
© EPFL 2006, lams-report-2006-003 Page 1

Multi-level System Modeling Using the Foundation Concepts of RM-ODP

Alain Wegmann, Lam-Son Lê
Ecole Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences

CH-1015 Lausanne, Switzerland
{Alain.Wegmann, LamSon.Le}@epfl.ch

Bryan Wood

Open IT
11 Wilton Court, Sheen Road

Richmond, TW9 1AH, UK
Bryan.Wood@Open-It.co.uk

Abstract

 A specification in Enterprise Architecture (EA)
requires the modeling of an enterprise across multiple
levels, from the markets in which it operates down to the
implementation of the IT systems that support its
operations. Our goal is the development of a method and
of a CAD tool that support such modeling.
 To achieve our goal, we need an ontology to
represent systematically all the systems at the multiple
levels identified in an enterprise. We base our ontology
on the foundation modeling concepts defined in Part 2 of
ISO/ITU Standard “Reference Model of Open Distributed
Processing” (RM-ODP). In this paper, we present how
multi-level systems can be represented using directly the
concepts defined in Part 2 of the RM-ODP.
 Our modeling approach differs from that defined in
Part 3 of the RM-ODP, which focuses on the
specification of IT systems in terms of viewpoint models
representing the IT system environment and its
construction. The benefit of our approach is the
capability to model systematically and consistently the
multiple systems represented in a company.

Keywords: RM-ODP, Enterprise Architecture,
Ontology, Multi-level Modeling, System Modeling.

1. Introduction

 IT and business alignment is one of the top-ranked
issues for Chief Information Officers (CIO) [1].
Enterprise architecture (EA) addresses this alignment
issue. EA deals with the specification and design of
systems that span from business entities (market, value
network, business, department, employee…) down to IT
entities (e.g. IT systems, applications, software

components, programming language classes). Our goal is
the development of an EA design method called SEAM in
EA (Systemic Enterprise Architecture Methodology in
Enterprise Architecture) [2] and of the corresponding
tools [3]. When using SEAM in EA, the EA team
develops an enterprise model that represents the
company’s environment, the company’s roles, the
company’s organization, the IT system functionality and
its construction. The enterprise model is represented with
a notation similar to UML [4]. The model is defined by
an ontology that makes systemic concepts (such as
contexts, boundaries, etc…) explicit and that represents
systematically all levels. This ontology is based on the
foundation modeling concepts defined in Part 2 of
ISO/ITU Standard Reference Model of Open Distributed
Processing (RM-ODP) [5]. This paper discusses the
applicability of the RM-ODP Part 2 concepts for this
purpose.
 Section 2 presents an example of multi-level system
modeling using SEAM in EA. Section 3 discusses the
applicability of RM-ODP Part 2 to multi-level system
modeling. Section 4 outlines related work. Section 5
discusses the applicability of the proposed approach and
outlines the future research directions.

2. Multi-Level Modeling: An Example

This section presents an example of multi-level

modeling. The example illustrates the SEAM CAD tool
(Section 2.1), the SEAM in EA notation and terminology
(Section 2.2) and how to achieve traceability across
functional levels (Section 2.3) and organizational levels
(Section 2.4).

The example represents an EA Project in which
there is a ProductMarket. This ProductMarket is
composed of a Supplier Value Network (SVN) that

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147921686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

© EPFL 2006, lams-report-2006-003 Page 2

serves a Customer. Value network is a business term that
is used to describe a group of companies that collaborate
(to create value for a customer). The SVN is composed of
three companies: MarketingCo, ManufacturingCo
and ShippingCo. The company MarketingCo is
composed of departments: WarehouseDep and
PurchasingDep. In these departments, there are
software applications and employees: OpApp and Clerk.
This organizational breakdown can continue untill all
relevant elements (possibly, for the software applications,
down to the programming classes) are identified and
designed. In SEAM, we consider all the elements
enumerated above as entities that are perceived as
systems. Figure 1 represents informally this set of
systems. In this paper we focus on the upper three levels.

Figure 1: Informal description of ProductMarket

In this Section we present four representations of the

SVN. The SVN is considered as the system of interest in
our example. The first one (Section 2.1) represents the
SVN as a whole at the highest functional level (i.e. only
one SVN action is visible: the action Lifecycle). The
SVN is represented interacting with a Customer. The SVN
and the Customer are components of the
ProductMarket. The second representation (Section
2.2) represents SVN at a more detailed functional level.
The SVN’s Lifecycle becomes an activity that includes
the SVN’s initialization, one Sell action and the SVN’s
termination. The SVN’s Sell action corresponds to the
SVN’s role in the interaction Sale that takes place
between the system of interest and the Customer within
the ProductMarket. In the third representation (Section
2.3), the Sell action of the system of interest is detailed:
the customer selects a product in SVN, the customer’s
payment info is verified by SVN and the product is
delivered to the Customer by SVN. The fourth and last
representation (Section 4) describes the system of interest
at a different organizational level. It presents the SVN as a
composite: a group of three companies that collaborate to
perform the sell&deliver action. This action is the

implementation of the Sell action or activity described
in the previous representations. The role of each company
is analyzed.

These four representations illustrate the notions of
multi-level modeling.

2.1. CAD Tool Overview

In SEAM, we represent multiple systems. One of the

challenges for the modelers is to understand and manage
all the diagrams that represent the different aspects of
these systems. For this purpose we have developed a
notation [6] that makes contextual information explicit
and a CAD tool [3] that manages the model. In this paper,
all SEAM diagrams are snapshots taken from the CAD
tool.

Figure 2: Snapshot of the CAD tool [3] representing
ProductMarket composed of SVN and Customer.

Figure 2 is an editing window. To manage different

parts of the same enterprise model, multiple editing
windows can be opened at the same time. The window
has three panels: The diagram panel (right side of the
window) presents graphically a selected view of the
model. The tree panel (upper left of the window) presents
an overview of the model hierarchies: the hierarchy of
systems corresponds to the organizational hierarchy and
the hierarchy of actions to the functional hierarchy. With
the tree panel, the modeler directs the CAD tool to
generate a particular diagram from the model. For
example, in Figure 2, ProductMarket is marked as a
composite (i.e. vertical symbol on the left side of
ProductMarket) and Customer and SVN are wholes
(i.e. horizontal symbol on the left side of there names).
The resulting diagram is on the right of the editing
window. If the modeler expands the symbol before the
lifecycle interaction in the tree panel, she instructs the
CAD tool to represent the next functional level: the
lifecycle is represented as an activity, and not
anymore as an action. Figure 3 shows the corresponding
diagram. Similarly, if the modeler makes the SVN
composite, a diagram similar to Figure 5 is obtained (but
at a less detailed functional level). The property panel
(lower left of the window) shows the characteristics of

SVN Customer

ShippingCo MarketingCo ManufactureringCo

PurchasingDep WarehouseDep

OpApp Clerk

ProductMarket

© EPFL 2006, lams-report-2006-003 Page 3

the selected model element. These characteristics are
useful, for example, to store traceability information.

The diagram visible in Figure 2 represents the
working object ProductMarket seen as a composite. In
SEAM models, working objects always represent
systems. In ProductMarket, we have two component
working objects: Customer and SVN. They are both
represented as a whole. In between the SVN and the
Customer, there is an action lifecycle. This
represents the overall behavior, within ProductMarket,
in which the two systems (i.e. SVN and the Customer)
participate. In SVN, its state and behavior are represented.
At the selected functional level, only one action is visible
in SVN: it is the Lifecycle action. The state and
behavior of the Customer are hidden. The importance of
the lifecycle concept and the taxonomy of actions are
further discussed in Section 3.

2.2. Terminology and Notation

 Figure 3 shows the same systems as Figure 2. But
the behavior of SVN is represented at a more detailed
functional level. The Lifecycle activity (in Figure 3)
replaces the Lifecycle action in Figure 2. We define as
functional refinement the relation between an action and
its corresponding activity. The action is always
considered as a whole and the activity is always
considered as a composite (i.e. composed of actions with
execution constraints between the actions). The fact that
an action corresponds to an activity is defined by the
behavioral equivalence between the activity and the
action: it is possible to replace the description of the
action by the description of the activity without changing
the overall system’s behavior [7]. The level of atomicity
of the behavior (i.e. which action is represented) defines
the functional level. The descriptions of a system’s
behavior at different functional levels constitute the
functional hierarchy of the system.

In the diagram (Figure 3), we represent SVN’s
behavior and state (state related pictograms are
rectangles; behavior related pictograms are shapes with
rounded corners). We detail the behavior representation
and then the state representation of SVN.

In the behavioral representation of SVN, the SVN’s
Lifecycle is represented as an activity. It is composed
of a Begin internal action (corresponding to the
initialization action, executed first at system’s creation),
followed by a Sell partial interaction and an End
internal action (corresponding to the termination action,
executed last at system’s disappearance). A partial
interaction is an action that involves the working objects
found in the environment of the working object that
executes the partial interaction. An internal action is an
action executed without involving the environment of the

working object that executes the internal action. These
partial interactions and internal actions, when represented
in an activity, are separated by execution constraints. The
execution constraint between Begin and Sell indicates
that Sell can execute only when the input environment
parameters id, orderer and commit or cancel are
received. For simplicity, we model a system that can
execute only one occurrence of Sell. So after Sell, End
has to execute.

Figure 3: SVN does the Lifecycle activity (that
includes the Sell action); Customer and SVN

participate to the sale interaction.

In the state representation, we have stateful and
stateless properties. Stateful properties represent the
system state. Stateful properties can be global or local.
Global properties exist for the whole system’s lifecycle.
For example, assets (of type Money) and inventory
(of type Product) are global properties. Some properties
are local and exist in the context of specific actions or
activities. For example, id (of type ProductID) and msg
(of type Message) are properties local to SellTxn. We
will see in next section that local properties are also
useful for storing information between actions within an
activity (e.g. Order in SellTxn in Figure 4)
 In SEAM, we have stateless properties. They are
called transactions and they represent the occurrence of
an action. They make explicit the context in which
properties exist. For example: the SellTxn transaction
represents the occurrence of the Sell action. Having
transactions is useful for describing how properties relate
to the actions. This is done through transaction-property
relations. There are two kinds of transaction-property
relations: environment parameters and system
parameters. Each one can be further subdivided into
input, output and in/out.

© EPFL 2006, lams-report-2006-003 Page 4

Figure 4: SVN does the Sell activity (that includes 3 partial interactions and the Verification internal action);

Customer and SVN participate to 3 full interactions.

For example, SellTxn has an in/out system parameter
relation to inventory (of type Product) and an input
environment parameter relation to id (of type
ProductID).

A transaction-property relation means that the pre-
and post-condition of an action access the designated
property. The property is then considered as a parameter
for the action. Environment parameters are properties
within a system that represent the state of the system’s
environment and that are necessary for exchanges
through the system’s boundary. System parameters are
properties within a system that are not related to the
system’s boundary.

In Figure 3, we also provide behavioral information
about ProductMarket: in ProductMarket, there is a
full interaction between SVN and the Customer. A full
interaction is an action in which multiple working objects
participate. A behavioral equivalence exists between the
full interaction and the composition of some (or all) of
the partial interactions and of the internal actions of all
working objects that participate in the full interaction.
The role of SVN in Sale consists of the partial interaction
Sell. The role of Customer in Sale consists of the
partial interaction Buy. Both roles are visible in the full
interaction to working object relations. These relations
mark the working object’s participation in the full
interaction and the existence of a partial interaction. The
benefit in representing Buy, Sale and Sell is to make
the behavior of the different participants explicit. In
ProductMarket, the Customer does a Buy, the SVN
does a Sell and together they do a Sale. In the current

version of SEAM in EA, it is not possible to express
execution constraints between full interactions.

2.3. Functional Level Traceability

 Figure 4 represents the same systems as Figure 2 and
Figure 3. The behavior of SVN is represented at an even
more detailed functional level. The Sell is now an
activity that corresponds to the Sell partial interaction in
Figure 3. The Sell activity is composed of the
Order partial interaction, followed by the
Verification internal action and by either the
DeliveryInvoice partial interaction (if
confirmation) or by the partial interaction
Notification (if problem). The conditional execution
constraints express conditional transitions. In this
example, the transition between Verification and
DeliveryInvoice is executed only when a
confirmation exists.
 The nesting of the notation makes visible in which
context model elements exist. For example, Order exists
in the context of Sell (or, by definition of the
transactions, OrderTxn exists in the context of
SellTxn). This nesting of notation is useful to
understand how functionality is mapped between
functional levels. For example, SellTxn (as an action)
modifies inventory. Within the SellTxn (as an
activity), it is DeliveryInvoiceTxn that actually
modifies the inventory. Being able to compare the
representations of the SellTxn as an action and as an

© EPFL 2006, lams-report-2006-003 Page 5

activity constitutes the traceability between functional
levels.

2.4. Organizational Level Traceability

 Figure 5 represents the SVN as a composite (as
opposed to as a whole in Figures 2, 3 and 4). It is then
possible to understand how the companies that compose
the SVN interact to perform the behavior described for the
SVN as a whole. We define as organizational refinement
the relation between a working object as a whole and a
working object as a composite (composed of component
working objects considered as wholes). The level of
atomicity of the working objects defines the functional
level. We define the organizational hierarchy as the
systems’ hierarchy in the model (e.g. the working object
ProductMarket made up of the working objects SVN
and Customer, SVN working object is itself made up of
the MarketingCo, ShippingCo and
ManufacturingCo working objects).
 In Figure 5, we have two behavior representations
within the SVN working object: one with full interactions
and one with partial interactions. We explain both of
them below.
 The representation with the full interactions makes
explicit what the working objects do together. For
example, the full interaction market involves only the
participation of MarketingCo; the full interaction
shipping_notice involves the participation of the
three companies; shipping involves the participation of
only ShippingCo, etc… The full interactions are useful
for relating the behaviors described at different
organizational levels. For example, the full interaction
market in the SVN as a composite corresponds to the
partial interaction Order in the SVN as a whole (Figure
4). The comment makes this relation explicit. This is the
traceability between organizational levels. Full
interactions are also useful to describe the net effects of a
behavior without giving the details of the interaction
between the systems (in the manner made popular by
Catalysis [8] with the concept of joint actions).
 The representation of partial interactions makes
explicit the behavior of each working object relative to its
environment. For example, MarketingCo gets id (of
type PID) and info (of type OrdererInfo) in the partial
interaction Market. As written in the comments, these
two parameters are implementations of the ProductID
and CustomerInfo represented in SVN as a whole
(Figure 4). MarketingCo processes these parameters.
When it receives commit, it executes Invoice. If a
problem is detected during the execution of Invoice,

then MarketingCo executes Notification. If the
payment is ok, then MarketingCo modifies the value of
the asset and requests the shipping by executing
Shipping_notice. This sends an Order to
ShippingCo and ManufacturingCo. Upon reception of
the order, ShippingCo records this information in
addr (of type ShippingInfo) and waits for the
delivery (of type productDelivered). Upon
reception of the order, ManufacturingCo takes prd (of
type Product) from the inventory (of type Product)
and sends delivery (of type ProductDelivered) to
ShippingCo. ShippingCo, when getting the
delivery, uses the shippingInfo to send the
prd_shipped (of type ProductToBeShipped). As
written in the comment, this parameter is an
implementation of Product in the SVN as a whole
(Figure 4).
 The traceability between the SVN as a composite
executing the Sell activity and the SVN as a whole
executing the Sell activity (Figure 4) is visible with the
comments marked implementation of. Three kinds of
traceability relations exist. They establish either: (1) the
relation between the partial interaction of a working
object as a whole and the full interaction between its
component working objects (e.g. Order in SVN in Figure
4 becomes market in Figure 5), or (2) the relation of a
global property of a working object as a whole with the
property of its component working object (e.g.
inventory in SVN in Figure 4 becomes
ManufacturingCo’s inventory in Figure 5), or (3)
the relation between a parameter in a working object as a
whole and a parameter in a working object as a composite
(e.g. product <<out>> in Figure 4 that becomes
ShippingCo’s ProductDelivered <<out>> in
Figure 5). Traceability is not only between functional and
organizational levels but also between systems at the
same functional level and organizational level. For
example, Order <<out>> in ManufacturerCo
corresponds to Order <<in>> in ShippingCo and
ManufacturingCo. Another example:
ProductDelivered <<out>> is sent to the Customer.
This kind of relation is not shown in the diagrams but can
be captured in the CAD tool as a characteristic of the
parameter (visible in the property panel of the editing
window of the CAD tool).

© EPFL 2006, lams-report-2006-003 Page 6

Figure 5: Diagram representing MarketingCo, ManufacturingCo and ShippingCo doing the Sell activity.

3. Applicability of RM-ODP Part 2 for

Multi-Level Modeling

One of the challenges when building a modeling tool

is the modeling ontology. An ontology defines the terms
and the relations between these terms. These definitions
are necessary to build a model. Examples of terms are:
working object, behavior, action, activity, state, etc…
Example of relations between terms: objects have state
and behavior. In this section, we discuss the applicability
of RM-ODP Part 2 (foundations) as such an ontology and
we propose some extensions to support multi-level
modeling.

The RM-ODP standard [5] is composed of four parts.
Part 1 is an overview of RM-ODP and is non-normative.
Part 2 defines the fundamental concepts needed for
modeling of Open Distributed Processing systems. Part 3
presents an application of Part 2 for particular viewpoint
specification languages (e.g. enterprise, information,
computational, technology, engineering viewpoints). Part

4 is a partial formalization of the previous parts. In this
work, we focus on Part 2.
 Part 2 of RM-ODP [5, Part 2] has 15 sections.
Sections 1 to 4 introduce the context, references and
abbreviations. Section 5 introduces the categorization of
ODP concepts. This section is needed to understand how
all the following sections relate to each other. Sections 6
(basic interpretation concepts), 8 (basic modeling
concepts) are central to this work and are discussed in
this document. Section 9 (specification concepts) defines
the terms necessary to specify the basic modeling
concepts (e.g. type and instance). As these concepts are
compatible with our approach, we do not discuss them in
this paper. Sections 7 and 10 to 15 define supplementary
concepts that are beyond the scope of this work.

3.1. Basic Interpretation Concepts

The Section 6 of [5, Part 2] basic interpretation

concepts introduces the concepts needed for the

© EPFL 2006, lams-report-2006-003 Page 7

interpretation of the terms defined in the standard. When
modeling, the modeler finds interesting entities in the
universe of discourse and represents them as model
elements in the model. Note that the term model element
is not defined in RM-ODP. It is a concept, defined in [9],
that can be considered as a specialization of the concept
of term defined in [5, Part 2, Clause 7.1]. Figure 6
illustrates the relationships between the universe of
discourse and the model and the relationships between
the model and the diagrams. The CAD tool manages the
model and the diagrams.

Figure 6: Relations between universe of discourse,

model and diagrams [10].

Model elements are defined by a basic modeling
concept and one or more specification concepts. In order
to interpret the relations between these two kinds of
concepts, we can apply Russell’s Theory of Types in the
way that is explained in [9], [11]: at first a model element
is considered as something destitute of complexity. Then
a first-order predicate is applied to this model element –
this gives a possibility to specify the essence of the model
element in the resulting first-order proposition. And then
higher-order predicates are applied on top of the first-
order proposition – this gives a possibility to construct
higher-order propositions containing all the different
characteristics of the specified model element. The
aforementioned first-order predicate indicates the nature
of the model element. The concepts that correspond to the
first-order predicates can be found in the basic modeling
concepts section of RM-ODP [5, Part 2, Section 8].
Examples of basic modeling concepts are object and
action. Then, the higher-order predicates characterize the
model elements within the higher-order propositions. The
concepts that correspond to the higher-order predicates
can be found in the specification concepts section of RM-

ODP [5, Part 2, Section 9]. Examples of specification
concepts are type and instance. To summarize with an
example, an action type Sell can be understood as a
model element with a first-order predicate action and a
higher-order predicate type Sell.

To be able to understand the basic modeling
concepts, modelers need to share (explicitly or implicitly)
an agreed conceptualization of what represents the basic
modeling concept in the universe of discourse. For
example: What is an action? This agreed
conceptualization is the Tarski declarative semantics. For
example, in RM-ODP, action is explicitly defined as
something which happens [5, Part 2, Clause 8.3].
Something which happens is the conceptualization of the
universe of discourse, agreed by ODP modelers (as we
assume that the modelers agree on what - something
which happens - means). Action is the representation of
this conceptualization in the model. RM-ODP defines
another agreed conceptualization, which is system.
System is defined as something of interest as a whole or
as comprised of parts [5, Part 2, Clause 6.5]. However,
RM-ODP does not define explicitly a basic modeling
concept that has system as conceptualization. We discuss
this point in the next section.

In [5, Part 2, Section 6] the terms abstraction and
atomicity are explained. In particular, it is written that
fixing a given level of abstraction may involve identifying
which elements are atomic. In SEAM, we define two
kinds of levels of abstraction: the functional levels and
the organizational levels. The functional levels address
the system’s behavior. A functional level is defined by
which action is considered as atomic (see Section 2.2 for
an example). The organizational levels address the
systems’ construction. An organizational level is defined
by which system is considered as atomic (see Section 2.4
for an example). These notions of levels take their roots
in constructivism: constructivism states that all
knowledge is relative to the observer [12] [13]. Observer-
independent descriptions of reality do not exist. Different
functional levels and organizational levels correspond to
the different abstractions that the different kinds of
observers have developed to simplify their understanding
of systems. It happens that these abstractions appear
hierarchical and this is why we call them functional and
organizational hierarchies. The functional hierarchy is
frequently made explicit in system design. The
organizational hierarchy is more rarely made explicit, as
people consider it obvious. This can lead to ambiguities.
We took the concept of organizational hierarchy from
Miller’s Living System Theory [14]. Miller has shown
that a living system can be modeled systematically and
hierarchically (from organization, made of groups, made
of humans, made of organs, made of cells). We use a
similar approach for enterprises. We model segments,
made up of value networks, made up of companies, made

© EPFL 2006, lams-report-2006-003 Page 8

up of departments, made up of people, etc… In Section 5,
we discuss the practical benefits and drawbacks of
modeling an enterprise with two distinct hierarchies.

3.2. Basic Modeling Concepts

[5, Part 2, Section 8] defines the basic modeling

concepts such as: object, action, state, etc… We present
the minor extensions that we have made to develop the
SEAM in EA approach.

First we have defined the notion of working object.
The term working is added only to remove ambiguities
with the other usages of the word object. In RM-ODP, the
agreed conceptualization associated to the object concept
is model of an entity [5, Part 2, Clause 8.1]. In SEAM, the
object concept is specialized and we consider that it is
always a model of a system. In our example, SVN,
Customer, ProductMarket, MarketingCo,
ManufacturingCo and ShippingCo are all working
objects (and so are all perceived as systems in the
universe of discourse). As a system is a kind of entity,
this extension is compatible with the standard as written.

Secondly, we have refined the definition of the
different kinds of action. In RM-ODP, actions are divided
into internal action and interaction. In [5, Part 2, Clause
8.3], it is written: an internal action always takes place
without the participation of the environment of the object.
The other actions are interactions. To model systems as
we propose, we need two kinds of interactions: full
interaction and partial interaction. A partial interaction is
an action of one working object of interest (represented as
a whole) and that involves one or more working objects
from in its environment. A full interaction is an action of
one working object of interest (represented as a
composite) and that involves one or more of its
component working objects and that may or may not
involve working objects in the environment of the
working object of interest. In Figure 7, actions M_S, R_A
and TinR_A are full interactions; actions M_A, M_B,
R_C, R_D, R_E and TinR_C are partial interactions
and action U_C is an internal action. In addition, a partial
interaction corresponds to the participation of a working
object in a full interaction. For example, the partial
interaction M_A is the participation of AinS in the full
interaction M_S. A full interaction might (or might not)
involve the environment of the system that hosts the full
interaction. For example, in Figure 7, the full interaction
R_A of AinS is actually exchanging information with the
environment of the system AinS (as R_A implements M_A
which is a partial interaction that exchanges information
with BinS). On the other hand, M_S does not have
exchanges with the environment of S. To differentiate

between these two kinds of full interactions, we define
the full local interaction (that does not exchange
information – as M_S) and full non-local interaction (that
does exchange information - as R_A does).

(a)

(b)

(c)
Figure 7. Examples of actions and traceability

relations between organizational levels (a) and (b);
between functional levels (b) and (c).

Are the concepts of full and partial interactions

compatible with RM-ODP Part 2? Partial interaction is
clearly defined in [5, Part 2, Clause 8.3]: an interaction
takes place with the participation of the environment of
the object. In addition the note 3 of [5, Part 2, Clause 8.3]
states that interactions may be labeled in terms of cause
and effects relationships between the participating
objects. This hints that full interactions can also be
considered compatible with RM-ODP Part 2 as
interactions can happen between multiple objects. This is
a point that the RM-ODP standard, in one of its future
revisions, could make clearer.

Figure 8 summarizes these different kinds of actions.

The taxonomy we propose makes explicit the context in
which actions are defined (e.g. partial interactions and
internal actions are defined for working objects as
wholes) and the relations between the actions and the
system boundaries (e.g. partial interactions and full non-

© EPFL 2006, lams-report-2006-003 Page 9

local interactions exchange information through the
boundary of the working object of interest).

action

internal action interaction

partial
interaction full interaction

full local
interaction

full non-local
interaction

Figure 8: Proposed taxonomy of actions
Thirdly and last, we have introduced concepts

necessary to structure the state space. In [5, Part 2, Clause
8.7], RM-ODP defines the concept of state as at a given
instant in time, the condition of an object that determines
the set of all sequence of actions in which the object can
take part. The goal is to describe the state at the same
level of details as the behavior. For this reason, it is
important to add a means to structure the state. This is the
concept of property. Properties can be stateless or
stateful.

property

stateless property
(transaction) stateful property

local
(to one

transaction)

global
(to the system

lifecycle)

lifecycle regular

Figure 9: Proposed taxonomy of properties

Stateless properties represent occurrences of actions.
Stateless properties are called transactions. They are
similar to the stateless objects presented in [15]. One
special transaction is the lifecycle transaction that
represents the overall working object lifecycle.
Transactions are useful to represent the context in which
stateful properties exist.

Stateful properties store the system’s state. They are
similar to UML attributes except that they can be
hierarchic (properties can be composite as well). Global
properties exist in the context of the system lifecycle.
They are created at system’s initialization and disappear
at system termination. Local properties exist in the
context of a transaction.

Figure 9 summarizes the different kinds of
properties. Beside stateless and stateful, the taxonomy we

propose makes explicit in which context the property
exists.

In summary, it appears that RM-ODP Part 2
concepts, as defined, can be applied in multi-level system
modeling. It would be still helpful to make minor
adjustments to the standard to make this possibility more
explicit.

4. Related Work

The main part of the state of the art compares the

SEAM in EA approach with the existing RM-ODP based
approaches (Section 4.1). To be complete, we also
mention non RM-ODP related, approaches for multi-level
modeling. In particular, we present EA methods (Section
4.2) and software-engineering methods (Section 4.3).

4.1. ODP-Related Approaches

To our knowledge, the SEAM in EA approach,

which uses directly the RM-ODP Part 2 concepts, is
unique. Other approaches are based on RM-ODP
viewpoints as defined in Part 3. For example, they define
viewpoint languages (e.g. [16]), check consistency
between viewpoints (e.g. [17], [18], [19], [15]), map
viewpoints to UML (e.g. [20]) or develop EA CAD tools
based on viewpoints (e.g. [21]).

It is worth comparing the SEAM in EA approach
with what the viewpoint languages and the corresponding
specifications provide [5, Part 3]. First of all, we can
consider that we mix together information that is
traditionally found in different viewpoints specifications.
For example, Figure 3 can be interpreted as including the
information found in the computational specification of
ProductMarket mixed with the information found in
the information specification of SVN. As we design
multiple systems at the same time (ProductMarket in
parallel with SVN) and as we always represent the
contextual information (ProductMarket as context for
SVN), it is not surprising that both kinds of information
exist in the same diagram. Note that, by filtering the
diagram, it is possible to hide part of this information and
so, to become closer to the traditional RM-ODP
viewpoints.

If we state that the definition of a system as a whole
is close to an information specification, it is worth
detailing how the concepts defined in the information
viewpoint exists in SEAM in EA. The information
viewpoint is defined in terms of schema (static, dynamic,
and invariant). None of these schemas are presented in
this paper. However, the SEAM relations between the
transactions and the properties are useful to capture pre-
and post-conditions of actions and thus, are related to a
dynamic schema. The state part of the system

© EPFL 2006, lams-report-2006-003 Page 10

specification has information similar to an invariant
schema. The future work (Section 5) will make these
parallel more explicit.

SEAM in EA targets system modeling at large and,
in particular, enterprise modeling. Thus, it is important to
mention the enterprise language standardization [22] that
refines and extends the enterprise language as defined in
[5, Part 3]. This standard addresses enterprise modeling
and the work presented in this paper is related to the
concepts defined in it. For example, we could consider
the notion of working objects as similar to the concept of
community object. However, the enterprise language
standard has concepts in deontic logic that SEAM does
not provide.

The RM-ODP Part 3 approach to system
specification is, in some degree embodied in the UML
Profile for EDOC. This profile is composed of 7
standards [23] (overview, meta-model for Java and EJB,
flow and collaboration specifications, pattern and
relationship and relation to MOF). The UML Profile for
EDOC and SEAM in EA share the same goal: to describe
an enterprise. The main difference is in the ontology
selected to express the models. In SEAM, our goal is to
be as simple as possible, so that we stay as close as
possible to RM-ODP Part 2. In the UML profile for
EDOC, the goal is to be as close as possible to UML
while making use of RM-ODP concepts. As UML is
more complex than RM-ODP [24], the result is more
complex. Strong parallels can be established between
SEAM in EA and the UML profile for EDOC. For
example, the definition of patterns can be compared to
[25] and the definitions of relationships in UML for
EDOC to the relations defined in SEAM in EA.

4.2. Multi-level Modeling in Business and EA

There are a significant number of methods applicable

in EA that support some form of multi-level modeling.
Our analysis shows that most methods do not provide a
modeling ontology as described in this paper. Most of
them (such as [26]) propose ad-hoc modeling
frameworks. An exception is DEMO (Design &
Engineering Methodology for Organizations) [27].
DEMO does provide such an ontology. The DEMO
ontology is rooted in the Communicative Action
Paradigm, regarding human communication and action.
DEMO defines 3 types of models of the system: the
black-box model, the white-box model, and the flow
model. The black-box model deals mainly with the
external behavior of a system and supports the functional
decomposition mechanism. In the flow model a system is
conceived as a network of nodes transforming the input
flows into output flows. The white-box model defines the

constructional decomposition of the system. It specifies
the definition of subsystems [27]. SEAM in EA differs
from DEMO in its goal (modeling more organizational
level) and in the ontology used (RM-ODP instead of
Communicative Action Paradigm).

4.3. Multi-level Modeling in System and

Software

There are also numerous methods developed for

multi-level modeling in system engineering and in
software engineering. The closest to the SEAM in EA
approach are:

OPM (Object-Process Methodology) [28] addresses
the modeling of systems in general. It has a notation and
a CAD tool called OpCat [29]. SEAM differs from OPM
by its ontology (which is RM-ODP based) and by its
explicit emphasis on the need to design multiple systems
concurrently.

Catalysis [8] is a development process that analyzes
and designs in three levels: business, IT system and
software components. It uses its own UML-inspired
notation. SEAM was inspired by Catalysis. The goal for
SEAM in EA is to provide a design method analogous to
Catalysis, but with a broader scope (from business down
to IT) and based on RM-ODP.

SysML [30], developed by OMG, is a refinement of
UML that targets the design of systems in general (e.g.
aircraft) using the UML notation. KobrA [31] proposes a
recursive model that describes IT systems/components
using the UML notation. Both KobrA and SysML differ
from SEAM in EA by their tight link to the UML meta-
model (as opposed to RM-ODP). Even if both methods
can model multiple systems, they are designed to focus
mainly on one system of interest.

Domain-specific languages (such as Microsoft DSL
[32]) automate software development as much as possible
by defining expert engines that can generate code for a
specification in very specific domains (e.g. banking, cell
phone…). Tools are often based on GME [33] or Eclipse
EMF [34]. Domain specific methods do not manage the
transition between the different organizational levels in a
similar way as SEAM in EA does. They relate directly
the code to the domain mode. This is something SEAM
in EA cannot do without modeling all organizational
levels between the market organizational level and the IT
system organizational level.

5. Applicability and Further Work

The method presented in this paper focuses on

functional analysis of companies’ environment, of
companies’ organization and of IT systems. This is a
reductionist view of an enterprise. Analyzing

© EPFL 2006, lams-report-2006-003 Page 11

functionality across organizational levels is only a subset
of what needs to be analyzed when designing an
enterprise. For example, different specialists might focus
on non-functional properties (such as performance or
security). However, our experience shows that modeling
function adds value as it defines a common, minimal,
understanding across the whole organization.

Here are examples of projects using SEAM in EA:
• IT System Reengineering: A mid-size organization

has to streamline its IT organization across product
lines. This is a 5 years project that involves the
whole company and multiple consultants. SEAM in
EA is successfully used to represent the roles of the
company in its market, the roles of the company’s
departments and the way the business processes need
to be structured. The benefits are the development of
a standardized terminology and of a visual model
that can be used by the CIO in his decision making
process. This project is described in [35].

• Project Documentation: A software company won a
contract for a relatively large development of an IT
application to manage taxes (approx. 4 years, 20
developers). SEAM in EA is successfully used to
represent the project team structure and the
application structure (in complement to the RUP
design process). The goal for the SEAM model was
to speed-up the training of new software developers.
An on-line documentation system was developed and
SEAM in EA diagrams are used to access the
documentation. Experience has shown (on 3 people)
that the training of the developers is reduced from 6
weeks to 2 weeks.

• Project Specification: SEAM in EA was used in a
regular architectural project that lasted 18 months.
The goal was to equip a building for a university. A
SEAM model was developed to specify the goal for
the equipment. This model was used to develop the
business case and to specify to the vendors what
needed to be provided (furniture, multi-media
systems, IT systems…). It was also possible to
generate a complete IT specification aligned to the
business specification.

In all these projects, the SEAM model was useful for
agreeing on what systems exist and on the functionality
provided by each one. Once this was agreed upon, the
different specialists had fewer difficulties in
communicating with each other and used their common
understanding in developing their own models. This
explains why the hierarchical nature of the SEAM model
is not an issue as it is only considered as a shared model
that all specialists can refer to in developing their own
models.

Our future research work has two main directions:
further evaluation of the approach with additional

projects and more formal definition of the semantics of
our notation. For this, we have three projects: (1) formal
definition of static, dynamic and invariant schemas in
SEAM [2] – similar to the schemas defined in [5, Part 3,
Clause 6.1]. Our schemas have a declarative semantics
based on Alloy [36]. (2) behavioral simulation and
alignment checking [7] (with an operational semantics
based on ASML [37]); (3) synthesis of the results of (1)
and (2) in a formal model, in Alloy, of the SEAM in EA
ontology. This Alloy formal model will be automatically
translated into the Java code used in the SEAM CAD
tool. This does guarantee that the tool implements
rigorously what is defined in the SEAM ontology.

6. Conclusion

We have shown in this paper that the concepts

defined in RM-ODP Part 2 (foundations) are well suited
to multi-level system modeling. We also made
suggestions on how the RM-ODP Part 2 definitions (and
associated notes) could be modified to make more
explicit that RM-ODP Part 2 can also be used directly to
model systems without using the viewpoints defined in
Part 3. Concretely, we have defined two new kinds of
levels of abstraction (organizational and functional), we
have recommended relating objects to systems and we
have proposed new kinds of actions and properties. It
could be useful, if a revision of the RM-ODP Part 2
standard is realized, to consider adding concepts such as
properties or to define the concept of action more broadly
to clearly encompass full and partial interactions.
 We have also shown that concrete methods and tools
can be developed, based on RM-ODP Part 2 directly. We
have illustrated, with an example in Enterprise
Architecture, how such methods could work. Our
experience has shown that RM-ODP Part 2 can be used
systematically on all modeling levels and that it defines
concisely, and with precision, what the ontology for
object-oriented modeling can be. Methods based on RM-
ODP (such as SEAM) benefit from a powerful ontology
definition that is, in addition, standardized.

We believe that the work we do with SEAM can also
contribute to the RM-ODP community. First, our tool can
be used to explain the concepts found in RM-ODP Part 2.
Many of these concepts are obvious for people with
experience in formal methods. However, our tool can
illustrate these concepts graphically for the people who
do not have such training. For example, our tool can be
used to explain the difference between an internal action
and an interaction or between the different kinds of
refinement. Secondly, we propose a new way to model
systems with RM-ODP and our case studies illustrate
concretely how such RM-ODP based specifications of
systems might look. This can contribute to the promotion

© EPFL 2006, lams-report-2006-003 Page 12

of RM-ODP. Lastly, we also consider that the CAD tool
[3] we are developing is one of the rare tools that directly
use the RM-ODP Part 2 concepts. This also contributes to
make RM-ODP more visible.

References

[1] Luftman, J. and McLean, E. R., "Key Issues for IT
Executives," MIS Quarterly Executive, vol. 3, 2004.
[2] Wegmann, A., "On the Systemic Enterprise Architecture
Methodology (SEAM)," presented at 5th ICEIS, Angers,
France, April 2003.
[3] Lê, L. S. and Wegmann, A., "SeamCAD: Object-Oriented
Modeling Tool for Hierarchical Systems in Enterprise
Architecture," presented at 39th IEEE HICSS, Hawaii, USA,
January 2006.
[4] OMG, Unified Modeling Language, http://www.uml.org/
[5] OMG, "ISO/IEC 10746-1, 2, 3, 4 | ITU-T Recommendation,
X.901, X.902, X.903, X.904, Reference Model of Open
Distributed Processing," 1995-1996.
[6] Lê, L. S. and Wegmann, A., "Definition of an Object-
Oriented Modeling Language for Enterprise Architecture,"
presented at 38th Hawaii International Conference on System
Sciences, Hawaii, USA, January 2005.
[7] Wegmann, A., Balabko, P., Lê, L. S., Regev, G., and
Rychkova, I., "A Method and Tool for Business-IT Alignment
in Enterprise Architecture," presented at 17th CAiSE Forum,
Porto, Portugal, June 2005.
[8] D'souza, D. F. and Wills, A. C., Object, Components and
Frameworks with UML, The Catalysis Approach: Addison-
Wesley, 1999.
[9] Naumenko, A., Triune Continuum Paradigm: a paradigm
for General System Modeling and its applications for UML and
RM-ODP, PhD thesis, in School of Computer and
Communication Sciences, EPFL, 2002
[10] Wegmann, A. and Naumenko, A., "Conceptual Modeling
of Complex Systems using an RM-ODP based Ontology,"
presented at 5th IEEE EDOC, Seattle, USA, September 2001.
[11] Naumenko, A. and Wegmann, A., "Formalization of the
RM-ODP foundations based on the Triune Continuum
Paradigm," Computer Standards & Interfaces - ELSEVIER,
2006.
[12] Moigne, J. L. L., Que sais-je? Les épistemologies
constructivistes. Paris: Presses Universitaires de France, 1995.
[13] Checkland, P. and Scholes, J., Soft System Methodology in
action: Chichester UK: Wiley, 1990.
[14] Miller, J. G., Living Systems: University of Colorado Press,
1995.
[15] Bernardeschi, C., Dustzadeh, J., Fantechi, A., Najm, J.,
Nimour, A., and Olsen, F., "Transformation and Consistent
Semantics for ODP Viewpoints," presented at FMOODS'97,
Canterbery, UK, July 1997.
[16] Lupu, E., Sloman, M., Dulay, N., and Damianou, N.,
"Ponder: realising enterprise viewpoint concepts," presented at
4th IEEE EDOC, Makuhari, Japan, September 2000.

[17] Dijkman, R., Quartel, D., Pires, L., and Sinderen, M., "A
Rigorous Approach to Relate Enterprise and Computational
Viewpoints," presented at 8th IEEE EDOC, California, USA,
September 2004.
[18] Boiten, E., Bowman, H., Derrick, J., Linington, P., and
Steen, M., "Viewpoint consistency in ODP," ELSEVIER, 2000.
[19] Dustzadeh, J. and Najm, J., "Consistent Semantics for ODP
Information and Computational Models," presented at FORTE /
PSTV'97, Osaka, Japan, November 1997.
[20] Romero, R. and Vallecillo, A., "Modelling the ODP
Computational Viewpoint with UML 2.0," presented at 9th
IEEE EDOC, Enschede, The Netherlands, September 2005.
[21] Steen, M. W. A., Akehurst, D. H., Doest, H. W. L., and
Lankhorst, M. M., "Supporting Viewpoint-Oriented Enterprise
Architecture," presented at 8th IEEE EDOC, California, USA,
September 2004.
[22] Miller, J., RM-ODP Enterprise Language,
http://www.joaquin.net/cuml/Ent/index.html
[23] OMG, UML Profile for enterprise distributed Object
Computing,
http://www.omg.org/technology/documents/formal/edoc.htm
[24] Naumenko, A. and Wegmann, A., "A Metamodel for the
Unified Modeling Language," presented at <<UML>> 2002,
Dresden, Germany, September/October 2002.
[25] Balabko, P., Wegmann, A., Ruppen, A., and Clément, N.,
"Capturing Design Rationale with Functional Decomposition of
Roles in Business Processes Modeling," 2005.
[26] Zachman, J. A., "A Framework for Information System
Architecture," IBM System Journal, 1988.
[27] Dietz, J., Design & Engineering Methodology for
Organizations, http://www.demo.nl
[28] Dori, D., Object-Process Methodology, A Holistic Systems
Paradigm: Springer Verlag, 2002.
[29] Dori, D., Reinhartz-Beger, I., and Sturm, A., "OPCAT - A
Bimodal CASE Tool for Object-Process Based System
Development," presented at 5th ICEIS, Angers, France, April
2003.
[30] OMG, System Modeling Language, http://www.sysml.org/
[31] Atkinson, C., Paech, B., Reinhold, J., and Sander, T.,
"Developing and applying component-based model-driven
architectures in KobrA," presented at 5th IEEE EDOC, Seattle,
USA, September 2001.
[32] Microsoft, Domain-Specific Language Tools,
http://msdn.microsoft.com/vstudio/DSLTools/
[33] Karsai, G., Maroti, M., Ledeczi, A., Gray, J., and
Sztipanovits, J., "Composition and cloning in modeling and
meta-modeling," IEEE Transactions on Control Systems
Technology, vol. 12, pp. 263-278.
[34] Eclipse Modeling Framework, http://www.eclipse.org/emf
[35] Wegmann, A., Regev, G., and Loison, B., "Business and IT
Alignment with SEAM," presented at REBNITA / 13th IEEE
RE workshop, Paris, September 2005.
[36] Jackson, D., The Alloy Constraint Analyzer,
http://alloy.mit.edu/
[37] Börger, E. and Stärk, R., Abstract State Machines: A
Method for High-Level System Design and Analysis: Springer-
Verlag, 2003.

