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Unified mechanical approach to piezoelectric bender modeling
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Abstract

A new analytical modeling approach for piezoelectric bending elements is described. The approach is based on the beam theory under quasi-static
equilibrium condition. It uses the theory of superposition of piezoelectric action in the bender and external moments and forces acting on the bender.
Due to the differential approach, this model is applicable to any geometrical design for which the beam theory holds. The distinction between the
piezoelectric action and the external loads makes the model applicable for any boundary conditions. The bottom-up approach from the electrically
induced strain in the piezoelectric part enables the determination of stresses and strains at every point in the bender. The effects on internal strain
distribution by the different kinds of actuation where demonstrated in an experiment. The resulting model from this approach will be well suited
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o design and optimize piezoelectric bending actuators for any purpose. The implied calculation of the strain and stress in the modeling allows the
imensioning of actuators that are equipped with strain gauges as well as the calculation of the electrical properties for capacitive transducers.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Piezoelectric benders are used in various applications as AFM
antilevers, positioning devices and force sensors. To achieve the
esired performance, the design and optimization process needs
umerical and analytical modeling. While the numerical mod-
ling, such as finite element analysis, shows the behavior of a
iven structure, the analytical model allows the systematic op-
imization of various parameters. Finite element tools can also
andle parametric models and can therefore be used to design
nd optimize piezoelectric benders. To justify the effort made to
stablish an analytical model, this model must be far more adapt-
ble to input parameters, like geometry principle and materials,
s the corresponding numerical model.

Many approaches to piezoelectric bender modeling have been
ublished. One of the most profound analysis of piezoelectric
enders is given by Smits et al. [1,2]. Smits et al. describe the
lectrical and mechanical behavior of homogeneous and hetero-
eneous bimorphs and uses a thermodynamical method based
n the total energy of the system to calculate the electrical and

∗ Corresponding author. Tel.: +41 21 6935932; fax: +41 693 3866.

mechanical parameters. Their model is parametrical in terms of
geometry and materials but the boundary condition cannot be
changed. It is limited to benders with one free end and clamped
on the other side. The input points of forces cannot be chosen.
Although this is the most profound analysis, the complexity of
the modeling approach does not allow an adaptation to different
geometry and boundary conditions.

De Lit et al. [3] use a completely mechanical approach to
describe piezoelectric bending actuators. They calculated all ex-
ternal variables, like curvature, tip deflection and tip angle based
on the equilibrium of forces and moments. The bender is treated
as an Euler-beam for mechanical simplification. This model is
also limited in terms of boundary conditions and the influences
of external loads onto the electrical parameters are neglected.
Weinberg [4] developed a similar model, but includes the influ-
ence of external forces onto the charge. Using these parameters
he gets a full transducer matrix. This model shows the same
limitations concerning geometry and boundary conditions as the
ones developed by Smits et al. [1,2] and De Lit et al. [3], but can
be applied to benders with several layers. The significance of
the work done by Weinberg is that he also treated the problem
of multiple neutral planes in the heterogeneous bending ele-
ments, but did not mention their importance for the calculation
of the real existing stresses and strains in the transducer. Park
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Nomenclature

D electric displacement
d31 piezoelectric charge constant
E Young’s-modulus (index s) or electric field (index

3. . . )
F force (general)
hi thickness of layers (defined by index)
I moment of inertia
K, N constants for simplification
L length of bender
M moment (general-specified by index)
Q electric charge
S strain tensor
ss

11 compliance of support material
s

p
11 compliance of piezo material

T stress tensor
V voltage
w width of bender
x, y, z space coordinates
z0 position of the neutral layer for external loads

Greek letters
δ deflection (general)
ε strain (general)
ε0 strain that defines the bending
ε33 dielectric constant of the piezo material (in fact

εT
33)

γ position of the neutral layer for piezoelectric bend-
ing

σ stress (general)
� radius of curvature

and Moon [5] established a model addressing the problem of
various boundary conditions. This article [5] shows an approach
to handle the influence of the boundaries onto the external loads
but stays limited to a fixed set of boundaries.

All the articles mentioned have some similarities. They are
based on the static equilibrium of forces and moments. In every
case, the assumption is made that a superposition of piezoelec-
tric action and external loads in the model is possible. These
assumptions are also made by Wiesendanger [6], but he uses a
total different approach. In his work, the influence of external
mechanical loads onto electrical and mechanical behavior is ne-
glected, but the calculation of strains and stresses is the basis
of the determination of the actuators deflection. Although this
approach was used by Wiesendanger in a very limited way, it
does not only allow the calculation of any mechanical param-
eter but also the determination of the real strains and stresses
in the beam. These values are of vital importance for applica-
tions with integrated strain gauges and the calculation of internal
electromechanical effects.

The modeling approach presented in this article will use this
background and superpose the effects of piezoelectric action and

Fig. 1. Schematic of the modeling approach.

external loads in a complete model. The approach is shown in
Fig. 1. This paper describes a new modeling approach that leads
to a static model for all possible piezoelectric bender actuators
under any lateral loads. It will be based on simple mechanical
theories that allows an easy extension according to the complex-
ity of the modeled system.

2. Derivation of equations

The equations describing the behavior of the bender are based
on the strain in the material and separated into two parts: the
equations of the piezoelectric action and the equations of the
bender under external mechanical load.

For piezoelectric benders, three different configurations are
of interest (see Fig. 2): the triple-layer bender (a), consisting of
two piezoelectric layers acting in opposite manner and a me-
chanically relevant passive layer in between; the bimorph (b),
that has the same configuration but without the intermediate
layer; the heterogeneous bimorph (c—also called monomorph
or unimorph), that consists of one piezoelectric layer and one
passive. The three cases are given in Fig. 2.

The model is established for triple-layer bender configura-
tion, the others can be derived by setting the thicknesses of the
non-existing layers to zero. For the modeling process, some gen-
eral assumptions have to be made:

(
(

(

s
[
l
a
a

1) For the benders, the Euler–Bernoulli-beam-theory holds.
2) There is no slip between the layers (the strain is continuous

over the thickness).
3) The beam is in a static equilibrium: �F = 0; �M = 0.

From the general equations of piezoelectricity, the con-
tituent equations of the bimorphic bender can be derived
1]. In a bimorph or triple-layer, bender the equation for the
ower and upper piezoelectric layer have an opposite sign, for
monomorph the upper layer will be considered piezoelectric

nd the lower passive. The superscripts u (upper) and l (lower)
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Fig. 2. Three possible bender configurations (p, piezo and s, passive layer): (a) triple-layer bender, (b) bimorph and (c) monomorph.

indicate the position of the layer. The subscripts 1–3 represent
the coordinates x–z, respectively, according to Fig. 3.

Su
1 = sE11T

u
1 − d31E

u
3 (1)

Du
3 = −d31T

u
1 + ε33E

u
3 (2)

Sl
1 = sE11T

l
1 + d31E

l
3 (3)

Dl
3 = d31T

l
1 + ε33E

l
3 (4)

For most technically used piezoelectric materials holds d31 <

0 that defines the sign in the right-hand term of Eqs. (1) and (3).
The parameter sE11 is the compliance of the piezoelectric material
[7]. For non-piezoelectric materials usually the Young’s modulus
E is given. To avoid confusion between E3, the electric field
and Es, the Young’s modulus of the support layer and to have
a consistent outline of the formulas the compliance ss

11 will be
used instead. This compliance is defined:

ss
11 = 1

Es
. (5)

For the whole model, the correct use of the sign is of great
importance. The positive directions of all parameters are given
in Fig. 3: in this article, the beams will be considered prismatic
with a rectangular section of the width w, that will be constant
over the length and equal for all layers.

2.1. Piezoelectric bending

The effects of piezoelectric bending and bending due to exter-
nal loads will be considered separately. The piezoelectric bend-
ing results from the compression or extension in the piezoelec-
tric material enforced by the electric field. This is the mechanical
base of all piezoelectric actuation. As stated in the beginning of
Section 2, the calculation will be based on a static equilibrium.

Fig. 3. Sign convention for the bender model (p, piezo and s, passive layer).

A detailed description of the basics of piezoelectric bending can
be found in ref. [1]. The actuation in the bender results from the
strain εu induced by the electric field E3 and the piezoelectric
material property defined by the constant d31:

εu = −d31E3. (6)

The Hooke’s law of stress and strain is:

σ = εE = ε

s11
. (7)

The acting strains and stresses in a symmetric trimorph ben-
der are depicted in Fig. 4. In this case, the neutral plane N0 is
in the center of the beam. The strain in the piezoelectric parts,
induced by the electric field εu, is positive in the upper layer
and negative in the lower layer. The desire to elongate the up-
per piezo layer and contract the lower piezo layer, respectively,
causes the stress in the upper layer σpu to be negative and the
stress in the lower piezo layer σpl to be positive.

Two parameters define the bending of the beam: The inter-
nal strain ε0z and the position of the neutral plane. They can
be calculated by solving the equations of the static equilibrium
�F = 0; �M = 0. With the stresses σpu, σpl and σs we can cal-
culate the force and the moment acting in the bender by inte-

Fig. 4. Acting strains and stresses in the bender.
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Fig. 5. Strains and stresses in the bender (while the point of zero strains and
stresses o is moved virtually outside).

grating the stress σ over the cross-sectional area A.

F =
∫∫

(A)
σ dy dz (8)

M =
∫∫

(A)
σz dy dz (9)

The cross-sectional area A is determined by the width of the
bender w and the heights hs and hpu, hpl, respectively. For the
calculation, we move the neutral plane virtually outside of the
beam to the position o. This operation has the advantage, that the
position of the neutral plane appears in the limits of the integra-
tion. The global origin of the coordinate system stays in place
according to Fig. 3. This virtual operation is shown in Fig. 5.

The distance of the neutral plane from the origin of the global
coordinate system (i.e. the bottom of the bender) is called γ . The
limits of the integration, which are the edges of the layers, are
with respect to the position of the neutral plane:

z1 = γ; z2 = z1 + hpl; z3 = z2 + hs; z4 = z3 + hpu.

The stresses in the bender are according to Fig. 5:

σpu = 1

s
p
11

w(ε0z − d31E
u
3), (10)

σpl = 1
p w(ε0z + d31E

l
3), (11)

σ

t
e
l
f

only).

F =
∫ z2

z1

(
1

s
p
11

w(ε0z − d31E
l
3)

)
dz

+
∫ z3

z2

(
1

ss
11

w(ε0z)

)
dz

+
∫ z4

z3

(
1

s
p
11

w(ε0z + d31E
u
3)

)
dz (13)

M =
∫ z2

z1

(
1

s
p
11

w(ε0z − d31E
l
3)

)
z dz

+
∫ z3

z2

(
1

ss
11

w(ε0z)

)
z dz

+
∫ z4

z3

(
1

s
p
11

w(ε0z + d31E
u
3)

)
z dz (14)

With the equilibrium condition (�F = 0; �M = 0 for no ex-
ternal loads) these equations can be solved for γ and ε0. For the
complete triple-layer bender follows:

ε0 = −6d31s
s
11hs(El

3hpl(hpl + hs) + Eu
3hpu(hpu + hs))s

p
11

K

w

K

a

γ

w

N

c
n

s11

s = 1

ss
11

w(ε0z). (12)

The electric field E has always the same direction, but since
he polarization in the two piezoelectric layers is opposite, its
ffect is positive for the lower layer and negative for the upper
ayer. With Eqs. (8) and (9), we can now calculate the resulting
orce and moment (with w = const. the integration is about z
− 6d31s
s
11(El

3 + Eu
3)hplhpu(hpl + hpu + 2hs)ss

11

K
(15)

ith

= h 4
s s

p2
11 + 2hs(2(h3

pl + h 3
pu) + 3(h2

pl + h2
pu)hs

+ 2(hpl + hpu)h2
s ) s

p
11 ss

11 + ((hpl + hpu)4

+ 12hplhpu(hpl + hpu)hs + 12hplhpuh
2
s )ss2

11 (16)

nd

= − (El
3hpl(6h2

pl + 9hplhs + 4h2
s )) s

p
11hs

N

− (Eu
3hpu(6hpl(hpu + hs) + hs(3hpu + 2hs))) ss

11hs

N

−

(hpl + hpu)2(Eu
3hpu(2hpl − hpu)

+ El
3hpl(hpl + 4hpu))ss

11

N

−

(6hplhpu(3El
3hpl + Eu

3hpl + 2El
3hpu)hs

+ 12El
3hplhpuh

2
s )ss

11

N
(17)

ith

= 6hs(E
l
3hpl(hpl + hs) + Eu

3hpu(hpu + hs))s
p
11

+ 6(El
3 + Eu

3)hplhpu(hpl + hpu + 2hs)s
s
11. (18)

The values for γ are negative, since the point o in Fig. 5 was
hosen outside of the beam, and the origin of the global coordi-
ate system is at the bottom of the whole bender (see Fig. 3).
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The point of zero stress and strain γ is the neutral plane for
piezoelectric bending, ε0 stands for the strain slope inside the
bender. The exact strain in is therefore:

ε(z) = ε0(z + γ). (19)

The strain slope ε0 is also the reciprocal value of the benders
radius of curvature:

ε0 = 1

�
. (20)

According to the beam theory, the deflection δ(x) of the ben-
der can be calculated by the double integration with respect
to x.

δ′(x) =
∫

ε0 dx, δ(x) =
∫

δ′(x) dx (21)

Taken a simple symmetric bimorph of the length L and the
layer thickness h, clamped on one side, the deflection of the free
end, calculated with Eq. (21), becomes (with E3 = V

2h
):

δ(L) = 3d31L
2

8h2 V (22)

This is exactly the result Smits et al. [1] achieves for this
configuration in his paper.

2
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F

F

For z0 one obtains:

z0 =

h2
s s

p
11 + h2

pls
s
11 + h2

pus
s
11 + 2hpuhss

s
11

+ 2hpl(hss
p
11 + hpus

s
11)

2(hss
p
11 + (hpl + hpu)ss

11)
. (26)

The moment of inertia I is calculated according to the defi-
nition:

I =
∫

(A)
z2 dA, (27)

where A is the cross-sectional area of the bender. The moment
of inertia is independent of the Young’s modulus for beams
of one material. The bender is, however, except for the bi-
morph, a composite structure. For the correct moment of in-
ertia, the cross-sections will be weighted according to their
Young’s modulus. The reference modulus will be here ss

11. The
moment of inertia for the total bender calculates according
to this:

I = w
ss

11

s
p
11

∫ hpl−z0

−z0

z2 dz + w

∫ hpl+hs−z0

hpl−z0

z2 dz

+ w
ss

11

s
p
11

∫ hpl+hs+hpu−z0

hpl+hs−z0

z2 dz. (28)

Simplification gives:

I

w
b
b

ε

2
p

d
p
b

ε

b

W
c

2

a
t

.2. Mechanical properties

Besides the piezoelectric actuation, the bender is also subject
o external moments and forces. For this section, the bender
ehaves as a passive composite beam. All occurring external
oads will be merged to one parameter Mb(x), that may vary
ver the beams length. The calculation of the bending moment
s done according to the basics of mechanics [8], and will not
e treated here. Other important mechanical properties are the
oment of inertia I and the mechanical neutral plane z0. This

eutral plane z0 is not equal to the neutral plane of piezoelectric
ending γ , which is explained in Section 2.4.

The mechanical neutral plane is calculated from the force
quilibrium. With Eq. (8), we can calculate the force from the
tress in the beam. The stress resulting from external loads in
he beam is:

= εM

s11
(z − z0), (23)

hile εM is the mechanically induced strain slope according to
0, defined in Eq. (30). Therefore, the force F is (for constant
idth w):

=
∫

z

εM

s11
w (z − z0) dz. (24)

For the whole beam, the force equilibrium is:

=
∫ hpl

0

εM

s
p
11

w (z − z0) dz +
∫ hpl+hs

hpl

εM

ss
11

w (z − z0) dz

+
∫ hpl+hs+hpu

hpl+hs

εM

s
p
11

w (z − z0) dz = 0 (25)
= Kw

12s
p
11(hss

p
11 + (hpl + hpu)ss

11)
, (29)

ith K from Eq. (16). With these parameters, the mechanical
ehavior of the bender can be calculated. The real strain in the
ender due to external loads is:

M = ss
11

I
Mb(x) (z − z0). (30)

.3. Superposition of mechanical properties and
iezoelectric actuation

As mentioned before, the final physical behavior of the ben-
er is a superposition of the piezoelectric actuation and the
assive bending under external loads. The total strain in the
ender is:

tot(z, x) = ε0(z + γ) + ss
11

I
Mb(x) (z − z0). (31)

For the calculation of the curvature and the deflection of the
eam, the zero-positions of the strain are not necessary.

1

�
= εtot = ε0 + ss

11

I
Mb(x) (32)

ith εtot the curvature and related properties like the deflection
an be calculated according to Eqs. (20) and (21).

.4. Origin and relevance of multiple neutral planes

As stated in Sections 2.1 and 2.2, the points of zero stresses
nd strains (i.e. the neutral plane) for piezoelectric actua-
ion and external loading do not coincide necessarily. For
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Fig. 6. Strains in a heterogeneous bimorph for piezoelectric bending and bending
due to an external moment.

benders of symmetric geometry, also taking into account the
material properties, only one neutral plane exists. For non-
symmetric benders, as the heterogeneous bimorphs this is not
the case. The values for γ and z0 are different (see Eqs.
(17) and (26)).

The reason of this effect can be found in the main differ-
ence between piezoelectric bending and bending under external
load. While the external loads considered in this article consists
only of lateral forces and moments, the piezoelectric bending is
caused by a longitudinal force (i.e. the elongation/contraction of
the piezoelectric part).

For a heterogeneous bimorph (monomorph) according to
Fig. 2(c), with the piezo layer thickness hp, the passive layer
thickness hs and the associated compliances s

p
11 and ss

11, the
Eqs. (17) and (26) simplify to:

γ = −3hph
2
s s

p
11 + 2h3

s s
p
11 − h3

ps
s
11

6hss
p
11(hp + hs)

(33)

z0 = h2
s s

p
11 + h2

ps
s
11 + 2hphss

s
11

2(hss
p
11 + hps

s
11)

. (34)

It can be seen that they are not equal. The strain inside a beam
of this geometry under piezoelectric bending and bending under
an external moment is shown in Fig. 6. The external moment is
chosen in a way that the radius of curvature � is the same as for
t

b
e

ε

o
a
H
f

A

Fig. 7. Constant strains in a heterogeneous bimorph that is forced in a straight
shape (no bending).

hindered to bend. In the totally straight beam all strains are uni-
formly distributed over the thickness of the layer. The effect is
shown in Fig. 7.

According to this assumption, we can calculate the strain
offset εs from the static force equilibrium. The calculation in-
cludes only length-forces (absolutely no bending). The elonga-
tion of the piezo part is defined in Eq. (6). Now the support
layer is stretched and the piezo layer is shortened, resulting in
uniformely distributed strains. The strain in the piezo layer is
called εp.

εU = εs + εp. (36)

The forces Fp and Fs are, according to Eqs. (7) and (8):

Fp = 1

s
p
11

(εpwhp) (37)

Fs = 1

ss
11

(εswhs.) (38)

With the static equilibrium of forces (
∑

F = 0), we can ex-
press εp as a function of εs:

εp = s
p
11hs

ss
11hp

εs (39)

ε

i

ε

he piezoelectric actuation (i.e. ε0 = εM).
The schematic shows that there is a constant difference εs

etween the strains due to piezoelectric bending and due to the
xternal moment:

0(z + γ) = εM(z − z0) + εs. (35)

If the piezoelectric bending is considered a combination
f a longitudinal force and a bending moment, the strain is
lso a combination of strains caused by these two effects.
ence, the strain offset εs is the part caused by the longitudinal

orce.
To calculate this offset a thought experiment is conducted.
heterogeneous bimorph of under piezoelectric actuation is
Input this into Eq. (36), we find:

s = εu
ss

11hp

ss
11hp + s

p
11hs

(40)

Now, we create an auxiliary strain variable ε∗
M that is numer-

cally equal to εM :

∗
M = ε0(z − γ) + εs, (41)
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Fig. 8. Planar bimorph for experimentation, with: (a) strain gauges and (b) elec-
trodes.

with ε0 from Eq. (15), simplified for the used geometry. Set ε∗
M

to zero and solved for z yields:

z(ε∗
M = 0) = h2

s s
p
11 + h2

ps
s
11 + 2hphss

s
11

2(hss
p
11 + hps

s
11)

, (42)

which is exactly the same result as Eq. (34).
The effect of the multiple neutral planes was also measured

experimentally to show the strain behavior a planar bimorph
was equipped with two strain gauges to measure the strain on
the surface (Fig. 8), as described in [10].

The electrodes of the beam are not interconnected, thus the
electric fields E1 and E2 can be controlled independently. The
beam has the following properties:

w = 2.85 mm, h = 0.5 mm, L = 27 mm.

If only one pair of electrodes is carrying a voltage (E1 �=
0; E2 = 0 or E2 �= 0; E1 = 0), the beam is behaving like a het-
erogeneous bimorph. Mechanically, however, the beam is abso-
lutely symmetric thus the neutral plane for external loads is in
the center. The measurement results are shown in Fig. 9. The

) calc

experiments A and B were the actuation of either the left or the
right pair of electrodes. The diagrams show the strain distribu-
tion according to Eq. (19) for several electric fields. The graphs
show that the strain is zero for one single point under differ-
ent electric field strengths. The difference from the calculated
neutral plane can be explained by fabrication tolerances of the
specimen.

The results of the experiments, the measured positions of the
neutral planes, are shown in the following table:

Measured position
(experiment A) (mm)

Measured position
(experiment B) (mm)

0.420 2.554
0.419 2.553
0.426 2.551
0.425 2.539

The values from the four experiments (four different electric
field strengths) show a significant accuracy in the range of some
micrometers. The average values of the experimental results are
listed in the following table and compared to the analytically
calculated values.

Measured position (average) (mm) Calculated position (mm)

0.423 0.441
2.549 2.41

T
t
t
i
k
t
t
f

Fig. 9. Results of the experiment, with: (a) measured neutral plane, (b
 ulated neutral plane and (c) neutral plane for external loads (center).

he calculation above and the experiments showed the deriva-
ion of the difference of neutral planes from the geometry of
he bender. The influence of the neutral plane position is very
mportant. In applications, where strain gauges are involved, the
nowledge about the real strain distribution is of great impor-
ance for design and optimization. The other important point is
he influence on the electrical parameters as described in the
ollowing section. The electrical parameters in piezoelectric el-
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ements are determined mainly by the internal stress distribution
which directly depends on the position of the neutral plane. The
influence of the exact position of the neutral plane on the calcu-
lation of electrical parameters of piezoelectric elements can be
seen in Fig. 6.

2.5. Electrical properties

Piezoelectric actuators or sensors are electromechanically
coupled systems. Any change of electrical parameters will
change the mechanical side and vice versa. For sensor applica-
tions, the mechanical effect on electrical parameters is of great
importance (direct piezoelectric effect). Simple passive sensors
output a voltage V depending on the mechanical strain or stress.
In a coupled system, however, the voltage (electrical field E) is
an input parameter, enforced by the electrical driving unit. For a
defined voltage in a piezoelectric system, the mechanical inputs
change the charge Q on the electrodes (the current through the
device). The same happens in a simple sensor, the charge is just
converted in a voltage by the devices capacitance.

The charge is calculated with Eqs. (2) and (4), which define
the electrical displacement D. The charge Q is then given by:

Q =
∫

AE

D3 dAE, (43)

w
i
a
c
A

p
s
w
t
−

T

t
d
d
c
f
i
t
w

p
o
t
N
t

stress is the effective stress. It follows:

T u
1 = 1

hpu

∫ hpl+hs+hpu

hpl+hs

1

s
p
11

(
εtot + d31E

u
3

)
dz, (45)

T l
1 = 1

hpl

∫ hpl

0

1

s
p
11

(
εtot − d31E

l
3

)
dz, (46)

The strain εtot is the superposition of strains resulting from
external moments and piezoelectric actuation as in Eq. (31):

εtot(z, x) = ε0(z + γ) + ss
11

I
Mb(x) (z − z0). (31)

In this equation, the great importance of the position of the neu-
tral planes can be seen clearly. An error would stay as an offset in
the equation and falsify the results of the following calculations.

These stresses put in Eqs. (2) and (4), the charges Qu and Ql
become according to Eq. (43):

Qu =
∫ w

0

∫ L

0

(−d31T
u
1 + ε33E

u
3

)
dx dy, (47)

Ql =
∫ w

0

∫ L

0

(
d31T

l
1 + ε33E

l
3

)
dx dy. (48)

The common approach for all possible configurations, that
is described in chapter 2, cannot be used for the calculation of
the charge. Eqs. (47) and (48) cannot be always solved if some
p
h

u
s
r
w
h
b
h

E
b

h

c
f
r

Q

t
b
p
i

V

here AE is the electrode area. The stress T1 in Eqs. (2) and (4)
s the stress resulting from mechanical loads and piezoelectric
ctuation. The part resulting from piezoelectric expansion or
ompression is the stress that is induced by resisting this action.
lso in the free bender it is non-zero.
For the calculation of the charge Q, the positions of the neutral

lane are important. The stress T1 is calculated again from the
train εtot according to Eq. (31) to obtain only the resisting stress
e have to subtract the piezoelectric induced strain. According

o the sign conventions a positive strain (elongation) is S1 =
d31E3:

1 = 1

s
p
11

(
ε0(z + γ) + ss

11

I
Mb(x) (z − z0) + d31E3

)
.

(44)

The electric displacement D, and therefore the charge Q, has
o be calculated for the upper and lower layer separately since
ifferent electric fields and thicknesses are possible and the stress
iffers as well. Another point that shows the need for a separate
onsideration is the z-component in T1. Although an equation
or D with z-dependency is possible, Eq. (47) shows that this
s impossible for the charge Q. The charge Q is technically on
he electrodes and can therefore not depend on the coordinate z,
hich is oriented perpendicular to them.
This apparent contradiction can be solved with a thought ex-

eriment: the piezoelectric layers are considered to be a stack
f infinitesimal small layers. Each layer contributes to the en-
ire piezo layer with a charge according to the stress in the layer.
ow it also contributes with its infinitesimal cross-section to the

otal cross-section. This fact makes it obvious that the average
arameters are zero. With respect to these difficulties the charge
as to be calculated for each case (see Fig. 2) separately.

For the triple-layer bender, the charge will be calculated for
pper and lower piezo layers separately. The total charge of the
ystem depends then on the electrical connections (parallel or se-
ies connection). Eqs. (47) and (48) for the triple-layer bimorph
ill result into very large equations that are to long to be stated
ere. To show the function of the principle, the equations will
e solved for the heterogeneous bimorph (monomorph) and the
omogeneous bimorph as examples.

To calculate the charge of a symmetric bimorph, we simplify
qs. (15)–(18), as well as Eqs. (26) and (29) according to the
imorph geometry:

pu = hpl = hp, hs = 0. (49)

The simplification has to be introduced in a early stage of the
alculation to avoid problems that would make the calculation
ail (like a division by zero) as mentioned before. The charge
educes then to:

= L w

s
p
11

(
Eu

3 s
p
11 ε33 − d2

31(Eu
3 + El

3)

8

)

+ 3 d31

4 h2
p

∫ L

0
Mb(x) dx (50)

The presented bimorph will not have any intermediate elec-
rode (hs = 0), so the charge will be present at the top- and
ottom electrodes. The total electric field E3 is identical in both
iezoelectric layers and can be replaced by the voltage V accord-
ng to:

= Eu
3(2hpu) = El

3(2hpl). (51)
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For the monomorph, the simplification will be as follows:

hpu = hp, hpl = 0, Eu
3 = E3, El

3 = 0 (52)

The charge, which is on the electrodes of the remaining piezo-
electric layer (upper layer) is reduced to:

Q =
E3 L w

(
K ε33 − d2

31 hs(h 3
s s

p
11 + h 3

p ss
11)
)

K

+ 6 d31 hss
s
11s

p
11(hp + hs)

K

∫ L

0
Mb(x) dx (53)

The parameter K in Eq. (53) is still the K from Eq. (16) that
simplifies also according to Eq. (52).

3. Example calculation for a complex monomorph
actuator

3.1. Mechanical behavior of example monomorph

To demonstrate the capabilities of the modeling approach
an example was chosen that shows its adaptability to different
boundary conditions. The configuration of the bender is given in
Fig. 10. The bender consists of two layers, a long support layer
of the thickness hs and a shorter piezoelectric layer on top, with
the thickness hp. The total beam is simply supported at both ends
and the force F is acting on it at x = a. The electric field E3 has
to induce an internal moment that compensates the influence of
the force F at the point x = a, so that the deflection is zero at
that point.

The bending moment is discontinuous in this case, thus two
equations are needed:

Mb1 = −F
(

1 − a

L

)
x 0 ≤ x ≤ a (54)

Mb2 = −F
( a

L

)
(L − x) a ≤ x ≤ L (55)

Also two moments of inertia are needed. While the moment
of inertia I from Eq. (29) is also valid for the bender for b ≤
x ≤ (L − c) under the simplifications of Eq. (52), the moment
of inertia left and right is different:

Is = wh3
s

12
0 ≤ x ≤ b and (L − c) ≤ x ≤ L (56)

With the two equations for the bending moment (54) and
(55) and the two moments of inertia (29) and (56), we ob-

Fig. 10. Configuration of the example bender.

tain four different equations for the curvature according to
Eq. (32):

ε1 = Mb1s
s
11

Is
0 ≤ x ≤ b (57)

ε2 = Mb1s
s
11

I
+ ε0 b ≤ x ≤ a (58)

ε3 = Mb2s
s
11

I
+ ε0 a ≤ x ≤ (L − c) (59)

ε4 = Mb2s
s
11

Is
(L − c) ≤ x ≤ L (60)

The benders deflection can now be calculated by double inte-
gration according to Eq. (21). The resulting integration constants
can be solved with the boundary conditions and transition con-
ditions. These are:

δ′′
1(x = 0) = 0 δ′

1(x = b) = δ′
2(x = b)

δ′′
4(x = L) = 0 δ1(x = b) = δ2(x = b)

δ3(x = (L − c)) = δ4(x = (L − c)) δ′
2(x = a) = δ′

3(x = a)

δ′
3(x = (L − c)) = δ′

4(x = (L − c)) δ2(x = a) = δ3(x = a)

And for the determination of the appropriate electric field E3
the deflection at the point x = a is set to zero :

δ2(x = a) = 0

l
t

s

d

w

T
c
s
c
z
w
p

m
t

H

T

δ

The resulting equations are very extended and will not be
isted here but with some numerical values the effective curva-
ure can be shown. The numerical values are:

s
11 = 1

370 × 109

m2

N
, ss

11 = 15 × 10−12 m2

N
,

31 = −210 × 10−12 m

V
hp = hs = 0.5 mm, L = 40 mm,

= 4 mm b = c = 5 mm, a = 20 mm, F = 0.1 N

The values are arbitrary but fit a bender of reasonable size.
he compliance of the support layer is the one of alumina. The
ompliance s

p
11 and the constant d31 are taken from the data

heet of an average soft PZT. With these values the electric field
an be calculated that is necessary to keep the point x = a at
ero deflection. The resulting electric field is E3 = 61830.4 V

m ,
hich results in a voltage across the piezoelectric layer of ap-
roximately V = 30.92 V.

For printing, the curvature of the total bender, we have to
erge the four equations resulting equations. Therefore, we need

o introduce the unitstep function H(x).

(x − d) =
{

0 if x < d

1 if x ≥ d
(61)

he total curvature δ of the beam is then:

(x) = δ1(x)(H(x) − H(x − b)) + δ2(x)

(H(x − b) − H(x − a)) + δ3(x)

(H(x − a) − H(x − (L − c))) + δ2(x)(H(x − L − c))

(62)
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Fig. 11. Bending shape for example bender.

The resulting shape of the bender is depicted in Fig. 11: if the
equations for the strain ((57)–(60)) are based on the strain Eq.
(31) instead of (32), the strain in any position in the bender can
be calculated exactly.

In this example, the strain at the bottom of the support layer
(the bottom of the whole system) is calculated and plotted (Fig.
12). The example of strain at the bottom was chosen, because this
strain can be measured by strain gauges. Now the model provides
the correlation between the force F, the electric field E3 and the
strain ε at the bottom layer and the deflection δ at any point. With
this knowledge, a system can be established that controls the de-
flection of the bender by means of applied electric field, with the
measurement of the strain. The strain on the bottom layer for two
different forces F = 0.1 and 0.2 N, and their appropriate electric
fields (δ(x = a) = 0) is depicted in Fig. 13: with the help of the
model the dimensioning, optimization and the ideal placement
of the strain gauges for such a system can be done easily.

3.2. Optimization of example monomorph

To show the advantage of exact strain modeling the ex-
ample monomorph will be optimized for strain gauge force
measurement.

In a first step, the best position for the strain gauge on the
bender has to be chosen. From Fig. 13, it can be seen that
t
t
s
d

Fig. 13. Strain at the bottom of the example bender for different forces.

Fig. 14. Strain at x = b, z = 0 for different thicknesses hs and compliances ss
11.

Fig. 10). Now, we have to maximize εtot:

max(εtot(x = b, z = 0)) (63)

for the maximization of the strain we use Eq. (57) but with
the z-coordinate (according to Eq. (31)). For the example, we
stick to most of the parameters and optimize just for hs and
ss

11. This corresponds to a choice of the support layer thickness
and material. The resulting strain at this point is shown in Fig.
14. The thickness hs ranges from 100 �m to 1 mm, which fits
the unchanged parameters of the actuator. The compliance ss

11
ranges from 2.5 × 10−12 m2/N (which corresponds to 400 GPa)
to 2 × 10−11 m2/N (50 GPa). The diagram (Fig. 14) shows that
an optimum does not exist, but for higher compliance ss

11 (lower
stiffness) and higher thicknesses hs the strain output increases
significantly. (The results in the graph are cut at 2µε, the real
values grow ad infinitum.) The real optimum for the application
has to be found with the help of other criterions or limitations.

4. Conclusion

The modeling approach given has two major advantages com-
pared to conventional models:

(1) The modeling approach is totally independent of mechanical
constraints and boundary conditions. Any possible config-
he highest strain value on the surface for a certain force is at
he point x = b. The strain gauge will be placed on the lower
urface of the beam (z = 0), since the upper surface is uneven
ue to the transition from passive bender to monomorph (see

Fig. 12. Strain at the bottom of the example bender.
 uration can be modeled as long as the beam theory holds.
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(2) The modeling approach does not only allow the calculation
of the curvature (bending angles, deflection, etc.) and elec-
trical properties, it is also capable of modeling the exact
strain in any given point of the bender.

The approach has also the advantage, that x, y and z are
variable in the equations to the end, so that a plotting of
curvature and strain, as in Section 3 is easily possible. The
approach is also not just another bender model. The calculation
of the actuator contains all necessary parameters, that allows a
mathematical optimization. As shown in Section 3.2, the calcu-
lation of the strain in the actuator helps finding the best position
for the placement of strain gauges as well as the optimization
of the actuator geometry to maximize strain gauge output. The
effect of the multiple neutral planes, described in Section 2.4
could be evaluated experimentally. The experimental results
show the importance of the consideration of the multiple
neutral planes for the calculation of the existing strains and
stresses.

Since the total approach is based on simple mechanical the-
ories it can be extended easily. In the equations that are stated
here for a maximum of three layers, any number of layers can
be introduced as long as they still can be handled. For the same
reason, the approach can be easily adopted for two-dimensional
problems according to the plate theory. The extended model is
proven to fit all conditions possible in various applications.
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