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ABSTRACT

This paper presents a distributed algorithm for the detection of
patterns or their transformed versions, in noisy images. The
proposed method projects the observed signal onto a redun-
dant and structured dictionary of functions, which are dis-
tributed among general purpose vision sensors. Each of the
sensors then approximates the projections on its own part of
the dictionary, and transmits that short information to a central
fusion center. The pattern detection problem is then cast to a
parameter estimation problem, where the parameters of the
geometric transformation of the pattern of interest are sought,
instead of the pattern itself. The parameters of the transfor-
mation are estimated by introducing a score function over the
parameter space. Such an approach allows the fusion cen-
ter to directly work in the space of features computed by the
sensors, without need for signal reconstruction. It advanta-
geously provides a generic approach, where the processing of
the image is directly driven by the detection task. Experimen-
tal results indicate the effectiveness of the proposed method
and its resiliency to noise in the observation.

1. INTRODUCTION

Recent progress in processor and communication technology
have motivated a lot of research efforts on sensor networks,
which is an emerging and promising field in signal process-
ing community. In the same time, pattern detection becomes
an increasingly important task with numerous applications in-
cluding object recognition and tracking, as well as a wide
range of security applications. In that context, distributed al-
gorithms are getting a lot of attention [1, 2], as they allow
to shift the computational complexity towards the receiving
end, possibly without loss in performance. In [1] the authors
propose a collaborative signal processing framework for tasks
such as detection and tracking and in [2] the proposed system
combines wavelet filters based on soft thresholding, with dis-
tributed detection fusion, in the context of sensor networks.

In this paper, we study the distributed pattern detection
problem where an observed image x contains a pattern s,
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which may be present in a geometrically transformed version.
We formulate the pattern detection problem as a parameter es-
timation problem, where the parameters of the pattern trans-
formation are sought. It allows to work directly in the space
of geometrical features computed by the vision sensors, and
avoids the need for signal reconstruction. Feature extraction
therefore becomes specific to the detection task; since it does
not need to provide accurate signal representation, but rather
detect meaningful information for pattern detection. In the
same time, it stays generic with respect to the pattern to be
detected, thanks to the flexible design of the system.

We investigate the particular scenario of distributed pat-
tern detection, in a network of inexpensive general purpose
vision sensors with severe limitations on memory and power
capabilities. The sensors take measurements of the observed
image x by projecting it on a redundant dictionary of visual
primitives [3], which is distributed among the different sen-
sors. They each compute a crude approximation of the corre-
lation results of x with the most important atoms from their
own sub-dictionary, and send that short information to a cen-
tral processing unit, usually called Fusion Center (FC). The
FC uses a score function over all possible transformations and
the maximum of this function is returned as the estimated pa-
rameters. We provide experimental results in both noiseless
and noisy case which demonstrative the validity and the ef-
fectiveness of the proposed method.

2. PROBLEM FORMULATION

We consider the pattern detection problem that consists in re-
covering a possibly transformed version of a signal s from the
Hilbert space H, in a noisy observation x given as:

x = β U(η∗)s + e, x ∈ H, (1)

where U(η∗) represents a unitary operator applied on the sig-
nal s, and β is a multiplicative scalar factor. The noise e rep-
resents the part of x that does not belong to the pattern of
interest. We consider that the pattern can undergo any geo-
metric transformation from the group of similitude in SO(2).
In other words, the operator U(η∗) can contain the following
three types of operations : translations ~b, isotropic scaling a,
rotation θ (in SO(2)) or a synthesis of them.
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We consider the framework of overcomplete signal expan-
sions over structured geometric dictionaries, which has been
successfully used for sparse image representations [3]. A re-
dundant dictionary D is constructed by applying geometric
transformations γ to a mother function φ, i.e.,

D = {φγ , φγ = U(γ)φ, γ ∈ Γ}, (2)

where Γ is an index set on the parameter space. The compo-
nents φγ are called atoms. Note that all atoms must have unit
norm, i.e., ‖φγ‖2 = 1, ∀γ, and that the index set has to be
chosen such that D spans the Hilbert space H. We further as-
sume that s can be approximated by a sparse decomposition
over the redundant dictionary D, as :

s̃ =
N−1∑
n=0

cγn
φγn

, (3)

where the approximation error δ = ‖s−s̃‖2 is small. Such ap-
proximations can be obtained typically by greedy algorithms
like Matching Pursuit (MP) [4].

With a more detailed look in equation (1), we can now
study the effect of the operator U(η) on the signal s. By as-
suming a sparse representation of s, the approximation er-
ror δ is small, and it becomes sufficient to study the effect of
the operator on the approximation s̃. The operator U(η) is a
synthesis of translations, isotropic scalings and rotations, and
the resulting parameters form a group, namely the similitude
group SIM(2) on the 2D plane. Denote by

rθ =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, 0 ≤ θ < 2π

the rotation matrix in the 2D plane. If (~b, a, θ) and (~b′, a′, θ′)
are two elements of the group, then the group law is

(~b, a, θ)(~b′, a′, θ′) = (~b + arθ(~b′), aa′, θ + θ′). (4)

Now observe that using the group law, the effect of U(η) on
s̃ using equation (3) can be expressed as

U(η)s̃ =
N−1∑
n=0

cγnU(η)φγn =
N−1∑
n=0

cγnU(η ◦ γn)φ, (5)

where the operation η ◦γn denotes the synthesis of geometric
transformations η and γn.

It can be seen that a transformation of the signal s is equiv-
alent to the same transformation applied to the atoms that ap-
proximate s, and equivalently to a composition of transforma-
tions applied to the generating function of the dictionary D.
Hence using the group law described above, the pattern detec-
tion problem can be equivalently formulated as a parameter
estimation problem which is formally stated as follows:

Problem 1. Given the noisy observed signal x from equation
(1), the pattern s and its transformed versions U(η)s̃ obtained
from equation (5), find the parameters of the transformation
η∗ that has been most likely applied to s in x.

3. PATTERN TRANSFORM PARAMETER
ESTIMATION

This section describes the algorithm to solve the parameter
estimation Problem 1, in its non distributed form. For each
possible transformation η = (a,~b, θ) we employ a (correla-
tion based) score function

ζ(η) = |〈x,U(η)s̃〉|. (6)

The estimated parameters of the exact transformation η∗ are
simply the ones which result in the highest score value, when
correlation is computed between x and transformed version
of the pattern s. Therefore, we need to solve an optimiza-
tion problem where the maximum of ζ(η) with respect to η (4
parameters), is sought. The objective function is clearly non-
convex, which excludes the use of efficient steepest descent-
type of methods for solving the optimization problem. We
have rather chosen to employ a simple numerical optimization
scheme where we discretize uniformly the parameter space H
and evaluate the objective function in each grid point. The
parameters η which will give the highest score are simply re-
turned as the optimal transform parameters η∗.

Due to the group law described in the previous section, the
score function can be evaluated without need for the signal x,
nor the reconstruction of transformation of s. That results in
a reduced complexity detection algorithm, that works as fol-
lows. First we project x on D, to compute all inner products
of the form 〈x, φγ〉, γ ∈ Γ. Then, using equation (3), the
score function ζ(η) can be evaluated as :

ζ(η) = |〈x,U(η)s̃〉|

= |
N−1∑
n=0

cγn〈x,U(η)φγn〉|

= |
N−1∑
n=0

cγn〈x, φη◦γn〉| = |〈c, q〉|. (7)

By design assumptions, the atoms φη◦γn exist in the initial
full dictionary D and can be localized using the group law
given in equation (4). Hence, once we have projected x on
the dictionary, the score evaluation for each η, involves a
simple inner product between c = [cγ0 , . . . , cγN−1 ] and q =
[〈x, φη◦γ0〉, . . . , 〈x, φη◦γN−1〉].

It is important to note that the projection and the score
evaluation parts are well separated, and this is crucial for the
distributed algorithm described in the next section. It has the
advantage that the search for another pattern s′ only requires
the repetition of the score evaluation part. As opposed to [5],
the projection part does not need to be repeated, which makes
the proposed approach appropriate for use in network of gen-
eral purpose vision sensors.

A small computational trick allows to further reduce the
complexity of the solution to the optimization problem. Re-
call that each transformation η = [a,~b, θ] consists of 4 pa-
rameters. We reduce the search from a four dimensional to
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Fig. 1. Sensor network architecture.

two dimensional parameter space, by discretization of the pa-
rameter space with respect to scaling a and rotation θ only.
For each grid point (ai, θj), we can then compute the block
of scores ζ(ηij), where ηij = [ai,~b, θj ] corresponds to all
possible translations ~b = [b1 b2]>, all at once. Observe that
when (ai, θj) are fixed, the scores ζ(η) are the result of corre-
lating x with U([ai,~0, θj ])s̃. From equation (7), we need the
correlation matrices of x with each one of the atoms φη◦γn .
However recall that these correlation matrices have already
been computed in the first part of projecting x on the dictio-
nary. These are finally combined according to equation (7) to
yield the scores for all~b.

4. DISTRIBUTED PATTERN DETECTION

This section now considers the distributed version of the pa-
rameter estimation algorithm, in the context of a visual sen-
sor network as shown in Figure 1. The scenario consists of a
number of sensors, Si, i = 1, . . . , L, which observe a noisy
image x. In the proposed distributed algorithm, we assume
that the initial full dictionary D is split into L sub - dictionar-
ies Di, i = 1, . . . , L that are as disjoint as possible for in-
creased resiliency in the detection step. Each sub-dictionary
is assigned to a sensor. The i-th sensor projects x on its sub-
dictionary by correlating x with the atoms that it has been
assigned. For computational complexity reasons described
above, atoms that differ only in the translation parameters,
are assigned to the same sensor, and the dictionary partition
(clustering) is therefore driven by the characteristics of cen-
tered atoms (i.e., atoms whose translation parameter ~b = ~0).
This step yields a set of correlation matrices, one for each
centered atom assigned to sensor i :

Cj = x ∗ φj , j ∈ Di, (8)

where ∗ denotes 2D correlation.
Next, the sensor Si picks Hi atoms, whose correlation

matrices gave the highest response, which means in our case
the maximum element (in absolute value) within Ci. It com-

putes a crude approximation of the correlation matrix, in or-
der to limit the size of the information to be transmitted. One
straightforward solution consists in low-pass filtering of the
matrices, which will highlight the regions of high correlation.
We have chosen to fit one atom ψi from a very small dictio-
nary, for each of the selected correlation matrix. Altogether,
the sensor Si sends out an atom index that identifies each of
the Hi correlation matrices, along with the approximation of
the correlation matrix, represented by the index of the fitting
atom ψi.

Finally, the Fusion Center (FC) collects the total corre-
lation representations from the sensors and proceeds to the
score evaluation part using the formula (7). Note that only
those atoms that were extracted from a sensor participate in
the computation of the score formulas. Those atoms who are
missing are simply ignored. However, since the sensors have
represented only the high response atoms, we can expect that
the missing atoms should not be the important ones.

Note that the partitioning of the full dictionary between
the individual sensors is an important step in the system de-
scribed above. We choose to distribute the initial full dic-
tionary to the sensors so that the produced sub-dictionaries
are as disjoint as possible. The motivation for having disjoint
sub-dictionaries is to yield correlation matrices from very dif-
ferent atoms that capture the basic parts of x. Representing
the correlation matrices of two very similar atoms results in
sending almost the same information twice. By clustering the
atoms of the initial dictionary into disjoint groups we tend to
avoid this situation. In our algorithm, we partition the full dic-
tionary into smaller parts using K-Means and the clustering is
performed on the non-translated atoms (i.e.,~b = ~0).

5. EXPERIMENTAL RESULTS

We provide experimental results that demonstrate the validity
and the effectiveness of the proposed distributed algorithm.
For the dictionary construction, we use the Anisotropic Re-
finement (AR) atoms which have been successfully used in
image coding [3]. These are zero-mean edge-like atoms, which
are obtained by a Gaussian function, and the partial second
derivative of a Gaussian function in the orthogonal direction.
We use 10 rotation angles in [0, π], and 10 scales for each di-
rection, which are logarithmically equi-distributed in the in-

Fig. 2. The test image x in the noiseless and noisy case (at
SNR=0 db) shown after correct recovery.
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Fig. 3. Error behavior of the method for various number of sensors L.

terval [1, N ], where N is the size of the image. Thus, the full
dictionary consists of 1000 atoms, which can take any spatial
position on the image. Additionally, the small dictionary for
approximating the correlation matrices at the sensors consists
of 45 atoms, produced by 3 scales and 5 orientations, using
the same generating function.

The images used for testing are depicted in Figure 2, where
we are trying to detect s represented by the letter “A”. The ex-
act transformation is η∗ = [0.5, 9, 18, π/4]> i.e., s is scaled
down by half, rotated by π/4 and translated to position (9,18).
We evaluate the detection performance for both the noiseless,
and noisy scenarios.

L 2 3 4 6 10 15 30 60 120
H 280 160 110 50 28 12 4 4 1

Table 1. Minimum number of atoms per sensor, required for
exact recovery in the noiseless case.

Noiseless case We first investigate the minimum number
H of atoms per sensor that are required for correct recovery
of η∗ in the noiseless case. Table (1) reports the measured H
for various number of sensors L. This experiment essentially
studies the effect of missing atoms. If we use a smaller H ,
then the missing atoms are overwhelming and they lead to
wrong η. Notice, that as the number of sensors increases, the
number of atoms per sensor H whose correlation matrix is
approximated, decreases. Indeed, in that case, the meaningful
components of s are likely to be distributed in different sub-
dictionaries.

Noisy case Then, we study the behavior of the algorithm
in the presence of additive white Gaussian noise. Figure 3
illustrates the variation of the relative error er = ‖η̂−η∗‖2

‖η∗‖2 , for
various levels of SNR and for some representative values L.
The estimated parameters are denoted by η̂. Note that each
experiment is repeated 10 times (for each random realization
of noise) and the results are reported in boxplot notation. We
have used H = 600, so each sensor keeps xH

L y number of
atoms. We can observe that the algorithm is quite resilient to
noise, even for a small number of sensors, L.

Note that in the case where the image content is more
complex, the correlation matrices at the sensors are more com-
plicated and a couple of atoms do not suffice for their approxi-
mation. One approach to alleviate this problem is to do a weak
pre-detection locally at the sensors, where only the candidate
transformations with the highest scores will be forwarded to
the FC. This is to be investigated in future work.

6. CONCLUSIONS

We introduced a distributed algorithm for pattern detection in
noisy images in the context of visual sensor networks. The
proposed algorithm is based on the partitioning of a struc-
tured dictionary of geometric features. Each sensor computes
an approximation of the correlation of the observed signal
with the most prominent atoms in its dictionary. The pat-
tern detection problem is casted into a parameters estimation
problem and provides a generic method that is efficient even
in noisy environments. Such a parameter estimation method
may prove to be useful in numerous pattern detection appli-
cation, from security schemes to tracking tasks.
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