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ABSTRACT. In the general context of complex data processing, this paper
reviews a recent practical approach to the continuous wavelet formalism on
the sphere. This formalism notably yields a correspondence principle which
relates wavelets on the plane and on the sphere. Two fast algorithms are also
presented for the analysis of signals on the sphere with steerable wavelets.

1. Introduction

In many fields of science, from computer vision, to biomedical imaging,
geophysics, or astrophysics and cosmology, experiments are set up releasing
more and more complex data to process. A first complexity of the data
lies in their large volume, related to the always increasing resolution of
technological devices. Moreover, data are not necessarily distributed on the
real line (audio signals, ...), or on the plane (images, ...), but can live on
higher-dimensional or nontrivial manifolds (Rn, sphere, hyperboloid, ...).
Finally, the data may correspond not only to scalar fields (local intensity),
but also to tensor fields on those manifolds (local diffusion matrix, local
polarization, ...).

In this new era of complex data processing, powerful tools always need
to be developed for the precise analysis of the signals under scrutiny. In this
paper, we review recent formal and algorithmic advances for the continuous
wavelet analysis of signals on the sphere. This scale-space formalism goes
well beyond the spectral analysis, as it enables one to probe the localization,
scale, and orientation of the features of the signals analyzed. An exhaus-
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tive review on wavelets on the sphere and related manifolds is presented in
another article of the present issue [5].

For the sake of the illustration we choose the example of the cosmic
microwave background (CMB) data from cosmology. The CMB is a polar-
ized electromagnetic blackbody radiation observed today in all directions
of the sky, which emerged some 380.000 years after the Big Bang. This
snapshot of the early universe bears a wealth of information for the study of
its structure and evolution, i.e., for cosmology. The present NASA WMAP
(Wilkinson Microwave Anisotropy Probe) satellite experiment [6] releases
maps of the celestial sphere of 3 megapixels at each detection frequency,
while the forthcoming ESA Planck Surveyor satellite experiment [24] will
increase the resolution to 50 megapixels. The CMB therefore crystallises
the previously quoted potential data complexities. Its temperature (inten-
sity) and polarization, respectively, define scalar and tensor fields on the
sphere, and the corresponding experimental data already appear in large
volumes. Various applications of the continuous wavelet formalism on the
sphere for the analysis of the CMB are presented in another article of the
present issue [23].

The structure of the paper goes as follows. We only focus on the for-
malism for the continuous wavelet transform on the sphere introduced in [2],
as recently further developed in a practical approach by [29]. This formalism
is explicitly reviewed in section 2. The wavelet decomposition of a signal on
the sphere S2 is defined by its projection coefficients on translated, rotated,
and dilated versions of a mother wavelet, i.e., a directional correlation at
each analysis scale. These wavelet coefficients therefore live on the rotation
group in three dimensions SO(3). The wavelet must satisfy an admissibility
condition ensuring that the signal may be explicitly reconstructed from its
wavelet coefficients. A correspondence principle is also recalled stating that
wavelets on the sphere may be built from an inverse stereographic projec-
tion of wavelets on the plane. This principle enables one to transfer onto
the sphere some properties of wavelets on the plane, such as the notion of
steerability. We explicitly describe major examples of axisymmetric, direc-
tional, and steerable wavelets. In section 3, we give the generic definition of
directional correlation, and the definition of standard correlation, to which
reduce the wavelet coefficients of a signal with a steerable or axisymmetric
wavelet. We discuss their a priori computation cost on any pixelization of
S2 and of SO(3), which is prohibitive for high resolution data. We em-
phasize the existence of a directional and standard correlation relation in
harmonic space. In section 4, we first discuss the band-limitation of signals
and filters. We then review two fast algorithms for the directional correla-
tion of band-limited signals and filters on iso-latitude pixelizations on the
sphere. The first one is based on a technique of separation of variables in
the Wigner D-functions on SO(3) [18, 30]. The second one relies on the fac-
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torization of the three-dimensional rotation operators to interpret the result
of the directional correlation as a function on the three-torus T3, and ap-
plies the separation of variables to three-dimensional imaginary exponentials
[25, 28, 22]. The a priori O(L5) asymptotic complexity is thereby reduced
to O(L4), where 2L roughly stands for the square-root of the number of
pixels on the sphere, i.e., for band-limited signals and filters with band-limit
L ∈ N. For steerable and axisymmetric wavelets, the directional correla-
tion resumes to standard correlations, and the asymptotic complexity drops
to O(L3). The typical computation time for the directional correlation of
megapixels maps (L ≃ 103) correspondingly drops from years to tens of
seconds on a standard computer. This easily allows the analysis of multiple
signals at such high resolutions, and at multiple scales. These developments
finally lead us to our conclusions in section 5.

2. Continuous wavelets on the sphere

2.1 Practical approach

Among other approaches [17, 11, 12], a satisfactory formalism for the contin-
uous wavelet transform of signals on the sphere S2 was originally established
in a group-theoretical framework [2, 3, 4, 9, 7]. The aim of the present article
is to review a more practical but completely equivalent approach, recently
proposed by [29]. In that framework, a “mother wavelet” Ψ(ω) is defined as
a localized square-integrable function on the unit sphere, on which contin-
uous affine transformations (translations, rotations, and dilations) may be
applied. The wavelet transform of a square-integrable signal on the sphere
is then defined as the directional correlation of the signal with the dilated
versions of the mother wavelet. At each scale, the corresponding wavelet
coefficients are square-integrable functions on the rotation group in three
dimensions SO(3). Finally, an admissibility condition is imposed on the
wavelet which ensures an exact reconstruction formula of the signal from its
wavelet coefficients 1 .

The real and harmonic structures of the unit sphere S2 are concisely

1Notice that the signals and filters considered by the formalism are scalar functions,
i.e., invariant under local rotations in the tangent plane at each point on the sphere.
In the general context of complex data processing, one might want to generalize
the wavelet formalism presented here to the analysis of rank n tensor functions.
However, tensor fields may equivalently be expressed in terms of scalar fields. In
particular, polarization data on the sphere constitute a rank 2 tensor field. It
can be equivalently described in terms of its so-called electric and magnetic parts,
which actually constitute two separate functions on the sphere, with a purely scalar
behaviour. The present formalism for the scale-space wavelet decomposition of
scalar functions on the sphere may therefore be applied to the analysis of both
scalar fields, and tensor fields such as polarization data [30, 31].
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summarized as follows. Any point ω on the sphere is given in spherical
coordinates as ω = (θ, ϕ), in terms of a polar angle, or co-latitude θ ∈ [0, π],
and an azimuthal, or longitudinal angle ϕ ∈ [0, 2π[. Let G(ω) be a square-
integrable function on the sphere, i.e., G(ω) in L2(S2, dΩ), with the invariant
measure dΩ = d cos θdϕ. The spherical harmonics form an orthonormal
basis for the decomposition of functions in L2(S2, dΩ). They are explicitly
given in a factorized form in terms of the associated Legendre polynomials
Pm

l (cos θ) and the complex exponentials eimϕ as

Ylm (θ, ϕ) =

[
2l + 1

4π

(l −m)!

(l +m)!

]1/2

Pm
l (cos θ) eimϕ, (2.1)

with l ∈ N, m ∈ Z, and |m| ≤ l [1, 27]. While the index l represents
an overall frequency on the sphere, |m| represents the frequency associated
with the azimuthal variable ϕ. Any G(ω) is thus uniquely given as a linear
combination of scalar spherical harmonics G (ω) =

∑
l∈N

∑
|m|≤l ĜlmYlm (ω)

(inverse transform), for the scalar spherical harmonics coefficients Ĝlm =∫
S2 dΩY

∗
lm (ω)G (ω) (direct transform), with |m| ≤ l.

The continuous affine transformations on functions on the sphere are
defined as follows. The operator R(ω0) for the motion, or translation, of
amplitude ω0 = (θ0, ϕ0) of a function reads

[R (ω0)G] (ω) = G
(
R−1

ω0
ω
)
, (2.2)

where Rω0
(θ, ϕ) = [Rẑ

ϕ0
Rŷ

θ0
](θ, ϕ) is defined by the three-dimensional rota-

tion matrices Rŷ
θ0

and Rẑ
ϕ0

, acting on the Cartesian coordinates (x, y, z) in
three dimensions centered on the sphere and associated with ω = (θ, ϕ). The
rotation operator Rẑ(χ) of a function around itself, by an angle χ ∈ [0, 2π[,
is given as [

Rẑ (χ)G
]
(ω) = G

(
Rẑ

χ
−1
ω
)
, (2.3)

where Rẑ
χ(θ, ϕ) = (θ, ϕ + χ) also follows from the action of the three-

dimensional rotation matrix Rẑ
χ on the Cartesian coordinates (x, y, z) associ-

ated with ω = (θ, ϕ). The dilation operator D(a) on functions in L2(S2, dΩ),
for a dilation factor a ∈ R∗

+, is defined in terms of the inverse of the corre-
sponding dilation Da on points in S2 as

[D (a)G] (ω) = λ1/2 (a, θ)G
(
D−1

a ω
)
, (2.4)

with λ1/2(a, θ) = a−1[1 + tan2(θ/2)]/[1 + a−2 tan2(θ/2)]. The dilated point
is given by Da(θ, ϕ) = (θa(θ), ϕ) with the linear relation tan(θa(θ)/2) =
a tan(θ/2). The dilation operator therefore maps the sphere without its
South pole on itself: θa(θ) : θ ∈ [0, π[→ θa ∈ [0, π[. This dilation operator is
uniquely defined by the requirement of the following natural properties [29].
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The dilation Da of points on S2 must be a radial (i.e., only affecting the
radial variable θ independently of ϕ, and leaving ϕ invariant) and conformal
(i.e., preserving the measure of angles in the tangent plane at each point
of S2) diffeomorphism (i.e., a continuously differentiable bijection on S2).
The factor λ(a, θ) explicitly appears in the conformal transformation of the
metric through the dilation Da. The normalization by λ1/2(a, θ) in (2.4) is
uniquely determined by the requirement that the dilation D(a) of functions
in L2(S2, dΩ) be a unitary operator (i.e., preserving the scalar product in
L2(S2, dΩ), and specifically the norm of functions).

The analysis of signals goes as follows. The wavelet transform of a
signal F (ω) in L2(S2, dΩ) on the sphere, with the wavelet Ψ(ω), localized
analysis function in L2(S2, dΩ), is defined as the directional correlation be-
tween F (ω) and the dilated wavelet Ψa = D(a)Ψ, i.e., as the scalar product:

WF
Ψ (ρ, a) = 〈Ψρ,a|F 〉 =

∫

S2

dΩ Ψ∗
ρ,a (ω)F (ω) , (2.5)

with Ψρ,a = R(ρ)Ψa, and ρ = (θ0, ϕ0, χ). At each scale, the wavelet coef-
ficients WF

Ψ (ρ, a) are therefore square-integrable functions on the rotation
group in three dimensions SO(3). They represent the characteristics of the
signal for each analysis scale a, direction χ, and position ω0. This defines
the scale-space nature of the wavelet decomposition on the sphere.

The real and harmonic structures of the rotation group in three dimen-
sions SO(3) are concisely summarized as follows. Any rotation ρ on SO(3)
is given in terms of the three Euler angles ρ = (θ, ϕ, χ), with θ ∈ [0, π], and
ϕ,χ ∈ [0, 2π[. Let H(ρ) be a square-integrable function on SO(3), i.e., H(ρ)
in L2(SO(3), dρ), with the invariant measure dρ = dϕd cos θdχ. The Wigner
D-functions are the matrix elements of the irreducible unitary representa-
tions of weight l of the group in L2(SO(3), dρ). By the Peter-Weyl theorem
on compact groups, the matrix elements Dl∗

mn also form an orthogonal basis
in L2(SO(3), dρ). They are explicitly given in a factorized form in terms
of the real Wigner d-functions dl

mn(θ) and the complex exponentials, e−imϕ

and e−inχ , as
Dl

mn (ϕ, θ, χ) = e−imϕdl
mn (θ) e−inχ, (2.6)

with l ∈ N, m,n ∈ Z, and |m|, |n| ≤ l [27, 8]. Again, l represents an overall
frequency on SO(3), and |m| and |n| the frequencies associated with the
variables ϕ and χ, respectively. Any H(ρ), such as the wavelet coefficients
at each scale of a signal on S2, is thus uniquely given as a linear combination
of Wigner D-functions as H (ρ) =

∑
l∈N

(2l + 1)/8π2
∑

|m|,|n|≤l Ĥ
l
mnD

l∗
mn (ρ)

(inverse transform), with, for |m|, |n| ≤ l, the Wigner D-functions coeffi-
cients Ĥ l

mn =
∫
SO(3) dρD

l
mn (ρ)H (ρ) (direct transform).

The synthesis of a signal F (ω) from its wavelet coefficients reads as:

F (ω) =

∫ +∞

0

da

a3

∫

SO(3)
dρWF

Ψ (ρ, a) [R (ρ)LΨΨa] (ω) . (2.7)
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In this relation, the operator LΨ in L2(S2, dΩ) is defined 2 by the follow-

ing action on the spherical harmonics coefficients of functions: L̂ΨGlm =
Ĝlm/C

l
Ψ, with |m| ≤ l. This exact reconstruction formula holds if and only

if the spherical harmonics transform Ψ̂lm of the wavelet Ψ(ω) satisfies the
following admissibility condition [29]:

0 < C l
Ψ =

8π2

2l + 1

∑

|m|≤l

∫ +∞

0

da

a3
|(̂Ψa)lm|2 <∞, (2.8)

for all l ∈ N. This condition intuitively requires that the whole wavelet
family Ψa(ω), for a ∈ R∗

+, covers each frequency index l with a finite and
non-zero amplitude. As explicitly expressed in section 3, the direct Wigner
D-functions transform of the wavelet coefficients of a signal F with Ψ is given
as the pointwise product of the spherical harmonics coefficients F̂lm and

(̂Ψa)
∗

ln. The admissibility condition consequently requires that the wavelet
family as a whole preserves the signal information at each frequency l.

2.2 Correspondence principle

Wavelets on the plane are well-known, and may be easily constructed as
the corresponding admissibility condition reduces to a zero-mean condition
for a function both integrable and square-integrable. On the contrary, the
admissibility condition (2.8) for wavelets on the sphere is difficult to check
in practice. In that context, a correspondence principle was proved in [29],
stating that the inverse stereographic projection of a wavelet on the plane
leads to a wavelet on the sphere.

The stereographic projection is the unique radial conformal diffeomor-
phism mapping the sphere S2 onto the plane R2. The unitary stereographic
projection operator between functions G in L2(S2, dΩ) and g in L2(R2, d2~x),
and its inverse, respectively read

[ΠG] (~x) =

(
1 +

(r
2

)2
)−1

G
(
π−1~x

)

[
Π−1g

]
(ω) =

(
1 + tan2 θ

2

)
g (πω) , (2.9)

in spherical coordinates on the sphere ω = (θ, ϕ), and polar coordinates on
the plane ~x = (r, ϕ). The azimuthal coordinates on the plane and on the
sphere are identified to one another: ϕ. The radial conformal diffeomor-
phism between points is given as π(θ, ϕ) = (r(θ), ϕ) for r(θ) = 2 tan(θ/2),

2The operator LΨ in our notations coincides with the inverse of the standard frame
operator AΨ defined in [5].
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and its inverse reads π−1(r, ϕ) = (θ(r), ϕ) for θ(r) = 2 arctan(r/2). The
diffeomorphism r(θ) and its inverse θ(r) explicitly define the stereographic
projection and its inverse. This stereographic projection maps the sphere,
without its South pole, on the entire plane: r(θ) : θ ∈ [0, π[→ [0,∞[. Geo-
metrically, it projects a point ω = (θ, ϕ) on the sphere onto a point ~x = (r, ϕ)
on the tangent plane at the North pole, co-linear with ω and the South pole
(see Fig. 1). The pre-factors in (2.9) are required to ensure the unitarity of
the projection operators Π and Π−1.

In this framework, the correspondence principle established states that,
if the function ψ(r, ϕ) in L2(R2, d2~x) satisfies the wavelet admissibility con-
dition on the plane, i.e., essentially a zero-mean condition, then the function

Ψ (θ, ϕ) =
[
Π−1ψ

]
(θ, ϕ) , (2.10)

in L2(S2, dΩ), satisfies the wavelet admissibility condition (2.8) on the sphere.
This enables the construction of wavelets on the sphere by projection of
wavelets on the plane. It also transfers wavelet properties from the plane
onto the sphere, such as the steerability discussed in the next subsection.

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

ϕ(r,  )

x̂

ẑ

x̂

ŷ

ŷ

Π −1

S

χ

θ

ϕ o

Π

θ/2

θ ϕ(  ,  )

FIGURE 1: Stereographic projection π and its inverse π−1, relating points
(θ, ϕ) on the sphere and (r, ϕ) on its tangent plane at the North pole. The
same relation holds through Π and Π−1 between functions living on each
of the two manifolds, as illustrated by the shadow on the sphere and the
localized region on the plane [29].

2.3 Axisymmetric, directional, and steerable wavelets

We present here axisymmetric, directional, and steerable wavelets on the
sphere, built as inverse stereographic projections of wavelets on the plane.
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An axisymmetric filter is by definition invariant under rotation around
itself. That is, when located at the North pole, an axisymmetric filter is de-
fined by a function A(θ) independent of the azimuthal angle ϕ. On the plane,
the Mexican hat wavelet is defined as the normalized (negative) Laplacian
of a Gaussian e(x

2+y2)/2. Its inverse stereographic projection defines the
Mexican hat wavelet on the sphere (see Fig. 2).

Any non-axisymmetric filter is said to be directional, and is given as a
general function Ψ(θ, ϕ) in L2(S2, dΩ). The elliptical Mexican hat wavelet
is a directional modification of the axisymmetric Mexican hat, obtained by
considering different widths σx and σy, respectively in the x̂ and ŷ directions

on the plane for the original Gaussian: e(x
2+y2)/2 → e(x

2/σ2
x+y2/σ2

y)/2 [21].
The wavelet obtained as inverse stereographic projection of the normalized
(negative) Laplacian of this Gaussian reads (see Fig. 2) as:

Ψ(mex) (ω) =

√
2

π
N (σx, σy)

(
1 + tan2 θ

2

)[
1 − 4 tan2 θ/2

σ2
x + σ2

y(
σ2

y

σ2
x

cos2 ϕ+
σ2

x

σ2
y

sin2 ϕ

)]
e−2 tan2 θ

2
(cos2 ϕ/σ2

x+sin2 ϕ/σ2
y).

(2.11)

The constant N(σx, σy) = (σ2
x + σ2

y)[σxσy(3σ
4
x + 3σ4

y + 2σ2
xσ

2
y)/2]

−1/2 stands
for the normalization. One can identify the wavelet parameters through the
eccentricity of the ellipse defined by the points where the wavelet has zero
value (zero-crossing), ǫ = (1 − (σx/σy)

4)1/2 (for σy ≥ σx), and the sum
s = σ2

x +σ2
y . It is alternatively described by the ratio of the semi-major and

semi-minor axes of the Gaussian r = σx/σy, and the sum s = σ2
x + σ2

y . The
axisymmetric Mexican hat is recovered for σx = σy = 1, in which case r = 1
(ǫ = 0), and s = 2, and the normalization constant is unity, N(σx, σy) = 1.

On the plane, the real Morlet wavelet is a typical example of a direc-
tional wavelet. Its inverse stereographic projection on the sphere (see Fig.
3) reads as (see also [9, 21] for similar projections):

Ψ(mor) (ω) =

√
2

π
N (k)

(
1 + tan2 θ

2

)[
cos

(
~k · (π−1~x)√

2

)
− e−

~k2/4

]

e−2 tan2(θ/2), (2.12)

with π−1~x = (2 tan(θ/2) cosϕ, 2 tan(θ/2) sinϕ) in Cartesian coordinates.
The arbitrary wave-vector ~k = (kx, ky) controls the direction and the fre-

quency of oscillation of the wavelet (~k2 = k2
x + k2

y). The constant N(k) =

(1 + 3e−
~k2/2 − 4e−3~k2/8)−1/2 stands for the normalization. Notice that for

~|k| = 2, the real Morlet wavelet closely approximates at large scales to the
second Gaussian derivative described in the following.
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ŷx̂

ẑ ẑ

ŷx̂

ẑ

ŷx̂

FIGURE 2: Mexican hat wavelet on the sphere for a dilation factor a = 0.4
and different eccentricities. On the left, the axisymmetric Mexican hat:
r = 1 (ǫ = 0) and s = 2 (left). At the center and on the right respectively,
the elliptical Mexican hat for r = 0.5 (ǫ ≃ 0.96825) and s = 2, and r =
0.1 (ǫ = 0.99995) and s = 2. Dark and light regions respectively identify
negative and positive values.

ŷx̂

ẑ ẑ

ŷx̂

FIGURE 3: Real Morlet wavelet on the sphere for a dilation factor a = 0.4
and a wave-vector ~k = (6, 0) on the left, and for a dilation factor a = 0.4 and
a wave-vector ~k = (2, 0) on the right. Dark and light regions respectively
identify negative and positive values.

The notion of filter steerability was first introduced on the plane [13,
26], and more recently defined on the sphere [29]. Just as on the plane, a
directional filter Ψ in L2(S2, dΩ) on the sphere is steerable if any rotation
by χ ∈ [0, 2π[ of the filter around itself Rẑ(χ)Ψ may be expressed as a linear
combination of a finite number of basis filters Ψm:

[
Rẑ (χ) Ψ

]
(ω) =

M∑

m=1

km (χ) Ψm (ω) . (2.13)

The weights km(χ), with 1 ≤ m ≤ M , and M ∈ N, are called interpolation
functions. In particular cases, the basis filters may be specific rotations by
angles χm of the original filter: Ψm = Rẑ(χm)Ψ. Steerable filters have a
nonzero angular width in the azimuthal angle ϕ which makes them sensitive
to a whole range of directions and enables them to satisfy the relation (2.13).
In the spherical harmonics space, this nonzero angular width corresponds to
an azimuthal angular band limit N ∈ N in the frequency index n associated
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with the azimuthal variable ϕ:

Ψ̂ln = 0 for |n| ≥ N. (2.14)

Typically, the number M of interpolating functions is of the same order as
the azimuthal band limit N .

The derivatives of order Nd in direction x̂ of radial functions on the
plane are steerable wavelets. The transfer of the steerability property (2.13)
from the plane to the sphere is obvious since the inverse stereographic pro-
jection is a radial operation, while the steerability only affects the azimuthal
variable. The inverse stereographic projection of Gaussian derivatives there-
fore give steerable wavelets on the sphere. They may be rotated in terms
of M = Nd + 1 basis filters, and are band-limited in ϕ at N = Nd + 1.
We give the explicit examples of the normalized first and second Gaussian
derivatives. A first derivative has a band limit N = 2, and only contains the
frequencies n = {±1}. It may be rotated in terms of two specific rotations
at χ = 0 and χ = π/2, corresponding to the inverse projection of the first
derivatives in directions x̂ and ŷ, Ψ∂x̂ and Ψ∂ŷ respectively:

[
Rẑ (χ)Ψ∂x̂

]
(ω) = Ψ∂x̂ (ω) cosχ+ Ψ∂ŷ (ω) sinχ. (2.15)

The normalized first derivatives of a Gaussian (see Fig. 4) in directions
x̂ and ŷ read:

Ψ∂x̂(gau) (θ, ϕ) =

√
8

π

(
1 + tan2 θ

2

)
tan

θ

2
cosϕe−2 tan2(θ/2)

Ψ∂ŷ(gau) (θ, ϕ) =

√
8

π

(
1 + tan2 θ

2

)
tan

θ

2
sinϕe−2 tan2(θ/2). (2.16)

x^

z^

y^ x^

z^

y^ , x^

z^

y^

FIGURE 4: First Gaussian derivative wavelet on the sphere for a dilation
factor a = 0.4: from left to right, Ψ∂x̂(gau), Ψ∂ŷ(gau), and rotation by χ = π/4
of Ψ∂x̂(gau). Dark and light regions respectively identify negative and positive
values [29].

A second derivative has a band limit N = 3, and contains the fre-
quencies n = {0,±2}. It may be rotated in terms of three basis filters. It
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reads indeed in terms of the inverse projection of the second derivatives in

directions x̂ and ŷ, Ψ∂2

x̂ and Ψ∂2

ŷ respectively, and the cross derivative Ψ∂x̂∂ŷ

as:
[
Rẑ (χ)Ψ∂2

x̂

]
(ω) = Ψ∂2

x̂ (ω) cos2 χ+Ψ∂2

ŷ (ω) sin2 χ+Ψ∂x̂∂ŷ (ω) sin 2χ. (2.17)

The correctly normalized second derivatives of a Gaussian (see Fig. 5)
in directions x̂ and ŷ read:

Ψ∂2

x̂
(gau) (θ, ϕ) =

√
4

3π

(
1 + tan2 θ

2

)(
1 − 4 tan2 θ

2
cos2 ϕ

)
e−2 tan2(θ/2)

Ψ∂2

ŷ
(gau) (θ, ϕ) =

√
4

3π

(
1 + tan2 θ

2

)(
1 − 4 tan2 θ

2
sin2 ϕ

)
e−2 tan2(θ/2)

Ψ∂x̂∂ŷ(gau) (θ, ϕ) = − 4√
3π

(
1 + tan2 θ

2

)(
tan2 θ

2
sin 2ϕ

)
e−2 tan2(θ/2).

(2.18)

x^

z^

y^ x^

z^

y^ x^

z^

y^ , x^

z^

y^

FIGURE 5: Second Gaussian derivative wavelet on the sphere for a dilation

factor a = 0.4: from left to right, Ψ∂2

x̂
(gau), Ψ∂2

ŷ
(gau), Ψ∂x̂∂ŷ(gau), and rotation

by χ = π/4 of Ψ∂2

x̂
(gau). Dark and light regions respectively identify negative

and positive values [29].

3. Directional correlation

3.1 Directional and standard correlations

The directional correlation 〈RΨ|F 〉 of a function F with a filter Ψ is gener-
ically defined as the scalar product of the signal with all SO(3) rotations of
the filter [30]. It therefore lives on SO(3), and explicitly reads in L2(SO(3), dρ)
as:

〈R (ρ)Ψ|F 〉 =

∫

S2

dΩ Ψ∗
(
R−1

ρ ω
)
F (ω) . (3.1)
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As discussed in subsection 2.1, if Ψ is the specific dilation of a wavelet on
the sphere, the directional correlation coincides with the wavelet coefficients
of the signal, at the corresponding scale (see relation (2.5)).

The standard correlation 〈R0Ψ|F 〉 of F with Ψ, is generically defined
by the scalar product between the function F and the filter Ψ translated
at any point ω0 = (θ0, ϕ0) on the sphere, but for a fixed direction, i.e., a
fixed value χ = 0. The result of the standard correlation explicitly gives a
square-integrable function in L2(S2, dΩ) on the sphere:

〈R (ω0) Ψ|F 〉 =

∫

S2

dΩ Ψ∗
(
R−1

ω0
ω
)
F (ω) . (3.2)

The notation R0 simply denotes a three-dimensional rotation with χ = 0.
It distinguishes the standard correlation 〈R0Ψ|F 〉 from the directional cor-
relation 〈RΨ|F 〉 when the arguments are not specified.

Let us remark that, from relation (2.13), it explicitly appears that the
directional correlation with a steerable filter Ψ reduces to a M -terms linear
combination of standard correlations with the corresponding basis filters
Ψm. In the particular case of an axisymmetric filter, there is no dependence
at all of the correlation in the filter rotation χ. The directional correlation
with an axisymmetric filter is therefore strictly equivalent to the standard
correlation.

3.2 Pixelization and a priori computation cost

The directional and standard correlations are defined for square-integrable
functions on a continuous variable ω = (θ, ϕ) on the sphere. The translations
and rotations of the filter also form a continuous variable ρ = (ϕ0, θ0, χ) ∈
SO(3). Practical implementations are obviously based on a choice of dis-
cretization for each of these variables, i.e., a pixelization of S2 and SO(3).
Let Np ≃ (2L)2 represent the number of sampling points ω in a given pix-
elization of S2. The quantity 2L represents the mean number of sampling
points in the position variables θ and ϕ, or θ0 and ϕ0. A simple extrapola-
tion of the Nyquist-Shannon theorem on the line intuitively associates L ∈ N

with the band limit, or maximum frequency, accessible on that pixelization
in the “Fourier” indices conjugate to θ and ϕ for the signals and filters
considered. For a sampling on 2L points in the direction χ the same band
limit L is associated with the conjugate Fourier index. Notice that in the
wavelet formalism, the dilation parameter a ∈ R∗

+ must also be discretized
for practical purposes.

Considering a simple quadrature, i.e., a discretization of the directional
correlation integral, each scalar product on the sphere has an asymptotic
complexity O(L2). The overall asymptotic complexity for the directional
correlation (3.1), taking into account all discrete ρ = (ϕ0, θ0, χ) on SO(3),
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is therefore of order O(L5). We consider fine samplings of several megapixels
on the sphere. To fix ideas, let us notice that the present NASA WMAP
precision experiment on the CMB provides maps of the celestial sphere of
around 3 megapixels. For a sampling associated with a band limit around
L ≃ 103, the typical computation times for (2L)2 multiplications and (2L)2

additions are of order of 10−2 seconds on a standard processor. We take this
value as a fair estimation of the computation time required for a scalar prod-
uct. Consequently, a unique O(L5) directional correlation would take several
years at that band limit on a single standard computer. Moreover, depend-
ing on the application, the directional correlation of multiple signals might
be required. Typically, thousands of simulated signals are to be considered
for a Monte Carlo statistical analysis. And for a wavelet analysis, multiple
scales are to be considered for the filter. In conclusion, the directional corre-
lation analysis of functions on the sphere is absolutely unaffordable for fine
samplings with a band limit around L ≃ 103 in θ, ϕ, and χ. This conclusion
remains when the use of multiple computers is envisaged. It is even strongly
reinforced in the perspective of an analysis from finer pixelizations on the
sphere. In particular, the forthcoming ESA Planck CMB experiment will
provide 50 megapixels maps, i.e., L ≃ 4 × 103.

The overall asymptotic complexity for the standard correlation, taking
into account all discrete ω0 = (ϕ0, θ0) on S2, is of order O(L4). On a single
standard computer, the corresponding computation time through simple
quadrature, at a band limit L ≃ 103, would be of the order of days. Such a
calculation still remains hardly affordable, particularly when multiple signals
and multiple scales are considered.

3.3 Directional and standard correlations in harmonic space

The Wigner D-functions coefficients ̂〈RΨ|F 〉
l

mn of the directional correlation
〈R(ρ)Ψ|F 〉 living on SO(3) are given as the pointwise product of the spher-
ical harmonics coefficients F̂lm and Ψ̂∗

ln. The following correlation relation
holds:

〈R (ρ)Ψ|F 〉 =
∑

l∈N

2l + 1

8π2

∑

|m|,|n|≤l

̂〈RΨ|F 〉
l

mnD
l∗
mn (ρ) , (3.3)

with

̂〈RΨ|F 〉
l

mn =
8π2

2l + 1
Ψ̂∗

lnF̂lm. (3.4)

Indeed, the orthonormality of scalar spherical harmonics implies the Plancherel

relation 〈RΨ|F 〉 =
∑

l∈N

∑
|m|≤l R̂Ψ

∗

lmF̂lm. The action of the operator R(ρ)

on a function G(ω) in L2(S2, dΩ) on the sphere reads in terms of its spheri-

cal harmonics coefficients as: ̂[R(ρ)G]lm =
∑

|n|≤lD
l
mn(ρ)Ĝln. Inserting this

last relation for Ψ in the former Plancherel relation finally gives the result.
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The standard correlation 〈R(ω0)Ψ|F 〉 lives on S2 and could be decom-
posed in its spherical harmonics coefficients. However, for non-axisymmetric
filters, these coefficients do not appear as a simple pointwise product similar
to (3.4). The easiest way to express the standard correlation in harmonic
space is therefore to simply consider the relations (3.3) and (3.4) with χ = 0.

4. Fast algorithms

4.1 Band-limitation

The wavelet formalism defined in section 2 holds for any signal and any
wavelet satisfying the admissibility condition (2.8), irrespectively of any
band-limitation consideration. However, the band-limitation represents a
necessary condition for obtaining precise numerical implementations. We
therefore consider band-limited functions G at some band limit L ∈ N on
the sphere S2, i.e., Ĝlm = 0 for l ≥ L. From (3.4), the directional correla-
tion of a band-limited signal F by a band-limited filter Ψ, both with a band
limit L on the sphere is thus also band-limited, with the same band limit:

̂〈RΨ|F 〉
l

mn = 0 for l ≥ L.

In practice, the signals F may generally be very precisely approximated
as band-limited, through considerations relative to the physical data acqui-
sition process. For the typical wavelets described in section 2, Ψa is also
essentially band-limited, to very good approximation, provided that not too
fine scales are considered (a 9 0). Under these conditions, the wavelet
coefficients of WF

Ψ (ρ, a) can therefore be calculated very precisely, or even
exactly on equi-angular pixelizations, at suitable analysis scales. This is the
scope of the fast directional correlational algorithms discussed in the next
two subsections.

We do not consider here the question of the signal reconstruction from
its wavelet coefficients through formula (2.7). The corresponding numerical
implementation would require an explicit discretization of both the scales a
and the SO(3) variable ρ. First steps in that direction have been undertaken
in [7].

4.2 Separation of variables

The algorithm presented here for the directional correlation is based on the
technique of separation of variables.

The factorized form (2.1) of the spherical harmonics naturally enables
one to compute a direct spherical harmonics transform by separation of the
integrations on the variables θ and ϕ. Conversely, an inverse transform may
be computed as successive summations on the indices l and m, up to the
band-limit L. Correctly ordering the corresponding operations provides a
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calculation of direct and inverse spherical harmonics transforms in O(L3)
operations [10]. This separation of variables for the spherical harmonics
transforms may be performed on iso-latitude pixelizations on the sphere, i.e.,
pixelizations for which the sampling in θ is independent of ϕ, but where the
sampling in ϕ may conversely depend on θ. This is the case for equi-angular
pixelizations on the sphere. At a resolution L ∈ N, 2L × 2L equi-angular
pixelizations are defined by a uniform discretization in 2L samples both for
the angles θ and ϕ. Such a pixelization scheme defines pixels with areas
varying drastically with the co-latitude [31]. In particular, on a 2L × 2L
equi-angular grid, a sampling result on the sphere states that the spherical
harmonics coefficients of a band-limited function with band-limit L may be
computed exactly as a finite weighted sum, i.e., a quadrature, of the sampled
values of that function [10]. HEALPix pixelizations (Hierarchical Equal Area
iso-Latitude Pixelization) are also iso-latitude pixelizations, but where the
sampling in ϕ explicitly depends on θ. Such a pixelization scheme defines
12N2

side pixels of exactly equal areas, for a resolution parameter Nside = 2k

with k ∈ N. The computation of the spherical harmonics coefficients of
a band-limited function is not theoretically exact on HEALPix grids, but
can be made extremely precise by an iteration process [14]. These grids are
notably used for the NASA WMAP CMB experiment and the ESA Planck
CMB experiment.

The very same reasoning based on the factorized form (2.6) of the
Wigner D-functions enables the calculation the inverse Wigner D-functions
transform on SO(3) required by (3.3) in O(L4) operations [19, 20]. Con-
sidering an iso-latitude pixelization for the angles θ and ϕ on the sphere,
the separation of variables for the Wigner D-functions transforms may be
performed for any structure of the sampling in the third Euler angle χ,
potentially depending on θ and ϕ. In particular, at a resolution parameter
L ∈ N, one may consider a uniform discretization in 2L samples for χ. Com-
bined for example with an equi-angular pixelization at the same resolution
for the angles θ and ϕ on the sphere, this defines a 2L×2L×2L equi-angular
sampling in ρ = (ϕ, θ, χ) on SO(3).

Consequently, the algorithmic structure based on the separation of
variables on iso-latitude pixelizations on the sphere may be summarized
as follows.[18, 30] (a) Direct spherical harmonics transforms, Ψ̂ln and F̂lm:

O(L3). (b) Correlation ̂〈RΨ|F 〉
l

mn in harmonic space through (3.4): O(L3).
(c) Inverse Wigner D-functions transform 〈R(ρ)Ψ|F 〉 on SO(3) through
(3.3): O(L4). The global asymptotic complexity associated with the di-
rectional correlation is thus reduced from O(L5) to O(L4) thanks to the
separation of variables. For band-limited signals and filters, the numerical
precision of the algorithm is simply driven by the precision of computation of
the spherical harmonics coefficients. It is therefore very precise on HEALPix
grids notably, and theoretically exact on equi-angular pixelizations.
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4.3 Factorization of rotations

The following algorithm for the directional correlation is based on the tech-
nique of factorization of the three-dimensional rotations.

The three-dimensional rotation operatorsR(ρ) on functions in L2(S2, dΩ)
on the sphere may be factorized as [25, 28, 22]

R (ϕ0, θ0, χ) = R
(
ϕ0 −

π

2
,−π

2
, θ0

)
R
(
0,
π

2
, χ+

π

2

)
. (4.1)

The directional correlation relation (3.3) and the expression (2.6) of the
Wigner D-functions, matrix elements of the operators R(ρ), therefore give
an alternative expression for the directional correlation of arbitrary signals
F and filters Ψ on the sphere. We get indeed

〈R (ρ)Ψ|F 〉 =
∑

m,m′,n∈Z

̂〈RΨ|F 〉mm′ne
i(mϕ0+m′θ0+nχ), (4.2)

with the Fourier coefficients given by

̂〈RΨ|F 〉mm′n = ei(n−m)π/2
∑

l≥C

dl
m′m

(π
2

)
dl

m′n

(π
2

)
Ψ̂∗

lnF̂lm, (4.3)

where C = max(|m|, |m′|, |n|), and with the symmetry relation dl
m′m(θ) =

dl
mm′(−θ) [27].

For a band-limited signal F and a band-limited filter Ψ with band
limit L ∈ N on the sphere one has |m|, |m′|, |n| ≤ l < L. The factor-
ized form of the imaginary exponentials enables the calculation of the in-
verse three-dimensional imaginary exponentials transform required by (4.2)
in O(L4) operations. Just as for the Wigner D-functions transforms, con-
sidering an iso-latitude pixelization for the angles θ and ϕ on the sphere,
the separation of variables for the three-dimensional imaginary exponentials
may be performed for any structure of the sampling in the third Euler an-
gle χ. In these terms, the directional correlation algorithm implemented
on iso-latitude pixelizations for the angles θ and ϕ on the sphere through
the factorization of rotations is structured as follows. (a) Direct spherical

harmonics transforms, Ψ̂ln and F̂lm: O(L3). (b) Correlation ̂〈RΨ|F 〉mm′n

in harmonic space through (4.3): O(L4). (c) Inverse transform 〈R(ρ)Ψ|F 〉
through (4.2): O(L4). The global asymptotic complexity associated with
the directional correlation is thus also reduced from O(L5) to O(L4) thanks
to the factorization of rotations 3. Again, for band-limited signals and filters,
the numerical precision of the algorithm is simply driven by the precision of
computation of the spherical harmonics coefficients.

3Notice that, while the Euler angles ϕ0 and χ are in the range ϕ0, χ ∈ [0, 2π[, the
original range for θ0 is θ0 ∈ [0, π], in order to cover the parameter space of SO(3).
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4.4 Optimization with steerable and axisymmetric filters

In terms of our rough estimations of subsection 3.2, the separation of vari-
ables reduces the computation times on a standard computer from years to
days for the directional correlation of band-limited signals and filters with
band-limit L ≃ 103, typically sampled on megapixels maps. However, as
already discussed, if a large number of simulations have to be analyzed, and
at various scales of the filter, O(L4) calculations remain hardly affordable
even through the use of multiple computers.

Steerable filters are typically considered with a small number of inter-
polating functions M (see relation (2.13)), that is also a small azimuthal
band-limit N (see relation (2.14)) relative to L. The use of such steerable
filters further reduces the asymptotic complexity for the directional corre-
lation. On the one hand, the directional correlation with a steerable filter
Ψ reduces to a M -terms linear combination of standard correlations with
the corresponding basis filters Ψm. For M ≪ L, the asymptotic complexity
of a directional correlation reduces to that of a standard correlation, with
an a priori O(L4) complexity, to which is simply added the O(L3) linear
combination which arises from (2.13). On the other hand, on iso-latitude
pixelizations on the sphere, either the technique of separation of variables,
or the factorization of three-dimensional rotations can be applied to the
standard correlation, by setting χ = 0 in the relations (3.3) or (4.2) respec-
tively. For a steerable filter with a small azimuthal band limit N ≪ L, the
Fourier index n, with |n| < N , can be excluded from asymptotic complexity
counts. It readily appears that the corresponding asymptotic complexity
for the two algorithms hence reduces to O(L3), on iso-latitude pixelizations
on the sphere.4 At L ≃ 103, our rough estimation of computation times is
reduced from years to tens of seconds. This renders the computation easily
affordable, even when multiple signals and multiple scales are considered.

Details on the algorithmic structure, computation times, memory re-
quirements, and numerical stability of the corresponding implementations
on HEALPix and equi-angular grids on the sphere may be found in [22] for
the factorization of rotations, and in [30] for the technique of separation of
variables and the optimization with steerable filters. Notice in that regard

Considering also θ0 ∈ [0, 2π[ puts the result on the parameter space of the three-
torus T3, which covers twice the parameter space of SO(3). In that context, the
relation (4.2) is understood as a three-dimensional inverse Fourier transform, which
can be calculated in O(L3 log

2
L) operations on a 2L×2L×2L equi-angular grid on

SO(3) by the use of the standard Cooley-Tukey fast Fourier transform algorithm.
This optimization however does not reduce the overall asymptotic complexity for
the directional correlation, still driven by the computation of (4.3) in O(L4) oper-
ations.

4Let us remark that the issue of the sampling in χ is not relevant for steerable
filters. The proper rotations by χ ∈ [0, 2π[ are indeed analytically driven, and thus
with infinite precision, by the relation (2.13).
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that a further optimization of the algorithm based on the separation of vari-
ables and with steerable filters may be achieved on equi-angular pixelizations
on the sphere. It relies on the fact that Wigner D-functions transforms may
be decomposed into linear combinations of spherical harmonics transforms,
which therefore drive the overall asymptotic complexity for the directional
correlation. On 2L× 2L equi-angular pixelizations, these spherical harmon-
ics transforms may be computed in O(L2 log2 L) operations through the
Driscoll and Healy algorithm [10, 15, 16], if the associated Legendre poly-
nomials are pre-calculated. As discussed above, the sampling theorem on
equi-angular pixelizations on the sphere also renders the calculation exact.

The axisymmetry of a filter A(θ) on the sphere is an extreme case of the
steerability, for an azimuthal band limit N = 1: Âln = 0 for |n| ≥ 1. In that
case, we already emphasized that the proper rotation by χ has no effect on
the filter and the directional correlation reduces to a standard correlation.
At each scale, the wavelet coefficients of a signal with an axisymmetric filter
therefore live on the sphere S2 rather than on SO(3). The directional cor-
relation relation (3.4) consequently reduces to the following standard form,

giving the spherical harmonics coefficients ̂〈R0A|F 〉lm of the correlation of
a signal F with an axisymmetric filter A as the pointwise product between
the filter’s Legendre coefficients Âl, and the spherical harmonics coefficients
of the signal F̂lm:

̂〈R0A|F 〉lm = 2πÂ∗
l F̂lm. (4.4)

The correlation of a band-limited signal with a band-limited axisymmetric
filter (Âl = 0 for l ≥ L) is therefore readily computed in the harmonic
space of S2. On iso-latitude pixelizations on the sphere, the direct spherical
harmonics transform of the signal, and the inverse spherical harmonics trans-
form of the correlation, can simply be computed by separation of variables
in the spherical harmonics. This provides an algorithmic structure with
O(L3) asymptotic complexity, which again can be reduced to O(L2 log2 L)
on equi-angular pixelizations.

5. Conclusion

A new field of complex data processing has emerged in many areas of science.
Scalar and tensor data, often distributed on nontrivial manifolds, come up
at continually increasing resolutions. Powerful signal analysis techniques
need to be developed to process such datasets.

In this paper, we first reviewed recent formal developments for the con-
tinuous wavelet decomposition of signals on the sphere. Second, we detailed
advances in the definition of the corresponding fast directional correlation
algorithms.

These generic developments can find many applications in various fields



Complex data processing: fast wavelet analysis on the sphere 19

such as computer vision (omnidirectional cameras, ...), biomedical imag-
ing (functional magnetic resonance imaging, ...), geophysics (signals on the
Earth’s surface, ...), or astrophysics and cosmology (signals on the celestial
sphere, ...). In that regard, the important results already obtained in cos-
mology through the wavelet analysis of the cosmic microwave background
strongly illustrate the fact that the formalism developed represents a pow-
erful tool for complex data processing on the sphere [23].
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Lasenby, A. N., and Mart́ınez-González, E. (2006). Cosmological applications of a
wavelet analysis on the sphere, J. Fourier Anal. Appl. (present issue).

[24] The Planck collaboration (2005). Planck scientific programme (ESA Planck Blue
book), Technical report (ESA-SCI(2005)1, astro-ph/0604069).

[25] Risbo, T. (1996). Fourier transform summation of Legendre series and D-functions,
J. Geodesy 70, 383.

[26] Simoncelli, E. P., Freeman, W. T., Adelson, E. H., and Heeger, D. J. (1992). Shiftable
multiscale transforms, IEEE Trans. Information Theory 38, 587.

[27] Varshalovich, D. A., Moskalev, A. N., and Khersonskii, V. K. (1989). Quantum
theory of angular momentum (First Edition Reprint; Singapore: World Scientific).
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