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Abstract

Combining several classifiers has proved to be an effective machine learning technique.
Two concepts clearly influence the efficiency of an ensemble: the diversity between classi-
fiers and the individual accuracies of the classifiers. In this paper we propose an informa-
tion theoretic framework to establish a link between these quantities and, as they appear
to be contradictory, we propose an information theoretic measure that expresses a trade-
off between individual accuracy and diversity. This technique can be directly adapted
for the selection of an ensemble in a pool of classifiers. We then apply this theory to the
particular case of multiple Support Vector Machines using this new measure. We propose
an adaptation of the Kernel-Adatron algorithm for learning online multiple SVMs. The
results are compared to standard multiple SVMs techniques on reference datasets.

keywords: Combination of Classifiers, Information Theory, SVMs

1 Introduction

In many pattern recognition tasks, combining the decisions of several classifiers has shown to
be an effective technique for improving the classification performances. Dietterich gives in [1]
three main reasons why an ensemble of classifiers may be a better choice than a monolithic
classifier. First, when the same learning accuracies can be achieved by several classifiers, there
is more probability being close to the optimal solution by averaging all the decisions than
by just picking one of them randomly. Then, many learning techniques use local searches
to converge toward a solution (e.g. neural networks techniques), with the risk of staying
stacked in local optima. Running several searches and combining the solutions can improve
the performances. Finally, from a representational point of view, it is possible that the class
of functions chosen for learning the classifier does not contain the optimal solution (e.g.
restrict the use of a certain type of kernels in suport vector optimization). Combining several
functions of this class allows to reach solutions outside of this class. In [2], Freund and Shapire
also discuss why averaging classifiers can avoid overfitting.

Many techniques have been proposed in the past few years for combining classifiers. On
the first hand, the classifiers can be either trained on different sample subsets or different
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feature sets or use various learning algorithms. Then the combination itself can be performed
according to two strategies: non trainable combiners ( majority vote, probability rules: sum,
product, mean, median, etc.) and trainable combiners (weighted majority vote, classifier as
combiner, etc.). More detailed surveys on classifier combination can be found in [3] and [4].
The use of an ensemble is only justified if it becomes better than its best individual member.
To achieve this requirement, classifiers need to commit errors on different new data. This
concept refers to the notion of diversity which will be discussed widely throughout this paper.
An overview of the different diversity measures is given in [5].

In this paper, we analyse the classifier combination process in an information theoretic frame-
work. We define a new measure of the goodness of an ensemble of classifiers which is based on
the trade-off between the individual accuracies and the diversity between the classifiers. This
new measure is then taken into account for learning ensembles of Support Vector Machines
(SVMs).

The paper is organized as follows: after reviewing in section 2 some basic notions of infor-
mation theoretic classification, we present information theoretic combination of classifiers in
Section 3. Section 4 presents techniques for learning ensembles of classifiers in this informa-
tion theoretic framework as well as an experimental setup for evaluating these algorithms and
comparing the results to the state-of-the-art. Finally, we draw some conclusions in Section 6.

2 Introduction to Information Theoretic Classification

Information theoretic classification was first introduced by Principe et al. in [6]. We sum-
marize its concept here: the classification problem is formulated through the following first
order Markov chain:

C → Ĉ → E, (1)

where C represents the true class labels defined over the set Ωc, Ĉ models the classification
steps through the decided class labels (feature extraction, feature selection and classification)
and E is the error random variable taking values into {1, 0}. The probability of making an
error during the classification process is thus:

Pe = P (E = 1) = P (Ĉ 6= C). (2)

Fano’s inequality [7] gives a lower bound on this probability of error:

Pe ≥
HS(C|Ĉ) − 1

log |Ωc|
=

HS(C) − IS(C; Ĉ) − 1

log |Ωc|
, (3)

where HS(C) = −
∑

k∈Ωc

p(Ck) log p(Ck) is Shannon’s entropy [8] of C, IS(C; Ĉ) =
∑

k,j∈Ω2
c

p(Ck, Ĉj) log
p(Ck,Ĉj)

p(Ck)p(Ĉj)

is Shannon’s Mutual Information (MI) between C and Ĉ and |Ωc| is the number of classes.

From this lower bound Erdogmus et al. [9] also derived an upper bound using Jensen’s
inequality described in [8]:

HS(C) − Iα(C; Ĉ) − hS(Pe)

log |Ωc| − 1
≤ Pe ≤

HS(C) − Iβ(C; Ĉ) − hS(Pe)

mink HS(C|e, ĉk)
, (4)

where hS(Pe) = −Pe log Pe−(1−Pe) log (1 − Pe) is the binary Shannon’s entropy and Iα(C; Ĉ)
represents Renyi’s definition of the mutual information with α ∈ R

+ \ {1}. The tightest
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bounds are obtained when the Renyi’s entropy coefficients (α, β) tend to 1 in which case
Renyi’s definitions correspond to Shannon’s ones. As the number of classes |Ωc| is fixed,
HS(C) does not depend on the classification process, bounds in Eq. 4 point out that maximiz-
ing the MI between the two random variables C and Ĉ will tend to minimize the probability
of making an error Pe.

This formulation of the classification problem has been extended to feature extraction (Fisher
et al. [10], Hild et al. [11]) and processing of multimodal signals (Butz et al. [12]). Sindhwani
et al. [13] also proposed a feature selection technique for support vector machines and neural
networks based on similar information theoretic considerations. In the next section we will
extend these properties to the framework of multiple classifiers.

3 Information Theoretic Combination of Classifiers

The information theoretic framework given in the previous section was referring to the general
classification task. This section shows how it can be extended when the classification problem
is more specifically a combination of several classifiers.

Let us assume that we have a team of given classifiers. The aim is to find the best combination
of members in the sense that it will maximize I(C; Ĉ). For simplification and without loss of
generality, let us consider a two class problem with labels {−1, 1} and three classifiers to be
combined. We denote by Ĉi, i ∈ {1, 2, 3} the random variables representing the output labels
of classifier i, IC;Ĉi

, i ∈ {1, 2, 3} the MI between the output of individual classifier i and the
true labels and finally Ii,j = IĈi;Ĉj

, i, j ∈ {1, 2, 3}, j ≥ i the MI between two classifiers. The

quantity to be maximized is:

IC;Ĉ =
∑

k=−1,1

∑

j=−1,1

PC;Ĉ(k, j) log
PC,Ĉ(k, j)

PC(k)PĈ(j)
. (5)

As described in the introduction, the combination can be implemented using variety of strate-
gies. The simplest rule and the most widespread is the majority voting. Majority voting
simply considers the output label of each member, whereas other probability rules take into
account output confidences of the classifiers. Despite its simplicity, it has proven to be an
effective rule for many combination tasks. Moreover, majority vote can easily be extended
to weighted majority vote which is widely used in the multiple classifiers community. For
example, the decision of AdaBoost [14] is a weighted majority vote of weak classifiers. Many
studies [15, 16, 17, 18] have focused on analysing why majority voting was as effective as more
complicated schemes in improving the recognition results. In the remaining of the paper we
restrict the combination rule to majority voting.

3.1 Majority Vote for Combining Classifiers

Considering a majority voting scheme, the probability PĈ(i) that Ĉ outputs i is is related to
each voter classifier:

PĈ(i) ≤ PC1,C2(i) + PC1,C3(i) + PC2,C3(i). (6)

Then, considering an odd number of independent classifiers N > 1 and assuming that they
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all have the same accuracy denoted p, the accuracy of the ensemble is:

Pmaj =

N
∑

m=⌊N/2⌋+1

(

N

m

)

pm(1 − p)N−m. (7)

The following result is known as the Condorcet Jury Theorem (1785):

Theorem 3.1 [3]

1. If p > 0.5 then Pmaj is monotically increasing and
Pmaj −→ 1 as N −→ ∞

2. If p < 0.5 then Pmaj is monotically decreasing and
Pmaj −→ 0 as N −→ ∞

3. If p = 0.5 then Pmaj = 0.5.

The assumptions of equal accuracy and independence of the classifiers are of course too strong
in our framework as each classifier is trained using features extracted from the same data.
Moreover, this theorem does not tell about the non asymptotic behavior of the majority rule.
How does majority voting behave with a small number of classifiers N? To address this
ambiguity, Shapley et al. in [19] give the following lemma:

Theorem 3.2 [19]
Consider a group of odd size N with any competence structure (p1, . . . , pN ), where pi > 0.5
∀i. The probability to reach the correct decision, when utilizing the simple majority rule, is
larger than the probability p = 1

N

∑N
i=1 pi of a random group member to do so.

In our case this theorem leads to:

PC,Ĉ(i) ≥
1

3
(PC,C1(i) + PC,C2(i) + PC,C3(i)). (8)

Considering bounds (6) and (8) on each term of the mutual information in Eq. (5), we show
that minimizing the MI between each pair of classifier IĈi;Ĉj

, i 6= j and maximizing the MI

between each single classifier and the true class labels IC;Ĉi
will tend to maximize IC;Ĉ .

As introduced in section 2, IC;Ĉi
represents the accuracy of classifier i, while IĈi;Ĉj

measures

the similarity between the two classifiers i and j. Thus, by minimizing IĈi;Ĉj
, we maximize

the diversity between the two classifiers.

It is important to note that we proved a sufficient condition for maximazing I(C; Ĉ), but it
is clearly not a necessary condition. It is possible to have a good combiner accuracy which
does not maximize the ratio between the classifiers accuracies and the diversity. This will be
discussed experimentally in section 4.

3.2 Diversity

Diversity appears to be a key feature in obtaining an effective combination process. Clearly,
in order to be efficient, an ensemble needs to contain classifiers that are complementary, in
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the sense that they commit errors on different objects. That is why many papers proposed
to directly exploit diversity for finding good ensembles [20, 21, 22, 23, 24]. However, this
section will show that diversity is a more ambiguous concept than it seems to be. In the past
years, various diversity measures have been preposed. They can be splitted into pairwise and
non pairwise diversites, the most widespread being the Q statistic [25], Double fault [26] and
the Disagreement Measure [27]. Let us define the Q-statistics between two classifiers C1, C2

with the notations of Section 2. Denote a = P (C1 = C,C2 = C), b = P (C1 6= C,C2 = C),
c = P (C1 = C,C2 6= C) and d = P (C1 6= C,C2 6= C), then QC1,C2 = ad−bc

ad+bc .

We define the following experimental setups to evaluate how the diversity influences the
performances of an ensemble of classifiers, using two diversity measures: the Q-statistics and
our information theoretic measure.

A first experiment imposes the classifiers to have strictly equal accuracies p ∈ {0.5, 0.6, 0.7, 0.8, 0.9}.
Considering this constraint, 1000 binary outputs were randomly generated for each classifier.
For each trial we measured the ensemble accuracy pvote and we compared two diversity
measures: the average Q-statistics and the average MI. Results are reported in Figure 1.

In the second experiment p is randomly distributed in the interval p ∈ [0.7 , 0.8]. Results are
reported in Figure 2.

It turns out that the diversity (both Q-statistics and MI) seems to be a relevant feature when
the classifiers have similar individual accuracies, supposing that this accuracy is not too low
(Figure 1 with p ≥ 0.7). When they have equal but low accuracies, large diversity does not
imply necessarily improvements (Figure 1 with p < 0.7). But Figure 2 shows that even if
the classifiers have only slight differences in terms of individual accuracy, diversity between
them is not a highly discriminant feature for choosing the best ensemble (This remark is
important as in practical applications we cannot ensure that the classifiers have exactly the
same individual accuracy).

These considerations explain why diversity is usually only used for visualization (plot pairs
of classifiers according to their diversity), or overproduction and selection of classifiers. Con-
ceptually, forcing diversity in an ensemble seems to encourage the global accuracy of the
ensemble. However, Kuncheva reported in [3] that the improvement on the best individual
accuracy by forcing diversity is negligible. More details about diversity and how to create
diversity in ensemble are given in [28]. To understand this problem from an information
theoretic point of view, the following section will discuss the accuracy/diversity dilemma.

3.3 Diversity/Accuracy Dilemma

We pointed out in Section 3 that our aim is to maximize both the average individual accuracy
and the diversity between classifiers. However these two measures are somehow contradictory.
In fact two very good classifiers will clearly have very low diversity and vice-versa. We discuss
this phenomenon by the following formalism.

Consider two random variables C1, C2 representing two classifiers. Let C be the true class
labels.

To establish a probabilistic link between the 2 classifiers, a parallel is made with the work
of Butz et al in [12] concerning processing of multi-modal signals. First recall some pattern
recognition definitions. We consider that the training and testing examples are generated
from an unknown but fixed probability distribution function (pdf ) and the task is to find a
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function that minimizes the risk of misclassifying new vectors drawn from the same pdf. We
can consider that the inputs of both classifiers C1 and C2 come from this pdf. Two coupled
Markov chains can be built:

{

C → C1 → Ĉ2 → Ĉ → E

C → C2 → Ĉ1 → Ĉ → E.
(9)

These coupled Markov chains are depicted in Figure 3. The probability densities of C1 and
Ĉ1, resp. C2 and Ĉ2, are both estimated from the same data sequences. Therefore we can
write I(C1; Ĉ2) ≈ I(C2; Ĉ1) ≈ I(C1;C2). Then, the data processing inequality as defined in
[8] gives: I(C1;C2) ≥ I(C;C2) and I(C1;C2) ≥ I(C;C1). This implies that:

I(C1;C2) ≥
I(C;C1) + I(C;C2)

2
. (10)

Maximizing the individual accuracies represented by I(C;C1), I(C;C2) will consequently
maximize I(C1;C2), the diversity between the classifiers. Inversely, minimizing I(C1;C2)
(maximizing the diversity) will tend to minimize the classifiers accuracy. To adress the con-
tradiction presented here, a trade-off needs to be introduced. A study of how the diversity
evolves depending on the classifiers accuracies is given in the next section.

4 Information Theoretic Score

4.1 Estimation of the Relationships Between Diversity and Classifiers Ac-
curacy

This section estimates experimentally the relationship between diversity and accuracy in
order to give a computable measure of the ensemble performance. This link is estimated
with the following experiment. Outputs of two classifiers (C1, C2) with equal accuracies are
iteratively simulated. We report in Figure 4 the similarity between output labels I(C1;C2)

for each trial as a function of the individual accuracy I(C;C1)+I(C;C2)
2 .

We propose to approximate the similarity by a quadratic function of the average individual
accuracy. Figure 5 gives a graphical interpretation of this approximation. A classifier is rep-
resented by a vector. Its projection onto the horizontal axis measures its individual accuracy
while the difference between vertical projections of two vectors measures the diversity be-
tween them. The dash line represents the maximal diversity allowed between two classifiers
with identical accuracy. It appears that two poor classifiers can have large diversity while
two accurate classifiers cannot be so diverse.

In the following, we will consider two terms based on the mutual information between clas-
sifiers: the average accuracy of the K classifiers:

ITA =

∑K
i=1 I(C;Ci)

K
, (11)

and the diversity between the classifiers:

ITD =

(K
2

)

∑K−1
i=1

∑K
j=i+1 I(Ci;Cj)

. (12)
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Taking into account the second order approximation of the similarity between the classifiers
and the average accuracy, we propose the Information Theoretic Score (ITS) as:

ITS = (1 + ITA)3.(1 + ITD). (13)

This model is a choice and other similar modeling could be chosen. The next section tries to
validate this definition in the context of overproduction and selection of classifiers.

4.2 Validation of the ITS

To evaluate the intrinsic behavior of the ITS, we first consider artificial classifier outputs. By
generating random outputs we can explore the complete space of output labels. It presents the
advantage of being completely independent of the process of feature selection and independent
of the learning algorithm. We can thus perform an unbiased evaluation of the ITS. Let us
consider the following simple experimental setup. We generate randomly outputs for three
classifiers. For each run, we measure the accuracy of the ensemble and the ITS. The results are
shown in Figure 6. Note that in this experiment we do not impose the individual accuracies
to be identical.

As expected, ensembles with high ITS are accurate. Moreover, an ensemble can be accurate
but with a low ITS, therefore, the condition for maximizing I(C; Ĉ) is sufficient but not
necessary.

4.3 Experiments With Real Classifiers

For evaluating the relevance of the ITS defined above on a real classification task, we consider
a 2 class toy problem using the Banana dataset available in the Matlab Pattern Recognition
Toolbox [29]. We generate 1000 training examples for both classes and we split this training
set into 15 smaller subsets by random sampling. We then train one classifier with each
subset. A first experiment (Figure 7(a)) consists in training 15 Support Vector Machines
(SVMs) with radial basis kernels (the parameters being evaluated by cross-validation). The
455 possible combinations of three classifiers (triplets) are exhaustively tested. For each
triplet, we measure the ITS, the ensemble accuracy on a large test set and the we also
compute the average individual accuracy of the three classifiers. This mean is represented by
the grey level of the circles in Figure7(a). In the second experiment, three different learning
algorithm are used. We trained 5 SVMs, 5 linear classifiers and 5 K-nearest neighbors (KNN)
and again ITS is measured for each triplet. Results are reported in Figure 7(b).

As expected, the triplets of classifiers with low ITA (dark circles) lead to low classification
accuracy. When the three individual classifiers are accurate (light circles in Figures 7(a)
and 7(b)), the final classification is generally accurate. However, in both configuration, the
lightest points (which means the 3 best classifiers combined together) do not give necessarily
the best combination. This phenomenon is more visible in the case of 15-SVMs as they only
have slight differences in their individual accuracies. In any case, the ensembles with high
ITS are very accurate. These experiments show that, at least in toy problems, the ITS can
overcome the limitations of diversity as presented in section 3.2.
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5 Designing Ensembles of Support Vector Machines using ITS

The previous section showed the interest of using the ITS for selecting classifiers in a pre-
defined team of classifiers. However, in many applications the classifiers are not given, that
is why in this section we propose techniques for training ensembles such that ITS will be
maximized. One of the drawbacks of the information theoretic approach is that the objective
function to be optimized is not differentiable. To overcome this problem, we will use various
iterative optimization algorithms for maximizing the ITS.

In most cases, these algorithms depend on the learning algorithm used for training the clas-
sifiers. In the remaining of the paper we will thus focus on the particular case of multiple
Support Vector Machines which has proved to be efficient in many applications, particularly
large scale problems.

5.1 An Overview of SVMs and Ensembles of SVMs

Support Vector Machines (SVMs) have been extensively used in many pattern recognition
problems, mainly because of their impressive generalization performances compared to other
algorithms.

Let us begin with a brief overview of the classical SVM algorithm. More information about
SVM can be found in [30],[31]. Let {(xi, yi)|i = 1, . . . , l} ⊂ R

n×{−1,+1} be a set of examples.
From a practical point of view, the problem to be solved is to find that hyperplane that
correctly separates the data while maximizing the sum of distances to the closest positive
and negative points (i.e. the margin). The hyperplane is given by1:

hw,b(x) = 〈w,x〉 + b = 0,

and the decision function is:

f(x) = sgn(hw,b(x)) = sgn (〈w,x〉 + b) .

In the case of linearly separable data, maximizing the margins means to maximize 2
‖w‖ or,

equivalently, to minimize ‖w‖2, subject to yi(〈w,x〉 + b) ≥ 1. Suppose now that the two
classes overlap in feature space. One way to find the optimal surface is to relax the above
constraints by introducing the slack variables ξi and solving the following problem (using
2-norm for the slack variables):

minξ,w,b ‖w‖2 + C
∑l

i=1 ξ2
i

subject to yi(〈w,xi〉 + b) ≥ 1 − ξi ∀i = 1, . . . , l,
(14)

where C controls the weight of the classification errors (C = ∞ in the separable case).

This problem is solved by means of Lagrange multipliers method. Let αi ≥ 0 be the Lagrange
multipliers solving the problem above, then the separating hyperplane, as a function of αi, is
given by

hαi,b(x) =
∑

i:αi>0

yiαi〈xi,x〉 + b.

1We use 〈·, ·〉 to denote the inner product operator
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Note that usually only a small proportion of αi are non-zero. The training vectors xi corre-
sponding to αi > 0 are called support vectors and are the only training vectors influencing
the separating boundary.

In practice however, a linear separating plane is seldom sufficient. To generalize the linear
case one can project the input space into a higher–dimensional space in the hope of a better
training–class separation. In the case of SVM this is achieved by using the so–called ”kernel
trick”. Basically, it replaces the inner product 〈xi,xj〉 with a kernel function K(xi,xj)which
needs to satisfy Mercer’s conditions. As the data vectors are involved only in this inner
products, the optimization process can be carried out in the feature space directly. Some of
the most used kernel functions are:

the polynomial kernel K(x, z) = (〈x, z〉 + 1)d

the RBF kernel K(x, z) = exp(−γ‖x − z‖2)
(15)

The main drawback of SVMs is that solving the problem requires an optimization with a
complexity that varies at least quadratically with the number of training examples, which
becomes intractable in large scale problems. To overcome this difficulty, several studies used
mixtures of SVMs which lead to simpler optimization tasks.

Here is a brief overview of the most significant ones. A first technique referring to Mixtures of
SVMs (MSVMs) was proposed by Kwok in [32]. He used several SVMs in a mixture of expert
scheme and showed the efficiency of this technique with different hierarchical structures. Then
Collobert et al. [33] trained several SVMs on subsets of the initial dataset to decrease the
training complexity. The subdivision can be performed in many different ways. A simple
but efficient technique is to sample the training set randomly [34, 33]. It is particularly
efficient for large scale problems as it allows to reduce the noise present in the training set
and decrease the influence of potential outliers. In [33], Collobert et al proposed to use
Neural Networks for combining the decisions of the individual classifiers. The neural network
gater was trained in order to minimize a squared error cost function. In [35], the outputs
are combined using a second layer SVM trained on the margins ([35]) whereas in ([34]) they
used simple probability rules. In case of simple majority voting, this last technique is similar
to Bagging as introduced in [36] except that the sampling is done without replacement. An
asymmetric version has been proposed for image retrieval using relevance feedback [37].

These studies also lie on interesting theoretical foundations showing the interest of using
MSVMs rather than one single SVM trained on the complete training set. An interesting
work focusing on generalization bounds of such kernel machines ensembles is presented in [38].
In particular, they show that the leave-one-out error L((x1, y1), . . . , (xn, yn)) of M parallel
SVMs is upper bounded by:

L((x1, y1), . . . , (xn, yn)) ≤ EE1 +
1

M

M
∑

m=1

D2
m

ρ2
m

,

where EE1 is the margin empirical error with ensemble margin 1, Dm is the radius of the
smallest sphere centered at the origin, in the feature space induced by m-th kernel, containing
the support vectors of the m-th SVM, and ρm is the margin of m-th SVM . In some cases,
this bound is smaller that the bound for a single SVM. For example suppose that the SVMs
use most of their training points as support vectors, then clearly the Dm of each SVM in
the ensemble is smaller than that of the single SVM. Moreover the margin of each individual
SVM is expected to be larger than that of single SVM. We propose to see how the ITS defined
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Population size ITS-GA Single SVM Random sampling

6 87.1(%)
10 89.5(%) 79.1 81.3
16 90.8(%) (%) (%)
20 91.5(%)

Table 1: Comparison of 3 classification techniques on face detection datasets. A single SVM
trained on the complete train set, mixtures of SVMs trained by random sampling and mixtures
of SVMs obtained by GA using ITS as fitness function. Classification rates correspond to
equal error rates.

in the previous sections can be used in this context of MSVMs. The proposed techniques will
then be compared to the state-of-the-art.

5.2 Genetic Algorithms

In the MSVMs presented here above, the splitting of the training set is usually done by
random sampling. However, this will lead to classifiers that are similar in the sens that
they are trained from data that are just various estimates of the same distribution. We thus
propose techniques for finding subdivisions of the initial training set that will finally maximize
our ITS A first answer to this optimization problem is to use genetic algorithms (GA)[39].

GA have been found to be a robust and practical optimization method. A candidate solution
is represented by a chromosome. A set of chromosomes (called population) is first generated
randomly and it is then iteratively modified to converge towards the optimal. The relevance
of each chromosome is measured using a fitness function. In our study, one chromosome
represents one training set configuration for all the classifiers in the ensemble. It means that
for each example, the chromosome encodes which classifiers will use the example in their
training set. We use a coding based on a Venn diagram similar to the one proposed in [40]
except that they work in the context of feature selection. The encoding is detailed in Figure
8. The evolution of the population if performed by crossover and mutations for adapting
training sets of the 3 classifiers.

For evaluating this technique and give comparative results with MSVMs, we consider a face
detection dataset. The classification task is to classify face images versus non face images. The
training set contains 1000 face images extracted from BANCA Database [41] and 1000 non
face training examples that were generated by bootstrapping on randomly selected images.
These data as well as the large test set used in this paper are available upon request. The
images were scaled at 15×20 pixels and then projected on a 18 dimensional space by Principal
Component Analysis (PCA). (see [34] for details).

Results are compared to the technique used in [34] where they use random sampling to
generate the training subsets and then combine the decisions using classical probability rules.
The results are reported in table 1 . The classification rates reported in Table 1 correspond
to equal error rates between face and non face classes.

With only few generations (e.g. 6 generations) the recognition rates are largely improved
compared to simple random sampling introduced in [34].

This GA approach gives an ensembles with large ITS. However the training process is very
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computationally expensive. In fact running the GA requires training 3×p×g classifiers, where
p is the size of the population and g the number of generations. While it remains efficient
with non-trainable classifiers (e.g. k-nearest neighbors), it becomes practically infeasible with
SVMs. The drawback of these non-trainable classifiers is that they are generally stable in
the sense that small changes in the training set will not induce large changes in the output.
Combining several classifiers becomes efficient when the classifiers are unstable (see [3]).
Another drawback of this GA strategy is that the training complexity varies dramatically
with the number of classifiers in the ensemble. In this work, only a setup with 3 classifiers
has been tested and extending it to larger ensembles can be a very complex task. However
this GA approach remains interesting for comparison purposes. It shows the classification
rates that can be reached as well as the ITS measures obtained for good ensembles. In the
following we propose a technique for achieving similar classification rates but with a much
lower training complexity.

5.3 Kernel Adatron for maximizing ITS

In this work we use an online algorithm for training SVMs which is called Kernel Adatron
(KA)[42]. An overview as well as implementation considerations can be found in [43]. KA
simply uses a gradient ascent to solve the convex quadratic optimization described in Eq. 14.
We extend this algorithm to train jointly M SVMs such that the ITS of the ensemble will
be increased. The algorithm is described in Algorithm 5.1, where the index x(c) indicates
that the variable x refers to the classifiers c. The standard formulation of KA is found by
setting M = 1, µ = 0. The adaptation to multiple classifiers appears in the function fITS

weighted by the factor µ. It depends on the output of all the current classifiers. Basically,
the Lagrange coefficients of the support vectors that are misclassified by the ensemble will
be modified such that a majority of classifier classify correctly the support vectors. More

precisely, let f (m) = sign

(

∑

j∈sv(m)

yjα
(m)
j K(m)(xi,xj)

)

be the decision of the m-th SVM at

the current iteration. Then for all the support vectors, we compute the number of correct
classification: if max{α(m)}m=1,...,M > 0,

L =
∑

m=1,...,M

I

(

f (m)(xi)yi > 0
)

. (16)

Then define f
(m)
ITS as:

L∗ = max
(

0, ⌈M
2 ⌉ + 1 − L

)

f
(m)
ITS =

{

+1 for the L∗ largest α
(m)
i ,with m ∈ {1, . . . ,M |f (m)(xi)yi < 0}

0 otherwise

. (17)

The parameter µ is a weighting coefficient that affects the convergence speed. Empirical
studies using crossvalidation showed that µ should be chosen in the range 0.5η ≤ µ ≤ 1.5η.
Clearly setting a too large µ will tend to overfit the training data. Note that it has been
proved that if a large number of examples are considered as support vectors, the optimal
choice is η = 1

K(xi,xi)
which is 1 in case of RBF kernels. Note that that some iterations of

the standard KA are ran before taking into account other classifiers in order to keep a fast
convergence of the algorithm. This algorithms is used in the context of random sampling of
the train set as described in Section 5.2. This technique performs an implicit clustering of
the data such that each member of the ensemble behaves like an expert on its own subset.
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This algorithm has been tested using the face dataset presented earlier. We first ran 5
iterations of standard KA (by setting µ = 0) for training 3 SVMs on independent subsets
, then µ is set to 1. At each iteration, we measure the ITS of the ensemble on a separate
test set and compare it to the best ITS obtained by GA. Results are depicted in Figure 9.
It clearly appears that the ITS increases significantly after the introduction of the joint term
(5 iterations). It also shows that we quickely reach the ITS level of the computationally
expensive GA technique. (The ITS level of the GA in Figure 9 is a mean of 10 trials,with a
standard deviation of 0.04). Apart from its good classification skills, this algorithm presents
also the advantage of being computationally friendly. Moreover, the complexity of the training
process only increases linearly with the number of classifiers.

Algorithm 5.1: ITS - Kernel Adatron.

Initialize ∀m ∈ {1, . . . ,M},1

α
(m)
i = 0

Calculate ∀m ∈ {1, . . . ,M},2

• z
(m)
i =

∑n
j=1 α

(m)
j yjK(xi,xj)

• δα
(m)
i = η(1 − yiz

(m)
i ) + µf

(m)
ITS

• α
(m)
i = max(min(α

(m)
i + δ

(m)
i , C), 0)

Calculate new margins ∀m ∈ {1, . . . ,M},3

γ(m) = 1
2( min

{i|yi=+1,αi<C}
(z

(m)
i ) + max

{i|yi=−1,αi<C}
(z

(m)
i ))

Break if ∀m ∈ {1, . . . ,M}, maximum number of iteration reached or the margin γ(m)
4

has approached 1

5.4 Comparison of the Methods

The main goal of the experiments reported here is to investigate the behavior of the kernel
Adatron adaptation of the MSVMs and to compare it with the other standard techniques.
MSVMs are particularly effective in large scales applications that is why in our experiments
we used the largest dataset available in the UCI repository [44]- the Forest dataset. We
transformed the original multi-class problem into a binary classification task where the goal
was to discriminate class 2 from all the other six classes, this kind of partitioning making the
two new classes of roughly the same size. We took 10000 examples of each class for training
and 30000 for testing. SVMs are trained using LIBSVM [45] by 5-fold cross-validation. We
compare the following techniques: Single SVM trained on the complete dataset, Multiple
SVMs (MSVMs) [34], Gated SVMs (GSVMs) [33], Genetic Algorithms using ITS as fitness
function (GA-ITS), 1 monolithic SVM trained using Kernel Adatron (K-A 1-SVM), and
finally 3 SVMs trained jointly using KA (K-A 3-SVMs). The results are reported in table 2.

The first comparison concerns a single SVM trained either by quadratic optimization (using
the implementation in [45]) or the kernel Adatron implementation. They perform quite
identically in terms of detection rates but the training time is much lower in the KA case.
Then we see that the techniques [34, 33] improves the single classifier implementation as
expected. GA-ITS and KA-3SVMs show how using a better subset selection than only random
sampling significantly improves the results. Finnally the KA-3SVMs version converges much
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Experiment #SV Detection rate(%) Training time (mins)

1 SVM 966 72.4 195

3- MSVMs[34] 633+628+644 73.27 ± 0.12 70

Gated SVMs[33] 143+127+176 73.33 ± 0.14 62

GA- ITS 963+878+1035 75.02 ± 0.23 307

K-A 1SVM [42] 1331 72.77 19

K-A 3SVMs 1326+1345+1324 74.86 ± 0.12 23

Table 2: Comparison of various multiple SVMs techniques on UCI Forest database [44]. For
each technique we report the number of support vectors (#SV), the test error on a large test
set and the training time in minutes.

faster than GA-ITS. We notice that the number of support vectors is very high for the KA-
3SVMs. It can be explained by the fact that contrarily to [34, 33], one input sample can be
support vector for several of the 3 SVMs at the mean time.

6 Conclusions

This paper presents a new ensemble learning technique in an information theoretic framework.
It provides a tool for measuring the goodness of an ensemble by taking into account a trade-
off between individual accuracy and diversity. This information theoretic criterion has been
used in learning of multiple SVMs. We propose an online algorithm for training multiple
SVMs in this information theoretic framework. These techniques have been tested in the face
class modeling application as well as a large scale problem, and they perform significantly
better than state-of-the-art techniques.
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Figure 1: improvement of the ensemble w.r.t. the average individual accuracy p =
{0.5, 0.6, 0.7, 0.8, 0.9}, function of 2 diversity measures.
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Figure 2: improvement of the ensemble w.r.t. the average individual accuracy p ∈ [0.7 0.8],
function of 2 diversity measures.
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Figure 3: Coupled Markov chains for 2 classifiers trained differently from the same input
data.

Figure 4: The similarity of 2 classifiers I(C1;C2) function of the average individual accuracy
I(C2;C)+I(C1;C)

2 . The 2 classifiers have the same individual accuracy.
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Figure 5: Graphical representation of Accuracy/Diversity dilemma.

Figure 6: Score behavior with synthetic class labels
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(a) 15 SVMs

(b) 5 SVMs, 5 KNN, 5 linear classifiers

Figure 7: Combination accuracy and ITS for each triplet of classifiers. (a)15 SVMs with RBF
kernels and (b)5 SVMs with RBF kernels, 5 KNN classifiers and 5 linear classifiers. The color
of the circle is proportional the the average accuracy of the ensembles.
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Figure 8: Chromosome encoding for GA optimization. Circles represents training samples
that are used for learning each classifier. The code is 0 if none of the classifiers uses the
example, 1 if only classifier 1 uses it, 4 if only classifiers 1 and 2 use it and 7 if the three
classifiers have this training sample in their training set.
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Figure 9: Comparison between ITS-Kernel Adatron (3 SVMs-KA) and Genetic Algorithms
(GA)
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