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Abstract

We present a general framework and an efficient algorithntréaking relevant video structures. The structures
to be tracked are implicitly defined by a Matching Pursuitgeaure that extracts and ranks the most important image
contours. Based on the ranking, the contours are autoriptiedected to initialize a Particle Filtering tracker.&h
proposed algorithm deals with salient video entities whHosgavior has an intuitive meaning, related to the physics
of the signal. Moreover, as the interactions between sudictsres are easily defined, the inference of higher level
signal configurations can be made intuitive. The proposgdrithm improves the performance of existing video
structures trackers, while reducing the computational mlerity. The algorithm is demonstrated on audiovisual
source localization.

Index Terms

Video signal processing, tracking, feature extractiomi@isual processing, sparse signal representation.

. INTRODUCTION

Object tracking is usually performed based on an apprapdascription of the appearance of a target, either at
a global or local level. Examples of global descriptions siraple templates [1], color histograms [2], or active
appearance models [3]. Examples of local analysis are thtbaue developed to independently track and match
feature points. The seminal work in this field is the KLT track4] where stable corners are detected and then
their appearance is represented by an affine invariant sgenpbmputed on a small region around the point. The
points detected at subsequent frames are matched based appbarance. More advanced feature point detectors
have been proposed to account for rotation, scale changtee ainderlying object structures [5]. All the above
mentioned methods are designed from a tracking-centriat gdiview : (i) stable structures are used to facilitate
tracking, and (ii) the representation is designed to redunbiguity between feature points [6]. The interpretation
of the information obtained after tracking in the contexttibé considered signal is postponed to a subsequent
analysis stage. But are stable structures also relevamt &r@ignal representation point of view?

We argue that a signal-centric (as opposed to a trackingicemepresentation can extend the application of
a feature tracking system by fusing analysis and tracking Bingle general framework. The ability of tracking
relevant structures of moving images would provide spiioporal information that is intrinsically meaningful for
the representation of the video signal. Considering nhimnage sequences composed of successive 2D projections
of 3D objects describing smooth trajectories through timee usually assumes that image sequences are well
modeled by smooth transformations of a reference framelfirthis context, relevant video features are time-
evolving oriented edges that describe concisely the ge@mrsttuctures of a scene and their temporal evolution [8].
In general, a large variety of geometric structures can hmdoin a video sequence. A signal representation
capable of exploiting video structural properties whilefgiag generic and flexible enough should then be used. Such
properties are introduced into the video feature extragii@cess, considering spatio-temporal video approxonati
using redundant codebooks of geometric primitives cadlieins Local deformations are then propagated over time
by updating the atoms’ parameter field in order to approx@thaé succession of frames.

An algorithm that aims at representing video sequences amatrelevant video structures for coding purposes
was proposed in [8]. This method decomposes using MatchiurguR (MP) a reference frame as a sparse sum

The authors acknowledge the support of the Swiss Nation@in8e Foundation through the IM.2 National Center of Corapet for
Research and of the UK Engineering and Physical SciencesaRdsCouncil (EPSRC), under grant EP/D033772/1.
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of atoms taken from a redundant dictionary [9]. These stmest are then tracked through time, decomposing the
subsequent frames with a modified MP algorithm that @spsori information inherited from previous frames [8,
10]. Although effective for audiovisual source localipetiand separation [11,12], this video MP algorithm is
formally and computationally complex. Here we want to folimeathe atom tracking problem in a more agile and
well grounded fashion, in order to allow an easier and moteitime understanding of the results. This should
allow as well to improve and extend in a natural and elegasttitan the proposed algorithm, as we will discuss
in the last section of the manuscript. We also want the tragknethod to employ a strategy that allows to reduce
the computational load of the algorithm. In addition, we wé&m underline that the method introduced in [8]
was designed as a coding algorithm. This poses some prolftemsthe tracking point of view. First of all, the
parameters of the video atoms were coarsely quantized tev@chetter compression performances, introducing
tracking errors. Secondly, atoms are followed from one &amthe other using a search window of limited size,
since, as in most video coding schemes, it is less expensicede a new object than to encode the difference
between two very different entities. This however limite ttobustness and flexibility of the tracker.

In this report, we formalize the atom tracking problem toldaa more intuitive interpretation of the decomposi-
tion results and we reduce the computational complexitjhefatom tracking scheme. The tracker is automatically
initialized by representing the first frame of a sequence @mabination of edge-like functions. These functions are
retrieved from a redundant dictionary of atoms using MP.dntrast to classical tracking algorithms, the structures
to be tracked are implicitly defined by MP that picks the madévant image contours. Such visual features are
then tracked using one of the most popular tracking algwritRarticle Filter (PF) [13—15]. In this way we put
the video atom tracking problem in the well grounded and wtded framework of PF, which moreover ensures
robustness, flexibility and lower computational comphgxitan the video MP algorithm [8].

The structure of the report is the following : Section Il et the geometric video representation framework
based on MP and the tracking algorithm based on PF. In Settierperimental results of visual edge tracking and
of audiovisual source localization are presented. Finail\section IV achievements and future research directions
are discussed.

[I. TRACKING OF GEOMETRIC VIDEO FEATURES

In the next sections the video representation and trackiggrithm is presented. Section II-A introduces the
adopted approach to sparse video representation base@ aetomposition of the frames over redundant dictio-
naries of geometric primitives. Section II-B introduces thacking strategy adopted to follow the video structures
across time based on Particle Filter.

A. Geometric Video Representation

Assuming that an imagé(x,y) can be approximated with a linear combination of atomseedd from a
redundant dictionaryDy, of 2D atoms, we can write :

[((L’, y) ~ Z Cx[n] Gx[n] (.Z', y) ’ (1)

x[n]eN

wheren is the summation index, corresponds to the coefficient for every atefm(x,y) and(2 is the subset of
selected atom indexes from dictiona®y,. We also require that the representatiosparse i.e. the cardinality of

Q is much smaller than the dimension of the signal. The decaitipn of I(x,y) on an overcomplete dictionary
is not unique and several decomposition approaches havepoeposed, like the method of frames [16], Matching
Pursuit [9] or Basis Pursuit [17]. We use here Matching Pitiran iterative greedy algorithm that selects the
element of the dictionary that best matches the signal dt geaxation.

Each video frame is decomposed into a low-pass part, thas t@ito account the smooth components of images,
and a high-pass part, where most of the energy of edge dinudigs lays. The low frequency component is obtained
by low-pass filtering and downsampling the images in the saqge, using the Laplacian-pyramid scheme [18].
We employ here the FIR low-pass filter proposed in [19]. Thghipass frames are obtained by subtracting the
low frequency parts from the original frames. These higlydency residual frames which contain the geometric
structures of images, are represented using MP.
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Fig. 1. The generating functiof(x, y) described by Eq. 5.

The approach we consider here consists of decomposing r@meéeframe in terms of geometric 2D primitives
and tracking them through time. Thus, starting from the firatme of the sequencd;, MP iteratively picks up
the function belonging t@®,, that best approximates the image The first step of the MP algorithm decomposes
I, as

It = (I, Gx(0)Gxo + R'I1, )

whereR'I; is the residual component after approximatingn the subspace described 6Y0- The functionGy )
is chosen such that the projectiofiy, Gyg))| is maximal. At the next step, we simply apply the same procedu
to R'I;, which yields :

Rl]l = <R1[1, Gx[l}>Gx[l} + RZII . (3)

This procedure is recursively applied, and afdériterations we approximaté as

N-1
I ~ Z Cxn)Gx[n] » (4)
n=0

wherecy,) = (R"I1, Gy[))-

The dictionaryDy, is built by varying the parameters of a mother function, iclsa way that it generates an
overcomplete set of functions spanning the input image espébe choice of the generating functioh(x,y) is
driven by the observation that it should be able to repregatit edges on the 2D plane. Thus, it should behave
like a smooth scaling function in one direction and shoulgragimate the edge along the orthogonal one. We
use here an edge-detector atom with odd symmetry, that isugdizen along one axis and the first derivative of a
Gaussian along the perpendicular one (see Fig. 1). The a@mgefunctionG(x,y) is thus expressed as

Gla,y) = 20 - @) 5)

The codebook of function®,, can be defined a®, = {Gx : x € I'}. Each atomGx = Uxg is built by
applying a set of geometrical transformatibly to the mother functiorG(z,y). Basically, this set has to contain
three transformations :

« Translations = (t,,t,) all over the image plane.

« Rotationsf to locally orient the function along the edge.

« Anisotropic scalings' = (s, s,) to adapt the atom to the considered image structure.
Any atom Gy in the dictionary rotated by, translated by, andt,, and anisotropically scaled by, ands, can
thus be written as :

Gx(l'a y) = < 2u - e_(uz—HJZ) 5 (6)

C
/525y
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Fig. 2.  Sum of scalar products between the atoms repregetitinfirst frame of a sequence [Left], and average scalaruptd®Right],
plotted as a function of the number of considered functions.

whereC' is a normalization constant and
cosf(x —tg) +sinf(y —t,)

Y 7 (7)
Sg
and ;
Y —sm@(x—t;pl—l— COSQ(y—ty) ' (8)
Yy

The reference framé, is thus decomposed into a set§fgeometric atomss,,, (z, y) that are tracked through
time.

B. Tracking Video Atoms Using Particle Filter

The tracking is performed using Particle Filter (PF), a patsic method which solves non-linear and non-
Gaussian state estimation problems [13—-15] and can dehl mitlti-modal pdfs. Its robustness and flexibility
makes PF one of the most used tracking algorithm.

The reference image is represented wittatoms and the first/ atoms arendependentlyracked. This is mainly
motivated by the fact that we are interested to the main &ires present in the video (i.e., the first functions of
the MP decomposition). If few atoms are considered, thain ihigractions are likely to be weak. One can measure
such interactions by computing the scalar products betileemtoms. If two atoms exhibit a large scalar product
(the atoms have unit norm, thus the maximum scalar produdt ibeir interaction is strong, while if it is small (i.e.
close to 0), their interaction is weak. Figure 2 shows the sfithe scalar products between the atoms representing
the first frame of a sequence [Left], and the average scataiugt between atoms [Right], plotted as a function
of the number of considered functions. The total scalar ypcbdlearly increases with the number of atoms, since
there are more interactions between the structures. Theagwescalar product increases rapidly until when the
atoms added to the decomposition become very small singerdpeesent small image details, giving low scalar
products with the other functions. In our experiments we gohsider the first\/ = 30 atoms selected by MP : as
a first approximation, it seems reasonable to consider trasaindependently since the interactions between them
are still limited. However, as highlighted in [20], neighiy functions can mutually influence each other and one
of the main future research directions will be the design ofethod that can account for the interactions between
atoms.

Each atonti,,,)(z, ) is fully characterized by the set of five parametefs|, i.e. the position, scale and rotation
parameters that describe its shape. Thus each atom to srackdbject in a five-dimensional state space. PF solves
the tracking problem based on the state equation

x¢[n] = fi(xe-1[n], vi), 9)

and on the measurement equation
zi[n] = hy(x;[n], ny), (10)
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where f; and h; are non-linear and time-varying functions. The state Wéeia; describes the characteristics of
targetn at timet, and thus it defines the'” atom at frame. To simplify the notation, from now on the atom index
n will be omitted, since anyway the atoms are tracked indepety {v; },—; . and{n;},—; . are assumed to be
independent and identically distributed stochastic psees. The problem consists in calculating plaé p(x;|z1.;)

at each time instant. This pdf can be obtained recursively in two steps, namely predicind update. The
prediction stepuses the state equation (9) to obtain the ppdf as

P(thzlzt—l) = /p(xt‘xt—l)p(xt—l‘let—l)dxt—l7 (11)

with p(x;—1|z1..—1) known from the previous iteration angx;|x;_;) determined by (9). When the measurement
z; is available, it is possible to perform thgdate stepusing the Bayes’ rule

P(2e|%4)p(X¢|Z1:4-1)

Xt|z1:4) = . 12
p(xtlz1) [ p(ze]x¢)p(x¢|Z1:0 -1 )dxy (12)
PF approximates the densitigéx,|z;.;) with a sum of N, Dirac functions centered ifix;}._, . as
NS . .
p(Xt|Z1:t) ~ szé (Xt - Xi) ) (13)
i=1

wherew! are the weights associated to the particles and they aralatd as

i i p(ZﬂXé)p(XﬂXi_l)
(.dt X wt_l FI]
q(xi[x;_1,2)

(14)

The functiong(+) is the importance density function which is often choseneaglx;|x:_;), as it is done here.
This leads tav! o< wi_;p(z|x}).
A re-sampling algorithm can then be applied to avoid the degacy problem [13]. In this case the weights are
set tow! ; = 1/N; V4, and therefore
wi o< p(ze[x7) - (15)

The weights are thus proportional to tlikelihood of the measuremerd; given the particles. Here the natural
choice for the likelihood function is the projection of thantlidate atom over the image, since we want to track
important video structures, i.e. video atoms exhibitinghhprojection on the image. This is also coherent with
the representational framework formulated in the previgerdion. The likelihood of a candidate particle is defined
as the absolute value of the scalar product between theusddidhme and the atom represented by the particle.
In order to favor candidates with high likelihood, this gtignis filtered with a Gaussian kernel centered in the
maximum likelihood value and with varianeg:, obtaining :

(L [n] = (R Iy, Gy ])?
2 (0oL} [n))? ’

L(x{[n]) = exp (— (16)

with £} [n] = max(|(R"I;, Gxifa))]) ;i = 1,..., N;. We want to underline that the ato6i,.|,; is not projected
over the framel; but over the residual at step of the decompositionR™I; (see (3)). We will use the function
L to compute the weights?. Figure 3 shows the likelihood function of a candidate at@mputed on a region
extracted from one of the analyzed clips. The re-samplieg sterives the particles depending on the weights of
the previous step, then all the new particles receive airggavieight equal tol /N, which will be updated by the
next frame filtered likelihood function.

The best state at the tintex;, is the particlex: with biggest weight, pondered by a factor that takes intmant

the similarity of the particle with the corresponding betsites at timet — 1 :

% =xM st wM = max(s(x!, %) - wi). a7

The functions is a Gaussian in the 5D parameters space. The valuéxofy) is maximum when the particles
andy coincide and it decreases exponentially as the distane@ecbatk andy in the parameters space increases.
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Fig. 3. Likelihood function of a candidate atom computed oregion extracted from one of the analyzed clips. The fumct®clearly
multimodal, exhibiting peaks that have similar amplitudel @hat are spatially close.

Alternative strategies to compute the best state would hek®e the particle with highest weight or to consider
the Monte Carlo approximation of equation (13) consistimgstimating the best state as the weighted sum of the
particles, as in [13]. However, it was observed that unstabbisy atom trajectories were generated considering
simply the particles with largest weights, due to the mutifality of the posteriopdfs, as can be seen in Fig. 3.
The Monte Carlo solution would produce more stable atonec¢tajies. However, in this case there is no guarantee
that the best state corresponds to an atom that matches @isual structure, since several local maxima can be
present in the likelihood function (Fig. 3). This cause®esdue to the fact that when thé" atom is found, it is
subtracted, multiplied by its coefficient, to the residuahge R"~'I; to generate the new residuRl'I; which is
used to calculate the successive atoms (see (3)). lhitieatom is not matching an image structure, its coefficient
(i.e. its projection over the residual image) will be veryadhand thus its contribution to the MP decomposition
will not be taken into account, inducing errors in the conapion of the successive atoms.

The introduction of the weighting facter(x, y) results in a stabilization of the atoms tracks since therélgn
tends to prefer states that are as similar as possible torth@ops ones, except if relevant modifications of the
structures occur. At the same time, the representation efsttene is kept coherent. An example of PF with
re-sampling is shown in Fig. 4.

[1l. EXPERIMENTS

In this section we present the results of the atoms tracKiggrithm with PF (MP-PF). We test the algorithm on
sequences representing one or two persons speaking andgrioviront of a camera. The clips used for the tests
have been taken from the CUAVE database 2The video data was recorded at 29.97 fps and at a resolution
of 480 x 720 pixels. The size of the clips has been then reduced tox1PD6 pixels. We use a 5-dimensional
state model for PF composed of the target positiany), the target sizes, ands, and the orientatiod. In all
experiments a zero-order motion model with fixed = o;, = 2, 0,, = 05, = 0.03 andoy = 3.5. Note that the
position change is in pixels while the scale is in percentage the orientation in degrees. The Gaussian function
filtering the likelihood function has = 0.05. PF tracker uses 150 samples.

A. Tracking of Video Atoms

In the first experiment, the proposed MP-PF approach is deste four sequences representing one person
speaking and moving in front of the camera and it is comparié thhe video MP algorithm [8] (3D-MP). Sample
frames of two clips are shown in Fig. 5.

10nly the luminance component of the video sequences hasdweesidered.
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Fig. 4. Schematic representation of the Particle Filteo@digm.

Both trackers are initialized with the same video atomsgéilP as described in Sec. II-A. The edges are then
tracked using a video MP approach in 3D-MP, while our prodosethod tracks the video structures using PF
as detailed in Sec. II-B. In Fig. 5 the tracking results udimg two algorithms are compared. The first and third
rows show the results obtained with the 3D-MP approach aedsétond and forth rows show the results for the
proposed MP-PF method. In the second part of the sequenoengeand third frames) the subjects rapidly move
towards the left. The 3D-MP tracker looses the track of twgesdin the first case and of one in the second, while
the MP-PF tracker does not. The same behavior has been eliserthe other test sequences. While the 3D-MP
algorithm easily loose the track of fast moving edges, themHPapproach results more robust, even if errors
can be observed. In both sequences for example it happenthéhgellow atom associated with the upper lip is
temporarily associated with the lower lip or the chin.

In the next section the proposed tracking method is intedrat the audiovisual fusion algorithm presented
in [11] to perform a cross-modal source localization task.

B. Audiovisual Source Localization

The analysis of audiovisual signals has received an ineckiaserest in the last years. Each signal typically brings
some information about the others and their simultaneoosgsising can uncover relationships that are otherwise
unavailable when considering the sources separately.dlin pioneering work, Hershey and Movellan [22] design
a simple algorithm to locate sounds using audio-video ssorgh The correlation between audio and video was
measured using the correlation coefficient between theggnefr an audio track and the value of single pixels.
Successive studies in the field [23—-27] focused on the statisnodeling of relationships between audio and video
features, proposing audiovisual fusion strategies base@€anonical Correlation Analysis [23,27], Independent
Subspace Projections [25] and Mutual Information maxinmza[24, 26].

While research efforts appear to be concentrated in thelafmwent of audiovisual fusion strategies, it seems
that the features employed to represent the different Eicara often basic and barely connected with the physics
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Fig. 5. Video atoms tracking. The footprints of differentmas are depicted with different colors. Results for the 3B-kpproach are on
the first and third rows and those for the MP-PF method are erséitond and forth rows. From the second to the third frameubgects
rapidly move towards their left : the 3D-MP tracker looses thack of some edges, while the MP-PF tracker does not.

of the observed phenomena (e.g. video sequences are type@lesented using time series of pixel intensities). A
representation of video signals based on visual geomaaitufes tracked through time has been proposed in [11,
12,28]. In these works, the trajectories of video strucunave been successfully used to correlate audio-video
data and localize the sound source in the video exploitiogszmodal correlation.

In the second experiment, MP-PF is integrated in the ausli@lifusion algorithm [11] to perform a source
localization task. The audio-video features that are cmrsid here are the same used in [11, 12]. The audio signal
is represented by a mono-dimensional feature that estimhéeaverage acoustic energy. The video signal instead
is represented using/ = 30 video atoms and each atom has a feature associated degdtiidisplacement.
Peaks are extracted from audio and video featuressyndhronization vectorare built [11]. The video atoms
exhibiting the highest degree of correlation with the aualie detected using a simple relevance criterion and the
sound source location over the image sequence is estimatstiding window of 70 frames length is used to
compute the synchronization vectors and to detect the védems that are more correlated with the audio. The
observation window is then shifted by 20 samples and thegolure iterated.

We have tested the algorithm on four sequences of the CUAMRbdae 19, g20, g21, g22) involving two
persons taking turn in reading series of digits in Englisiyufe 6 shows the results of the described approach
detecting the mouth of the speaker in two sequences wher@énsons speak in turns in front of the camera. In
white are highlighted the footprints of the video atoms fdua be correlated with the soundtrack. The mouth of
the correct speaker is detected.

In order to quantify the accuracy of the proposed method #mter of the speaker’s mouth in the test sequences
has been manually labelled. The active speaker's mouthrisidered to be correctly detected if the position of
the most correlated video atom falls within a circle of diaené> centered in the labelled mouth center. If several
atoms are chosen, an atoms’ centroid is estimated whostgpmosn the image plane is given by the average of
the single atoms coordinates. Correlated atoms are ddtestry 20 frames, thus mouth labels are placed with
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Fig. 6. Frames from clipg19 [Top] andg21 [Bottom]. The footprints of the most correlated atoms aghlighted. The mouths of the
correct speakers are detected.

| Clip [ Nock[24]" | Monaci[11] | Proposed |

919 a1 87 o

920 93 93 93

921 79 81 78

922 79 87 80
TABLE |

RESULTS EXPRESSED IN PERCENTAGE OF CORRECT DETECTIONY/ALUES SHOULD BE CONSIDERED AS INDICATIVE(SEE TEXT).

this same frequency throughout each sequence, and perfoesmare evaluated at test points distant 20 samples
one from the other. The value of the diameferis set to 50 pixels. This value has been chosen so that we can
compare the results with those presented in [24] and [11].

Nock and colleagues [24] propose a method to detect the nafuttne speaker founding the image zone over
which the mutual information between audio and video festus maximized. As in our algorithm, in [24] mutual
information values are estimated using a sliding time wima 60 frames that is shifted in time with steps of
30 frames. The goodness of the detection is assessed usimygitdrion that we use here, with the only difference
that in [24] the speaker’s mouth is considered to be coydotated if it is placed within aquareof 200 x 200
pixels centered on the manually labelled mouth center. Ttaking into account a downsampling factor of 4 that
we have applied to the video sequences, the areas of cormghrdetection are comparable. However, we must
note that the test clips used in [24] could not exactly calacwith those used in this paper, since the original
sequences have been cropped in both cases. In contrasesihiés rpresented in [11] are obtained using exactly
the same test sequences. The main differences betweergtiréhah presented here and the one in [11] basically
consist in the video edge tracking approach (here we use KRvRile in [11] the 3D-MP approach is used) and
in the different number of atoms considered. We considert8ha here and not 40 as in [11] because, as already
underlined in the previous section, we track the atoms iaddently : the higher the number of atoms, the stronger
are their interactions, as exemplified by Fig. 2. In [11] iat#ions between atoms are taken into account and thus
this aspect is not an issue.

Table | summarizes the results obtained for the three mstioterm of percentage of test points at which the
speaker’'s mouth is correctly detected. Note that theredcbalno perfect coincidence between the test sequences
used in [24] and those used in [11] and here, thus the resadtbldck’s algorithm should be considered only as
indicative. As already shown in [11], the use of geometrideai decompositions combined with an audio-video
event detector in general improves the results obtained dgkNind colleagues. The proposed method obtains
detection performances similar to those of Monaci’s athani slightly improving previous results for sequence
g19 but obtaining inferior performances on cl22.

The MP-PF method improves the tracking performances of DeéM® tracking algorithm, as shown by the
results in Fig. 5. This is indeed interesting consideringt tthe 3D-MP algorithm, even without jointly tracking
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groups of structures, takes into account atoms’ interastiovhich was demonstrated to increase the accuracy of the
3D-MP approach [20]. We argue that a MP-PF algorithm thatgdkto account atoms’ dependencies would correct
tracking errors due to atoms’ interactions (Fig. 5) and waallow to improve the audiovisual localization results,
that by now are essentially equivalent to those obtainedgu8D-MP (Table I). Concerning the computational
complexity, we have tested the two methods on a video segquehose 30 principal video atoms were tracked
through time. The MP-PF algorithm clearly outperforms th-NAP approach, resulting approximately 7 times
faster.

IV. DISCUSSION

We presented a new framework and an efficient algorithm toesgmt and track relevant video structures. The
proposed method improves the 3D-MP video representatgurigim presented in [8], which is designed as a coding
algorithm and poses problems from the tracking point of vielne parameters of the video atoms are in fact coarsely
quantized to achieve better compression performancesdinting tracking errors. Moreover, atoms are tracked
using a search window of reduced size, which limits the roimss and accuracy of the tracker. These limitations
are overcame by defining the video atom tracking problem énwibll grounded and understood framework of PF,
which ensures robustness, flexibility and lower computaticomplexity than the 3D-MP algorithm.

Experiments show that the proposed tracker is more robustaaourate than the 3D-MP one, while being
considerably less time consuming. The audiovisual souocalization algorithm, however, does not improve
accordingly. This is mainly due to the fact that while in [ithe 3D-MP algorithm takes into account atoms’
interactions, the current MP-PF method does not. This itagesituations produces less stable atoms trajectories
because of interferences between atoms, as shown in Figowewvér these results show that there is room for
further improvements by designing a mechanism that aceofant the interactions between video atoms. The
tracking framework developed in this paper seems to be @pjpte to continue the evolution of our system.
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