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Abstract

We analyze an Alpha 21264-like Globally—Asynchronous,
Locally—Synchronous (GALS) processor organized as a Mul-
tiple Clock Domain (MCD) microarchitecture and identify the
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performance degradation measured. We show that the out-oft
order superscalar execution features of a processor, which al-
low traditional instruction execution latency to be hidden, are
the same features that reduce the performance degradation im
pact of the synchronization costs of an MCD processor. In the
case of our Alpha 21264-like processor, up to 94% of the MCD
synchronization delays are hidden and do not impact overall-
performance. In addition, we show that by adding out-of-order
superscalar execution capabilities to a simpler microarchitec-
ture, such as an Intel StrongARM-like processor, as much as
62% of the performance degradation caused by synchroniza-
tion delays can be eliminated.
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Figure 1. MCD block diagram, showing inter-domain commu-
nication.
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1 Introduction synchronization points within MCD and characterize the rel-

Globally Asynchronous, Locally Synchronous (GALS) de- ative synchronization costs of each. We further demonstrate
signs are an intermediate approach between fully asynchronousow the latency tolerating features of a dynamic superscalar
and fully synchronous clocking styles. A GALS design has the processor can hide a significant fraction of the synchronization
advantage in that it eliminates the timing and cost overhead ofdelay, leading to a very modest performance overhead. Com-
global clock distribution while maintaining a synchronous de- bined with our previous results [14, 19], which show the en-
sign style within each clock domain. One such GALS processorergy saving advantages of our GALS MCD design, these results
approach, which we call MCD (Multiple Clock Domain), pro- demonstrate the potential viability of our MCD processor.
vides the capability of independently configuring each domain
to execute at frequency/voltage settings at or below the maxi-2
mum values [20]. This allows domains that are not executing
operations critical to performance to be configured at a lower Our MCD architecture [20] uses four clock domains, high-
frequency, and consequently, an MCD processor has the advarighted in Figure 1, comprising the front end; integer processing
tage that energy can be saved [14, 19]. However, an MCD pro-core; floating-point processing core; and load/store unit. The
cessor has the disadvantage that inter-domain communicatiomain memory can also be considered a separate clock domain
may incur a synchronization penalty resulting in performancesince it is independently clocked but it is not controllable by
degradation. the processor. As a result of partitioning the processor in this

In this paper, we analyze the MCD microarchitecture and way, there were no explicit changes to the pipeline organiza-
describe how the processor architecture influences the perfortion of the machine. This limits the scope of changes required
mance degradation due to synchronization. We describe théy the MCD microarchitecture and isolates those changes to
the interfaces. The processing cores within the domains remain
unchanged as fully synchronous units.

In choosing the boundaries between domains, we attempted
to identify points where i) there already existed a queue struc-

MCD Microarchitecture
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Table 1. MCD-specific processor configuration parameters. domains frequencies are 1.0GHz but all are independent. These

Clock giﬁgier Fetch,g’;';:tfﬁ, nteger, PLLs produce jitter. Moreover, since the external clock is de-
Floating-Point and Load/Store rived from a lower frequency crystal using an external PLL, the
Domain Voltage 0.65v —1.20V external clock will also have jitter, and these jitters are additive,
ponage (;?:;‘Esnijte S5O ™ 0ty Le., Jitterroa = JittercrysatJitter BT+ Jitter ByEe!.
Frequency Change Rate 49, 11sec The Jittercrystal €aN be expected to be extremely small and
Domain Clock Jitter 110ps variance, due entirely to thermal changes; we assume a value of zero.
- normally distributed about zerg The JitterEiernal is governed by the quality and design of
Synchronization Window| 30% of 1.0GHz clock (300ps) the PLL chip used. A survey of available ICs reveals that most

devices are specified as 100ps jitter; we use this number in

ture that served to decouple different pipeline functions, or i) our study. TheJitterl¢ma! is also governed by the qual-

there was relatively little inter-function communication. The jty and design of the PLL. We assume a circuit of the same
baseline microarchitecture upon which our MCD processor iscaliber as the external PLL, which implies a worst case jitter of
built is a four-way dynamic superscalar processor with spec-10ps (comparable error on atGhorter cycle). Since clock
ulative execution similar in organization to the Compaq Al- jitter varies over time with a long-term average of zero, the
pha 21264 [11, 12, 13]. | Jitterrora | < 110ps € 11% of a 1.0GHz clock period).

The MCD microarchitecture is characterized by a number  Starting with the clock design of the Alpha 21264 [1], we
of parameters, which define the unique features of the architecgerive an MCD clock design by dividing the clock grid into re-
ture. The values chosen represent present and near-term staigons corresponding to the MCD domain partitions. Each do-
of-the-art circuit capabilities. These MCD-specific parametersmain requires a separate PLL and clock grid driver circuit, all
are summarized in Table 1 and described in detail in the follow- of which are fed by the 1.0GHz clock source. Although each of

ing sections. these domain PLLs derives its timing from a common source,
) _ we do not assume any phase relationship between the PLL out-
3 Domain Clocking Style puts. We do this because we assume that the skew requirements

for the 1.0GHz clock have been relaxed and we cannot guaran-
quency scaling: aXScalemodel and aransmetanodel, both tee that the clocks are in phase when they arrive at the domain

of which are based on published information from their respec—PLLS'

tive companies [8, 9]. For both of these models, we assume that ) L.

the frequency change can be initiated immediately when tran4 Domain Interface Circuits

sitioning to a lower frequency and voltage, while the desired Fundamental to the operation of an MCD processor is the

voltage must be reached first before increasing frequency. Fointer-domain communication. There are two types of commu-

the Transmeta model, we assume a total of 32 separate voltagsication that must be modeled: FIFO queue structures and is-

steps, at 28.6mV intervals, with a voltage adjustment time ofsue queue structures. FIFO queues have the advantage that the

20us per step. Frequency changes require the PLL to re-lockinter-domain synchronization penalty can be hidden whenever

Until it does, the domain remains idle. The PLL locking circuit the FIFO is neither full nor empty. The mechanism by which

is assumed to require a lock time that is normally distributed this is achieved and the precise definitiongatl andEmpty

with a mean time of 1ps and a range of 10-28. For the XS-  are described in Section 4.1 and are similar to mixed clock

cale model, we assume that frequency changes occur as so®IFOs proposed by others [3, 5, 6, 7, 21]. The disadvantage

as the voltage changes and circuits operate through the changef FIFO queue structures is that they can only be used where
Although we investigated both models, it became clear earlystrict First-In-First-Out queue organization is applicable. Fur-

on in the investigation that the Transmeta model is not appro-thermore, if the communication is such that the FIFO is almost

priate for an MCD microarchitecture. The reason for this is always empty (or full), the bulk of the synchronization penalty

that the Transmeta model requires the PLL to re-lock after eactwill not be hidden. The issue queue structure is very similar to

frequency change, stopping the domain during that time. Withthe FIFO queue except that the inter-domain synchronization

the tight interaction between the domains, the suspension openalty must be assessed as each entry is put into the queue

one domain quickly cascades to other domains. The end rerather than only if the FIFO is empty or full. This is necessary

sult is that wheneveany domain frequency is changed in the since with an issue queue structure, the entries are consumed

Transmeta modehll domains are stalled for nearly all of the in an undefined order. Therefore, it is important to accurately

time required to re-lock the PLL. As one can imagine, this hasmodel precisely when an entry becomes “visible” to the con-

a profound impact on overall performance. For these reasonsumer.

the Transmeta model was not investigated further and is not in-

cluded in any of the analysis that follows. 4.1 FIFO Queue Structures

) What follows is an analysis of the timing and characteris-
3.1 Clock Design tics of queues used to buffer control and data signals between
In this work we assume a system clock of 1.0GHz, derived different clock domains. Fundamental to this analysis are the
from an external 100MHz source using on-chip PLLs where all following assumptions:

We investigated two models for dynamic voltage and fre-
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e Each interface is synchronous., information is always )
read and written on the rising edge of the respective clock. , o of s o
e Status signals which emanate from the interface are gen- y %
erated synchronously to the respective interface clock. , oF) F o
e Restrictions regarding the ratio of the maximum to min- T
imum frequency are necessary but no other assumptions o .
are made regarding the relative frequency or phase of the ' ‘ s ©
interface clocks. al
The general queue structure that we use for inter-domain o o § o
communication is shown in Figure 2 and is the same as in [5], <
with the following minor extensions. First, the queue design
is such that th&ull andEmpty flags always reflect what the ——
state of the queue will bafter subsequent read/write cycles. Fall Empry Generaion Logie 3210
In other words, th&ull andEmpty flags need to be generated
prior to the queue actually being full or empty, using condi-

tions that take into account the differences in the clock speed EMPTY
and potential skew of the two domains. The worst-case situ-
ation occurs when the producer is operating at the maximum
frequency and the consumer at the minimum. There are severd'iNs independently. There is no chance of improper enqueu-
possible approaches to handling this problem. In this papermg/dequeumg as long as the synchronization circuit is glitch-
we assume additional queue entries to absorb writes from thd'ee (see Section 4.3) and the access protocol described in the
producer in order to recognize the potential delay of actually beginning of this section is applied.
determining that the queue is full. In other words, thal Figure 4 shows a sample switch-level timing diagram of the
signal is generated using the condition that the queue length i$IFO queue of Figure 3. The critical points occur at the four
within % + 1 of the maximum queue size. Note that our labeled timingsl’, 15, T35, andTy. T; occurs as the first en-
results do’ not account for the potential performance advantagéry is written into the queue. In this casealid[o0] is gen-
of these additional entries. Second, the synchronization time okrated too closely to the falling edge of the read clock (cycle
the clock arbitration circuit]’s, represents the minimum time  Ry) for it to be synchronized during that cyclie(, 71 < T5s);
required between the source and destination clocks in order fotherefore Empty is generated one cycle later. The next criti-
the signal to be successfully latchadd seerat the destina-  cal timing occurs as the fourth entry is written and the queue
tion. Itis thisTs which defines the conditions under which data becomes full. In this casé&alid[3] is generated on the ris-
which has been written into a queue is prevented from beinging edge of the write clock (cyclél’,) and synchronization
read by the destination domain. Although the logical structureis complete before the corresponding falling edge of the write
of our queues is similar to [5], we assume the arbitration andclock (.e, 7> > Ts). Note that in this case, the synchroniza-
synchronization overhead described in [22] to defikei.e., tion will always be complete before the falling edge because
we assume & of 30% of the period of the highest frequency. both the originating event¥alid[3] generated on the rising
Even with completely independent clocks for each interface,edge of the write clock) and the synchronization evenfl{
the queue structure is able to operate at full speed for bothstatus signal seen on the source domain) are in fact the same
reading and writing under certain conditions. A logic-level domain. The same situation exists ffy with respect to the
schematic of the FIFO queue structure is shown in Figure 3destination domain. These conditions are guaranteed as long as
for a 4-entry queue. Note that writing to and reading from the the synchronization circuit requires less than half the period of
structure are independent operations with synchronization octhe fastest interface to perform the synchronization. The queue
curring in the generation of then11 andEmpty status signals  remains full until a read occurs (cycl,) andVvalid[0] be-
which are based on thealid bits associated with each queue comes false. The transition @alid[0] occurs well before the
entry. Although the combinatorial logic associated with the falling edge of the write clock (cycl&/’;), which ensures that
generation ofull andEmpty has been simplified in this fig- the synchronization is complete before that falling edge,
ure for demonstration purposes (the logic shown does not takd’s > Ts). The last critical timing occurs when the fourth entry
into account early status indication required for worst-case fre-is read and the queue becomes empty. Again, the transition of
quency differences), the synchronization circuits shown are aghe valid signal {a1id[3]) occurs well before the falling edge
required in all cases. That is, thi@lid bits for the queue en-  of the read clock (cycldk;); therefore, the synchronization is
tries must be synchronized bmththe read and write clock do- complete and no additional cycle of synchronization is required

Figure 3. FIFO queue structure details.
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Figure 4. Queue timing diagram.
(i.e, Ty > Tg). This sample timing diagram illustrates how the is the destination domain. Consider the case when the queue
synchronization parametefs, manifests itself as read and/or is initially empty. Data is written into the queue on the ris-
write cycle penalties on respective clock domain interfaces.  ing edge ofF} (edge 1). Data can be read out of the queue as
early as the second rising edge Bf (edge 3), if and only if

4.2 Issue Queue Structures T > Ts, i.e, Empty has become false on ttie interface be-

Many of the queues that we use as synchronization pointore the nextrising edge df; (edge 2). This two-cycle delay is
have a different interface than that described above. With annecessary for the reading interface to recognize that the queue
issue queue, each entry héslid andReady flags that the IS non-empty and enter a state where data can be read from the
scheduler uses to determine if an entry should be read (issuedflueue. Therefore, the delay would be seertbyand would be
By design, the scheduler will never issue more than the numbefwo clock cycles wherI” > T (one rising edge to recognize
of valid and ready entries in the queue. Note, however, that du€mpty and another rising edge to begin reading) and three cy-
to synchronization, there may be a delay before the schedulegles wherl” < T (the additional rising edge occurring during
sees newly written queue data. the interface metastable region). The valud'aé determined

The issue queue structure design follows directly from the by the relative frequency and phasesiaf and 5> and may
FIFO design but must be modified in an important way. The change over time. The cost of synchronization is controlled by
ability to hide the synchronization penalty when the FIFO is not the relationship betweeh andTs.
full or not empty does not exist for issue queue type structures. An optimal design would minimizd’s in order to allow
The reason for this is that the information put into the queue iswide frequency and/or phase variations betweeand#; and
needed on the output of the queue as soon as possible (becau§irease the probability of a two-cycle delay. Alternatively,
the order in which entries are put into the queue does not dictat€ontrolling the relative frequencies and phases-pfand F

the order in which they may be removed). would allow a two-cycle delay to be guaranteed. Note that this
analysis assumeBs < F% andTg < F% The analogous sit-
4.3 Synchronization With Queues uation exists when the queueHal1l, replacingEmpty with

The delay associated with crossing a clock domain interfacef #11, €dge 1 with edge 2, and edge 3 with edge 4, in the above
is a function of the following: discussion. _ _
Figure 6 shows a transistor-level schematic of a synchro-

e The synchronization time of the clock arbitration circuit, nization circuit adapted from [17]. The most salient character-
Ts, which represents the minimum time required between . zatl iredl P : :

the source and destination clocks in order for the signal'tsug of fiTlsrlc;ICU|t1(_i?dioE[kr1]ers Ilkeg [18])is E[k;]atilrt]tlsr%u?r?ntefd
to be successfully latched at the destination. We assum%fndeRgariz intze.ral vzltsa eicasr?otgiﬁ;f?he ?/oltae easjugﬁz ?or
the arbitration and synchronization circuits developed by 1 9 ges — 9

Sjogren and Myers [22] that detect whether the source ancfhiS stage is nakyq but rgther the qutput nodes of the previous
destination clock edges are sufficiently far apart (at mini- stage. Because these signals are integrals they are guaranteed to

mum,T’s) such that a source-generated signal can be sucPe monotonically changing signals. Theref®@andR; com-
Y L rise the synchronized input in dual-rail logic. These signals
cessfully clocked at the destination. P y ' P 4 9 g

¢ The ratio of the frequencies of the interface clocks. F1 i) | i) |
¢ The relative phases of the interface clocks. P % | % |
This delay can best be understood by examining a timing —

diagram of the two clocks (Figure 5). Without loss of general- U

ity, the following discussion assumég is the source and> Figure 5. Synchronization timing.
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Figure 6. Synchronization circuit.

are then used to drive the last stage of the synchronizer, which is g :
a simple RS latch, to produce a single-rail logic output. The cir- 2
cuit synchronizes theataIn signal on the falling edge of the ] o ) ) mw TrormmmmmmnEemn
Clock, producing a guaranteed glitch-free and synchronized Figure 7. Synchronization timing  SPICE results.
signal onbataOut (recall that theralid[n] signals in Figure 3 S
are synchronized on the falling edges of the clocks). Figure 7 .
shows the results &PICE simulation of the synchronization
circuit of Figure 6 with a number of falling clock edges coin- :
ciding with transitions of the input data signal. Figure 8 shows R R e R
one such transition at 4u8ec in detail where it can be seen Data in
that the output signal is glitch-free and monotonic. The circuit : \
was simulated using level-8 0.280 TSMC SCNO025 transistor L
models. This synchronizer circuit provides the necessary com-
ponent to the synchronizing FIFO of Figure 3. With the data O T 4h 42 sx 4 o & da se sa %1 % % da v %
stored in the FIFO regardless of the synchronizer outcome, and
the Valid signals in the FIFO properly synchronizedhoth :
domain clocks, the effect is that data is possibly delayed by one , : AN
clock in the receiving domain (since the receiver cannot ‘see’ " : N
the data until th&alid signal has been synchronized). °
Since the queue structure proposed does not represent a sig- 7w
nificant departure from queues already in use in modern micro- Fidure 8. Synchronization timing - SPICE results (4-7nsec).
processors, we do not expect that the size of these queues woul#ioning and are a direct consequence of that partitioning. For
be appreciab'y impacted by the Changes required for Synchroeach Communication Channel, we diSCUSS the da.ta being trans-
nization. For the circuit shown in Figure 6, 36 transistors are ferred between domains and classify the synchronization mech-
required per bit of synchronization. Although this is not incon- anism required to ensure reliable communication. In addition,
sequential it is also not a significant increase in the overall size€ach channel is identified as using an existing queue structure
requirements of the queue. Notice that the number of synchro©f as requiring the addition of the queue entirely due to inter-
nization circuits required is a function of the depth of the queue domain synchronization. Each communication channel is iden-
and not the width (Figure 3, onia1id bit per data word). Oth- tified by number in Figure 1.
ers [5, 6] have demonstrated that the addition of clock synchro- Communication Channel 1
nization/arbitration circuits to the FIFO structure results in a |nformation: L1 Cache Line

negligible impact on the total structure area. Transfer: L1 Instruction Cache= L2 Unified Cache
Domains: Fetch/Dispatchk= Load/Store
5 MCD Synchronization Points Reason:L1 Instruction Cache Miss
Synchronization Type: FIFO Queue Structure
The manner in which the processor is partitioned as part ofDiscussion: New queue structure. When a level-1 instruc-
transforming it into an MCD processor is of critical importance tion cache miss occurs, a cache line must be brought in from
since the performance degradation that will be imposed as a rethe level-2 cache. The fetch/dispatch domain only initiates an
sult of the inter-domain communication penalties directly fol- L2 cache request when there is an L1 I-cache miss, and since
lows from the processor partitions. the front endmuststall until that request is satisfied, we know
The following list identifies all modeled inter-domain com- that there can only be one such outstanding request at a time.
munication channels. These communication channels were deFherefore, any inter-domain penalty that is to be asseszed
termined by analyzing the microarchitecture of the MCD par- notbe hidden behind a partially full FIFO. Hence, the synchro-
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nization penalty must be determined based solely on the relativall speculative instructions must be squashed from the machine
frequency and phase of the domain clocks for each communipipeline. This can happen as soon as the branch outcome is
cation transaction. Although communication channels such aknown and does not need to occur after the branch predictor is
this one, which can only contain one element at a time, wouldupdated. The communication in this case occurs from the in-
be implemented as a single synchronization register, we prefeteger domain (where the branch outcome is determined) to all
to maintain the generalized FIFO model since the performanceother domains. To handle this case, we chose to squash specu-
characteristics of both are identical. lative instructions on the rising edge of each domain clafoér

the synchronization has occurred in the fetch/dispatch domain.

Communication Channel 2 Although this represents a conservative approach, it simplifies

Information: L2 Cache Line the design considerably since it eliminates the synchroniza-
Transfer: L2 Unified Cache= Main Memory tion FIFO between the integer domain and the floating-point
Domains: Load/Store= Memory and load/store domains. The effect of implementing specula-
Reason:L2 Cache Miss (Data Referenoe Instruction) tive instruction squashing in this manner is that resources used
Synchronization Type: FIFO Queue Structure by those soon-to-be-squashed instructions are used longer than

Discussion: Existing queue structure. This communication they would be otherwise. Thimayhave a negative impact on

path, although logically bidirectional, is composed of two in- performance if instructions cannot be issued because processor
dependent unidirectional channels. Since they are similar andesources are in use by one of these instructions.

related, they will be addressed together. Notice also that the

reason for this communication can be either an L2 cache miss Communication Channel 4

due to a data referencer an L2 cache miss due to an instruc- |nformation: Integer Load Result

tion fetch. The characteristics of this interface are the same agyransfer: Integer Register File= L1 Data Cache
the previous description with the exception that multiple out- pomains: Integer< Load/Store

standing requests to the L2 unified cache are supported. Thateason:Load Instruction (Integer only)

fact alone makes possiblethat some of the inter-domain syn- Synchronization Type: Issue Queue Structure

chronization penalties can be hidden. As it turns out, there areDiscussion:Existing queue structure. The load value may orig-
few times when there are enough outstanding requests such th?r]iate in the Load/Store Queue (LSQ), the L1 Data Cache, the
the penalty would actually be hidden. For our MCD processor, L2 Cache or Main Memory: any syn,chronization that is ,re-
therg would have to be more than 5 outstqnding.requests (Seauired to get the value to th:'-z LSQ is assumed to have already
Section 4'1). o ensure that the pgnalty did not Impact mem-. o, assessed. This communication channel handles only the
ory access time. Fortunately, the mter-domam penalty is 0.n|ysynchronization between the LSQ and the integer register file.
one cycle. Given that the memory access time for the fIrStSince loads can complete out-of-order (a load that is found in

L2 cache line is 80 cycles (subsequent, contiguous Ilne_s h_av?he LSQ could have issued after a load that is waiting on a cache

an access tim? of 2 (_:ycles), the inter-domair_1 synghromzanonmiss% the synchronization mechanism in this case must be of
penalty alone is not likely to have an appreciable impact (thethe issue queue structure type since the load result is useful to

penalty represents an increase I memory access time of 1'06fhe integer domain as soon as possible after becoming avail-
1.25%, based on 8-word cache line fill transactions).

able.
Communication Channel 3

Information: Branch Prediction Outcome
Transfer: Branch Predictor= Integer ALU

Communication Channel 5
Information: Floating-Point Load Result

Domains: Fetch/Dispatch= Integer Transfer: Floating-Point Register File= L1 Data Cache
Reason:Branch Instruction Domains: Floating-Point< Load/Store

Discussion:New queue structure. When a branch instruction is Synchronization Type: Issue Queue Structure
committed, the machine state must be updated with the branciPiscussion: Existing queue structure. Floating-point load in-
outcome i(e., Taken/Taken). In addition, the fetch unit needs structions are identical to integer loads with one exception: the
to know if the prediction was correct or not since it must change destination of the load is the floating-point register file in the
fetch paths if the prediction was not correct. This communi- floating-point domain. All synchronization characteristics are
cation path is, by its very nature, sequential. That is, branchthe same as integer loads, and as such, the required interface is
outcomes need to be processed by the fetch/dispatch domain in issue queue type structure.
a strict first-in-first-out manner. This is also a communication
path that is not likely to benefit from the penalty hiding property
of the FIFO queue structure since doing so would require 5 orlnformation: Effective Address
more branch outcomes to be buffered waiting to be processedransfer: Load/Store Queue= Integer Result Bus
by the fetch/dispatch domain. Domains: Load/Store< Integer

There is another aspect of a branch mis-prediction that musReason:Load or Store Instruction
be properly handled. That is, when a branch is mis-predicted Synchronization Type: Issue Queue Structure

Communication Channel 6



Discussion: Existing queue structure. Each load and store in- to those instructions as soon as possible in a superscalar proces-
struction is broken into two operations: i) the load/store opera-sor. Since instructions issue out-of-order, scheduling decisions
tion, which accesses the L1 data cache, and ii) the addition opare based on the instructions present in the issue queue, regard-
eration, which computes the effective address for the memoryless of the order in which those instructions were inserted. It
reference. The load/store operation is issued to the load/stores clear that an issue queue structure is required and that the
domain, and the effective address calculation is issued to thesynchronization penalty associated with the dispatch of an in-
integer domain. The load/store operation is dependent on thatruction cannot be hidden, regardless of the number of entries
address calculation since the memory reference cannot be pein the queue. Note that as long as there are instructions in the
formed until the address is known. Since both integer opera-queue the scheduler is able to proceed, albeit without knowl-
tions in the integer issue queue (11Q) and load/store operationgdge of instructions which are not visible due to synchroniza-
in the load/store queue (LSQ) are free to proceed out-of-ordertion delays.

the effective address calculation gastentiallybe used by the Communication Channel 10

LSQ as soon as the calculation is complete, regardless of thgtormation: Floating-Point Instruction

program order in which the memory references were made-rransfer: Floating-Point Issue Queue- Floating-Point In-
These characteristics require that the effective address resulliyction

that s transferred from the integer domain to the load/store do-pomains: Floating-Point= Fetch/Dispatch

main be stored in an issue queue structure. Reason:Floating-Point Instruction Issue
Communication Channel 7 Synchronization Type: Issue Queue Structure
Information: Integer Value Discussion: Existing queue structure. Same as previous, but
Transfer: Integer Register File= Floating-Point Result Bus ~ for floating-point instructions.
Domains: Integer< Floating-Point Communication Channel 11
Reason:FloatCvt Instruction (FP to Integer Conversion) Information: Load/Store Operation
Synchronization Type: FIFO Queue Structure Transfer: Load/Store Queue= Load/Store Operation

Discussion: New queue structure. Converting a floating-point Domains: Load/Store< Fetch/Dispatch

value into an integer value is performed by the floating-point Reason:Load/Store Instruction Issue

hardware, but the result is written to the integer register file. In Synchronization Type: Issue Queue Structure

order to ensure that the converted value is properly received irDiscussion: Existing queue structure. Same as previous, but
the integer domain, a simple first-in-first-out structure is nec- for load/store instructions.

essary since there is no requirement that the operations occur Communication Channel 12

out of order. That being the case, it is also unlikely that the |yformation: Integer Instruction Commit

synchronization penalty can be hidden by the occupancy of therransfer: Reorder Buffer= Integer Instruction Completion
FIFO unless a stream of conversion operations is performedpgomains: Fetch/Dispatche= Integer

Although this situation is rare, it may occur for vector floating- Reason:Integer Instruction Completion

point applications. In those cases, the existence of the FIFO issynchronization Type: Issue Queue Structure

likely to reduce the effective synchronization penalty seen by piscussion: Existing queue structure. When instructions com-

the application. plete execution, the machine state must be updated. Although
Communication Channel 8 the update of machine state occurs in program order, the com-
Information: Floating-Point Value pletion of instructions is out-of-order. The Reorder Buffer
Transfer: Floating-Point Register File= Integer Result Bus ~ (ROB) is the structure that commits instructions in program
Domains: Floating-Point= Integer order. The ROB does this by examining all instructions that
Reason:FloatCvt  Instruction (Integer to FP Conversion) have completed execution. When an instruction has completed
Synchronization Type: FIFO Queue Structure execution and it is the next instruction in program order, it is

Discussion: New queue structure. Same as previous, exceptcOmmitted. If only one instruction could be committed in a
that the conversion is now from integer to floating-point. The 9iven cycle, then instruction completion information could be
same application characteristics,, vector floating-point con-  transferred from the various domains in-ordieg.(in order of
versions, would be required in order to see the benefit of thecOmpletion,notin program order). Committing only one in-

FIFO queue structure. struction per cycle would significantly degrade the performance
o of a superscalar processor that can issue and execute more than
Communication Channel 9 one instruction in parallel. Therefore, the ROB must be capable
Information: Integer Instruction of committing more than one instruction per cycle. The ability
Transfer: Integer Issue Queue- Integer Instruction to commit more than one instruction per cycle requires that the
Domains: Integer< Fetch/Dispatch synchronization mechanism used for the completion informa-
Reason:Integer Instruction Issue tion be of the issue queue structure type since the ROB can use
Synchronization Type: Issue Queue Structure the completion information in any order. Note that the syn-

Discussion: Existing queue structure. When instructions are chronization delay may result in increased pressiuee kigher
dispatched into an issue queue, the scheduler must have acceggerage occupancy) on the ROB structure.
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Information: Floating-Point Instruction Commit

Transfer: Reorder Buffer= FP Instruction Completion
Domains: Fetch/Dispatch= Floating-Point
Reason:Floating-Point Instruction Completion
Synchronization Type: Issue Queue Structure

Discussion: Existing queue structure. Same as previous, but
for floating-point instructions.

Communication Channel 14

Information: Load/Store Operation Commit

Transfer: Reorder Buffer= Ld/St Operation Completion
Domains: Fetch/Dispatchk= Load/Store

Reason:Load/Store Instruction Completion

Synchronization Type: Issue Queue Structure

Discussion: Existing queue structure. Same as previous, but
for load/store instructions.

Communication Channel 15

Information: L1 Cache Line

Transfer: L1 Instruction Cache= Main Memory

Domains: Fetch/Dispatchk= Memory

Reason:L1 Instruction Cache Miss

Synchronization Type: FIFO Queue Structure

Discussion: New queue structure. If the processor is config-

uredwithout a level-2 cache, then L1 I-cache misses must be
filled from main memory. This interface is a simple FIFO since

the front end must wait for L1 I-cache misses to complete, so
there is no benefit to allowing out-of-order transactions. Note
that this channel only exists in processor configuratieiisout

an L2-cache.

6 Simulation Methodology

Our simulation environment is based on the SimpleScalar
toolset [4] with the Wattch [2] power estimation extension and
the MCD processor extensions [20]. The MCD extensions in-
clude modifications to more closely model the microarchitec-

Table 2. Architectural parameters for simulated Alpha 21264-
like processor.

Configuration Parameter

Value

Branch predictor:
Level 1
Level 2
Bimodal predictor size
Combining predictor size|
BTB
Branch Mispredict Penalty
Decode Width
Issue Width
Retire Width
L1 Data Cache
L1 Instruction Cache
L2 Unified Cache
L1 cache latency
L2 cache latency
Integer ALUs
Floating-Point ALUs

1024 entries, history 10
1024 entries
1024
4096
4096 sets, 2-way
7 cycles
4 instructions
6 instructions
11 instructions

64KB, 2-way set associative
64KB, 2-way set associative

1MB, direct mapped
2 cycles
12 cycles
4 + 1 mult/div unit
2 + 1 mult/div/sgrt unit

Integer Issue Queue 20 entries
Floating-Point Issue Queue 15 entries
Load/Store Queue 64 entries

Physical Register File 72 integer, 72 floating-poin
Reorder Buffer 80 entries W

Table 3. Architectural parameters for simulated Stron-
gARM SA-1110-like processor.

Configuration Parameter Value

Instruction Issue In-order

Branch predictor None (assume not-taken)
Branch Mispredict Penalty 4 cycles

Decode Width

Issue Width

Retire Width

L1 Data Cache

L1 Instruction Cache
L2 Cache

L1 cache latency
Integer ALUs
Floating-Point ALUs
Integer Issue Queue
Floating-Point Issue Queug
Load/Store Queue
Physical Register File

1 instruction
2 instructions
2 instructions
8KB, 32-way set associative
16KB, 32-way set associativ
None
1 cycle
1 + 1 mult/div unit
1 + 1 mult/div/sqrt unit
16 entries
16 entries
12 entries (4 load / 8 store)
32 integer, 32 floating-point

D

ture of the Alpha 21264 microprocessor [12]. A summary of  gynchronization performance degradation is measured by
our S|mu]at|on parameters for t'he Alpha ?1264—I|ke Processorcomnaring the overall program execution time of the MCD pro-
appears in Table 2. For comparison to an in-order processor, Weegsor with an identically configured, fully synchronous.
also simulate a StrongARM SA-1110-like processor. A sUm-gingie global clock domain) processor. The fully synchronous
mary of the simulation parameters for that processor is given '”processor is clocked at 1.0GHz. Each domain of the MCD pro-
Table 3. cessor is clocked by an independent 1.0GHz claek (nde-

We selected a broad mix of compute bound, memory boundsendent jitter for each domain clock, no phase relationship be-
and multimedia applications from the MediaBench, Olden, andyeen any domain clocks).

Spec2000 benchmark suites (shown in Figure 9).

Our simulator tracks the relationships among the domain/ Results
clocks on a cycle-by-cycle basis. Initially, all clock starting The average performance degradation of the Alpha 21264-
times are randomized. To determine the time of the next clocklike MCD processor over all 30 benchmarks is less than 2%.
pulse in a domain, the domain cycle time is added to the start-The individual results show (Figure 9) that there is variation
ing time, and the jitter for that cycle (which may be positive in the performance degradation caused by the MCD microar-
or negative) is added to this sum. By performing this calcula- chitecture ranging from a maximum of 3.7% fewim to a
tion for all domains on a cycle-by-cycle basis, the relationshipsperformancémprovemenbdf 0.7% for power . Although this
among all clock edges are tracked. In this way, we can accuperformance improvement is quite modest, it is surprising since
rately account for synchronization costs due to violations of thewe expect the MCD microarchitecture to impose a performance
clock edge relationship. penalty. To understand what is happening, we have to look
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Figure 9. Application performance degradation of MCD processor over fully synchronous processor.

closely at what happens to instructions within an MCD proces-  Table 4. StrongARM SA-1110 performance degradation elim-
sor compared with a fully synchronous processor. Within the inated by out-of-order superscalar architectural features.

MCD processor there is the potential for individual instructions StrongARM SA-1100 .
to take additional cycles to execute due to the inter-domain Out-Of-Order Issue 16%

. L . . . Out-Of-Order Issue and>4 Decode | 53%
communication penalties inherent in the MCD microarchitec- Out-Of-Order Issue and2ALUs | 62%

ture. In most cases this is exactly what happens: individual

instructions take additi.onal cycles to'execut(.a which result§ iNshould be significantly higher than that of the Alpha 21264-
performance degradation for the entire application execution o processor given the vastly different architectures. The per-

There are side effects to adding cycles to the execution of indi'cent change in performance is somewhat misleading in this re-
vidual instructionsj.e., the instruction commit rate and cache gard. The baseline StrongARM processor has a Cycles Per In-
access patterns are Ch‘?‘”g,‘?d S”th'y- Although thgse _Changes?ruction (CPI) of approximately 3.5, whereas the Alpha 21264

typlgally do not have a significant 'mPaCt on t[he appl|gat|on X" haseline CPI is approximately 1.0. Therefore, although the per-
.ecutlon., tTeri are casfes where the |mpa'ct. IS apprgflable. Thlﬁ)rmance degradation percent values are not significantly dif-

is precisely the case fqrower . By examining detailed per- o ant the actual change in CP! is larger for the in-order proces-
interval processor statistics, we could determine that the changgor When comparing the changes in CPI directly, the increase

in in;truction timing causes aimcree_lsein the branch mis- for the StrongARM processor is nearly that of the Alpha
predict penalty of 2.2% butdecreasen the average memory o assor configuration. As such, a significant portion of the

access time _Of apprgximgtely 1',2%' Sinc'e great?r thqn one ouycp performance degradation can be eliminated by the addi-
of every four instructions in the S|mulated_|nst_ruct!on window is tion of out-of-order superscalar execution features as demon-
amemory reference, and less than one in eight is a branch, thgy 510 in Table 4, using the in-order StrongARM-like proces-
decrea;ed memory access time translates into an overall perfog—Or as a starting point; wheRerformance Degradation Elimi-
mance improvement. natedis the percentage of the baseline performance degradation
Intuitively, it makes sense that there would be higher perfor-that was eliminated as a result of adding out-of-order super-
mance degradation and greater variation for the in-order Stronscalar execution features to the in-order processor architecture.
gARM MCD processor than for the out-of-order Alpha 21264.
In fact, the maximum performance degradation for the SA— Inter-domain synchronization penalties naturally occur over
1110-like MCD processor is 7.0% fpower and a 0.1% per- the most highly utilized communication channels. However,
formanceimprovementfor gsm. The larger range of perfor- the synchronization penalties do not necessarily result in per-
mance degradation occurs because the internal operations dérmance degradation. This is true because the most highly
the StrongARM are inherently more serial than those of the Al- utilized channels (shown in Figure 10 for the Alpha 21264-like
pha 21264-like processor. At first glance it would seem thatand StrongARM-like families of MCD processors) are the most
the performance degradation of the StrongARM-like processordominant channels,e., the integer instruction commit (#12)




50% Table 5. Architecture effects on MCD inter-domain synchro-

% 459 nization penalty.
5 a0 Alpha 21264
5 35% M Baseline In-Order Issue
NED and Commit Width=1
S 2% | Performance Degradation 1.3% 2.4%
S 20% Synchronization Time 24.2% 21.5%
@ 15% Hidden Synchronization Cost 94.3% 87.3%
g 10% StrongARM SA—1100
- Baseline | Out-Of-Order Issue
& oylmn M fh [N M FHW and 2x ALUs
g tzses e T nEE s Performance Degradation 1.9% 0.7%
= Easeine L] in-Order lssue, Synchronization Time 12.2% 10.9%

widih Hidden Synchronization Cost 83.4% 94.1%

(a) Alpha 21264.
Table 6. MCD processor Cycles Per Instruction (CPI).
> Alpha 21264
‘S 459 Baseline 1.04
& a0% e In-Order Issue 2.17
% a5 - In-Order Issue anq@ Extra Regi;ters 2.20
% 30% | In-Order Issue ang—; Commit Width | 2.18
£ 1 StrongARM SA-1100
& 2 1 Baseline 351
T 15 1 Out-Of-Order Issue 3.23
E 10% 1| Out-Of-Order Issue and>4 Decode 3.23
- w ] Out-Of-Order Issue and2 ALUs 3.21
'% o e B e e ol HT m
E 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 A . A
Somae Doworom the processor were delayed due to inter-domain synchroniza-

Issue, 2x ALUs

tion overhead. Hidden Synchronization Co$$ the percent-

(b) StrongARM SA-1110. age of synchronization time which did not result in actual per-
formance degradation. For the aggressive out-of-order super-
scalar 21264-like processor, the figure shows that as the out-
of-order and superscalar features of the processor are elimi-
nated, more of the inter-domain synchronization penalty results
and load/store instruction commit (#14), and the inter-domainin performance degradation. The opposite effect is seen when
synchronization penalties in this case are largely hidden by thean in-order processor such as the StrongARM SA-1110 is aug-
Re-order Buffer (ROB). This means that an MCD processor ismented with out-of-order superscalar architectural features. Ta-
likely to put greater pressure on the ROB resources and couldble 6 shows that although various out-of-order superscalar fea-
potentially benefit from a larger ROB. Close examination of tures were removed from the 21264-like processor, and vari-
Figure 1 would show that channel pairs #9 & #12 and #11 & ous out-of-order superscalar features were added to the SA—
#14 should incur the same fraction of synchronization penalties1 110-like processor, the effects of these changes on CPI were
since these pairs represent instruction processing through theonsistent. This underscores the idea that the in-order versus
integer and load/store domains, respectively. The reason for theut-of-order instruction issue and serial versus superscalar exe-
somewhat counter-intuitive results of Figure 10 is that channelscution are the most dominant factors in determining the effects
#9 and #11 (instruction dispatch) are significantly wider than of inter-domain synchronization overhead.

channels #12 and #14 (instruction completion). Whereas in-

struction dispatch width is governed by the type of instructions8 Related Work

present in the dynamic instruction stream, instruction comple-

tionis go_ver_ne_d by the actual i_nstruction level parallelism avail- reliability, and performance of low-level synchronization cir-
?hb;es';vr::z 'Srr:tsrlyotfqr?setfocr:%ggraglsé!ﬁssth;r:'s ?gﬁ;i;g?t?:cuits. In [23], two asynchronous data communication mecha-
40 & #12 arlljd 411 &;14 ltJheI instr%ctioln%om lljegtion aths vf/)illl Risms are presented, which utilize self-timed circuits to achieve
tain inf " ’f tv. but 'thp htp " reliable and low-latency data transfers between independently
contain information more frequently, but With €ach ransaction ¢, .o circuits. In [16], a pausible clock is used to ensure re-

being smaller than for the instruction dispatch paths. This " liable communication and an arbiter circuit is used to reduce

sultsin more po§S|bIe synch.ronlzat|0n penalties being accesseﬁﬁe frequency of occurrence of delaying the clock. Other ap-
over the instruction completion paths.

proaches to synchronization have been proposed, such as [22],

Table 5 shows this characteristic for two Alpha 21264- which detect when the possibility of a metastability problem
like processor and two Strong ARM SA-1110-like proces- may occur {.e., data transitioning too close to a clock edge)
sor configurations. In these figureéSynchronization Timés and delay either the data or the clock until there is no possibil-
the percentage of the total execution time that events withinity of metastability.

Figure 10. MCD Inter-domain synchronization overhead (syn-
chronization channels are as shown in Figure 1).

There has been significant research into the characteristics,



In addition to the evaluation of low-level synchronization
circuits, there has been research into high-level evaluation of
GALS systems. In [15], the potential power savings of a GALS
system is quantified. In addition, an algorithmic technique
for partitioning a synchronous system into a GALS system is
presented with the goal of achieving low power. This work [6
shows promising power savings results. Unfortunately, corre-
sponding performance evaluation was not presented. In [10], a
GALS processor with 5 independent domains is evaluated with [7]
respect to power consumption and performance degradation.
This work is most closely related to our analysis. A conclusion 8]
of this work is that with their GALS processor a performance
degradation of 10% on average was achieved. The authors also
conclude that studies of latency hiding techniques are needed|9]
to more fully understand the architectural reasons for perfor-
mance degradation. We concur with this conclusion and havd10]
performed this study on our GALS processor. We attribute the
disparity in performance degradation between these two studiefll]
to the domain partitioning differenceisq, five versus four do-
mains). We have determined that a clock domain partitioning 12]
that separates the fetch circuits (instruction cache and brancl[m
predictor) from the dispatch circuits can significantly degraded
overall performance.

(4]

[13]

9 Conclusions
[14]

We have shown that the out-of-order superscalar execution
features of modern, aggressive processors are the same features
that minimize the impact of the MCD synchronization over-
head on processor performance. With an aggressive, out-ofttd]
order superscalar processor such as the Alpha 21264, as much
as 94% of the inter-domain synchronization penalties are ef-
fectively hidden and do not result in performance degradation.[16]
When out-of-order superscalar execution features are added to
a simple in-order serial processor like the StrongARM SA-
1110, as much as 62% of the MCD performance degradatiort'”]
can be eliminated. Our prior work studied the potential energy[18]
saving advantage of our GALS MCD processor. In that work
we demonstrated approximately 20% reduction in energy con-
sumption. These results combine to demonstrate the overaljig)
benefit of our GALS MCD processor design.

The resulting modest performance impact due to synchro-
nization can potentially be overcome by faster per-domain
clocks permitted by the removal of a global clock skew require-
ment, and the ability to independently tune each domain clock.
These are areas proposed for future work.

[20]
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