefits using such a 
filter will be presented. 

 

  
Figure 1: Signal strength variations over the time, for the same position 

(examples given for two different access points) 

B. Improving WiFi positioning with a particle filter 
constrained on a Voronoi diagram 

Nowadays, the maps of all the public or company buildings 
are available in digital format (dxf, jpeg, etc). The key idea is 
to combine the motion model of a person and the map 
information in a filter in order to obtain a more realistic 
trajectory and a smaller error for a trip around the building. 
In the following, it will be considered that the map, which is 



 

available, is a bitmap. So no information is available except 
the pixels in black and white which model the structure of the 
building. The particle filter, based on a set of random 
weighted samples (i.e. the particles), represents the density 
function of the mobile-position. Each particle explores the 
environment according to the motion model and map-
information. Their weights are updated each time a new 
measurement is received. However the free particle filter is 
not fit handset based applications, as the computations are 
quite heavy. At each time step, it is necessary to check if a 
particle crossed a wall or not in order to introduce the 
architecture of the building in the filter. An approach to 
reduce this computation complexity is to limit the space the 
particles need to explore. Another representation for the 
building is a graph. These sets of edges and nodes make the 
skeleton of the building. Constraining the particles to move of 
this representation of the building is really interesting, as it is 
not necessary to check if particles crossed a wall or not. 

The particle filter tries to estimate the probability 
distribution 0:Pr k kX Z    where kX  is the state vector of the 

device at the time step k , and 0:kZ  is the set of collected 

measurements until the ( )1 thk +  measurement. When the 

number of particles ( )positions , weight i i
k kx ω  is high, the 

discrete probability density function of presence can be 
assimilated to: 
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This filter comprises two steps: 
• Prediction 
• Correction 

1) The Voronoi diagram 
The Voronoi diagram [16] has been used for a long time in 

the robotics community to model the environment in which a 
device is evolving. The Voronoi diagram is a set of edges that 
are equidistant to all the walls. This space is represented by: 

( ) ( ) ( ) ( ){ }\ 0i j h i jV x W C C d x d x d x= ∈ ∪ ≥ = ≥  

with , ,i j h  three objects present in the environment (walls 
for example). 

The first stage was to automatically design this Voronoi 
diagram from a bitmap picture. A routine has been done to 
achieve this task (Figure 2). 

With such a representation, it is possible to limit the moves 
of the particles. Now they are constrained to move on the 
edges of the oriented graph. This reduces the processing cost 
at each time step. There is no need to check if a particle 
crossed a wall or not. As they have a reduced area to explore, 
it is possible to cut down the number of particles. In our 
simulations, only 200 particles were used to track the device. 
Indeed, the particles move in a graph which is a one 
dimensional space whereas in the previous case, the particles 
were moving in a two dimensional space. 

 

 
Figure 2: Voronoi diagram for a building (set of edges and nodes) 

 
2) Prediction 
During this step, the particles propagate across the building 

given an evolution law that assigns a new position for each 
particle with an acceleration governed by a random process: 
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where 
ti

k kd v    denotes the state vector associated to 

each particle (position on the edge i  and speed), sT  the 

elapsed time between the ( )1 thk +  and the thk  measurements. 

kµ  is a random process that simulates the acceleration of the 
thk  particle. This last equation is often called the prior 

equation. It tries to predict a new position for all the particles. 
Here the used process is a zero mean Gaussian noise with a 

20.1 /m s  variance which is a realistic model of pedestrian 
movement. Here we must handle the transition between 
edges, because the particle can go from one edge to the other 
over the time. Moreover, after the observation of the moves of 
a pedestrian, we can see that most of his movements are in 
straight line. This observation can be introduced in the filter 
when handling the transitions of the particles from one edge 
to another. A good way to take this piece of information into 
account is to introduce it in the particle filter with the pdf 

1Pr k kX X+   . When a mobile changes the edge on which 

it is, it must choose one among the next ones. It can be 
chosen randomly. If all the edges have the same probability, 
any of the next edges can be chosen as the next one without 
any preference. However, in our motion model when a person 
faces an intersection this is not true. Then, to choose the next 
edge with a probability, we retained the following heuristic 
criterion: 
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with ,j kθ  the angle between the edges jV  and kV . Here the 

particle is considered to be on the edge jV . 



 

If the speed of the particle is positive, m  is the index of the 
edges that have in common the ending node of jV , otherwise 

they have in common the starting node of jV . Then, the next 

edge on which the particle will move is drawn according to 
the law defined above. 

3) Correction 
When a measurement (n-uplet of RSS) is available, it must 

be taken into account to correct the weight of the particles in 

order to approximate 0:Pr k kX Z   . As the measurement is 

signal strength and given that particles are characterized by 
their position, the RSS n-uplet must be transformed into a 
position. The mapping between the position and the signal 
strength is performed thanks to the empirical database. In 
fact, the algorithm used in section II to find the position of 
the mobile given the RSS coverage in the building is used. 

Then it is possible to estimate Pr k kZ X   . In the case of 

an indoor movement, the following law has been retained: 
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with 
kZX  the position returned by the database, kX  the 

position of the thk  particle and σ  the measurement 
confidence. The smaller σ  will be, the more confident the 
user is in the measurement. That would mean that there is 
very little variations in the measurements for the same 
position. Here, given the variations of the RSS, 5mσ =  was 
chosen. It can be noticed that with this gaussian law, the  
closer the particle is to the position returned by the database, 
the higher its Pr k kZ X    will be. Now, we have defined all 

the necessary probabilities to update the weight of a particle, 
we just need to combine them to find the new posterior 
distribution. 

4) Update of the weights 
The weight update equation is given in [11][12]: 

1 1Pr Pri i
k k k k k kX X Z Xω ω − −= ⋅   ⋅       

To obtain the posterior density function, it is necessary to 
normalize those weights. After a few iterations, when too 
many particles crossed a wall, just a few particles will be kept 
alive (particles with a non zero weight). To avoid having just 
one remaining particle, a re-sampling step is triggered. 

5) Resampling 
The re-sampling step is a critical point for the filter. The 

basic idea behind the re-sampling step is to move the particles 
that have a too low weight, in the area of the map where the 
highest weights are. This leads to a loss of diversity because 
many samples will be repeated. The criterion to trigger a 
resampling is given by: 
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Various resampling algorithms are proposed in [19]. We 
chose the simple SIS (Sequential Importance Sampling 
strategy) algorithm for its simplicity and low complexity 
order. The complexity must be taken into account as the 
algorithm must run on a handheld device which can have low 
processing capabilities. 

C. Experiments 
To experiment with all those techniques and estimate their 

capabilities and accuracy to localize a device, a demonstrator 
has been built. It is made of a set of four 802.11g Linksys 
WAP54g APs placed at each corner of the 35×35 m building. 
The mobile device (PDA) is evolving in an indoor office 
environment. Both, a laptop and a Compaq iPAQ 4700 PDA 
were used for the measurements. 

The database is built with one measurement in each room, 
and a measurement every two meters in the corridor. The 
single floor problem is considered. The criterion to define the 

error is the mean error over a trip in the building ( ( )e m  in 

meters). A walk around the building is taken for the test. 
Some real measurements are collected along this path and 
then reused to estimate the performances of this positioning 
technique based on WiFi. Here the measurement frequency is 
3.33 Hz and the handheld device computes itself his own 
position. 

One of the parameters that influences the performances of 
the positioning system, is the number of access points. With 
the fingerptrinting technique, it is not necessary to know the 
position of the access points to estimate the position of the 
mobile. Here we have 4 access points with a known position, 
and then multiple other access points with an unknown 
position in the building. A first study on the influence of this 
parameter has been carried out. Figure 3 presents the 
instantaneous errors over 100 simulations with different 
access points chosen for each simulations. 

These curves shows that having many access points is 
useful as the more there are access points in a footprint, the 
easier it is to get the closest footprint to the instantaneous 
measurement. However, getting a realistic estimate of the 
trajectory with the closest neighbour algorithm is not 
satisfying. 

Using the fingerprinting shows that it is not possible to 
recognize the path followed by the mobile moving across the 
building. All the positions referenced in the database have 
been selected over the time. It is necessary to filter 
information over the time to be able to obtain a coherent 
trajectory. Here results for two trajectories are presented. One 
of these trajectories remains in the corridor whereas during 
the second one, the mobile enters a room. 

For this trajectory, the 4 access points under our control 
were used. The particle filter runs with 200 particles. In each 
situation, we see that the estimated trajectory fits the real one. 
Large errors appear at the beginning, because we suppose that 
the filter does not know were the mobile is standing. Particles 
are disseminated all over the building. After some few time 
steps, the filter starts tracking the device correctly. 



 

 
Figure 3: Influence of the number of access points on the fingerprinting 

technique 
. 

 
Figure 4 : Trajectory obtained with the particle filter constrained on a Voronoi 

diagram 
 
 
 

Table 1 shows that it is possible to have a 2 m accuracy 
with a WiFi positioning system, with a low infrastructure. 
Increasing the density of access points improves the 
performances, however such deployment does not appear to 
be realistic. The filter also improves the trajectory estimated 
for the mobile. It is possible to have a clear idea of the places 
where it went. When it stops in a room, the estimated 
positions fluctuate in that room. Here, WiFi cannot provide 
information to the filter that the mobile stopped. Using extra 
sensors is required, like MEMS sensors (used in the inertial 
navigation systems). Moreover, the filter presented here can 
be implemented on handheld devices, and can run on them. 
The computation times for different filters are presented in 
Table 2. [18] presents a comparison between these different 
filters. The particle filter constrained on a Voronoi diagram 
appears being a good trade off between complexity 
(computation time of a measurement) and performances, as 
the performances of this filter are similar to the one achieved 
with the particle filter with particles freely moving. 

 
Table 1: Performances of the algorithm (traj1: Trajectory in the corridor, 

traj2: Trajectory in the corridor + stop in a room) 
4 APs 22 APs  

67% 95% 67% 95% 
Error (m) traj 1 1.92 3.31 1.20 2.24 

Error (m) traj 2 2.6 4.57 2.11 3.95 

 

 
Figure 5: Cumulative distribution function of the instantaneous errors over 

100 simulation of the same trajectory. 
 

Table 2: Computation time (in ms) for a RSS n-uplet with a laptop (GHZ 
processor, 1024 Mo RAM) and a PPC (Hp4700, Proc 624 MHz, 64 Mo 

SDRAM) 
Percentage of time 50% 67% 75% 90% 95% 

Fingerprinting 3 3 3 4 4 
Particle filter 10 13 13 16 17 PC

 

Particle filter + 
Voronoi 3 4 4 5 6 

Fingerprinting 5 5 5 6 6 
Particle filter 373 567 600 673 714 PP

C
 

Particle filter + 
Voronoi 8 8 8 9 12 

 

III. TOA WITH DATA LINK FRAMES 

A. Introduction 
The research challenge corresponds to achieve an indoor 

location system capable to provide accurate positioning using 
the existing WLAN infrastructure and devices with minor 
changes, avoiding the need of synchronization between access 
points (APs) and long manual system pre-calibrations (i.e. 
build of fingerprinting database), while presenting robustness 
to environmental changes (i.e. furniture). Following this 
direction, here it is presented a new indoor WLAN location 
technique based on distance measurements provided by TOA 
estimations—which are in turn based on round-trip time 
(RTT) measurements at  IEEE 802.11 link layer—between the 
mobile terminal (MT) to be located and WLAN APs. The 
system is divided into the ranging and the positioning 
subsystem. The former estimates the distances between the 
MT and the APs, and the latter calculates the MT position 
using the distances and the APs’ known positions. One 
challenge corresponds to achieving accurate estimations from 
RTT measurements performed using a standard IEEE 802.11b 
card clock at 44 MHz, which shall lead theoretically to errors 
of 7 m.  

Several contributions existed in the scope of the proposed 
system, but none of them fulfilled the degree of desired 
accuracy, simplicity and flexibility. In [1], a new approach is 
proposed to ranging in IEEE 802.11, without the requirement 
of initial synchronization between transmitters and receivers. 
Ranging is achieved by using a high precision timer in order 



 

to measure TDOA from two GRP (Geolocation Reference 
Point). The authors also propose to take advantage of the 
IEEE 802.11 data link frames for measuring TOA (time-of-
arrival), but they do not give more insight to this matter. In 
[2], a system which can estimate TOA using IEEE 802.11 
link layer frames is proposed, but the RTS (Request-to-
Send)/CTS (Clear-to-Send) mechanism is required. Their 
ranging technique relies on internal delay calibration both at 
transmitter and receiver in order to correct the round-trip 
time (RTT). To mitigate multipath impact, the authors 
propose to use different carrier frequencies and to 
discriminate between strong and weak multipath (i.e. greater 
than three chips from the direct path) in order to apply 
different curve-fitting algorithms and obtain 1m or 3m 
accuracy. In [3], a method to estimate TOA between WLAN 
nodes without using extra hardware is presented, but the 
achieved accuracy (error of 8 meters) is not enough for some 
safety applications.   

B.  Ranging system 

1) RTT estimation 

a) Approach 

Round-trip time is the time a signal takes to travel from a 
transmitter to a receiver and back again, in our case from a 
MT to a fixed AP. As can be seen in Fig.6, we estimate the 
RTT by measuring the time elapsed between two consecutive 
frames under the IEEE 802.11 standard: a link layer data 
frame sent by the transmitter (it is the MT) and the reception 
of the correspondent link layer acknowledgement (ACK) 
from the receiver (it is the AP). Other link layer frames would 
be also suitable [2].   

The MT is a laptop with an IEEE 802.11b PCMCIA card. 
As the overall (i.e. propagation plus processing) RTT is 
expected to be in the order of microseconds, measuring it 
with software as in [3] leads to a significant lack of accuracy. 
Therefore, we propose to measure the RTT through a simple 
hardware module that starts counting cycles of the built-in 44 
Mhz clock from the WLAN card when it detects the end of 
transmission of a data frame, and it stops when the 
corresponding ACK frame arrives. Then it sends its value 
(i.e. slotted in 44 MHz periods) to the laptop PC. 

b) Mitigation of errors 

It should be possible to estimate a distance by using only 
one RTT measurement. However, the RTT is time-variant due 
to constraints such as the variability of the radio channel 
multipath [4], the 44 MHz clock quantification errors [3], 
delays due to the electronics of the hardware module and the 
relative clock drift. If we only considered the quantification 
errors, a distance estimation error of 7 m should be present. 
In order to mitigate these errors this paper proposes to 
perform several (n) RTT measurements and to use a proper 
RTT estimator based on the statistical set obtained. 

 

 
Figure 6. RTT measurement using IEEE 802.11 data/ACK frames 

First, it was verified that every obtained RTT was 
independent and not correlated with the rest of them. Hence, 
the autocorrelation function for several series of 1000 RTT 
samples -corresponding to different real distances between the 
MT and the AP- were obtained. All of them showed 
negligible correlation. 

The chosen RTT estimator was the average RTT value (η, 
measured in number of clock cycles) obtained from all the 
measurements, since among all tested choices this value 
provided the best RTT estimation. Other choices, such as the 
half range RTT, the RTT mode, the average of n minimum 
RTT values and η- β times the standard deviation were also 
tested but they did not provide the best accuracy and are not 
reported in this paper. 

c) Number of RTT measurements needed 

The number of RTT measurements needed to estimate the 
RTT is relevant in order to find a reasonable trade-off between 
bandwidth used, time employed and accuracy obtained. Since 
RTT is a random variable and the average is used as 
estimator, the number of RTT samples can be set from a target 
confidence interval of the estimated average –around the 
population average- for a certain confidence level (95% of the 
time). Hence, the number of required samples is: 

2
0.975(2 / )n z S A= ⋅ ⋅ ,                (1) 

where S the estimated standard deviation, z0.975 the z function 
value for a confidence level of 95% and A is the width of the 
confidence interval. Taking into account that every 44 MHz 
rising clock implies a distance of 7 m., it was considered that 
only values of A under 0.5 (it is 0.25 rising clocks around the 
population average) had to be accepted. It was obtained n = 
246; being aware that usually a small portion of the 
performed RTT measurements are not valid (due to errors of 
several types), n = 300 seemed to be a conservative figure to 
accurately estimate the RTT. 

2) Distance estimation 

a) Method 

First, a RTT estimation at zero distance between the MT 
and the AP is obtained (the propagation times tp is zero), in 
order to calibrate the time the AP takes to process the query 

Mobile 
device 

Access Point 

tTX 

data_frame tP data_frame 

tPROC data_frame 

tPAC
K

RTT 



 

(i.e. the link layer processing time). The figure obtained is 
assumed to be the tproc data_frame part in Fig. 6 so that it can 
be used as an offset for measurements at a non-zero distance. 
Consequently, by applying the offset obtained, it is possible to 
find the RTT∆ , it is the pure propagation time of the RTT: 

0aRTT RTT RTT∆ = − .            -    (2) 

Once the RTT∆  is calculated -and being aware that a 44 
MHz clock was used for the measurements- the distance d (in 
meters) between the transmitter and receiver can be obtained 
as 

( )6/ 2 44 10pd c t c RTT= ⋅ = ⋅ ∆ ⋅ ⋅ .            (3) 

Taking into account that the RTT estimator is the average 
RTT value (η, measured in number of clock cycles), Eq. (3) 
can be rewritten as: 

0
8 6

a(( - ) 3 10 )/(2 44 10 ).d η η= ⋅ ⋅ ⋅ ⋅             (4) 

b) Empirical coefficient 

During the development process, it was observed that all the 
distances estimated were longer than the actual distances; 
therefore, the estimated distance had to be divided by an 
empirical coefficient to correct the estimated value. This 
coefficient is justified by the special characteristics of the 
multipath indoor radio propagation channel [5], the 
measurement quantification errors and the delays caused by the 
electronics of the hardware module, which can increase the 
theoretical expected RTT. 

To estimate that coefficient all RTT measurements were 
analyzed and gathered according to the specific distances they 
belong. Afterwards, linear regression lines were traced relating 
the estimated distance obtained following the method described 
above with the actual distance (i.e. straight lines and not 
exponential or logarithmic relationship appeared between both 
variables). Furthermore, this relation did not show any 
independent term. The result is shown in Fig. 7, being k=0.694 
the coefficient found. 

Actual distance from propagation-based estimated distance

y = 0.69494321x

0

5

10

15

20

25

0 5 10 15 20 25 30

Estimated distance (m)

A
ct

ua
l d

is
ta

nc
e 

(m
)

 
Figure 7. Estimation of the empirical coefficient 

Therefore the corrected formula for calculating the distance 
is: 

0
8 6

a(( - ) 3 10 )/(2 44 10 ).d kη η= ⋅ ⋅ ⋅ ⋅⋅           (5) 

3)  Experimental Test Bed and Measurements 
The experimental test bed consists of several distance 

estimations in the laboratory and its surroundings, under 
different conditions and with varying numbers of people in 
the rooms, at different times of the day, at various 
temperatures, and under different weather conditions. 
Therefore, all the measurements were taken in a real indoor 
working environment and without differentiating between 
LOS and NLOS situations. The accuracy of the ranging 
system was studied by performing several range estimations 
at different distances. Table 3 shows the absolute and relative 
errors obtained for every distance.  

Table 3. Results of the ranging subsystem 

Distance 5 m 10 m 15 m 20 m 

Average  
0.51 m 
(10.2%) 

0.51 m 
(5.1%) 

1.38 m 
(9.2%) 

0.47 m 
(2.3%) 

Maximum  
1.21 m 
(24.2%) 

1.24 m 
(12.4%) 

2.88 m 
(19.2%) 

1.01 m 
(5.0%) 

 
In a second set of measurements, the probability 

distribution of the distances estimated by the ranging system 
was obtained. One of the objectives of this statistical 
characterization is to feed the positioning subsystem 
simulations with actual distance measurements, as below 
discussed in Section III.C.3 This set of measurements consists 
of 450 distance estimations (450*300 RTT measurements), 
measured at a constant distance of 10 m, after the initial 
calibration at 0 m. 

Ideally, all the distances measured should be 10 m; 
however, due to several error sources, the ranging system 
obtains distances from 8.80 m to 12.80 m. This empirical 
histogram was compared with known probability 
distributions. The best fit was found to be a Gaussian 
distribution, as can be seen in Fig. 8, with _ 1.12actual distµ = +  
and 0.84σ = . 

 

Figure 8. Histogram of distance measurements  

C. Positioning System 
1) Introduction 

The MT position can be estimated once the distance 



 

estimations from a set of AP are obtained and the APs 
coordinates are known. The simplest option is to use a pure 
triangulation algorithm but higher accuracy can be achieved 
if tracking is applied, because it takes advantage of the past 
trajectory followed by the MT. Specifically, a Kalman-based 
tracking algorithm has been designed due to its simplicity and 
potential performance features. For a detailed description of 
the Kalman filter see [6] and [7]. 

The main idea of the Kalman filter is to perform a 
weighted average estimation process in two steps: first the 
filter estimates the current position from past ones (time 
update or prediction step) and second it obtains the feedback 
from the noisy measurements –it is the distance estimations- 
in order to improve the accuracy of the estimation 
(measurement update or correction step). The weight of every 
source of information depends on the reliability that can be 
assumed for each one, expressed in terms of noise covariance 
matrix figures. 

2) Customized Kalman-based algorithm 
The MT’s motion model assumed by the filter is defined in 

the prediction step. It was decided to optimize this part of the 
filter in order to maximize the accuracy. The new approach 
relies on supposing that the target is going to follow the 
straight trajectory defined by the line that joins the last two 
estimated positions, with the same speed and direction. 
Hence, in practice, the position can be predicted following 
basic geometrical laws. The speed of the target is estimated 
from the last past five estimated positions.  

3) Experimental Test Bed: Simulations 
Simulations have been carried out in order to evaluate the 

performance of the positioning system using the Kalman-
based described approach. Furthermore, the Non Linear Least 
Squares (Newton) trilateration algorithm has also been 
implemented in order to evaluate the advantage of tracking 
results versus pure positioning techniques. For this evaluation 
it was desired to obtain the Cumulative Distribution Function 
(CDF) of the absolute positioning error. 

The observables that feed the filter (i.e. in the correction 
step) on every position estimate correspond to the distance 
estimations from the MT to the three nearest APs, using the 
actual ranging results presented in Section III.B.3. In 
practice, every observable is obtained by calculating a single 
random value from a normal random variable with the above 
mentioned parameters. Thus it is essential to perform a large 
number of runs of a specific route simulation in order to 
guarantee that the actual ranging model is really used. This 
way the results of these simulations are fair and theoretically 
almost the same as the ones obtained with a tracking 
prototype in an actual indoor environment. 

A large number of routes (5000) with bad GDOP zones and 
probable changes of direction were generated following a 
motion model as similar as possible to a real behavior of a 
pedestrian. The motion algorithm is managed by the 
following rules: 

• The probability of changing the direction at a given time 
is governed by a geometrical random distribution. with 
probability of change = 0.1. Hence, the average number of 
time units following the same direction is 10.  

• The speed of the MT is a normal random variable of 
mean 1 m/s and variance 0.2 m/s. The speed is allowed to 
vary only when the direction changes. 

• The change of direction can be up to 30 degrees respect 
the followed straight line. 

The scenario is composed by a squared area of 50x50 m2 
with an AP in every corner. The positioning step T is set to 1 
second. 

4) Results 
Fig. 9 shows the CDF of the absolute positioning error for 

the algorithms. It can be seen that the Kalman-based 
algorithm provides a high accuracy of less than 0.9m. of 
absolute positioning error for the 66% of the cases (one 
sigma), and less than 1.4m. for the 90%. Comparing it with 
Newton, the improvement seems to be noticeable, because it 
provides 1.8m. and 1.2m. for the 90% and the 66% 
respectively. 

 
Figure 9. CDF of the absolute positioning error 

Fig. 10 shows an interval of one of the generated MT’s 
trajectory and the estimated ones obtained with Newton and 
the Kalman-based algorithms. It can be easily appreciated 
that the later provides an erratic path whereas the former is 
able to achieve a smoothed trajectory very similar to the 
actual one. 

D. Conclusions 
A new TOA-based technique to accurately locate WLAN 

terminals has been presented. Since TOA is estimated at the 
link layer, this proposal requires only minor changes on the 
hardware of the IEEE 802.11 b card: adding a counter 
(including triggers to start and stop) and interfacing the 
triggers and the result of the counter to the software. 
Estimating the TOA at the link layer involves more error 
sources than if the estimation is done at the physical layer; 
this paper proposes statistical methods to overcome the 
impact of such errors. A Kalman-based filter is used to track 
the MT’s trajectory using the previously obtained distances as 
observables. First results show positioning accuracies lower 



 

than 0.9 m for the 66% of the cases. 
 

 
Figure 10. Actual and estimated trajectories 

IV. OTHER TECHNOLOGIES 

A. Ultra Wide Band (UWB) 
The work on UWB-based positioning focused on the 

analysis of the potential ranging and positioning accuracy of 
future LDR UWB systems compliant to the IEEE 802.15.4a 
standard, currently under development. 

The analysis took into account the characteristics of the 
UWB propagation channel (in terms of both communication 
range and impact on the ranging accuracy) as well as the 
Medium Access Control strategy to be adopted in the 
802.15.4a standard, based on Aloha, and the impact of Multi 
User Interference. 

Two different scenarios were selected for this analysis in 
order to represent the different application scenarios expected 
to be served by the new IEEE 802.15.4a standard. The first 
scenario was characterized by a centralized controller 
determining the position of fixed or mobile nodes based on 
the distance estimations provided by a set of fixed reference 
nodes. A Time Difference Of Arrival approach adopting a 
Least Square Error minimization was used for estimating the 
position of the terminals at the central controllers. An indoor 
environment characterized by both LOS and NLOS links was 
considered. Simulation results show that the positioning error 
is potentially very low in the case of LOS links between 
nodes, and remains acceptable even in presence of a 
significant percentage of NLOS links  

The second scenario addressed the case when no external 
infrastructure is available, and relative position information 
must be built from scratch within the network. The scenario 
was characterized by a network of terminals that build a 
coordinate system exchanging distance and position 
information by means of a distributed algorithm derived from 
the Self Positioning Algorithm (SPA) [25].  

In this case the selected performance indicators were the 
percent position error and the percentage of nodes that are 
able to converge to a single coordinate system, and can thus 
use and provide valid position information. 

In this scenario the results indicated that, for a network 
with high enough terminal density, a distributed protocol 
combined with an IEEE 802.15.4a UWB physical layer can 
potentially provide accurate position information even in 
absence of any external infrastructure, despite the potentially 
high MUI interference caused by the strong signaling 
overhead in the construction of the common coordinate 
system required by the SPA algorithm. 

Further investigation is now undergoing in a more detailed 
simulation scenario for emergency situations, taking into 
account: a) the impact of positioning the reference nodes 
outside of the building in the centralized scenario, causing 
thus a strong NLOS propagation and a potentially high 
Geometric Dilution Of Precision (GDOP), and b) the effect of 
a low terminal density and a high GDOP, which are to be 
expected in the typical emergency scenarios considered in the 
LIAISON project, in the distributed positioning case.  

Further information on the results of UWB research activity 
within LIAISON can be found in [26], [27] and [28]. 

B. Inertial Navigation Systems 
Inertial Navigation Systems (INS) are commonly used in 

the naval and aviation fields. While pedestrian navigation is 
based on the same underlying principles, i.e. measure of 
accelerations and angular velocities, the quality of the sensors 
employed differ from the “traditional” inertial systems. Due 
to constraints on ergonomics (weight and size), power 
consumption and price, the sensors used in pedestrian 
navigation are based on Micro-Electro-Mechanical Systems 
(MEMS) technology [20]. 

The Liaison research activities in this domain of MEMS 
based location focus on two primary axes: 
• Research of algorithms for real-time implementation to 

detect and characterize human physical activities. In this 
context, human physical activity encompasses both body 
postures (lying, sitting and standing) and body 
displacement (distance travelled and azimuth of travel). 

• Coupling of MEMS derived body displacement with 
absolute positioning information provided by other 
technologies, such as Assisted GNSS (A-GNSS) or 
wireless location. 

With respect to the first point, a novel approach in the 
context of pedestrian navigation is being pursued that consists 
on placing sensors in different parts of the human body, 
specifically the trunk, thigh and shank. With this architecture 
it is possible to determine the real posture of a pedestrian. 
This information is not only useful to infer about his safety 
condition, but also to adjust the navigation algorithms to 
certain specific movements of the professional users (e.g. 
crawling or walking squatted) [21]. 

As a first step in the procedure of validating this approach, 
a few tests have been performed under less stringent 
conditions, both in terms of movement complexity (postures 
and displacement) and environmental conditions. The results 
obtained show a rate of success of better than 95% in posture 



 

detection and 90% in detecting the type of displacement 
(forward, backward, lateral movement, stairs climbing and 
descending). As for the quantification of the actual 
displacement, the errors observed are less than 5% of the 
distance travelled and 1 degree in orientation (in magnetically 
free environments) [21]. Validation of these results under 
more severe conditions is planned for the near future. 

Future research activities on this axis will contemplate the 
following points: 
• Adaptation to the project’s test cases specific movements 

and context: the aim is to further improve the various 
algorithms to obtain a better performance under more 
stringent conditions. 

• Online calibration: one of the main challenges in 
pedestrian navigation based on MEMS is to reduce the 
effect of large bias and noise levels typical of these 
sensors. The use of calibration phases is a good 
methodology to reduce the errors. It is possible to do an a 
priori calibration or an online calibration. The first 
consists of using a known reference to correct the 
processing results of the MEMS signals. Previous EPFL 
research on the Pedestrian Navigation Module [22] has 
proven this solution. Our intention is to work in addition 
with the online calibration. This procedure intends to 
benefit from external outputs or identified postures to 
correct the sensors errors. 

Regarding the second research axis pursued under Liaison, 
work is currently undergoing to hybridize MEMS based 
positioning with other positioning technologies, namely A-
GNSS and WiFi TOA/Fingerprinting. Besides increased 
availability of the overall system, this approach allows the 
correction of certain systematic errors on the MEMS side (i.e. 
step length and orientation errors), improving positioning 
accuracy [23][24]. 

V. CONCLUSION 

Indoor location with WiFi allows using the existing 
infrastructure and devices widely deployed in buildings such 
as airports, train stations, hotels, etc. The two approaches 
presented in this paper provide a good accuracy. UWB (in ad 
hoc mode) and INS can be used in extreme cases such as fire 
when infrastructure is disconnected. 
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