
Hiding Synchronization Delays in a GALS Processor Microarchitecture∗

Greg Semeraro?, David H. Albonesi‡,
Grigorios Magklis†, Michael L. Scott†, Steven G. Dropsho† and Sandhya Dwarkadas†

?Department of Computer Engineering
Rochester Institute of Technology

Rochester, NY 14623

‡Department of Electrical and Computer Engineering
†Department of Computer Science

University of Rochester
Rochester, NY 14627

Abstract
We analyze an Alpha 21264-like Globally–Asynchronous,

Locally–Synchronous (GALS) processor organized as a Mul-
tiple Clock Domain (MCD) microarchitecture and identify the
architectural features of the processor that influence the limited
performance degradation measured. We show that the out-of-
order superscalar execution features of a processor, which al-
low traditional instruction execution latency to be hidden, are
the same features that reduce the performance degradation im-
pact of the synchronization costs of an MCD processor. In the
case of our Alpha 21264-like processor, up to 94% of the MCD
synchronization delays are hidden and do not impact overall
performance. In addition, we show that by adding out-of-order
superscalar execution capabilities to a simpler microarchitec-
ture, such as an Intel StrongARM-like processor, as much as
62% of the performance degradation caused by synchroniza-
tion delays can be eliminated.

1 Introduction
Globally Asynchronous, Locally Synchronous (GALS) de-

signs are an intermediate approach between fully asynchronous
and fully synchronous clocking styles. A GALS design has the
advantage in that it eliminates the timing and cost overhead of
global clock distribution while maintaining a synchronous de-
sign style within each clock domain. One such GALS processor
approach, which we call MCD (Multiple Clock Domain), pro-
vides the capability of independently configuring each domain
to execute at frequency/voltage settings at or below the maxi-
mum values [20]. This allows domains that are not executing
operations critical to performance to be configured at a lower
frequency, and consequently, an MCD processor has the advan-
tage that energy can be saved [14, 19]. However, an MCD pro-
cessor has the disadvantage that inter-domain communication
may incur a synchronization penalty resulting in performance
degradation.

In this paper, we analyze the MCD microarchitecture and
describe how the processor architecture influences the perfor-
mance degradation due to synchronization. We describe the
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Figure 1. MCD block diagram, showing inter-domain commu-

nication.

synchronization points within MCD and characterize the rel-
ative synchronization costs of each. We further demonstrate
how the latency tolerating features of a dynamic superscalar
processor can hide a significant fraction of the synchronization
delay, leading to a very modest performance overhead. Com-
bined with our previous results [14, 19], which show the en-
ergy saving advantages of our GALS MCD design, these results
demonstrate the potential viability of our MCD processor.

2 MCD Microarchitecture

Our MCD architecture [20] uses four clock domains, high-
lighted in Figure 1, comprising the front end; integer processing
core; floating-point processing core; and load/store unit. The
main memory can also be considered a separate clock domain
since it is independently clocked but it is not controllable by
the processor. As a result of partitioning the processor in this
way, there were no explicit changes to the pipeline organiza-
tion of the machine. This limits the scope of changes required
by the MCD microarchitecture and isolates those changes to
the interfaces. The processing cores within the domains remain
unchanged as fully synchronous units.

In choosing the boundaries between domains, we attempted
to identify points where i) there already existed a queue struc-
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Table 1. MCD-specific processor configuration parameters.
Parameter Value(s)

Clock Domains Fetch/Dispatch, Integer,
Floating-Point and Load/Store

Domain Voltage 0.65V – 1.20V
Voltage Change Rate 66.9nsec

mV
Domain Frequency 250MHz – 1.0GHz
Frequency Change Rate 49.1nsec

MHz
Domain Clock Jitter 110ps variance,

normally distributed about zero
Synchronization Window 30% of 1.0GHz clock (300ps)

ture that served to decouple different pipeline functions, or ii)
there was relatively little inter-function communication. The
baseline microarchitecture upon which our MCD processor is
built is a four-way dynamic superscalar processor with spec-
ulative execution similar in organization to the Compaq Al-
pha 21264 [11, 12, 13].

The MCD microarchitecture is characterized by a number
of parameters, which define the unique features of the architec-
ture. The values chosen represent present and near-term state-
of-the-art circuit capabilities. These MCD-specific parameters
are summarized in Table 1 and described in detail in the follow-
ing sections.

3 Domain Clocking Style
We investigated two models for dynamic voltage and fre-

quency scaling: anXScalemodel and aTransmetamodel, both
of which are based on published information from their respec-
tive companies [8, 9]. For both of these models, we assume that
the frequency change can be initiated immediately when tran-
sitioning to a lower frequency and voltage, while the desired
voltage must be reached first before increasing frequency. For
the Transmeta model, we assume a total of 32 separate voltage
steps, at 28.6mV intervals, with a voltage adjustment time of
20µs per step. Frequency changes require the PLL to re-lock.
Until it does, the domain remains idle. The PLL locking circuit
is assumed to require a lock time that is normally distributed
with a mean time of 15µs and a range of 10–20µs. For the XS-
cale model, we assume that frequency changes occur as soon
as the voltage changes and circuits operate through the change.

Although we investigated both models, it became clear early
on in the investigation that the Transmeta model is not appro-
priate for an MCD microarchitecture. The reason for this is
that the Transmeta model requires the PLL to re-lock after each
frequency change, stopping the domain during that time. With
the tight interaction between the domains, the suspension of
one domain quickly cascades to other domains. The end re-
sult is that wheneverany domain frequency is changed in the
Transmeta model,all domains are stalled for nearly all of the
time required to re-lock the PLL. As one can imagine, this has
a profound impact on overall performance. For these reasons
the Transmeta model was not investigated further and is not in-
cluded in any of the analysis that follows.

3.1 Clock Design

In this work we assume a system clock of 1.0GHz, derived
from an external 100MHz source using on-chip PLLs where all

domains frequencies are 1.0GHz but all are independent. These
PLLs produce jitter. Moreover, since the external clock is de-
rived from a lower frequency crystal using an external PLL, the
external clock will also have jitter, and these jitters are additive,
i.e., JitterTotal = JitterCrystal+JitterExternal

PLL +JitterInternal
PLL .

TheJitterCrystal can be expected to be extremely small and
due entirely to thermal changes; we assume a value of zero.
The JitterExternal

PLL is governed by the quality and design of
the PLL chip used. A survey of available ICs reveals that most
devices are specified as 100ps jitter; we use this number in
our study. TheJitterInternal

PLL is also governed by the qual-
ity and design of the PLL. We assume a circuit of the same
caliber as the external PLL, which implies a worst case jitter of
10ps (comparable error on a 10× shorter cycle). Since clock
jitter varies over time with a long-term average of zero, the
| JitterTotal |≤ 110ps (≤ 11% of a 1.0GHz clock period).

Starting with the clock design of the Alpha 21264 [1], we
derive an MCD clock design by dividing the clock grid into re-
gions corresponding to the MCD domain partitions. Each do-
main requires a separate PLL and clock grid driver circuit, all
of which are fed by the 1.0GHz clock source. Although each of
these domain PLLs derives its timing from a common source,
we do not assume any phase relationship between the PLL out-
puts. We do this because we assume that the skew requirements
for the 1.0GHz clock have been relaxed and we cannot guaran-
tee that the clocks are in phase when they arrive at the domain
PLLs.

4 Domain Interface Circuits
Fundamental to the operation of an MCD processor is the

inter-domain communication. There are two types of commu-
nication that must be modeled: FIFO queue structures and is-
sue queue structures. FIFO queues have the advantage that the
inter-domain synchronization penalty can be hidden whenever
the FIFO is neither full nor empty. The mechanism by which
this is achieved and the precise definitions ofFull andEmpty
are described in Section 4.1 and are similar to mixed clock
FIFOs proposed by others [3, 5, 6, 7, 21]. The disadvantage
of FIFO queue structures is that they can only be used where
strict First-In-First-Out queue organization is applicable. Fur-
thermore, if the communication is such that the FIFO is almost
always empty (or full), the bulk of the synchronization penalty
will not be hidden. The issue queue structure is very similar to
the FIFO queue except that the inter-domain synchronization
penalty must be assessed as each entry is put into the queue
rather than only if the FIFO is empty or full. This is necessary
since with an issue queue structure, the entries are consumed
in an undefined order. Therefore, it is important to accurately
model precisely when an entry becomes “visible” to the con-
sumer.

4.1 FIFO Queue Structures
What follows is an analysis of the timing and characteris-

tics of queues used to buffer control and data signals between
different clock domains. Fundamental to this analysis are the
following assumptions:
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Figure 2. FIFO queue interfaces.

• Each interface is synchronous;i.e., information is always
read and written on the rising edge of the respective clock.

• Status signals which emanate from the interface are gen-
erated synchronously to the respective interface clock.

• Restrictions regarding the ratio of the maximum to min-
imum frequency are necessary but no other assumptions
are made regarding the relative frequency or phase of the
interface clocks.

The general queue structure that we use for inter-domain
communication is shown in Figure 2 and is the same as in [5],
with the following minor extensions. First, the queue design
is such that theFull andEmpty flags always reflect what the
state of the queue will beafter subsequent read/write cycles.
In other words, theFull andEmpty flags need to be generated
prior to the queue actually being full or empty, using condi-
tions that take into account the differences in the clock speed
and potential skew of the two domains. The worst-case situ-
ation occurs when the producer is operating at the maximum
frequency and the consumer at the minimum. There are several
possible approaches to handling this problem. In this paper,
we assume additional queue entries to absorb writes from the
producer in order to recognize the potential delay of actually
determining that the queue is full. In other words, theFull
signal is generated using the condition that the queue length is
within max_freq

min_freq + 1 of the maximum queue size. Note that our
results do not account for the potential performance advantage
of these additional entries. Second, the synchronization time of
the clock arbitration circuit,TS , represents the minimum time
required between the source and destination clocks in order for
the signal to be successfully latchedand seenat the destina-
tion. It is thisTS which defines the conditions under which data
which has been written into a queue is prevented from being
read by the destination domain. Although the logical structure
of our queues is similar to [5], we assume the arbitration and
synchronization overhead described in [22] to defineTS , i.e.,
we assume aTS of 30% of the period of the highest frequency.

Even with completely independent clocks for each interface,
the queue structure is able to operate at full speed for both
reading and writing under certain conditions. A logic-level
schematic of the FIFO queue structure is shown in Figure 3
for a 4-entry queue. Note that writing to and reading from the
structure are independent operations with synchronization oc-
curring in the generation of theFull andEmpty status signals
which are based on theValid bits associated with each queue
entry. Although the combinatorial logic associated with the
generation ofFull andEmpty has been simplified in this fig-
ure for demonstration purposes (the logic shown does not take
into account early status indication required for worst-case fre-
quency differences), the synchronization circuits shown are as
required in all cases. That is, theValid bits for the queue en-
tries must be synchronized toboththe read and write clock do-
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Figure 3. FIFO queue structure details.

mains independently. There is no chance of improper enqueu-
ing/dequeuing as long as the synchronization circuit is glitch-
free (see Section 4.3) and the access protocol described in the
beginning of this section is applied.

Figure 4 shows a sample switch-level timing diagram of the
FIFO queue of Figure 3. The critical points occur at the four
labeled timingsT1, T2, T3, andT4. T1 occurs as the first en-
try is written into the queue. In this case,Valid[0] is gen-
erated too closely to the falling edge of the read clock (cycle
R0) for it to be synchronized during that cycle (i.e., T1 < TS);
therefore,Empty is generated one cycle later. The next criti-
cal timing occurs as the fourth entry is written and the queue
becomes full. In this case,Valid[3] is generated on the ris-
ing edge of the write clock (cycleW4) and synchronization
is complete before the corresponding falling edge of the write
clock (i.e., T2 > TS). Note that in this case, the synchroniza-
tion will always be complete before the falling edge because
both the originating event (Valid[3] generated on the rising
edge of the write clock) and the synchronization event (Full
status signal seen on the source domain) are in fact the same
domain. The same situation exists forT4 with respect to the
destination domain. These conditions are guaranteed as long as
the synchronization circuit requires less than half the period of
the fastest interface to perform the synchronization. The queue
remains full until a read occurs (cycleR4) andValid[0] be-
comes false. The transition onValid[0] occurs well before the
falling edge of the write clock (cycleW7), which ensures that
the synchronization is complete before that falling edge (i.e.,
T3 > TS). The last critical timing occurs when the fourth entry
is read and the queue becomes empty. Again, the transition of
the valid signal (Valid[3]) occurs well before the falling edge
of the read clock (cycleR7); therefore, the synchronization is
complete and no additional cycle of synchronization is required
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(i.e., T4 > TS). This sample timing diagram illustrates how the
synchronization parameter,TS , manifests itself as read and/or
write cycle penalties on respective clock domain interfaces.

4.2 Issue Queue Structures

Many of the queues that we use as synchronization points
have a different interface than that described above. With an
issue queue, each entry hasValid and Ready flags that the
scheduler uses to determine if an entry should be read (issued).
By design, the scheduler will never issue more than the number
of valid and ready entries in the queue. Note, however, that due
to synchronization, there may be a delay before the scheduler
sees newly written queue data.

The issue queue structure design follows directly from the
FIFO design but must be modified in an important way. The
ability to hide the synchronization penalty when the FIFO is not
full or not empty does not exist for issue queue type structures.
The reason for this is that the information put into the queue is
needed on the output of the queue as soon as possible (because
the order in which entries are put into the queue does not dictate
the order in which they may be removed).

4.3 Synchronization With Queues

The delay associated with crossing a clock domain interface
is a function of the following:
• The synchronization time of the clock arbitration circuit,

TS , which represents the minimum time required between
the source and destination clocks in order for the signal
to be successfully latched at the destination. We assume
the arbitration and synchronization circuits developed by
Sjogren and Myers [22] that detect whether the source and
destination clock edges are sufficiently far apart (at mini-
mum,TS) such that a source-generated signal can be suc-
cessfully clocked at the destination.

• The ratio of the frequencies of the interface clocks.
• The relative phases of the interface clocks.
This delay can best be understood by examining a timing

diagram of the two clocks (Figure 5). Without loss of general-
ity, the following discussion assumesF1 is the source andF2

is the destination domain. Consider the case when the queue
is initially empty. Data is written into the queue on the ris-
ing edge ofF1 (edge 1). Data can be read out of the queue as
early as the second rising edge ofF2 (edge 3), if and only if
T > TS , i.e., Empty has become false on theF2 interface be-
fore the next rising edge ofF2 (edge 2). This two-cycle delay is
necessary for the reading interface to recognize that the queue
is non-empty and enter a state where data can be read from the
queue. Therefore, the delay would be seen byF2, and would be
two clock cycles whenT > TS (one rising edge to recognize
Empty and another rising edge to begin reading) and three cy-
cles whenT ≤ TS (the additional rising edge occurring during
the interface metastable region). The value ofT is determined
by the relative frequency and phases ofF1 and F2 and may
change over time. The cost of synchronization is controlled by
the relationship betweenT andTS .

An optimal design would minimizeTS in order to allow
wide frequency and/or phase variations betweenF1 andF2 and
increase the probability of a two-cycle delay. Alternatively,
controlling the relative frequencies and phases ofF1 andF2

would allow a two-cycle delay to be guaranteed. Note that this
analysis assumesTS < 1

F1
andTS < 1

F2
. The analogous sit-

uation exists when the queue isFull, replacingEmpty with
Full, edge 1 with edge 2, and edge 3 with edge 4, in the above
discussion.

Figure 6 shows a transistor-level schematic of a synchro-
nization circuit adapted from [17]. The most salient character-
istic of this circuit (and others like it [18]) is that it is guaranteed
to be glitch-free. This is the case because the internal signalsR0
andR1 are integral voltages — note that the voltage source for
this stage is notVdd but rather the output nodes of the previous
stage. Because these signals are integrals they are guaranteed to
be monotonically changing signals. Therefore,R0 andR1 com-
prise the synchronized input in dual-rail logic. These signals
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4

Figure 5. Synchronization timing.
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Figure 6. Synchronization circuit.

are then used to drive the last stage of the synchronizer, which is
a simple RS latch, to produce a single-rail logic output. The cir-
cuit synchronizes theDataIn signal on the falling edge of the
Clock, producing a guaranteed glitch-free and synchronized
signal onDataOut (recall that theValid[n] signals in Figure 3
are synchronized on the falling edges of the clocks). Figure 7
shows the results ofSPICE simulation of the synchronization
circuit of Figure 6 with a number of falling clock edges coin-
ciding with transitions of the input data signal. Figure 8 shows
one such transition at 4.8nsec in detail where it can be seen
that the output signal is glitch-free and monotonic. The circuit
was simulated using level-8 0.25µm TSMC SCN025 transistor
models. This synchronizer circuit provides the necessary com-
ponent to the synchronizing FIFO of Figure 3. With the data
stored in the FIFO regardless of the synchronizer outcome, and
the Valid signals in the FIFO properly synchronized toboth
domain clocks, the effect is that data is possibly delayed by one
clock in the receiving domain (since the receiver cannot ‘see’
the data until theValid signal has been synchronized).

Since the queue structure proposed does not represent a sig-
nificant departure from queues already in use in modern micro-
processors, we do not expect that the size of these queues would
be appreciably impacted by the changes required for synchro-
nization. For the circuit shown in Figure 6, 36 transistors are
required per bit of synchronization. Although this is not incon-
sequential it is also not a significant increase in the overall size
requirements of the queue. Notice that the number of synchro-
nization circuits required is a function of the depth of the queue
and not the width (Figure 3, oneValid bit per data word). Oth-
ers [5, 6] have demonstrated that the addition of clock synchro-
nization/arbitration circuits to the FIFO structure results in a
negligible impact on the total structure area.

5 MCD Synchronization Points

The manner in which the processor is partitioned as part of
transforming it into an MCD processor is of critical importance
since the performance degradation that will be imposed as a re-
sult of the inter-domain communication penalties directly fol-
lows from the processor partitions.

The following list identifies all modeled inter-domain com-
munication channels. These communication channels were de-
termined by analyzing the microarchitecture of the MCD par-
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Figure 7. Synchronization timing SPICE results.
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Figure 8. Synchronization timing SPICE results (4–7nsec).

titioning and are a direct consequence of that partitioning. For
each communication channel, we discuss the data being trans-
ferred between domains and classify the synchronization mech-
anism required to ensure reliable communication. In addition,
each channel is identified as using an existing queue structure
or as requiring the addition of the queue entirely due to inter-
domain synchronization. Each communication channel is iden-
tified by number in Figure 1.

Communication Channel 1
Information: L1 Cache Line
Transfer: L1 Instruction Cache⇐ L2 Unified Cache
Domains: Fetch/Dispatch⇐ Load/Store
Reason:L1 Instruction Cache Miss
Synchronization Type: FIFO Queue Structure
Discussion: New queue structure. When a level-1 instruc-
tion cache miss occurs, a cache line must be brought in from
the level-2 cache. The fetch/dispatch domain only initiates an
L2 cache request when there is an L1 I-cache miss, and since
the front endmuststall until that request is satisfied, we know
that there can only be one such outstanding request at a time.
Therefore, any inter-domain penalty that is to be assessedcan-
notbe hidden behind a partially full FIFO. Hence, the synchro-



nization penalty must be determined based solely on the relative
frequency and phase of the domain clocks for each communi-
cation transaction. Although communication channels such as
this one, which can only contain one element at a time, would
be implemented as a single synchronization register, we prefer
to maintain the generalized FIFO model since the performance
characteristics of both are identical.

Communication Channel 2
Information: L2 Cache Line
Transfer: L2 Unified Cache⇔ Main Memory
Domains: Load/Store⇔ Memory
Reason:L2 Cache Miss (Data Referenceor Instruction)
Synchronization Type: FIFO Queue Structure
Discussion: Existing queue structure. This communication
path, although logically bidirectional, is composed of two in-
dependent unidirectional channels. Since they are similar and
related, they will be addressed together. Notice also that the
reason for this communication can be either an L2 cache miss
due to a data reference,or an L2 cache miss due to an instruc-
tion fetch. The characteristics of this interface are the same as
the previous description with the exception that multiple out-
standing requests to the L2 unified cache are supported. That
fact alone makes itpossiblethat some of the inter-domain syn-
chronization penalties can be hidden. As it turns out, there are
few times when there are enough outstanding requests such that
the penalty would actually be hidden. For our MCD processor,
there would have to be more than 5 outstanding requests (See
Section 4.1) to ensure that the penalty did not impact mem-
ory access time. Fortunately, the inter-domain penalty is only
one cycle. Given that the memory access time for the first
L2 cache line is 80 cycles (subsequent, contiguous lines have
an access time of 2 cycles), the inter-domain synchronization
penalty alone is not likely to have an appreciable impact (the
penalty represents an increase in memory access time of 1.06–
1.25%, based on 8-word cache line fill transactions).

Communication Channel 3
Information: Branch Prediction Outcome
Transfer: Branch Predictor⇐ Integer ALU
Domains: Fetch/Dispatch⇐ Integer
Reason:Branch Instruction
Synchronization Type: FIFO Queue Structure
Discussion:New queue structure. When a branch instruction is
committed, the machine state must be updated with the branch
outcome (i.e., Taken/Taken). In addition, the fetch unit needs
to know if the prediction was correct or not since it must change
fetch paths if the prediction was not correct. This communi-
cation path is, by its very nature, sequential. That is, branch
outcomes need to be processed by the fetch/dispatch domain in
a strict first-in-first-out manner. This is also a communication
path that is not likely to benefit from the penalty hiding property
of the FIFO queue structure since doing so would require 5 or
more branch outcomes to be buffered waiting to be processed
by the fetch/dispatch domain.

There is another aspect of a branch mis-prediction that must
be properly handled. That is, when a branch is mis-predicted,

all speculative instructions must be squashed from the machine
pipeline. This can happen as soon as the branch outcome is
known and does not need to occur after the branch predictor is
updated. The communication in this case occurs from the in-
teger domain (where the branch outcome is determined) to all
other domains. To handle this case, we chose to squash specu-
lative instructions on the rising edge of each domain clockafter
the synchronization has occurred in the fetch/dispatch domain.
Although this represents a conservative approach, it simplifies
the design considerably since it eliminates the synchroniza-
tion FIFO between the integer domain and the floating-point
and load/store domains. The effect of implementing specula-
tive instruction squashing in this manner is that resources used
by those soon-to-be-squashed instructions are used longer than
they would be otherwise. Thismayhave a negative impact on
performance if instructions cannot be issued because processor
resources are in use by one of these instructions.

Communication Channel 4

Information: Integer Load Result
Transfer: Integer Register File⇐ L1 Data Cache
Domains: Integer⇐ Load/Store
Reason:Load Instruction (Integer only)
Synchronization Type: Issue Queue Structure
Discussion:Existing queue structure. The load value may orig-
inate in the Load/Store Queue (LSQ), the L1 Data Cache, the
L2 Cache or Main Memory; any synchronization that is re-
quired to get the value to the LSQ is assumed to have already
been assessed. This communication channel handles only the
synchronization between the LSQ and the integer register file.
Since loads can complete out-of-order (a load that is found in
the LSQ could have issued after a load that is waiting on a cache
miss), the synchronization mechanism in this case must be of
the issue queue structure type since the load result is useful to
the integer domain as soon as possible after becoming avail-
able.

Communication Channel 5

Information: Floating-Point Load Result
Transfer: Floating-Point Register File⇐ L1 Data Cache
Domains: Floating-Point⇐ Load/Store
Reason:Load Instruction (Floating-Point only)
Synchronization Type: Issue Queue Structure
Discussion: Existing queue structure. Floating-point load in-
structions are identical to integer loads with one exception: the
destination of the load is the floating-point register file in the
floating-point domain. All synchronization characteristics are
the same as integer loads, and as such, the required interface is
an issue queue type structure.

Communication Channel 6

Information: Effective Address
Transfer: Load/Store Queue⇐ Integer Result Bus
Domains: Load/Store⇐ Integer
Reason:Load or Store Instruction
Synchronization Type: Issue Queue Structure



Discussion:Existing queue structure. Each load and store in-
struction is broken into two operations: i) the load/store opera-
tion, which accesses the L1 data cache, and ii) the addition op-
eration, which computes the effective address for the memory
reference. The load/store operation is issued to the load/store
domain, and the effective address calculation is issued to the
integer domain. The load/store operation is dependent on the
address calculation since the memory reference cannot be per-
formed until the address is known. Since both integer opera-
tions in the integer issue queue (IIQ) and load/store operations
in the load/store queue (LSQ) are free to proceed out-of-order,
the effective address calculation canpotentiallybe used by the
LSQ as soon as the calculation is complete, regardless of the
program order in which the memory references were made.
These characteristics require that the effective address result
that is transferred from the integer domain to the load/store do-
main be stored in an issue queue structure.

Communication Channel 7
Information: Integer Value
Transfer: Integer Register File⇐ Floating-Point Result Bus
Domains: Integer⇐ Floating-Point
Reason:FloatCvt Instruction (FP to Integer Conversion)
Synchronization Type: FIFO Queue Structure
Discussion:New queue structure. Converting a floating-point
value into an integer value is performed by the floating-point
hardware, but the result is written to the integer register file. In
order to ensure that the converted value is properly received in
the integer domain, a simple first-in-first-out structure is nec-
essary since there is no requirement that the operations occur
out of order. That being the case, it is also unlikely that the
synchronization penalty can be hidden by the occupancy of the
FIFO unless a stream of conversion operations is performed.
Although this situation is rare, it may occur for vector floating-
point applications. In those cases, the existence of the FIFO is
likely to reduce the effective synchronization penalty seen by
the application.

Communication Channel 8
Information: Floating-Point Value
Transfer: Floating-Point Register File⇐ Integer Result Bus
Domains: Floating-Point⇐ Integer
Reason:FloatCvt Instruction (Integer to FP Conversion)
Synchronization Type: FIFO Queue Structure
Discussion: New queue structure. Same as previous, except
that the conversion is now from integer to floating-point. The
same application characteristics,i.e., vector floating-point con-
versions, would be required in order to see the benefit of the
FIFO queue structure.

Communication Channel 9
Information: Integer Instruction
Transfer: Integer Issue Queue⇐ Integer Instruction
Domains: Integer⇐ Fetch/Dispatch
Reason:Integer Instruction Issue
Synchronization Type: Issue Queue Structure
Discussion: Existing queue structure. When instructions are
dispatched into an issue queue, the scheduler must have access

to those instructions as soon as possible in a superscalar proces-
sor. Since instructions issue out-of-order, scheduling decisions
are based on the instructions present in the issue queue, regard-
less of the order in which those instructions were inserted. It
is clear that an issue queue structure is required and that the
synchronization penalty associated with the dispatch of an in-
struction cannot be hidden, regardless of the number of entries
in the queue. Note that as long as there are instructions in the
queue the scheduler is able to proceed, albeit without knowl-
edge of instructions which are not visible due to synchroniza-
tion delays.

Communication Channel 10
Information: Floating-Point Instruction
Transfer: Floating-Point Issue Queue⇐ Floating-Point In-
struction
Domains: Floating-Point⇐ Fetch/Dispatch
Reason:Floating-Point Instruction Issue
Synchronization Type: Issue Queue Structure
Discussion: Existing queue structure. Same as previous, but
for floating-point instructions.

Communication Channel 11
Information: Load/Store Operation
Transfer: Load/Store Queue⇐ Load/Store Operation
Domains: Load/Store⇐ Fetch/Dispatch
Reason:Load/Store Instruction Issue
Synchronization Type: Issue Queue Structure
Discussion: Existing queue structure. Same as previous, but
for load/store instructions.

Communication Channel 12
Information: Integer Instruction Commit
Transfer: Reorder Buffer⇐ Integer Instruction Completion
Domains: Fetch/Dispatch⇐ Integer
Reason:Integer Instruction Completion
Synchronization Type: Issue Queue Structure
Discussion:Existing queue structure. When instructions com-
plete execution, the machine state must be updated. Although
the update of machine state occurs in program order, the com-
pletion of instructions is out-of-order. The Reorder Buffer
(ROB) is the structure that commits instructions in program
order. The ROB does this by examining all instructions that
have completed execution. When an instruction has completed
execution and it is the next instruction in program order, it is
committed. If only one instruction could be committed in a
given cycle, then instruction completion information could be
transferred from the various domains in-order (i.e., in order of
completion,not in program order). Committing only one in-
struction per cycle would significantly degrade the performance
of a superscalar processor that can issue and execute more than
one instruction in parallel. Therefore, the ROB must be capable
of committing more than one instruction per cycle. The ability
to commit more than one instruction per cycle requires that the
synchronization mechanism used for the completion informa-
tion be of the issue queue structure type since the ROB can use
the completion information in any order. Note that the syn-
chronization delay may result in increased pressure (i.e., higher
average occupancy) on the ROB structure.



Communication Channel 13

Information: Floating-Point Instruction Commit
Transfer: Reorder Buffer⇐ FP Instruction Completion
Domains: Fetch/Dispatch⇐ Floating-Point
Reason:Floating-Point Instruction Completion
Synchronization Type: Issue Queue Structure
Discussion: Existing queue structure. Same as previous, but
for floating-point instructions.

Communication Channel 14

Information: Load/Store Operation Commit
Transfer: Reorder Buffer⇐ Ld/St Operation Completion
Domains: Fetch/Dispatch⇐ Load/Store
Reason:Load/Store Instruction Completion
Synchronization Type: Issue Queue Structure
Discussion: Existing queue structure. Same as previous, but
for load/store instructions.

Communication Channel 15

Information: L1 Cache Line
Transfer: L1 Instruction Cache⇐ Main Memory
Domains: Fetch/Dispatch⇐ Memory
Reason:L1 Instruction Cache Miss
Synchronization Type: FIFO Queue Structure
Discussion: New queue structure. If the processor is config-
uredwithout a level-2 cache, then L1 I-cache misses must be
filled from main memory. This interface is a simple FIFO since
the front end must wait for L1 I-cache misses to complete, so
there is no benefit to allowing out-of-order transactions. Note
that this channel only exists in processor configurationswithout
an L2-cache.

6 Simulation Methodology
Our simulation environment is based on the SimpleScalar

toolset [4] with the Wattch [2] power estimation extension and
the MCD processor extensions [20]. The MCD extensions in-
clude modifications to more closely model the microarchitec-
ture of the Alpha 21264 microprocessor [12]. A summary of
our simulation parameters for the Alpha 21264-like processor
appears in Table 2. For comparison to an in-order processor, we
also simulate a StrongARM SA–1110-like processor. A sum-
mary of the simulation parameters for that processor is given in
Table 3.

We selected a broad mix of compute bound, memory bound,
and multimedia applications from the MediaBench, Olden, and
Spec2000 benchmark suites (shown in Figure 9).

Our simulator tracks the relationships among the domain
clocks on a cycle-by-cycle basis. Initially, all clock starting
times are randomized. To determine the time of the next clock
pulse in a domain, the domain cycle time is added to the start-
ing time, and the jitter for that cycle (which may be positive
or negative) is added to this sum. By performing this calcula-
tion for all domains on a cycle-by-cycle basis, the relationships
among all clock edges are tracked. In this way, we can accu-
rately account for synchronization costs due to violations of the
clock edge relationship.

Table 2. Architectural parameters for simulated Alpha 21264-

like processor.
Configuration Parameter Value
Branch predictor:

Level 1 1024 entries, history 10
Level 2 1024 entries
Bimodal predictor size 1024
Combining predictor size 4096
BTB 4096 sets, 2-way

Branch Mispredict Penalty 7 cycles
Decode Width 4 instructions
Issue Width 6 instructions
Retire Width 11 instructions
L1 Data Cache 64KB, 2-way set associative
L1 Instruction Cache 64KB, 2-way set associative
L2 Unified Cache 1MB, direct mapped
L1 cache latency 2 cycles
L2 cache latency 12 cycles
Integer ALUs 4 + 1 mult/div unit
Floating-Point ALUs 2 + 1 mult/div/sqrt unit
Integer Issue Queue 20 entries
Floating-Point Issue Queue 15 entries
Load/Store Queue 64 entries
Physical Register File 72 integer, 72 floating-point
Reorder Buffer 80 entries

Table 3. Architectural parameters for simulated Stron-

gARM SA–1110-like processor.
Configuration Parameter Value
Instruction Issue In-order
Branch predictor None (assume not-taken)
Branch Mispredict Penalty 4 cycles
Decode Width 1 instruction
Issue Width 2 instructions
Retire Width 2 instructions
L1 Data Cache 8KB, 32-way set associative
L1 Instruction Cache 16KB, 32-way set associative
L2 Cache None
L1 cache latency 1 cycle
Integer ALUs 1 + 1 mult/div unit
Floating-Point ALUs 1 + 1 mult/div/sqrt unit
Integer Issue Queue 16 entries
Floating-Point Issue Queue 16 entries
Load/Store Queue 12 entries (4 load / 8 store)
Physical Register File 32 integer, 32 floating-point

Synchronization performance degradation is measured by
comparing the overall program execution time of the MCD pro-
cessor with an identically configured, fully synchronous (i.e.,
single, global clock domain) processor. The fully synchronous
processor is clocked at 1.0GHz. Each domain of the MCD pro-
cessor is clocked by an independent 1.0GHz clock (i.e., inde-
pendent jitter for each domain clock, no phase relationship be-
tween any domain clocks).

7 Results
The average performance degradation of the Alpha 21264-

like MCD processor over all 30 benchmarks is less than 2%.
The individual results show (Figure 9) that there is variation
in the performance degradation caused by the MCD microar-
chitecture ranging from a maximum of 3.7% forswim to a
performanceimprovementof 0.7% forpower . Although this
performance improvement is quite modest, it is surprising since
we expect the MCD microarchitecture to impose a performance
penalty. To understand what is happening, we have to look
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Figure 9. Application performance degradation of MCD processor over fully synchronous processor.

closely at what happens to instructions within an MCD proces-
sor compared with a fully synchronous processor. Within the
MCD processor there is the potential for individual instructions
to take additional cycles to execute due to the inter-domain
communication penalties inherent in the MCD microarchitec-
ture. In most cases this is exactly what happens: individual
instructions take additional cycles to execute which results in
performance degradation for the entire application execution.
There are side effects to adding cycles to the execution of indi-
vidual instructions,i.e., the instruction commit rate and cache
access patterns are changed slightly. Although these changes
typically do not have a significant impact on the application ex-
ecution, there are cases where the impact is appreciable. This
is precisely the case forpower . By examining detailed per-
interval processor statistics, we could determine that the change
in instruction timing causes anincreasein the branch mis-
predict penalty of 2.2% but adecreasein the average memory
access time of approximately 1.2%. Since greater than one out
of every four instructions in the simulated instruction window is
a memory reference, and less than one in eight is a branch, the
decreased memory access time translates into an overall perfor-
mance improvement.

Intuitively, it makes sense that there would be higher perfor-
mance degradation and greater variation for the in-order Stron-
gARM MCD processor than for the out-of-order Alpha 21264.
In fact, the maximum performance degradation for the SA–
1110-like MCD processor is 7.0% forpower and a 0.1% per-
formanceimprovementfor gsm. The larger range of perfor-
mance degradation occurs because the internal operations of
the StrongARM are inherently more serial than those of the Al-
pha 21264-like processor. At first glance it would seem that
the performance degradation of the StrongARM-like processor

Table 4. StrongARM SA–1110 performance degradation elim-

inated by out-of-order superscalar architectural features.
StrongARM SA–1100

Out-Of-Order Issue 16%
Out-Of-Order Issue and 4× Decode 53%
Out-Of-Order Issue and 2× ALUs 62%

should be significantly higher than that of the Alpha 21264-
like processor given the vastly different architectures. The per-
cent change in performance is somewhat misleading in this re-
gard. The baseline StrongARM processor has a Cycles Per In-
struction (CPI) of approximately 3.5, whereas the Alpha 21264
baseline CPI is approximately 1.0. Therefore, although the per-
formance degradation percent values are not significantly dif-
ferent, the actual change in CPI is larger for the in-order proces-
sor. When comparing the changes in CPI directly, the increase
for the StrongARM processor is nearly5× that of the Alpha
processor configuration. As such, a significant portion of the
MCD performance degradation can be eliminated by the addi-
tion of out-of-order superscalar execution features as demon-
strated in Table 4, using the in-order StrongARM-like proces-
sor as a starting point; wherePerformance Degradation Elimi-
natedis the percentage of the baseline performance degradation
that was eliminated as a result of adding out-of-order super-
scalar execution features to the in-order processor architecture.

Inter-domain synchronization penalties naturally occur over
the most highly utilized communication channels. However,
the synchronization penalties do not necessarily result in per-
formance degradation. This is true because the most highly
utilized channels (shown in Figure 10 for the Alpha 21264-like
and StrongARM-like families of MCD processors) are the most
dominant channels,i.e., the integer instruction commit (#12)
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Figure 10. MCD Inter-domain synchronization overhead (syn-

chronization channels are as shown in Figure 1).

and load/store instruction commit (#14), and the inter-domain
synchronization penalties in this case are largely hidden by the
Re-order Buffer (ROB). This means that an MCD processor is
likely to put greater pressure on the ROB resources and could
potentially benefit from a larger ROB. Close examination of
Figure 1 would show that channel pairs #9 & #12 and #11 &
#14 should incur the same fraction of synchronization penalties
since these pairs represent instruction processing through the
integer and load/store domains, respectively. The reason for the
somewhat counter-intuitive results of Figure 10 is that channels
#9 and #11 (instruction dispatch) are significantly wider than
channels #12 and #14 (instruction completion). Whereas in-
struction dispatch width is governed by the type of instructions
present in the dynamic instruction stream, instruction comple-
tion is governed by the actual instruction level parallelism avail-
able, which is likely to be considerably less. This means that for
the same number of instructions passing through channel pairs
#9 & #12 and #11 & #14, the instruction completion paths will
contain information more frequently, but with each transaction
being smaller than for the instruction dispatch paths. This re-
sults in more possible synchronization penalties being accessed
over the instruction completion paths.

Table 5 shows this characteristic for two Alpha 21264-
like processor and two Strong ARM SA–1110-like proces-
sor configurations. In these figures,Synchronization Timeis
the percentage of the total execution time that events within

Table 5. Architecture effects on MCD inter-domain synchro-

nization penalty.
Alpha 21264

Baseline In-Order Issue
and Commit Width=1

Performance Degradation 1.3% 2.4%
Synchronization Time 24.2% 21.5%
Hidden Synchronization Cost 94.3% 87.3%

StrongARM SA–1100
Baseline Out-Of-Order Issue

and 2× ALUs
Performance Degradation 1.9% 0.7%
Synchronization Time 12.2% 10.9%
Hidden Synchronization Cost 83.4% 94.1%

Table 6. MCD processor Cycles Per Instruction (CPI).
Alpha 21264

Baseline 1.04
In-Order Issue 2.17
In-Order Issue and 1

10th Extra Registers 2.20
In-Order Issue and 1

11th Commit Width 2.18

StrongARM SA–1100
Baseline 3.51
Out-Of-Order Issue 3.23
Out-Of-Order Issue and 4× Decode 3.23
Out-Of-Order Issue and 2× ALUs 3.21

the processor were delayed due to inter-domain synchroniza-
tion overhead. Hidden Synchronization Costis the percent-
age of synchronization time which did not result in actual per-
formance degradation. For the aggressive out-of-order super-
scalar 21264-like processor, the figure shows that as the out-
of-order and superscalar features of the processor are elimi-
nated, more of the inter-domain synchronization penalty results
in performance degradation. The opposite effect is seen when
an in-order processor such as the StrongARM SA–1110 is aug-
mented with out-of-order superscalar architectural features. Ta-
ble 6 shows that although various out-of-order superscalar fea-
tures were removed from the 21264-like processor, and vari-
ous out-of-order superscalar features were added to the SA–
1110-like processor, the effects of these changes on CPI were
consistent. This underscores the idea that the in-order versus
out-of-order instruction issue and serial versus superscalar exe-
cution are the most dominant factors in determining the effects
of inter-domain synchronization overhead.

8 Related Work

There has been significant research into the characteristics,
reliability, and performance of low-level synchronization cir-
cuits. In [23], two asynchronous data communication mecha-
nisms are presented, which utilize self-timed circuits to achieve
reliable and low-latency data transfers between independently
clocked circuits. In [16], a pausible clock is used to ensure re-
liable communication and an arbiter circuit is used to reduce
the frequency of occurrence of delaying the clock. Other ap-
proaches to synchronization have been proposed, such as [22],
which detect when the possibility of a metastability problem
may occur (i.e., data transitioning too close to a clock edge)
and delay either the data or the clock until there is no possibil-
ity of metastability.



In addition to the evaluation of low-level synchronization
circuits, there has been research into high-level evaluation of
GALS systems. In [15], the potential power savings of a GALS
system is quantified. In addition, an algorithmic technique
for partitioning a synchronous system into a GALS system is
presented with the goal of achieving low power. This work
shows promising power savings results. Unfortunately, corre-
sponding performance evaluation was not presented. In [10], a
GALS processor with 5 independent domains is evaluated with
respect to power consumption and performance degradation.
This work is most closely related to our analysis. A conclusion
of this work is that with their GALS processor a performance
degradation of 10% on average was achieved. The authors also
conclude that studies of latency hiding techniques are needed
to more fully understand the architectural reasons for perfor-
mance degradation. We concur with this conclusion and have
performed this study on our GALS processor. We attribute the
disparity in performance degradation between these two studies
to the domain partitioning differences (i.e., five versus four do-
mains). We have determined that a clock domain partitioning
that separates the fetch circuits (instruction cache and branch
predictor) from the dispatch circuits can significantly degraded
overall performance.

9 Conclusions
We have shown that the out-of-order superscalar execution

features of modern, aggressive processors are the same features
that minimize the impact of the MCD synchronization over-
head on processor performance. With an aggressive, out-of-
order superscalar processor such as the Alpha 21264, as much
as 94% of the inter-domain synchronization penalties are ef-
fectively hidden and do not result in performance degradation.
When out-of-order superscalar execution features are added to
a simple in-order serial processor like the StrongARM SA–
1110, as much as 62% of the MCD performance degradation
can be eliminated. Our prior work studied the potential energy
saving advantage of our GALS MCD processor. In that work
we demonstrated approximately 20% reduction in energy con-
sumption. These results combine to demonstrate the overall
benefit of our GALS MCD processor design.

The resulting modest performance impact due to synchro-
nization can potentially be overcome by faster per-domain
clocks permitted by the removal of a global clock skew require-
ment, and the ability to independently tune each domain clock.
These are areas proposed for future work.
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