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Abstract

Face detection in images or video sequences is a very challenging problem. It has
a wide range of applications but at the same time it presents a great number of
difficulties, since faces are non-rigid and very changeable objects that can adopt
a lot of different poses and with a high inter and intra-person variation and a
high sensitivity to lighting conditions.

Along this document, a new approach to the face detection and pose estimation
problem is given. This approach is based on the method proposed by Viola and
Jones in [1] but considering a wide range of face poses, varying the elevation
and the out-of-plane rotation, and building specific classifiers for each one.

The proposed method can be easily adapted to consider other poses or to detect
other objects. Especially, this approach is interesting when an object that can
adopt several positions want to be detected, since the partition of the pose space
allows to build classifiers specialised in only one or a few poses, which limits the
large variance of the “global” class, the class containing all the poses.

In order to facilitate the reproduction of all the processes done in this document,
we have used standard face datasets to train and test the system.
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Chapter 1

Introduction

Day after day, interaction among people and computers is more important. For
this reason, great research efforts are being carried out to provide with human
abilities these computers, in order to make this interaction more confortable
for humans. One of the most important of these abilities is the sense of sight.
This sense allows humans to distinguish objects and people. Thanks to the
advances in the power of current computers as well as the advances in image
processing and related matters, “Computer Vision” has become a reality. This
has generated lots of applications, as well as has created new necessities, all
of them with a common point, the exigency of a good face detector algorithm
when interacting with humans.

As a face detection algorithm it is understood an algorithm that is able to detect
one or more faces in an image or a video sequence. A face is a non-rigid and
very changeable object that varies a lot from one person to another. In addition,
faces are very sensitive to lighting conditions and, as a 3D object, they can adopt
lots of poses, combination of the three basic movements: out-of-plane rotation,
in-plane rotation and elevation (see figure (1.1)), as well as to be partially oc-
cluded by glasses, moustaches, hats, other body parts... All these reasons make
face detection a very difficult and challenging problem. But apart of being a
challenging problem it has innumerable applications going from autonomous
surveillance to intelligent human-computers interfaces, passing through biomet-
ric identification, video conferencing or image and video indexing.

e In Biometric Identification, face detection is a crucial preprocessor block,
when face recognition wants to be used, since without a good facial detec-
tion is not possible to do an acceptable recognition. An study on this can
be seen in [2].

e Also in the design of Intelligent Human-Computers Interfaces, face detec-
tion is one of the main parts. In that kind of interfaces, it is important for
the computer to be able to recognise people and to identify facial expres-
sions or even to read lips. A previous face detection is crucial for all these
functions, whose success depends mainly on the facial detector accuracy.
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Figure 1.1: Basic poses that a face can adopt



e Video Conferencing has become a very useful and very used application
thanks to the increasing capacity of networks. This application needs also
a good face detection preprocessing to guarantee that the current speaker
has always the focus, allowing this way also to optimise the video com-
pression and the flow of data sent to the network.

e In the age of the “war” between search engines which we are living nowa-
days, lots of companies compete for having the most complete database
with the greatest number of indexed objects. Between these objects there
is not only text but also audio, images and video are becoming more and
more popular. Is in these two last things, in the Image and Video Index-
ing, where also facial (and in general object) detection is very important
since it allows to index automatically by content, and not by manually
inserted labels as it is the most common way now. This indexing by con-
tent constitutes the core of what is known as CBIR ( Content-Based Image
Retrieval), an emerging application that could be classified inside the fa-
mous term Web 2.0.

o Automatic or Semi-Automatic Surveillance holds also an important place
as a direct application of face detection. In this type of applications, face
detection can carry out, without human interaction, the tracking of people
recorded by a surveillance camera as well as the shooting of alarms when
something unusual is detected.

As it has been showed in the last paragraphs, face detection is an important
part of a wide range of emerging applications. In spite of this, “The Method” to
detect faces in any pose and in any environment does not exist, although every
time more robust methods with less false detections are being developed. This
makes face detection a very interesting problem to be studied.

In the following sections, the process to build a tree of classifiers capable of
detecting faces and estimating its pose in real-time will be described. As pose
will be only considered the out-of-plane rotation and the elevation (see figures
(1.1(b)) and (1.1(a))). The other possible movement, the in-plane rotation (see
figure (1.1(c))), is not considered since it can be obtained by a simple rotation of
the input image, although the scheme described here could be easily generalised
to detect the three possible movements. In addition, this movement is not as
interesting as the other two, since in most of the applications there are only
upright faces. The images the system works with are always in greyscale.

The present document is organised as follows. In Chapter 2 an exhaustive vi-
sion over the actual State-of-The-Art in face detection is given. In Chapter 3 all
the theoretical aspects of the system are described: the filters which responses
will be used by the AdaBoost algorithm in Section 3.1, the AdaBoost algorithm
in Section 3.2 and an introduction to decision trees in Section 3.3. Then, the
practical implementation of the system is described in Chapter 4, giving an
exhaustive description of the training set in Section 4.1, a description of the
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classifiers structure in Section 4.2, the concrete decision tree structure in Sec-
tion 4.3 and the explanation of how the system searches for faces in Section 4.4.
After that, some test and results are presented in Chapter 5, the conclusions in
Chapter 6 and some future work in Chapter 7.



Chapter 2

State-of-The-Art

There exists a great number of techniques in the face detection field of study,
some of them with their origin in the early 70’s. Depending on the author,
these techniques are divided in a different way. According to [3], the different
approaches can be divided into 4 different types, knowledge-based methods,
feature invariant methods, template matching methods and appearance-based
methods.

e Knowledge-based methods try to encode the human knowledge about
what constitutes a face, usually by means of relations between facial fea-
tures.

e Feature Invariant methods find structural face features that remain
invariant for changes in the pose, viewpoint or lighting conditions and use
them to detect faces.

e Template Matching methods compute, to detect faces, the correlation
between the input and the stored patterns that represent typical faces or
typical facial features.

e Appearance-based methods are similar to Template Matching methods
but instead of having some stored patterns, the patterns are learnt from
a set of training images which, supposedly, capture the face’s variability.

Nevertheless, that division does not have the boundaries between the different
types well-defined, and therefore, in general, it is not easy to classify a method
only in one class. For this reason, it results more convenient to use the division
proposed in [4] or in [5], that makes use of only two types of methods, dividing all
the possible techniques in feature-based approaches and image-based approaches.

e Feature-based approaches, where the first methods (chronologically) can
be situated, make use of face appearance properties, such as skin colour or
face geometry, to detect faces. Usually, the detection in these methods is
accomplished by manipulating distances, angles or areas, inferred by the
face appearance knowledge that the method is exploiting.

e Image-based approaches are more modern than feature-based ones. These
methods take advantage of the development and advances in the pattern
recognition field of study, and treat the detection of faces problem as a
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general problem on pattern recognition. This approaches consider an im-
age, or a subimage when they are searching for a face, as a whole object
that has to be classified.

This division is simpler than the first one, and in addition, the boundary be-
tween the classes is better defined and a method can be classified, in general,
only into one of them. Therefore, this division will be the used one in this doc-
ument to classify the different exposed methods. However, the word “feature”
can create confusion due to its use in both classes. In Feature-based methods,
the word “feature” means a facial feature, as it can be an eye, a cheek or the
mouth, whereas in Image-based methods, the word “feature”, when it is used,
means the output of a filter applied to an image, and in general it does not have
anything to do with an eye or a cheek.

In the following sections, the defined classes are further developed and references
to the main works on each area are taken down. Some of the most relevant
works are further explained, especially those image-based approaches involving
machine learning techniques, since they are the base for the work developed in
the following chapters.

2.1 Feature-based Approaches

The core techniques used in feature-based approaches go from the low-level anal-
ysis of pixel properties to the more modern active shape models, passing through
feature analysis using information of face geometry. The common point in all of
them is the objective of deducing facial features to be able to infer the presence
of a face.

2.1.1 Low-level Analysis

Low-level techniques contain some of the first face detection works, as for ex-
ample [6]. This work is further developed next due to its importance, since it
was the first work in facial detection. This kind of approaches exploits, with
greater or smaller success, a wide range of pixel-level properties:

e Edge detections are the most “primitive” features studied in computer
vision [6, 7, 8, 9]. By means of filters, contours are tried to be found, and
from them, facial features are inferred.

o Grey level information tries to exploit grey level changes around, or
in, facial features [10, 11, 12], as for example the darkness of the eyebrows
or the brightness of the nose tip.

e Colour information is also widely used, despite it is known [13, 14, 15]
that human skin colour variation forms a small cluster in colour spaces,
even considering different races. To try to minimise this inconvenient and
to modelise as well as possible the skin colour, a great variety of different
colour spaces has been proposed, like normalised RGB [13, 16, 17, 18],
HSI [19], YIQ [20, 21], YUV [22, 23] or CIE [24].
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e Motion estimation is very useful when a video sequence is available. In
[25, 16, 26] moving silhouettes are searched by a thresholded interframe
difference, and in [27], also by means of interframe difference, eyes presence
is tried to be inferred from similar movements in adjacent regions. There
are also more complex approaches than the interframe difference, as for
example in [28], where a spatiotemporal Gaussian filter is introduced to
detect moving boundaries.

e Generalised measures try to compute, at a low-level, generalised image
properties as symmetries [29, 30, 31, 32] or convex and concaves shapes
[33].

2.1.1.1 Edge Detection Approach by Sakai

The method introduced by T. Sakai et al. in [6] in 1972 has an important
relevance since it was the first work in face detection. The aim of the pro-
posed algorithm was to detect facial features in context-controlled grey-level
photographs of full faces without glasses nor beard. If the different facial fea-
tures were detected, the presence of a face could be inferred. The size of each
picture was fixed to 140 x 208 pixels, and the algorithm was divided in two steps,
a first preprocessing step to binarise the picture and a second facial detection
step over the binary picture. This method could also be seen as a feature analy-
sis method, since the detection is made detecting facial features. But, the facial
features detection is accomplish by a kind of histogram generated (described
next) with the binarized image, therefore the analysis done is better seen as a
pixel-level analysis.

In the preprocessing step, the authors used a Laplacian operator (2.1) and a
later thresholding to binarise the picture.

000 1 1 1 000
000 1 1 1 000
000 1 1 1 000
11 1 -4 -4 -4 1 1 1
11 1 —4 -4 -4 1 1 1 (2.1)
111 -4 -4 —4 1 11
000 1 1 1 000
000 1 1 1 000
000 1 1 1 000

Facial extraction step was subdivided in several subroutines (described next)
following a tree structure as showed in figure (2.1). For the features compu-
tation, instead of the original image, it was used an integral projection in the
sense of histogram calculation of the values under a mask called by the authors
a slit. The computed features were detected as follows:

e Top of head is detected by descending a horizontal slit, of width equal
to image width, from the top of the image until a “sufficient” value in the
integral projection is obtained. This point, called H, is only used as a
delimiter point for the later subroutines, for this reason, the accuracy is
not very important.
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Table 2.1: Test Results obtained by Sakai et al. in [6]

Num. of Correct Errors
Category
faces detections or fails
“Standard” frontal faces
2
(no glasses, no beard) 6u7 55 55
Frontal faces
. 77 0 77
with glasses
“Standard” turned faces 79 63 16
Faces with beard 25 0 25

e Sides of face at cheeks are detected by scanning the image from a point
below H by a horizontal slit of a determined width h. At the height of
the cheeks, two “sandwiches” formed by the projections of the nose and
the limit of the face at each side are detected, which allows to define the
sides of face at cheeks. The obtained points are called L (for the left one)
and R (for the right one).

e Vertical positions of nose, mouth and chin are encountered by plac-
ing a vertical slit of width L« R/4 at the centre of L and R. If found, the
lower end of the nose, the upper lip and the chin are labelled as N, M
and C' respectively.

e Chin contour is determined by placing slits along lines drawn from M
downward every 10 degrees. After this detection, a line smoothing process
is performed.

e Nose width is calculated by tracing the nose by horizontal slits placed
starting from N. Nose width is determined by points P and @, located at
the end of the nose at each side.

e Eye positions are placed by fusion and shrinking and a later connection
detection over a slit situated over the nose. The eyes’ centres are labelled
as S for the left and T for the right.

e Finally, the face axis is determined as the line throw X = (S+T)/2 and
Y = (P+Q)/2

The proposed approach to the face detection problem was tested over 788 im-
ages, not all of them with the assumptions of no glasses and no beard. The
obtained results are summarised in table (2.1), where a correct detection means
that all facial features have been correctly detected. As it can be seen, results
were quite good, with about a 90% of correct detections in images with the
assumptions of no glasses and no beard.
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Figure 2.1: Facial extraction algorithm proposed by Sakai et al. in [6]
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2.1.2 Feature Analysis

Feature Analysis methods were developed to eliminate the ambiguity existent
when working only with local pixel properties, when for example background
with a certain colour can be easily confused as part of a face. These methods
make use of more global properties, such as face geometry, to make detections
more robust. There are basically two classes of approaches inside this category,
Feature Searching approaches and Constellation Analysis approaches.

e Feature Searching techniques search for an easily seen facial feature
through which the presence of not so prominent features is inferred using
anthropometric knowledge. If the inferred features are found, the confi-
dence of the detection is expected to be high. As easily seen facial features
can be used the eyes [25, 10, 27], a symmetry facial axis [34] or the head
outline [6, 34, 35].

e Constellation Analysis techniques are less rigid than Feature Searching
ones. Instead of searching for a prominent feature, Constellation Analysis
methods group facial features in face-like constellations using statistical
techniques to have a more robust structure. Several face constellations
have been proposed in [36, 37, 38].

2.1.2.1 Constellation Analysis Approach by Lin

Lin et al. introduced in [38] a face detection algorithm based on Constellation
Analysis. The system is capable to detect faces in grey scale images with dif-
ferent poses and complex backgrounds. The designed algorithm has two main
parts, the first part searches for potential face regions and the second one verifies
the existence of a face in each potential region. To achieve the face detection
purpose, the authors defined a constellation composed by eyes and mouth for
frontal faces, and an eye, the mouth and an ear for lateral faces.

To search for face candidates, the first part of the algorithm carries out 3 tasks.
First of all, it binarizes the input image. Since the objects of interests (eyes,
mouth and ears) are in general darker than the background, a threshold T is
fixed and all pixels with a higher grey level are labelled as white (0) and those
with an equal or lower value are labelled as black (1). After this binarization,
all 4-connected blocks are searched and their centres are labelled. Finally, from
these labelled centres, all isosceles triangles (potential frontal faces) and all right
triangles (potential lateral faces) are searched (see figure (2.2)). These isosceles
and right triangles are the potential detected faces.

The second part of the algorithm performs a face verification over the set of
isosceles and right triangles. To make this, it firstly scales the input regions
to a standard size of 60 x 60 pixels using a bicubic interpolation. After this
scaling process, a weight value is calculated for each candidate scaled region by
means of a previously calculated mask. This mask is calculated by binarizing
the sum of 10 binary face samples. With the obtained mask, the final weight
is calculated as indicated in algorithm (1). Finally, all candidate regions with a
weighted value below a threshold, that is empirically set, are eliminated.
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Figure 2.2: Frontal isosceles triangle and lateral right triangle, defined by facial
features and used by Lin et al. in [38]

Algorithm 1: Weighting Algorithm described in [38] by Lin et al.

1 Weight = 0;

2 Candidate «— Potential Facial Region;

3 Mask «— Calculated Mask;

4 for 1 =1 to number of pizels of potential facial region and mask do
5 if Candidate[i| == Mask[i] == black then

6 | Weight = Weight + 6;

7 else if Candidate[i] == Mask|i] == white then

8 | Weight = Weight + 2;

9 else if (Candidate[i] == black) AND (Mask[i] == white) then
10 | Weight = Weight — 4;
11 else if (Candidate[i] == white) AND (Mask[i] == black) then
12 | Weight = Weight — 2;
13 end
14 end
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The authors tested their algorithm over 500 images containing 600 faces of 450
different people, some of them taken using a digital camera, some from scanned
images and some from videotape sequences. Over this set of images, only 11
faces were not detected and the other 589 were correctly detected. With respect
to execution time, the authors get only the values for two concrete images of
similar size, which are 2.5 seconds and 28 seconds, claiming that the execution
time depends on the size of the image and especially on the background com-
plexity, due to the higher number of 4-connected detected components.

2.1.3 Active Shape Models

Active Shape Models were developed to perform nonrigid feature extraction such
as lip tracking. An Active Shape Model interacts with local image features of
a near feature to be deformed gradually until it takes its shape. There are
basically 3 types of Active Shape Models:

e Snakes were the first developed Active Shape Models [39] and consist of a
generic active contour that is progressively deformed to minimise an energy
function. They are usually used to locate a head boundary [8, 40, 41, 42].

e Deformable Templates, introduced in [43], were an evolution of Snakes
that improved its performance and took into account the a priori expected
shape. This is achieved by defining shape classes for every facial feature.
Some evolutions of this technique, which are basically appointed to reduce
computation times, can be found in [8, 44, 45].

e Point Distributed Models [46] are parametrised descriptions of shapes
based on statistics. The fitting process is made by discretizing the contour
of the model into a set of points that are varied of position according to a
previous training process. Point Distributed Models were first used in face
detection in [47], and they are also used in facial expression interpretation
[48] or in face recognition [49].

2.1.3.1 Snakes

A Snake is an active contour model introduced in [39] by Kass et al. As their
authors defined it, a Snake is an energy-minimising spline guided by external
constraints and influenced by lines, edges and subjective contours in an image.
Snakes allow an accurate detection of contours, for this reason they are broadly
used in image processing.

As it has been already commented, a Snake is an energy-minimising spline, i.e.
is a spline that searches the position with less energy according to a pre-defined
energy function. If the position of a Snake is expressed by means of its arc-
length parameter it is obtained v(s) = (x(s), y(s)), and its energy function can
be expressed as

1
Pt = / e (0(5))ds
0
1

= /O (Bint (v(5)) + Eimage(v(s)) + Econ(v(s)))ds (2.2)



2.2. IMAGE-BASED APPROACHES 15

where FEgnake and Egnake(v(s)) represent the total energy and the energy in
v(s), respectively, of the Snake, Ein; the internal energy of the spline, Eimage
the energy of the image under the Snake and E.o, the energy due to external
constraints. The internal spline energy is usually expressed as

a(s) | 2|+ 8s) || 555
Eint = 2 (23)

’2 ’2

where «(s) and ((s) are parameters that control the snake continuity proper-
ties. The constraint energy has a great number of expressions, even sometimes
it is considered 0, but usually it is expressed by means of two parameters called
spring factor and volcano factor. But the important term in equation (2.2) is
Eimage, since this term fixes the image features that the Snake will capture. For
instance, to capture lines, the authors propose to use Eimage = I(2,y), where
I(x,y) is the intensity value in (x,y), or Eimage = —||VI(z,y)||* to capture
edges.

Although Snakes are accurate and robust, a good initialisation must be done
in order to capture those features that are expected to be captured, and not
minimise the energy function around another similar feature. This represents
a problem usually solved by pre-detecting the features with more robust but
less accurate algorithms, as in [8], where Huang et al. proposed a method that
used Snakes to improve a face contour detection done with a Rough Contour
Estimation Routine.

2.2 Image-based Approaches

The presented methods until here were based on explicit facial features mod-
elling. The feature-based approaches, despite that some well results have been
reported, have some problems with the unpredictability of face appearance and,
in general, they are quite limited to quasi-frontal high-resolution faces. Image-
based approaches can work in less limited situations, and by means of a common
technique of scanning the image for every position and for several scales, mul-
tiple faces and semi-hidden faces can be found. In addition, to reformulate the
face detection problem as a pattern recognition problem erases the setback of
quasi-frontal faces, since now, the aim is to classify an input into a “face” or a
“non-face” class, thing that the algorithms accomplish by means of a training
process.

Image-based approaches to the face detection problem can be divided into three
big families: Linear Subspace methods, Machine Learning methods and pure
Statistical methods.

2.2.1 Linear Subspace Methods

Linear Subspace methods are based in the generation of a subspace, inside the
image space, where any face can be represented. To represent this subspace,



16 CHAPTER 2. STATE-OF-THE-ART

several multivariate statistical techniques like Principal Component Analysis
(PCA) [50, 51, 52|, Linear Discriminant Analysis (LDA) [53, 54, 55] or Factor
Analysis (FA) [55] can be applied.

2.2.1.1 Eigenfaces Approach

L. Sirovich and M. Kirby introduced in [50] a new method to efficiently repre-
sent human faces based in SVD (Singular Value Decomposition) theory. The
method proposed is explained in the following paragraphs in detail due to its
importance, although avoiding some mathematical justifications.

Given a set of N gray scale face images ¢ 1oy With M pixels each one
(M > N in general), where each image is stored as a vector by concatenation
of rows, the average face can be computed as follows:

1N
0=— _ 2.4
A Bt (2.4)
With this value, the deviation of each face from the mean is defined as

9, =9~ % (2.5)

—1

where each gbi is called a caricature.

Considering the set of caricatures, the covariance matrix, that is symmetric and
nonnegative, can be estimated as

1 N
- T
g N ;?zél (2-6>

or specifying the expression for a concrete spacial point (x,y) it is obtained

Clry) = 3 6i@)n(y) 2.7

Taking a limit when N — oo over equation (2.7), the conditions to apply the
Mercer’s Theorem [56] are accomplished and then, C(x,y) can be expressed as
follows in the sense of L? convergence:

C(r,y) = Z)\zuz(z)uz(y) (2.8)

where u;(z) is the orthonormal eigenfunction set of corresponding eigenvalues \;.

With this theoretical account, it is immediate to define what the authors called
an eigenpicture, known broadly today as an eigenface, which is the concate-
nation of values for each spatial point of each eigenfunction with i € [1, N],
ie.,

w, = (wi(1), ..., u;(M)), i=1,...,N (2.9)
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Figure 2.3: Example of 4 eigenfaces

This set of eigenfaces, when N — oo, constitute an orthonormal basis of the
face space, and then each face image can be approximated by its decomposition
in the N calculated eigenfaces as

N
g, =D _aijuy (2.10)
j=1

In other words, what it is explained above means that each face can be ex-
pressed as an infinite sum of eigenfaces, and therefore approximated (in the L2
sense) by a finite sum. This fact can be used by computing projections onto
the eigenface’s space to detect faces or facial features as introduced in [52] or
to identify faces as introduced in [51]. An example of some eigenfaces, obtained
by the procedure described above, can be seen in figure (2.3).

2.2.1.2 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a very used statistical technique. It con-
sists of using linear discriminant functions to construct, by means of a training
process, a piecewise linear function capable of classifying a given observation.
What follows is a brief explanation of LDA to the 2-class case, although it can
be “easily” generalised to the N-class case.

Given a set of training patterns z,, ..., z,, each one assigned to class w; or wa,
LDA searches for a vector v so that

(2.11)
<0=2z;, Cws

>0=z, €
v'z { L=
where z; = (1,2 )" is called the augmented pattern vector. If v is capable of
classifying all the samples well, then the data is said to be linearly separable.
It is also possible to have, instead of z; = (1,2 )", z; = (1,¢(z;) ") " and then
work in a transformed space.
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The objective of the training process to find v is to minimise misclassifications.
There are a lot of criterions such as the perceptron criterion

Jp(w)= > vyl (2.12)

y, €Y

where T designates the set of misclassified samples and the optimum v is
achieved by minimising Jp(v). Another criterion, and probably one of the
most famous, is the Fisher’s criterion. It searches for the direction that bet-
ter separates the two classes by means of maximising the ratio between the
“between-class” and the “within-class” variances

_ " (my —my)?

Jr(w) (2.13)

=
w S, w

where w is v without its first component, m; and m, the class means and S W
the within-class covariance matrix.

In [55], Yang et al. used LDA with Fisher Linear Discriminant to classify an
input as face or non-face. To make this, the authors generated 25 face classes
and 25 non-face classes by means of Kohonen’s Self-Organising Map [57]. Over
these 50 classes, a Fisher Linear Discriminant was calculated. The training
was accomplished with 16810 face images generated by randomly rotating and
scaling 1681 original faces collected from Olivetti, UMIST, Harvard, Yale and
FERET datasets. As non-faces, an initial set of 8422 images was used, increased
by using boostraping. With this training, very low false detections and a rate
of around a 90% of correct face detections were achieved, considering as correct
detections those who include the eyes and the mouth.

2.2.2 Machine Learning Methods

Nowadays, the use of machine learning techniques to tackle pattern recognition
problems has become very popular due to its good results. First approaches
to face detection using machine learning [58, 59] were based on Multi-Layer
Perceptrons, MLPs, and very promising results over very simple datasets were
obtained. From these first approaches to the more modern as [60, 61, 62, 5], a
lot of new techniques such as genetic algorithms or complex learning algorithms
have been added to original machine learning approaches. These new techniques
have allowed to confirm the promising results over complex datasets.

2.2.2.1 MultiLayer Perceptron Approach by Sung and Poggio

K. Sung and T. Poggio proposed in [63] the system considered as the first ad-
vanced image-based approach, in which a “face-like” class is defined to detect
faces by means of searching exhaustively all possible locations and scales in the
image. Although this approach is situated in “Machine Learning Methods”,
since it uses a MultiLayer Perceptron, it could be also seen as a “Linear Sub-
space Method” since such a face space is also introduced.
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Figure 2.4: Face Pattern Detector proposed by Sung et al. in [63] in detail

The main part of this approach is the perceptron outlined in figure (2.4). This
perceptron is composed of a “Canonical Face” model and three subsystems, one
to compute the pre-processing and resizing tasks, another one to calculate the
differences with the canonical model and a last one to decide whether the input
is a face.

For the canonical face model generation, the authors had at their disposal 4150
normalised frontal and slightly rotated faces to modelise the face distribution,
and 6189 normalised face-like images to the non-face distribution. With these
images, they defined 6 face and 6 non-face pattern clusters, where each clus-
ter is a multidimensional Gaussian distribution with a centroid location and a
covariance matrix. These 6 clusters together built a nonisotropic Gaussian mix-
ture model. To compute centroids and covariance matrices, a modified k-means
clustering algorithm with a normalised Mahalanobis distance (2.14) were em-
ployed. The chosen number of pattern clusters, 6, was empirically selected by
the authors so that the face detection rate versus the number of false detection
were nearly constant for a slightly fewer or greater number of pattern clusters.

The “Pre-Process and Resize” block performs four actions. The first one is
an image resizing to 19 x 19 pixels to after perform an image binary masking
to remove background and to reduce the dimensionality of the window from
361 (19 x 19) to 283 (number of unmasked pixels). Immediately afterwards,
an illumination gradient correction to substract the best-fit brightness plane is
implemented, and finally, a histogram equalisation is applied.

The “Difference measurer” block computes, for each window at its input, a
vector of 12 distances between the input window and the 12 centroids (6 of
the face clusters and 6 of the non-face clusters). Each distance consists of two
components. The first one is a normalised Mahalanobis distance between the
given image and the corresponding centroid, calculated as

Miz.p) = 3 (dn@n) + W9+ (- S @ - p)T) (219

where d is the space dimensionality, p a cluster centroid, % the corresponding
covariance matrix and |X| its determinant. The second component is a nor-
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malised Euclidean distance between the input window and its projection in the
lower-dimensional subspace spanned by the cluster’s 75 (empirical value) largest
eigenvectors.

Finally, the “Face/Non-Face Classifier” block, composed by a multilayer percep-
tron (MLP) classifier, decides wether a window corresponds to a face from the
vector of 12 distances, composed each one of two components as commented be-
fore. The MLP network is composed of 12 pairs of input units, 24 hidden units
and 1 output unit. For its training, the authors used a positive training set of
4150 face images and a negative training set dynamically collected, according
to classification errors, from a total of 43166 nonface images.

K. Sung and T. Poggio tested their system over two datasets collected for the
occasion. The first dataset, the “best case” dataset, consisted of 301 frontal
and near-frontal face mugshots of 71 different people, all these images with high
digitalising quality and high lighting variation. Over this group of images, a
96.3% of detected faces and 3 false detections were achieved. The other dataset,
the “average case” dataset, consisted of 23 images with 149 faces, where a 79.9%
of detected faces and 5 false positives were achieved.

2.2.2.2 Neural Network Approach by Rowley

This method, proposed in [64], was developed to detect upright, frontal views
of faces in grayscale images. The system was designed divided in two levels, a
neural network-based filter and an arbitrator.

The neural network-based filter is applied to regions of the main image of size
20 x 20 pixels and gives as output a single real number, ranging from 1 (pres-
ence of face) to —1 (absence of face). To be able to detect faces anywhere in the
image and of any size, the filter is applied at any location and at different scaled
images by a subsampling factor of 1.2. The different subsystems that compose
this first level can be seen in figure (2.5). The preprocessing step is an adapted
version of the one presented in [63] and its purpose is to equalise the intensity
values across the 20 x 20 window in an oval region defined inside the given win-
dow. This oval region tries to fit the space occupied by a face in the window.
The next step, the neural network, has 3 types of hidden units, as can be seen in
figure (2.5). There are 4 hidden units that look at 10 x 10 pixels subregions, 16
that look at 5 x 5 pixels subregions and 6 that look at 20 x 5 pixels subregions,
each one chosen to represent localised face features to make the detection. Al-
though in figure (2.5) only one hidden unit is placed after each receptive field,
these hidden units can be replicated to make the output more robust. The
training process of the neural network is accomplished by standard error back-
propagation algorithm over nearly 1050 real face images, with manually eyes
and mouth alignment, and non-face images chosen from a set of 146,212,178
total images, from where only false positive images are added to the training set.

On the other hand, the arbitrator tries to remove false detection of faces and to
merge multiple detections of the same face at the output of the neural network-
based filter. For the first purpose, since real faces are often detected at near
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Figure 2.5: Filter Level of the algorithm proposed by Rowley et al. in [64]

positions and scales, a minimum threshold in the number of detections is fixed.
For the second purpose, another heuristic that removes overlappings, preserving
the detection with the highest confidence, is used. In addition, another tech-
nique can be used at this level by arbitrating the outputs of different neural
networks trained with different random initial weights, making the system more
robust.

The designed system does not have as output “Face” or “Non-Face” but a real
number in the interval [—1,1]. For this reason, the accuracy of the designed
system depends on the fixed threshold. In figure (2.6), the ROC (Receiver
Operating Characteristic) of the system over the three sets of images that the
authors had at their disposal, with a total of 507 faces, can be seen.

A variation of this method was proposed by the same authors in [65] to detect
frontal faces at any in-plane rotation value, by means of another neural network
called a “router” that estimates the rotation value to correct the input pose of
a given face.

2.2.2.3 Constrained Generative Model Approach by Féraud

A neural network model based on the Constrained Generative Model (CGM)
to multiview (out-of-plane rotated) face detection was presented by Féraud et
al. in [66]. This kind of neural networks uses counterexamples to increase the
performance of the model and the training process tries to achieve the best
model able to generate the input data. The authors justify its decision of using
a generative model instead of a discriminant one due to the impossibility of
collecting a representative set of non-faces.

The system is composed of 4 main blocks (see figure 2.7), a motion filter, a
color filter, a MLP and the CGM. The first 3 blocks are intended to remove as
much background as possible in as less time as possible. The main detector is
the CGM, the most computational expensive block but the most accurate one.
The aim of this block is to perform a non-linear PCA to model the distance of
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Figure 2.6: Detection rate against false positives of the system introduced by
Rowley et al. in [64]

a given input z to the set of faces v, defined as

D(a,v) = [|P(z) - zll = |[argmin(d(z, y)) = zl| = || Pinn(z) — 2] (2.15)

where P(z) is the projection of x over the face space, d(-,-) is the euclidean
distance and Py, (z) is a projection approximation. Py, () can be defined as

k
>y, (2.16)

where v;,...,v; are the k nearest neighbours of z in the training set of faces.
The CGM computes the approximation of D(z, ) described in 2.15 to evaluate
the probability of being a face. This is achieved by minimizing

Ow = 3 (P () — Ponn(2,))’ (2.17)

i

> =

where W is the vectors of weights of the neural network and Py designates the
output of the neural network using W, i.e. the projection approximation.

The algorithms used to collect examples and counterexamples are explained in
detail in [66]. To detect side view images and to decrease the number of false
alarms, the authors used a conditional mixture of CGM’s based on the “mixture
of experts” introduced in [67]. Each CGM of the total system was trained using
2000 face images and around 2000 non-face images. A 87% of detected faces
over CMU Test set with a false alarm rate of 1.15-10~% were achieved. Testing
results over rotated faces can be seen in table (2.2).
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Figure 2.7: Face Detector proposed by Feraud et al. in [66]

Table 2.2: Test Results obtained by Féraud et al. in [66] over Sussex dataset
Out-of-Plane rotation (degrees) Detection Rate

0 100%
10 100%
20 100%
30 100%
40 87.5%
50 62.5%
60 37.5%

70 25.0%
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Table 2.3: Test Results obtained by Yang et al. in [68]
Test Set 1 Test Set 2

Detect False Detect False
Rate Detects Rate Detects

Method

SNoW with

o 94.2% 84 93.6% 3
primitive features

SNoW with
94.8% 78 94.1% 3

multi-scale features

2.2.2.4 SNoW Approach

Yang et al. introduced in [68] a frontal face detector system based on the
SNoW (Sparse Network of Winnows) learning architecture. This architecture is
a sparse network of linear functions over an incrementally learned feature space.
This sort of neural networks is specifically intended to make the learning in the
presence of a very large number of features.

A Sparse Network of Winnows is composed of linear units called target nodes.
In the system presented by Yang et al. only 2 target nodes are used, one to
represent face patterns and one to non-face patterns. This can be seen as a
single SNoW unit with 2 subnetworks, each of them intended to classify one
kind of patterns and reject the other one.

For training, the authors collected 1681 face images from Olivetti, UMIST,
Harvard, Yale and FERET datasets. From each original face, 10 faces were
generated by randomly rotating and scaling, obtaining 16810 face samples. For
negative examples, an initial set of 8422 samples collected from 400 images was
used. The training process is achieved by the Winnow update rule [69] using
2 kinds of boolean filters, one kind that encode position and intensity and the
other one that encode position, intensity and mean and variance of a multi-scale
pixel.

The system described above was tested over 2 sets of images of the MIT-CMU
test set, using the common technique of scanning and scaling the image to search
for faces in a given image. The “Test Set 1”7 consisted of 130 images with 507
frontal faces and the “Test Set 2”7 consisted of 23 images with 155 frontal faces.
Some of the scored faces in both sets were hand drawn and cartoon faces. Over
these sets, around a 94% of correct detections with a reduced number of false
detection were achieved, as it can be seen in table (2.3).

2.2.2.5 Viola and Jones Approach

The method proposed by P. Viola and M. Jones in [1] was the first real-time
frontal face detector system. This method introduces 3 main innovations, the
use of the called “Integral Image”, commonly used in computer graphics, the use
of the AdaBoost algorithm, to build strong classifiers, and the use of a cascade
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Figure 2.8: Schematic cascade of classifiers used by Viola and Jones in [1]. The
second classifier is more accurate than the first one, the third more than the
second and so on.

of classifiers to accelerate the erasure of background.

The system is composed of a cascade of classifiers (see image (2.8)) made up
of strong classifiers built using the AdaBoost algorithm (see sections (4.2) and
(3.2) for further details on cascades of classifiers and the AdaBoost algorithm
respectively). As it has been said before, the authors chose Haar filters (see
section (3.1.1)) to compute features due to its computation speed using the “In-
tegral Image” representation (see section (3.1.1)). This representation allows
to compute the response to any rectangular part of a Haar filter adding only 4
array elements, permiting the use of a high number of filters in each classifier
without slowing down excessively the system.

The final classifier was formed by a cascade of 38 layers with a total of 6061
filters. The training was performed with a total of 9832 frontal face images
(4916 and its vertical mirrored) and about 350 million of non-face images (but
only a maximum of 10000 used at the same time), all of them of a size of 24 x 24
pixels. The final detector was able to process 384 x 288 pixel image in about
0.067 seconds in a Pentium III at 700MHz, using a scale factor of 1.25 and a step
of 1.5 times the current scale. With this configuration, the authors obtained the
ROC curve showed in figure (2.9) varying the final threshold from —oo to +oc.

As an extension of this system to the multi-view face detection, the same au-
thors proposed in [60] a system based in the one described above that was able
to detect out-of-plane and in-plane rotated faces. Li et al. also introduced in [70]
a system based in this one. In that work, the authors introduced a new learn-
ing algorithm called FloatBoost and new Haar-based filters to compute features.

2.2.2.6 IDIAP Multiview Face Detection System

The system introduced by Sauquet et al. in [5] is an in-plane and out-of-plane
rotated faces detector (see section (1) for additional details on face rotations)
and it is based on detector-pyramid (or cascade of classifiers) of Li et al. [70].
The system is able to detect faces with an out-of-plane rotation in the range of
[-90°, +90°] and an in-plane rotation in [—67.5°, +67.5°], and it is composed
of 2 classifiers, one for out-of-plane rotated faces and another one for in-plane
rotated faces, both combined in a more general structure as can be seen in figure
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Figure 2.9: Obtained ROC curve by Viola et al. in [1]

(2.10).

The out-of-plane face detector is composed of 13 classifiers distributed on 3 lev-
els and a fourth level of 9 Multi- Layer Perceptrons, and the in-plane detector is
composed of 8 classifiers distributed on 2 levels and a third level of 3 Multi- Layer
Perceptrons. Multi-Layer Perceptrons are used for postprocessing the potential
face and decide definitely whether it should be classified as a face. After the
detection process, a merging process is run to delete multiple detections. For
further details on Cascades of Classifiers see section 4.2.

The training process, accomplished by the AdaBoost algorithm (see section 3.2)
using Local Structure Kernels [71], was divided into two parts, the out-of-plane
detector training and the in-plane detector training. The training of the out-of-
plane detector was carried out with 8000 faces per pose, generated by mirroring
and randomly scaling and translating 4700 faces collected from Feret, PIE and
Prima Head Pose data sets. The in-plane detector was trained with 8744 faces
per pose, generated from 5575 frontal faces from Feret, Stirling, Essex and Yale
data sets. The non-face set was formed by about 800 million images.

Several tests and comparisons with the “state of the art” detectors are showed
in [5]. A detection rate around a 92% of correct detections is achieved by the
proposed multiview face detector, with the advantage that the detection is ac-
complished in real-time. With regard to the pose estimation, depending on the
pose it is achieved between a 40% and a 100% of correct estimations.
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Figure 2.10: Pyramid of classifiers proposed by Sauquet et al. in [5]

2.2.2.7 Boosting Approach by Meynet

Meynet et al. introduced in [62] a frontal face detector based on the proposed one
by Viola et al. in [1] using the AdaBoost algorithm. Two important improve-
ments were introduced in this work: the use of Anisotropic Gaussian Filters to
compute features, in complement of Haar-like filters, and a computation scheme
using a mixture of classifiers to improve the detection accuracy. For a detailed
description of Anisotropic Gaussian Filters see section 3.1.2.

The mixture of classifiers structure consists of a multi-classifier built from sev-
eral classifiers in parallel, each one trained with different sets of images. This
technique allows to decrease the influence of outliers in the training set, since
the training sets are separated, and to decrease the complexity of the training
process, since the sets of images has been splitted in several subsets. Further-
more, if some of the parallel classifiers fails in its decision, it does not mean
that the final decision will be incorrect, since the final output is a combination
of the outputs of each parallel classifier. This is a great advantage in front of
a cascade structure because on these, if some cascade layer fails in its decision,
deciding for example that a face is not a face, this error will not be recovered.

The final system consisted in a preprocessing cascade of Haar boosted classifiers
to remove quickly easy non-face images and 5 parallel mixtures of about 200
classifiers. Each mixture was trained with 1900 faces and 4000 non-face’s. This
system was tested over the BANCA database, obtaining a very high detection
rate of about a 96%, and over the CMU/MIT test set, which obtained ROC can
be seen in figure (2.11).

2.2.3 Statistical Methods

Besides of Linear Subspace methods and Machine Learning methods there are
also pure statistical methods based on information theory. These methods use
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Figure 2.11: ROC obtained by Meynet et al. in [62] compared with other
approaches over the CMU/MIT test set

tools such as likelihood [72, 73, T4, 75] or the Bayes’ decision rule [76, 77].

2.2.3.1 Maximum Likelihood Approach by Colmenarez and Huang

Colmenarez and Huang introduced in [74] a face detector based on an earlier
work on maximum likelihood by the same authors [72]. The system is based on
Kullback relative information, a nonnegative measure of the difference between
two density functions.

The aim of the algorithm designed by Colmenarez and Huang is to classify a
given image part into a face class or into a non-face class. This is achieved
by means of computing the likelihood ratio using probability models obtained
during a learning process. To make this, the authors make use of Kullback
relative information, also known as Kullback divergence

Pxn
Hpjpr = Z Pxn In T (2.18)
X'n.

where X" is a random process, Px» and Mx» are two probability functions for
X" and Hp s is the divergence of P with respect to M. If X™ is supposed to be
a finite alphabet, stationary, kth order Markov process, the Kullback divergence
can be obtained as

Hpjpu(X") = Zi—;l Hpjp (Xil| X1, ..o, Xoo1) +
+Z?:k+1 HP||ILI(X1'HXi—ka---aXi—l) (2.19)

Under these premises, given a random process X™ and given S = {s; € [1, n], i =
1,...,n} such that s; # s; < @ # j, the kth order Markov process X"(S) from
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X™ can be constructed by re-ordering its variables so that
P(Xsn |X51a s 7XS71.71) - P(XSn |X5n—k’ s ’Xsnfl) (22())
then the objective is to find a S* such that
Hp|p (X™(S%)) = Hpjar (X™(S5)) VS (2.21)

All this mathematical development can be applied to the face detection problem
by considering an image as a realization of a random process, where each pixel is
a value of this realization, and the aim is to be able to calculate, once calculated
S* from equation 2.21, the likelihood ratio of a given observation O™ as

n

L(O") = L(Os,) + ZL(O&- 10s,-1) (2.22)

=2

To construct the probability models, the system was trained with frontal-view
images from FERET dataset and a collection of non-face images collected by
the authors. The training process requantize the training images to 4 grey lev-
els and calculates a probability model with the required parameters to compute
equation (2.22). Samples are classified by selecting the position where the like-
lihood ratio is higher than a fixed threshold.

The system was evaluated over the CMU dataset (130 images containing 507
faces) with the typical scan and scale procedure to search faces in images. The
authors considered as good detections those that the face was detected at the
correct scale and the error in the position of the face was less than 10% of the
total size of the face. Taking this into account, the system performs a detection
rate between 87% and 98%, but with a high false alarm rate with respect to
other techniques.

An evolution of this system using error bootstrapping was proposed by the same
authors in [75] and a similar system, developed by Lew et al., can be found in
[73].

2.2.3.2 Maximum a Posteriori Approach by Schneiderman and Kanade

Henry Schneiderman and Takeo Kanade introduced in [76] an algorithm for ob-
ject recognition based on the Mazimum a Posteriori probability (MAP), known
also as Bayes’ Decision Rule. They applied this algorithm to the frontal and
profile face detection problem obtaining good results.

The Bayes’ Decision Rule applied to decide whether an image X represents an
object O, can be expressed as

- (2.23)

P(O|X j
P(O|X) > P(O|X) = Object .
< P(O]X) = Not Object

where P(O|X) =1 — P(O|X) and O means “Not Object”. Using this rule to
make decisions, optimal performance is achieved in the sense of minimum rate
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of misclassification when the posterior probability function is accurate. This
produces a problem since, in general, it is not feasible to completely represent
P(O|X). For this reason, the authors proposed 13 simplifications, like to con-
sider a fixed image size or the decomposition into subregions, to be done to
P(O|X) to allow a feasible and sufficiently accurate representation. After this
13 simplifications, equation (2.23) leads to

Y
9

ES

Tmagn Msubs j J U > == = Object
T T 2etIO)Posla2'.0) { Jec (2.24)

P(q11]0) < = Not Object

Nsubs

i

j=1 i=1

3
S

where ngups is the number of subregions, 7maen the number of scales of reso-
lution, g1 and ¢2 are quantisations of X and pos the positional distribution of
objects.

The training set used by the authors was formed by 118,920 face images (gener-
ated by random variation in orientation, size, intensity... from 991 original face
images) and 1552 non-face images. With these images, the likelihood function
was estimated to test the face detection system on the test sets used by Sung et
al. in [63] and by Rowley et al in [64] and on 3 portions of the FERET dataset
(0°, 15° and 22.5°), obtaining a detection rate of about a 90% with a reduced
number of false alarms.

Another approach proposed by the same authors, also using Bayes’ Decision
Rule, can be found in [77].

2.3 Feature-based vs Image-based

Each one of the two exposed families, Feature-based methods and Image-based
methods, has its own pros and cons. Feature-based methods that use informa-
tion provided by colour or motion are in general very fast, and can work in
real-time without problem. On the contrary, Image-based methods, until the
appearance of Viola and Jones approach, were usually not able to work in real-
time. Furthermore, Image-based methods need a training process during which
a huge number of images are required, and Feature-based approaches usually do
not need such a process since the facial knowledge is implicitly expressed inside
the algorithm.

However, Image-based methods are robust against changes in facial expression
or in lighting conditions, and they can perform well with low-resolution grey-
level images, whereas Feature-based methods need in general high-resolution
images and they are sensitive to changes in facial expression or in lighting con-
ditions. In addition, Image-based methods are robust to little changes in facial
pose and, usually, Image-based face detectors can be generalised, with more or
less effort, to be a multi-view face detector, whereas Feature-based methods are
very sensible to facial pose and in general the face knowledge that the method
is exploiting does not have to be possible to generalise to make the algorithm
able to detect multiple facial poses.
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Due to these pros and cons in each family, it is very common to have hybrid
techniques that try to exploit the best points of each family of methods.

The aim of the present project is to build a multi-view real-time facial detec-
tor, able to work with low-resolution images as for example those provided by
a webcam or a surveillance camera. For this reason, the presented algorithm
has been chosen to be situated in the Image-based family, specifically in the
Machine Learning subfamily, since it can be seen as an evolution of Viola and
Jones approach [1].
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Chapter 3

Theoretical Aspects

As it has been commented in the introduction, the aim of this work is to build
a multi-view face detector able to work in real-time. With this purpose, an
intensive use of the AdaBoost algorithm will be done. The following section
are organized as follows. In section 3.1, the filters that will be used to extract
features from the greyscale input images are described. Next, in section 3.2,
the AdaBoost algorithm is explained. Finally, in section 3.3 an introduction to
decision trees is shown, since this kind of structures will be used in order to
combine the different classifiers to estimate the face pose.
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3.1 Filters

The face detector system, that will be developed in this project, needs to deal
with images to classify them into 2 classes, the “Face” class and the “Non-Face”
class. To accomplish this, the system could manage all the pixels in an image,
but this would not be a robust approach, due to noise, light changes... An ap-
proach more robust consists on extracting simple and local geometrical features
from the image using filters, since filters are more discriminant than simple pix-
els. Then, a decision to classify this image based on those features can be taken.
Therefore, filters are needed.

A filter in this context can be seen as an image mask F' that, applied to an
image I, produces a response O as output, calculated as

# Rows #Cols

O= > > I(rcF(rc) (3.1)

where # Rows and #Cols are the number of rows and columns, respectively, of
both image and filter. The computed outputs, known as Features, will allow to
discriminate between faces and non-faces, as well as between faces with different
poses.

Two families of filters will be used in the present work, Haar-based filters and
Anisotropic Gaussian filters.

3.1.1 Haar-based Filters

Haar-based filters are filters based on the Haar function

1, 0<z<i
Y(x)=q-1, 1<z<1 (3.2)

0, otherwise

where x € R. Generalising this function to a function in N2, where each coor-
dinate corresponds to an image pixel, 5 different types of Haar-based filters are
obtained as it can be seen in figure (3.1). Each filter consists of 2, 3 or 4 blocks
of Whix X Hpix pixels, with values of 1, —1 or —2 in its pixels and 0 outside,
so that the filter has a null mean. By scaling these filters to different sizes and
translating them to different places, 69, 790 filters are obtained for a window of
20 x 20 pixels, 21,000 of types I and II, 13,230 of types IIT and IV and 1, 330
of type V:

Type i Ciyopas,z0 |(Simi) (20— (W —1)] =21.000  (33)
Type II: b0 | (Si2 1) (20— (H = 1)| =21.000  (3.4)
Type I1I: a6t :(zfﬁl z) (20 — (W — 1))} = 13230  (3.5)
Type IV: S heseos | (i i) (20— (H-1)] =13230  (36)

Type Vi X weop—sa6...20 (20 = (W = 1))(20 — (H — 1))) = 1.330 (3.7)
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(c) Type II (d) Type IV

Figure 3.1: Types of Haar filters

where W is the filter width and H is the filter height.

Computed features with Haar-based filters are not very selective, but they
present a very important advantage. It is not necessary to compute expression
(3.1) to obtain its output, since by means of the image representation known
as Integral Image, the output to a block of any size can be obtained by only 4
additions. In the Integral Image representation, each pixel contains the sum of
that pixel with pixels above and to the left of it, i.e., given an image I(r, ¢), its
Integral Image representation II(r,c) is given by

II(r,c) = ~ Z I(7,¢) (3.8)

In addition, the Integral Image can be computed in only one pass over the
original image using the following recurrences

S(r,e)= S(rye—1)+1(r,c) (3.9)
II(r,c)= II(r—1,¢)4 S(r,c) (3.10)

where S(r, ¢) is the cumulative row sum, S(r,—1) =0 Vr and II(—1,¢) =0 Ve.

By means of the Integral Image, the sum of all the pixels under a block, as
mentioned above, can be computed in only 4 additions, as indicated in figure
(3.2), where the sum of all the pixels under the block S can be computed as
A+ D — B—C, where A, B, C and D represent the value of the Integral Image
in those pixels. This makes that the computation of the output to a Haar-based
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B

C

Figure 3.2: Important points in the computation of the sum of pixel values
under the block S using the Integral Image

filter can be computed in 6 additions for types I and II, in 8 additions for types
IIT and IV and in 9 additions for type V, since all the blocks are adjacent.

This kind of filters produces outputs that are not very selective, making them
not suitable to be utilised to discriminate between poses. But they are very
useful to discriminate between faces and non-faces, allowing to remove a lot of
background very quickly.

3.1.2 Anisotropic Gaussian Filters

Anisotropic Gaussian filters, first introduced by Peotta et al. in [78], consist of
the combination of a Gaussian function in one direction with its first derivative
in the other one, what will be called the generative function, combined as well
with 4 basic operations: translation, rotation, bending and anisotropic scaling.
The resulting filters are directionally dependent, as the word “Anisotropic” indi-
cates, and they are more selective than Haar-based ones, being able to catch face
contours and shapes (see figure (3.3) for a test error rate comparison between
using the AdaBoost algorithm with Haar-based filters and with Anisotropic
Gaussian filters).

The generative function used to generate the Anisotropic Gaussian filters set is

gz, y) = we~(#14¥7) (3.11)
where z-direction, called singular-direction, has a Laplacian shape with odd-
symmetry, and y-direction, called contour-direction, is a Gaussian function.
The 4 basic operations are defined as

e Translation
Taoyo9(x:y) = g(x — 0,y — Yo) (3.12)

e Rotation
Rog(x,y) = g(xcosh — ysinb, xsinf + y cos ) (3.13)
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Figure 3.3: AdaBoost test error rate (see section (3.2.1)) comparison between
Haar-based filters and Anisotropic Gaussian filters

e Bending

Bpg(x,y) = {g (p —/(x = p)? + ¢, parctan (,,Tyz)) ifo<p

g(p—lyl,x—p+p%) ifz>p
(3.14)
e Anisotropic scaling
Ty
Ss,5,9(wy) = g(—, =) (3.15)
Sy Sy

Combining the generative function with this 4 operations, a family F, of filters
is obtained

Fg =A{T00,yoR0BsSs, s,9(x,y)| (z0,y0) € R?, 0 € [0,27), p,Sz,5y € Rt}
(3.16)

In this case, the total number of filters for a window of 20 x 20 pixels is harder
to calculate. In theory it is infinite, but since they must be put in an image
with a finite number of pixels, then the set of possible filters become finite.
Anyway, this number is too huge to be used, what forces to use a sampling of
the parameter domain of F,;. Some examples of Anisotropic Gaussian filters
can be seen in figure (3.4).

Unlike the Haar-based filters, Anisotropic Gaussian filters can select very accu-
rately contours and shapes, as it has been commented before, by varying their
parameters. For this reason, computed features using these filters can be very
selective, allowing to discriminate between faces with different poses. As disad-
vantage, these filters do not allow an efficient computation as Haar-base ones,
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Cl o

Figure 3.4: Three Anisotropic Gaussian filters with different rotating and bend-
ing parameters

and equation 3.1 must be utilised to compute their outputs. But another ad-
vantage is that equation 3.11 does not have to be computed each time, since the
response to the unity image, Iagx20 can be stored to be inserted in equation 3.1.

3.2 AdaBoost Algorithm

In a pattern recognition problem, as the case that is treated in this project,
some learning technique must be used in order to classify data. Here, a boosting
algorithm known as AdaBoost will be used to build classifiers that, by means
of extracting features from images, will be capable of distinguishing between
“Face” and “Non Faces” patterns.

Boosting is a deterministic and sequential technique that allows to produce an
accurate prediction rule by combining inaccurate rules. The AdaBoost algo-
rithm, first introduced by Yoav Freund and Robert E. Schapire [79] in 1995,
is a boosting algorithm that gets adjusted adaptively to the errors of the inac-
curate rules or weak hypothesis h;. This adaptive adjustment is the principal
difference and advantage of AdaBoost against other boosting algorithms. The
authors gave in their article generalisations to the N-Class problem but they
focused on the 2-Class problem. The same will be done here since it is the most
interesting case for our purpose, to distinguish between “Face” and “Non-Face”.

Before giving the explicit AdaBoost algorithm description, some definitions must
be done:

e X is the domain space to which the samples x; belong. In our case, as we
work with 20 x 20 pixel images, X = R%00,

e Y represents the label set, that will be assumed to be {—1,+1},and y; € Y
is the label belonging to the sample x;.

e Dy is the probability distribution over the training set {(z;, y;)[i = 1,..., N}
in the t-th iteration of the AdaBoost algorithm. Dj represents the weight
of this distribution on (z;,y;).

e 7 is the set of filters used to compute features.
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e h; is the weak hypothesis or weak classifier chosen in iteration ¢, and Hp
is the final hypothesis, also known as hard classifier, after T iterations of
the AdaBoost algorithm, which is a linear combination of hy, ..., hp.

e ¢; is the training error due to the use of h; to classify the samples of the
training set given a fixed probability distribution.

e And finally, a; is a parameter that measures the importance assigned to
he.

With the above definitions, the AdaBoost algorithm, stated in algorithm (2),
can be easily understood. The most important point of this algorithm, which
is also one of the most important characteristics of AdaBoost, as it has been
commented before, is its adaptive adjustment. This adaptive adjustment can
be seen in steps 4 and 5 of algorithm (2), where it is easy to see that hard
samples, those that are difficult to classify, increase their weight in Dy, while
the easy ones decrease their weight.

Algorithm 2: AdaBoost Algorithm for the Two-Class problem {—1,+1}

Data: T, {(z1,v1),...,(xNn,yn) | r,€X, g €Y = {-1,1}}
Initialise probability distribution D} = %, i=1,....N

=

2 fort=1to T do
3 Calculate h; as
hy = in e; = i D;
;= arg ]5161171{ €j = arg }51611711 | Z H
ilyi#hj(z:)
4 Calculate oy as

1 <1€t)
ap = —1In
2 €t

) e—thi(wi)yi
(2 — T -
Dt+1 - N j Dt7 i=1
Zj:l Dy

5 Update distribution

N

geeey

6 end
Result:

Hr(x) = sign <Z atht(x)>

The output of the AdaBoost algorithm is the hard classifier Hpr. This hard
classifier is the expression that computed for an input x allows to classify it in
one of the two possible classes {—1, +1} (or “Face” and “Non-Face” in our case).



42 CHAPTER 3. THEORETICAL ASPECTS

3.2.1 Error analysis

Two different errors can be considered, training error and generalisation error.
The training error is the error made classifying the training set, and the gener-
alisation error is the error of the final hypothesis outside the training set.

The training error for a given iteration t, e, is defined in step 3 of algorithm (2).
Then, after the T iterations, the training error of the final hypothesis Hr(x),
€, can be bounded by means of €1,...,er as

T
e < H 2v/er(1 — &) (3.17)

This result was demonstrated by Freund and Schapire in [79]. This bound is
interesting because, contrary to other boosting algorithms, the bound depends
on all the errors of each weak classifier that is used, and not only on the maximal
error. This is an advantage in practical applications because the training error
is expected to get lower while T' grows if ¢, < 1/2 Vt. This last condition means
that weak classifiers must be better than random guessing.

Equation (3.17) guarantees that the error of the final hypothesis Hy(x) is small
over the training set, but what is wanted to be small is generalisation error €4,
i.e. the error over the whole space X. The generalisation error can be expressed
as

€g = P(m,y)NP(HT('r) 7& y) (318)

This expression depends basically on the family of weak classifiers H and on the
number of iterations 7. The choice of H depends on the learning problem and
our knowledge about it, but the choice of T' can be done following some different
methods, basically structural risk minimisation or cross-validation. The struc-
tural risk minimisation consists of finding an upper bound of the VC-dimension
(see appendix A) of the concept class, which allows to compute an upper bound
of the generalisation error of Hr(x) for all T. With this method, obtained
bounds are usually rough and consequently, the calculated T is usually larger
than the needed one. For this reason, cross-validation is usually more useful.
Cross-validation consist of keeping a fraction of the training set that instead of
being used during the training, it is used after, as a “validation” set to estimate
the generalisation error and halt the iterative process when an optimal is ob-
tained.

In addition to the errors, there is also another aspect to take into account, the
overfitting problem. The overfitting problem is a typical problem in statistics,
when a model with too many parameters, with respect to the process complexity,
is tried to be fitted to a process. In that case, can be thought that a perfect
model, that fits exactly the process, has been found when actually what has
been obtained is a false model that model an unreal process fitting exactly the
training set. The overfitting problem is usually seen as a violation of Ockham’s
razor principle,

“Pluralitas non est ponenda sine neccesitate”
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plurality shouldn’t be posited without necessity.

This owverfitting problem is also very important in machine learning, as it is
the case of boosting algorithms, where techniques as cross-validation or early-
stopping must be used to avoid overfitting. After this introduction to the over-
fitting problem and the structure of the AdaBoost algorithm, it could seem that
some of the commented techniques should be used in order to stop the AdaBoost
iterations before the appearance of the overfitting. But this is not really neces-
sary since another of the interesting properties of AdaBoost is that in absence
or presence of moderate noise in the training set, AdaBoost tends not to overfit.

3.2.2 Comparison with Support Vector Machines

The boosting techniques, and more precisely the AdaBoost algorithm, have a
strong connection with SVMs (Support Vector Machines), but at the same time
they present very different characteristics. In order to see the similarities, it is
needed to write the expression used to maximise the minimum margin

max min yi(a - b(@i))

axmin o TG (3.19)

where a = (a1,...,an), h(x) = (hi(z), ..., hn(z)).

Comparing AdaBoost with SVMs by means of equation (3.19) it can be seen that
the differences between both methods are differences in the used norms. For
boosting, the norms in the denominator are the 1-norm in ¢ and the co-norm
inh

lalls = o] (3.20)

t

(@)oo = maz¢ |y ()| (3.21)
Note that, when h;(z) € {—1,+1}, then ||h(2)|| = 1.

In SVMs, both norms are Euclidean (2-norm)

lalla = [> o? (3.22)
8@z = [> hu(x)? (3.23)

Then, looking only at expression (3.19), the differences between both methods
seem to be very small, only differences in the computation of some norms. But,
as commented in [80], there are some important differences:

e At the high dimensions that the AdaBoost algorithm and SVMs are usu-
ally used, the differences between the norms [1, I3 and [, can be very
significant.
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e SVMs require quadratic programming while AdaBoost only requires linear
programming.

e SVMs deal with the problem of operating in a very high dimensional space
using the method of kernels, while AdaBoost employs greedy search, where
the oracle role is played by the weak learner.

3.3 Decision Trees

A decision tree is basically an array of tests intended to make decisions about
a topic. Each node performs a test over the data input and according to the
result of this test, some decisions are adopted and maybe some consequences
predicted. Decision trees have 4 types of structures inside:

e The Root node is the node situated on the top of the tree. All the data
that comes into the tree goes through it.

e Non-Leaf nodes are nodes situated on the middle stages of the tree.
They are connected to nodes before and after them.

e Leaf nodes are nodes situated on the bottom of the tree. They do not
have more nodes after them.

e Branches connect nodes and bring data from one node to another one.

The purpose of each node, independently of its type (root, non-leaf or leaf), is
to perform a test over the data that it receives and route the data accordingly
to the results of that test. Then, when some data is input into a decision tree, it
is classified by sorting it down the tree, beginning in the root node and ending
in some leaf node.

For example, let’s imagine that somebody wants to go to the beach but he is
unable to decide whether he should go. A simple example of a Decision Tree
intended to help that person to make a decision can be seen in figure 3.5.

As it will be seen in section 4.3, the decision tree used in this project to classify
faces according to their pose has one peculiarity. When one sample is tested in
any of the nodes of the tree, if the test returns “Face” then the sample is routed
to all the nodes in the next stage that are connected to it, but if the test returns
“Non-Face” the sample is routed to the “Non-Face” special node that does not
perform any test, only discards samples as face candidates, taking them out of
the tree.
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No

Don’t go!

Is there a beach
close to you?

Yes
Outside
temperature?
<18°C >23°C
[18,23]°C
Outside relative|
Don’t go! . Go!
humidity?
<40% >70%
> [40,70]% ’
Don’t go! Is it sunny? Go!
No Yes
Don’t go! Go!

Figure 3.5: Example of a decision tree
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Chapter 4

Implementation of the
System

In the previous chapter, all the theoretical aspects that will be used to build
the multi-view facial detector have been described exhaustively. In this chap-
ter, the practical implementation of the system will be explained. In order to
accomplish the objective of a multi-view facial detector, several classifiers must
be trained and their outputs combined. For this reason this chapter is organized
as follows. The chapter begins with section 4.1, where a description of the set of
images that will be used to train the classifiers is given. Next, is section 4.2 the
concrete structure of classifiers will be described, as well as the tree structure
where the different classifiers will be put in order to combine their outputs in
section 4.3. Finally, a description of how the system for experimental results
works is given in section 4.4.
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4.1 Data Sets

One of the most important things at the time of implementing the theory as-
pects exposed in the previous chapter is to have a good training set to build the
face classifiers. This training set fixes a very important parameter of the final
system, it limits its accuracy, since it is not possible to have more accuracy than
the resolution of the training set. In addition, many examples are needed, since
“Face” class has a large intra-class variance and “Non-Face” class is extremely
large. In the next sections, the databases used to form the training set will be
described, as well as the training set in itself.

4.1.1 INRIALPES Head Pose Database

The INRTALPES Head Pose database recorded by Nicolas Gourier, was recorded
in order to test the algorithms developed in [81]. It consists of 15 sets of images
from 15 people, each one containing 2 series of 93 images, with some of the
series from people wearing glasses. Each one of the 93 images contained in a
series has a different pose, considering as pose the out-of-plane rotation and the
elevation:

e Out of plane rotation values in degrees: —90, —75, —60, —45, —30, —15,
+0, +15, +30, +45, 460, +75 and +90.

e Elevation values in degrees: —90, —60, —30, —15, 0, +15, +30, +60 and
+90.

For each elevation value, all the possible out-of-plane rotations are recorded,
excepting for the values of elevation +90 and —90, where only the value of out
of plane rotation equal to 0 degrees is recorded. All image files are stored in
JPEG format following the next file name format:

personne [PersonID] [Series] [Number] [Elevation] [00PRotation] . jpg

e PersonID € {01,02,...,15} indicates the number of the person recorded.

Series € {1, 2} indicates the series number.

Number € {00,01,...,92} indicates the image number.

Elevation € {490, 60, £30, £15, 40} indicates the elevation value of the
face recorded in that image.

OOPRotation € {+90, £75, 460, +45, +£30, =15, +0} indicates the out-of-
plane rotation value corresponding to that image.

In figure (4.1) an image example from this database can be seen. This image
corresponds to the file personne09131-15-30.jpg, i.e., is the image number 31
of the series 1 of person number 09 and the recorded pose corresponds to an
elevation of —15 degrees and an out-of-plane rotation of —30 degrees.

The image acquisition process was done using the FAME Platform of the PRIMA?!
Team in INRIA Rhone-Alpes. The different poses are obtained by asking the

Thttp: //www-prima.inrialpes.fr/
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Figure 4.1: Example of an image from the INRIALPES head pose database.
This image corresponds to the file personne09131-15-30.jpg

(a) personne02213-60+90.jpg (b) personne06279+60-90.jpg

Figure 4.2: Incorrect face centring

subject who is being recorded to look at different marks distributed over the
room covering a half-sphere in front of the person.

4.1.1.1 Problems and Setbacks

At the time of using this database, some problems arise making not possible
to use all the images. There are basically two problems, both caused by the
“manual” positioning of the face to generate the different poses.

The first problem, which can be observed in figure (4.2), is that not in all the
recordings a good centring of the face in the image has been done. This pro-
duces that some faces, when producing the different poses, go outside of the
recording space due to the necessary movement that the subject who is being
recorded must do with his or her face. This problem is easy to detect simply by
looking at the images.

The second problem, which is not as easy to detect as the first one, is caused by
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(a) personne05148+0+30.jpg (b) personne07148+0+30.jpg

Figure 4.3: Incorrect pose positioning. Both images are representing the same
pose, but it can be seen, the pose of each subject is very different.

an incorrect pose adopted by the subject when looking at the marks. In figure
(4.3(a)), a person looking correctly at the mark corresponding to a pose of 0
degrees of elevation and +30 degrees of out-of-plane rotation can be seen. In
figure (4.3(b)), another person looking at the same mark can also be seen. As
we can check, in the second figure the recorded subject is looking at the mark
moving his eyes to the right, and not moving his head. The hypothetical noise
that the use of these kind of images in a training set could generate is very
important, since faces could be inserted in wrong sets.

In conclusion, an accurate revision of the images must be done before their use in
any training or testing processes, mainly to avoid the second kind of wrong im-
ages described above, since considerable noise could be inserted in the used sets.

4.1.2 Pose, Illumination and Expression Database

The CMU Pose, Illumination and Expression (PIE) database, described in [82],
is a facial database containing images from 68 people across 13 different poses,
under 43 different illumination conditions and with 4 different expressions (neu-
tral, smile, blink and talk). The images were recorded using 13 cameras in the
CMU 3D Room with a special flash system to obtain the different illumination
conditions.

The cameras are distributed so that 9 of them are located roughly at the same
height than the recorded face, covering the out-of-plane rotation values from
—90 degrees to +90 degrees with an approximate separation of 22.5 degrees.
Two of the 4 remaining cameras simulate security cameras in the corner of a
room, and the last two cameras are located slightly above and below the central
camera. An example of the images obtained by each of them can be seen in
figure (4.4).

Regarding the illumination, the flash system, that is composed of 21 flashes,
allows to generate 21 different illumination conditions with the room lights
switched on and 21 more with the lights switched off.
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Figure 4.4: Cameras numbering in the PIE Database

(a) INRIALPES Head Pose Database (b) CMU PIE Database image

image

Figure 4.5: Pose comparison between images from the INRIALPES Head Pose
Database and the CMU PIE Database

4.1.2.1 Problems and Setbacks

Since there is no need of any movement by the person who is being recorded,
because there are several cameras to do the recordings, there are no problems
derived from this movement like in the INRTALPES database. This is an ad-
vantage but there is also a setback, the images out of he head height plane are
not useful to simulate a pose of somebody looking at one point not just in front
of him. This can be easily seen in figure (4.5), where the difference between
somebody recorded from a camera not in his front and somebody looking at a
point not in his front is very clear.

Then, for the purpose of a face detector and pose estimator, only the images
from the head height plane in the CMU PIE database are useful.

4.1.3 Color FERET Database

The Color FERET database [83, 84] is a color version of the old FERET
database or Grey FERET database. It was recorded by the NIST (National
Institute of Standards and Technology) and it contains a total of 11.338 facial
images at 13 different poses from 994 subjects, recorded in 15 session between
1993 and 1996.
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Table 4.1: Color FERET Poses
Pose Name  Approximate Angle Numer of Images Number of Subjects

fa 0 1364 994
b 0 1358 993
hl +67.5 1267 917
hr —67.5 1320 953
pl +90 1312 960
pr —-90 1363 994
ql +22.5 761 501
qr —22.5 761 501
ra +45 321 261
rb +15 321 261
rc —15 610 423
rd —45 290 236
re —75 290 236

The images have a size of 512 x 768 pixels, they are in PPM-format and all their
names follow the next format

data/images/PersonID/PersonID_YYMMDD_PN_F.ppm.bz2

e PersonID € {00000, 00001, ...,99999} indicates the number of the person
recorded.

e YYMMDD indicates the data when the image was recorded.

e PN € {fa,fb, hl, hr, pl, pr, ql, qr,ra, b, rc, rd, re} indicates the pose (see ta-
ble 4.1 for the meanings of each of these acronyms).

e I is an optional flag that can have the next values:
a: subject is wearing glasses.

b: subject changed his or her hairstyle for the image and is not wear-
ing glasses.

c: subject changed his or her hairstyle for the image and is wearing
glasses.

In addition to all the facial images, this database has also background images
as well as a wide range of “meta-data”, like age, race, date of recording, sex,
beard, glasses...

4.1.4 Non-Face Images

Another important point in order to do a good training of the classifiers is to
select a good “Negative” set of data. It is not possible to use all the set of “Non-
Face” images because, even in the case of greyscale images of 20 x 20 pixels, this
set is too big (of the order of 10%° images). For this reason, a common practice
is to collect natural images that do not contain human faces and chop them in
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Figure 4.6: Some examples of images from the Non-Fuace set

pieces of the desired size (20 x 20 pixels in this case).

The Non-Face Images set used in this project consists of 196 images randomly
chosen from the web with variable sizes that have been cut in 20 x 20 pixel
pieces without overlapping, producing a Non-Face set of 97.947 images. Some
examples of the images used as non-faces can be seen in figure (4.6).

4.1.5 Training Set

The final Training Set is a combination of images from the PIE database and
the INRTALPES Head Pose database. From the PIE database, 47.954 images
from the cameras c22, c02, c37, c05, ¢22, c29, cl11, c¢14 and ¢34 have been used,
and from the INRIALPES database 2.597 images from all the poses excepting
for the values of elevation of +90, 0 and —90.
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This total amount of 50.551 images has been manually cut, scaled to a size of
20 x 20 pixels and converted to grayscale images. Depending on the classifier
that was being trained, the Training Set was divided in subsets according to
the desired pose, as it will be seen in section 4.3.

With respect to the non-face images, all the blocks of 20 x 20 pixels without
overlapping from the 196 images from the non-face set were considered, produc-
ing a total of 97.947 20 x 20 pixel images. All these pictures were converted
to greyscale and, with them, 6 disjoint groups of 1.000, 5.000, 10.000, 15.000,
20.000 and 30.000 images were formed by random selection over the 97.947 im-
age set.

4.2 Classifiers Structure

In section 3.1, two kinds of filters have been shown. On the one hand, Haar-
based filters have very low computing requirements but are not selective enough
to distinguish between faces with different poses. On the other hand, Anisotropic
Gaussian filters are selective enough to distinguish between faces with different
poses but the computation of its response is very “CPU consuming”. For this
reason, some strategy must be followed, as it will be described in section 4.3,
in order to take as much profit as possible from each kind of filters without
punishing substantially the final performance of the system.

In addition to the combination of the outputs that will be explained in section
4.3, another technique in order to speed up the rejection of non-face inputs will
be used. This technique consists of building cascades of strong classifiers instead
of a monolithic strong classifier.

The structure of a cascade of strong classifiers can be seen in figure (4.7). As
it is shown there, a cascade of classifiers is composed of several classifiers con-
nected by the positive output. That means that if one input is classified as
“Face”, then it has been classified by all the classifiers, in descending order, as
“Face”. But, if one input is classified by any of the stages as “Non-Face”, then
it is immediately discarded and it does not go to the lower stages of the cascade.
Building this cascade with classifiers so that the lower in the structure they are,
the higher number of features they have, allows to accelerate substantially the
rejection of negative inputs (see Appendix D for an example). In the following,
a classifier will mean a cascade of classifiers unless the contrary is specified.

Then, two kinds of filters will be used, producing with them two kinds of clas-
sifiers by means of the AdaBoost algorithm. With Anisotropic Gaussian filters,
several classifiers will be built in order to distinguish between different poses.
But with Haar-based filters, only one classifier will be built. This classifier pro-
duced with Haar-based filters will be called the General Classifier or simply
GC. The classifiers produced using Anisotropic Gaussian filters will be called
Pose Classifiers or PCs.
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Figure 4.7: Cascade of N strong classifiers with an increasing number of features,
i.e., with an increasing number of AdaBoost iterations

4.2.1 General Classifier

The aim of the GC' is to remove the background and as much non-face image
surface as possible, all this with a very small percentage of lost faces (less than
1%) and as fast as possible. For these reasons, it is not necessary a high se-
lectivity and it must be fast, is why Haar-based filters are used to build this
classifier.

All the possible Haar-based filters (see figure (3.1)) that can be inserted in a
20 x 20 pixels image are considered. This makes 69.790 filters, allowing to ex-
tract then 69.790 features from an image.

The employed GC is a cascade of 4 strong classifiers (see figure (4.7) with 10,
20, 40 and 80 features (iterations of the AdaBoost algorithm) respectively. The
process to train the cascade of classifiers is detailed in algorithms 3 and 4. (T)FS
and (T)NFS designate “(Training) Face Set” and “(Training) Non-Face Set” re-
spectively. In the different tests that have been done with the system described
here, the GC erased around a 97% of the samples passed to it.

4.2.2 Pose Classifiers

Regarding the P(C's, their objective is to detect faces but only with the pose
of the faces that the classifier has been trained with. Then, a high selectivity
is required here, and for that reason, Anisotropic Gaussian filters are used to
build these classifiers. Therefore, the output of PC classifiers is not “Face” or
“Non-Face” but “Face with a specific pose” or “Not a face with a specific pose”.

Pose Classifiers are 4 level cascades of classifiers with 5, 10, 20 and 40 features
respectively. As pose, the out-of-plane rotation in the interval [—7/3,7/3] rad
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Algorithm 3: Training algorithm for the GC

1 TFS; «— {INRIALPES Dataset }U{Expression subset from PIE};

2 TNFS; « 5.000 images from the NFS

3 fori=1to 4do

4 Train stage number i of the GC using TFS; and TNFS;;

5 Adjust final asymmetric threshold to have a high percentage (> 99%)
of true acceptance over FiS with a false acceptance rate < 60% over
NF'S when possible;

6 TNFS;+1 < {Update of the TNFS made with algorithm 4};

7 end

Algorithm 4: Update of the TNFS

input : TNFS;, Number of false accepted faces
output: TNFS;
1 MAXNewFaces =
min{Number of false accepted faces, 20% of # TNFS,};
2 TNFS;+1 «— {TNFS;} U{MAXNewFaces from the false accepted faces};

Out—-Of-Plane Rotation
‘ >

.//
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-T1/2

Figure 4.8: Examples of different poses
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Figure 4.9: Segmentation scheme of the considered movements

Table 4.2: Parameters used to generate the set of Anisotropic Gaussian filters

Parameter Minimum Maximum Step

Radius (pixels) 3 13 3
Rotation (radians) 0 2 /9

X Scale (pixels) 1 5 2

Y Scale (pixels) 1 5 2

and the elevation in the interval [—7w/2,7/2] rad are contemplated (see figure
(4.8)). Both movements are illustrated in figures (1.1(a)) and (1.1(b)) respec-
tively, and they are considered together, i.e., a classifier trained to detect faces
with a given pose will detect faces with a given elevation and out-of-plane rota-
tion, and not each one by separate. To train these classifiers, the plane generated
by the variables of out-of-plane rotation and elevation is subdivided in pieces
with a small overlapping margin, as indicated in figure (4.9), and this procedure
is repeated until small regions are obtained. The overlapping margin is intended
to avoid abrupt transitions between classifiers, and it will allow to do a better
estimation of the pose by combining outputs from different classifiers.

The set of Anisotropic Gaussian filters used to extract features from images has
been generated using the parameters specified in table 4.2, producing 103.968
filters for a size of 20 x 20 pixels.

The training process can be schematically seen in the algorithm (5). Note that
“Construct Cascade of Classifiers for Pose Classifier” is simply the algorithm (3)
adapting the training images sets and the number of stages and features. The
final training process has not been as automatic as expressed in that algorithm
due to problems with the number of images for some of the poses that forced
to consider some poses together. For the exact partition of the pose plane see
appendices B and C.
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Algorithm 5: Training algorithm for Pose Classifiers

1 Divide total domain;
2 for L =1 to 4 (number of domain subdivisions) do

3 for D =1 to number of subdomain pieces do

4 | Construct Cascade of Classifiers for Pose Classifier;
5 end

6 Redivide domain;

7 end

4.3 Decision Tree Structure

At this point, the process to build classifiers specialised in the detection of faces
with a specific pose, PC's, and the process to build a very fast classifier set aside
for removing the background and as much non-face image portions as possible,
G C, have been described. Now, the tree structure combining all these classifiers
will be detailed, but before that, some notation aspects must be specified:

e P(; designates the “Pose Classifier” number ¢ that receives the output
from the GC

e PC;, . i, designates the “Pose Classifier” number ¢, that receives the
output from PCj,

----- in—1

The tree of classifiers is organised as follows. On the top node, the root node,
the GC is placed. This classifier sends to the nodes on the first stage all the face
candidates without any pose filtering, i.e., candidates to face in any pose. Then,
in this first stage, 4 Pose Classifiers, PCy, PCs, PC3 and PCy, are placed. Each
one of these classifiers has been trained with images from a quadrant of the pose
plane, each one with a small overlapping margin with their neighbour regions.
Therefore, these classifiers are selective in pose and they will only send to their
“classifier sons” those face candidates to have a specific pose. In the second
stage, the “sons” of PCy (PCy,1, PCi 2, PCy3 and PC 4), PCy (PCs1, PCsp,
PCng and PCQA), PCg (Pngl, PngQ, Pngg and PCgA) and PC4 (PC411, PC412,
PCy 3 and PCy4) are placed, each one trained with a portion of the domain of
its “father”. This process is repeated (see figure (4.10) for a sketch of how these
classifiers are connected) until a tree with 5 stages and a total of 60 classifiers is
built. All the nodes have a connection with the “Non Face” special node, whose
only task is to take out samples from the decision tree.

In appendix C, the exact structure of this tree of classifiers with all its con-
nections is described. As it can be seen there, some classifiers can receive face
candidates from more than one “father classifier”. This is due to the overlap-
ping regions in the pose domains.
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NON FACE

Figure 4.10: Structure of the final tree of classifiers

4.4 Detection Process

Up to now, the components that form the multi-view face detector have been
described, going from the “bottom”, the AdaBoost algorithm, to the “top”,
the final tree structure that contains all the classifiers, but nothing has been
explained about how to detect faces in an input image using this final tree of
classifiers, whose input is a greyscale image of 20 x 20 pixels.

Basically, when dealing with the face detection problem in an image without
any previous knowledge of its content, exists two problems. The first one is that
a hypothetical face can be in any point of the image and the second one is that
this face can have any size. Furthermore, different faces in the same image can
have very different sizes.

Then, the strategy to detect faces in an input image has two steps, as well as
a previous greyscale conversion if the input is not a greyscale image. The first
step is to build what is known as a pyramid of images (see figure (4.11)). That
is a set of images composed of the original image and subscaled versions of it.
In our case, all the subsampled images by a factor of 1.25 are calculated until it
is achieved an image whose subsampled version would have a side smaller than
20 pixels. Then, over the whole set of images from the pyramid of images, the
second step is to apply the tree of classifiers to each portion of 20 x 20 pixels.
This two steps assure that a face in any position and of any size (if the scale
factor is small enough) can be detected.

4.4.1 Peculiarities of the System

In addition to the general operation of the system, it presents some peculiarities,
basically in the computation of the results of each classifier:

e All the filters have zero mean and are applied to normalised greyscale
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Figure 4.11: Example of a pyramid of images. The image on the left is the
original one, and the image on the right is the smallest one, whose subsampled
version would have a side smaller than 20 pixels. The scanning 20 x 20 pixels
window can be seen in red in the third image.

images (images with pixel values in the range [0, 1]). This implies that the
output of a filter applied to an image, what is called a feature, is a real
value, and not +1 or —1.

e Due to the previous point, the used AdaBoost algorithm is an adapted ver-
sion of the algorithm described in algorithm (2). Basically, the difference
with it, is only that the “sign” function is replaced by a threshold:

T T
1
If Zatht (x) > Z Fu then “Face”, else “Non-Face”
t=1 t=1

This 1 is the mean value of h;(z).

e Finally, the last peculiarity is that in the cascade structure of the clas-
sifiers, another threshold is used between stages, so that the expression
written in the previous point is finally:

T T
1
If StageThreshold - Z athy(x) > Z 504,5 then “Face”, else “Non-Face”
t=1 t=1

This “StageThreshold” is the “Final Asymmetric Threshold” calculated
in step 5 of algorithm (3).
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Chapter 5

Tests and Results

In the previous chapters, we have described a system intended to detect faces
in any of the considered poses, as well as to estimate the pose of the face that
it has detected. Next, some tests of that system will be carried out in order to
see its performance.

One very important concept must be defined before any test can be carried out,
“what is considered as a correct detection”. It will be considered as a correct
detection a detection that contains the eye(s) and the mouth, and whose sides
are shorter than twice the width and the height of the detected head (see fig-
ure (5.1) for some examples). All the detections that do not accomplish these
conditions are not considered as correct detections. A more unbiased evaluation
protocol could be considered by extending the work of Popovici et al. in [85],
but this is not in the scope of this project.

But the system developed here is also able to estimate the pose of the face that
has been detected, then “what is a correct pose estimation” must be also de-
fined. The problem with that definition is that we do not have calibrated images
to test if the estimation is correct or not. For that reason, it has been decided to
accept as good pose estimations those that the estimated pose is approximately
that that a person would say. To make this task easier, two circumferences are
drawn alongside detection. The top one has an arrow indicating the out-of-plane
rotation value, and the bottom one has an arrow indicating the elevation value
(see figure (5.2)).

Then, following these criterions, the images showed in figure (5.3) are examples
of correct face detections and correct pose estimation.

At this point, the parameters that will be used to measure the system perfor-
mance can be defined. These parameters are the True Acceptance Rate (TAR)
and the number of False Detections. The True Acceptance Rate shows the rate
of correct detections and is calculated as the rate between the number of correct
detected faces and the real number of faces, i.e.,

#Correct Detections
#Faces

TAR = (5.1)

63
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(a) Correct detection (b) Correct detection

(c) False detection (d) False detection

Figure 5.1: In images (5.1(a)) and (5.1(a)), two face detections that would be
considered as correct are shown. In images (5.1(a)) and (5.1(a)), the detections
would be considered as incorrect, and therefore counted as false detections
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Figure 5.2: Out-of-plane rotation and elevation representation

Figure 5.3: Correct detections and pose estimations
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Figure 5.4: Examples of multiple detections of the same face

This True Acceptance Rate induces another equivalent parameter, called the
Fualse Rejection Rate (FRR), that shows the rate between the number of not
detected faces and the total number of faces. It is calculated as

#Faces — #Correct Detections

FRR =
#Faces

=1-TAR (5.2)

The second parameter, the number of Fualse Detections, is the number of in-
correctly detected faces as well as non-faces detected as faces. This parameter
gives an idea of the robustness of the system and it depends on the system by
itself but also on the arbitration used to remove multiple detections. The False
Positive Rate (FPR), the equivalent of the FRR for false detections, is not used
here since it would be extremely low and it would not give useful information.
This parameter would be very low due to the high number of windows that are
scanned in an image for the different scaling factors and positions, making the
denominator of this rate very high.

Then, an important point when the system is being evaluated is the arbitration
done over the total set of detections. This step is mandatory due to the “scan-
ning” principle of the system that origins multiple detections in close positions
and scales (see figure (5.4)). In the following tests, the results from 6 very sim-
ple different arbitrations will be reported:

ArbA: Mean detection from each “single pass” cluster of detections.

ArbB: Best detection, according to the final score of each detection, from
each “single pass” cluster of detections.

ArbC: Weighted, according to the final score of each detection, mean
detection from each “single pass” cluster of detections.

ArbD: Mean detection from each “multiple pass” cluster of detections.
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Figure 5.5: In “single pass” cluster computation, considering as the initial de-
tection the black one, the black detection and the green detection would form a
cluster of detections, while the red detection would form another independent
detection. In “multiple pass” cluster computation, the three detections would
form one only cluster of detections.

e ArbE: Best detection, according to the final score of each detection, from
each “multiple pass” cluster of detections.

e ArbF: Weighted, according to the final score of each detection, mean
detection from each “multiple pass” cluster of detections.

When talking about “single pass” clusters, we mean that one detection is taken
as the initial one and all the other detections that overlap this one are consid-
ered as belonging to the cluster. While in the “multiple pass” clusters, each
detection added to the cluster can be considered to compute its overlapping
with additional detections (see figure (5.5) to see an example).

In order to have also an idea of where could be the problem in a hypothetical
bad detection, the True Acceptance Rate without any arbitration and without
caring on the number of false detections will be given.

5.1 Test Over Color FERET Database

The whole Color FERET Database is too big to be tested with the face detector
and pose estimator system, since the results must be checked “by hand” to see if
the detection and the pose estimation has been correctly done. For this reason a
small subset from the small images (256 x 384 pixels) of FERET has been chosen.
All the images from the 20 first subjects (PersonID € {00001, 00002, ...,00020}),
making a test set composed of 194 images with 194 faces (one face per image)
in different poses but always with elevation 0 degrees.

The results showed in table (5.1) are obtained scanning these images in all pos-
sible locations with windows of sizes between 77 x 77 pixels and the maximum
that fits in the image with a scale factor of 1.4. This makes a total of 7.514
windows to be scanned by the system, of which around a 97% are erased by the
GC, leaving for the lower stages only around 200 windows to be tested. Note
that in the pose TAR calculation, the denominator is not the total number of
faces but the total number of correctly detected faces, since in an incorrectly
detected face or in a non-face detected as face, the pose estimation has no sense.
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Table 5.1: Results from the test on the Color FERET Subset
Arbitration TAR  False Detections Pose TAR

None 85.1% — —

ArbA  76.3% 310 75.0%
ArbB  70.1% 322 83.8%
ArbC  74.7% 313 76.6%
ArbD  51.5% 251 77.0%
ArbE  61.9% 231 82.5%
ArbF  55.2% 244 72.9%

Another interesting point to observe here is the number of windows discarded
in each stage of the tree, to confirm whether the proposed progressive segmen-
tation of the pose plane prevents the propagation of positive windows from the
GC to all the classifiers, speeding up the system. And thus it is, since over this
test set, the first stage of the tree, classifiers 1, 2, 3 and 4 (see appendix C),
erase the 49% of the samples that they process, the second stage, classifiers 5 to
20, the 86%, and the third stage, classifiers 27 to 30 and 36 to 39, erase the 79%.

The mean time of processing in a Pentium Centrino at 2.0GHz for each image
is about 0.2 seconds, but it depends on the outgoing images from the GC; that
makes range the processing time between 0.09 seconds and 0.61 seconds.

5.2 “Live” Test

In order to test the system in a more real situation, it has been implemented
in a program able to read images directly from a webcam, allowing to simulate
a face detection in a video-conferencing-like environment. This program has
allowed to find out that the system is very dependent on the illumination, and
that the pose estimation for values of elevation different to 0 is not accurate.
This last problem has a very easy and probably explanation, datasets, since the
only poses with abundant data and then the only classifiers trained with an
acceptable number of training samples are those for elevation 0.

The system can perform without problems in real-time in a Pentium Centrino
at 2.0GHz, processing the 320 x 240 pixel images supplied by the webcam at
around 8 frames per second with the smallest face dimension limited to 76 pixels
and a scaling factor of 1.25.

In the CD that comes with this document, some videos, as a subjective data
from this test, are available to see how well the system works in good illumina-
tion conditions and for values of 0 degrees of elevation, and how the system fails
when there is a bad illumination or the face pose has an elevation substantially
different to 0.
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Chapter 6

Conclusions

Along this document, a new approach to the face detection and pose estimation
problem has been proposed. This new approach makes two main contributions.
On the one hand, it shows the feasibility of building classifiers trained to detect
faces in specific regions of the pose space. On the other hand, it demonstrates
that the proposed method of building a tree of classifiers where the more we
descend on the structure, the more concrete pose the classifiers detect, is a good
way of combining these pose-specific classifiers.

In addition, the idea of placing a Haar-based boosted classifier on the top of the
tree structure, in order to erase quickly as much background as possible, has
also been confirmed as a good idea. Moreover, this classifier allows the system
to work in real-time at an acceptable frame rate without using “time-dimension
information”, i.e., without enclosing the scanning region, processing the whole
image on each frame.

The obtained results are very promissing, since the system achieves a True Ac-
ceptance Rate before the arbitration like in other state-of-the-art techniques,
but with the advantages that this system is not limited to frontal faces and
that the system can estimate the pose of each detected face very accurately,
providing hypothetical third party applications with very valuable information.

But the proposed system presents also some problems, like the high number of
false detections. This high number of false detection implies a more difficult
arbitration process due to the “noise” that these false detections add to the cor-
rect ones. Moreover, the correct operation with poses with an elevation value
different to 0 degrees could not be confirmed. The bad function in those poses is
probably due to the bad classifiers that were placed in the tree for them, since
we only had a very limited amount of images to train them, but this aspect
should be confirmed.

In order to try to solve the problems that have been observed, as well as to
study in depth some aspects of the designed system, a wide variety of future
work can be done taking this document as basis. In the next chapter, some
proposals of interesting future work are suggested.
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Chapter 7

Future Work

The work presented along this document opens a wide range of possible fu-
ture work. In order to make my proposed future work more understandable to
the reader and not only enumerate a series of improvements, these proposed
tasks will be divided into three groups, “Pre” Future Work, “During” Future
Work and “Post” Future Work. In the “Pre” Future Work group, there are
proposed tasks or improvements related with things that were done during the
preparation of this project. In the “During” Future Work, they are related with
things that were done during the development of this project, and finally, in the
“Post” Future Work there are tasks or improvements that could be done with
this project already developed.

7.1 “Pre” Future Work

e Data Set: One of the biggest problems along the course of this project
has been to collect good and enough data in order to make a good train-
ing of each classifier. This has not been easy, and the amount of data
finally collected has not been enough to build a uniform sampling of the
pose plane (see section 4.3 and appendix B). The principal problems in
the data collection process have been that the databases that made a
good pose recording, as the INRIALPES Head Pose database (see section
4.1.1), did not have a big amount of data, and the databases that had a
big amount of data, as the CMU PIE database (see section 4.1.2), did not
make a good pose recording for our purposes (see section 4.1.2.1). For this
reason, the recording of a good database with a good sampling of the pose
plane and with an abundant quantity of images would be very interesting
in order to improve this project as well as to help researchers who work
in this field all over the world.

7.2 “During” Future Work

e Arbitration: In this document, only very simple arbitrations has been
done to erase multiple detections of the same face, using only the infor-
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mation provided by the last classifier on the tree that the sample has gone
through. One of the first improvements that the system could have is a
more complex and accurate arbitration. In particular, it would be inter-
esting to study how to exploit the information of the route followed inside
the tree as well as the successive obtained scores by the sample.

Training: In the trainings of classifiers carried out in this project, only
non-face images were in the non-face training datasets. An interesting
thing to try is if including faces from far poses in the non-face training set
reduces the number of false detections or bad pose estimations in images.

Real-Time: In the face detector developed in this project, the informa-
tion contributed by the time dimension, when working in real-time with
data from a video sequence or captured from a camera, is not used. One
improvement that would accelerate the execution speed of the face detec-
tor, taking into account this information, would be a Kalman or particle
filter to follow the position, the scale and the pose of detected faces, since
at a high frame rate it is not possible to have big changes in these parame-
ters. Using these techniques, it would be only necessary to scan the whole
image every certain time period to detect new faces or to correct possible
errors.

FEigenfaces: Haar-based filters and Anisotropic Gaussian filters are used
in this face detector. It would be a good work to study the possibility
of using another kind of filters, in special, eigenfaces are matrices very
correlated with faces and they could be used as projection matrix into the
“faces space” to distinguish there, by means of a classifier built with the
AdaBoost algorithm, between “Faces” and “Non Faces”. For this reason,
it could be interesting to study the results that would be obtained by using
eigenfaces as filters to extract features from images.

Evaluation of Anisotropic Gaussian filter parameters: The pa-
rameters given in table (4.2) were chosen so that the generated filter set
were big enough to produce acceptable results. An exhaustive study of
the implications of each parameter would be very interesting to allow to
generate a set of filters as selective as possible in face movements, allow-
ing to hypothetically improve the face detection and/or pose estimation
accuracy.

Scale study: The process to scan an image for a face used in this work
has been an exhaustive search over a pyramid of images (see section 4.4).
This requires a lot of computation time, above all for the biggest images
from the pyramid, since a lot of windows of 20 x 20 pixels have to be
tested. For this reason, a different strategy intended to delimit the num-
ber of scales that have to be scanned would be a great improvement in
the system speed. With this objective, an study of some kind of image
segmentation or texture granularity in images containing faces would be
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very interesting, since it may end in a preprocessing step able to estimate
the scale candidates to be scanned for faces.

7.3 “Post” Future Work

e Face recognition: The outputs of the face detector developed here would
be very good inputs for a face recognition system due to the accurate face
detection and, especially, to the pose information that the system provides.
This pose information could be used by a hypothetical face recognition
system in two ways. On the one hand, a pose correction of the detected
face could be computed in order to always feed the face recognition with
frontal images. On the other hand, instead of correcting the pose of the
input face, this pose information could be used to choose between differ-
ent recognition subsystems, for example if PCA is used to recognise faces,
this pose information could choose between different projection matrices,
each one composed of eigenfaces calculated with faces with the given pose.

e Ewaluation procedure: At the time of testing the performance of a face
detection system, no standard procedure exists, forcing to each author to
define what she or he considers as a correct detection. This has a very
direct implication, usually it is not possible to compare performances from
different approaches. Due to this, it would be extremely interesting to try
to define a standard and widely accepted process to test face detector sys-
tems, and hypothetically build a testing environment to test algorithms.
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Appendix A

VC Dimension

VC' Dimension is one of the most important concepts introduced by Vladimir
Vapnik and Alexey Chervonenkis in their computer learning theory known as
Vapnik Chervonenkis Theory or VC Theory (see “The Nature of Statistical
Learning Theory” [86] for further details). This theory tries to explain statisti-
cally the learning process, covering 4 fields as explained in [86]:

e Theory of consistency of learning processes.

e Non-Asymptotic theory of the rate of convergence of learning processes.
e Theory of controlling the generalization ability of learning processes.

e Theory of constructing learning machines.

Before defining the VC Dimension, a previous concept must be defined, the
shattering. Given a classication model f(a), where « is a parameter vector,
and given a set of data points (zq,...,x,), it is said that f shatters the set of
data points if for all assignments of labels to those data points, there exists a
parameter vector « such that the model f(a) makes no errors classifying those
points.

Vapnik and Chervonenkis defined the VC Dimension as follows. Considering
the 2—Class problem, given a set of functions {f(«)}, where a represents a
generic set of parameters, then f(x,a) € {—1,41} Va,a. The VC Dimension
for the set of functions { f(a)} is the maximum number of training points that

can be shattered by {f(a)}.

79



80

APPENDIX A. VC DIMENSION



Appendix B

List of Classifiers

In the table B.1, the exact list of the 55 classifiers that were trained to build
the decision tree is detailed. The table indicates the classifier ID as well as the
cameras from the PIE database (see section 4.1.2) and the elevation and out-of-
plane rotation values in degrees from the INRIALPES Head Pose (abbreviated
as THP in the table) database (see section 4.1.1) that were used for its training.

Table B.1: List of classifiers

ID PIE Cameras IHP Elevation ITHP OOP Rotation
0 OMPLIR OMPLIR OMPLIR
1 27,29,11,14,34 +15,+30,460 0,415,430, +45, 460, +75,+90
2 27,05,37,02,22 +15,430,4+60 0,—15,—-30,—45,—60,—75, —90
3 27,05,37,02,22 —15,—-30,—60 0,—15,—30,—45,—60,—75,—90
4 27,29,11,14,34 —15,—-30,—60 0,+15,430,+45,+60, 475,490
5 - +15, +30, +60 +45, +60, +75, 490
6 - +15,+30, 460 0,+15,+30, +45
7 27,29,11 +15 0,+15,+30, +45
8 11,14, 34 +15 +45, 460, +75,+90
9 - 415,430, +60 0,—15,—30, —45

10 - +15, +30, +60 —45,—-60, —75, —90

11 37,02,22 +15 —45, —60, —75,—90

12 27,05, 37 +15 0,—15,—30,—45

13 27,05, 37 —15 0,—15,—-30,—45

14 37,02,22 —15 —45,—-60, —75, —90

15 - —15,-30, —60 —45,—-60, —75, —90

16 - —15,-30, —60 0,—15,—30, —45

17 11,14, 34 —15 +45, 460, +75, 490

18 27,29,11 —15 0,+15,+30, +45

19 - —15,-30, —60 0,+15,+30,445

20 - —15,-30, —60 +45, +60, +75, 490

21 - +60 +45, +60, +75,+90

22 - +15,430 +45, 460

23 - +15,430 475,490
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ID PIE Cameras IHP Elevation IHP OOP Rotation

24 - +60 0, +15, +30
25 - +15, 430 0

26 - +15,+30 +15,+30

27 29,11 ; -

28 27,29 - -

29 14,34 - -

30 11,14 - -

31 - +60 0,15, —30

32 - +15,+30 ~15,-30

33 . +60 —45, 60, —75, —90
34 - +15,+30 —75,-90

35 - +15, 430 —45,—60

36 37,02 - -

37 02, 22 - -

38 27,05 § -

39 05,37 - -

40 - —15,-30 —45, 60

41 . —15,-30 —75,-90

42 - —60 —45, 60, —75, —90
43 § ~15,-30 0

44 . —15,-30 —15,-30

45 - —60 0,—15,—30

46 . —15,-30 +15, 430

47 § —60 0,415,430

48 - ~15,-30 +75, 490

49 - —15,-30 +45, 460

50 - —60 +45, 460, +75, +90
51 34 - -

52 14 - -

53 11 - -

54 29 - -

55 27 - -

56 05 - -

57 37 - -

58 02 - -

99 22 - -



Appendix C

Exact Final Tree Structure

In table (C.1), the connections between the different nodes in the tree are spec-
ified. With this information and the information in table (B.1) it is possible to
write the file savetreemodel.conf (contained in the CD) that passed as a param-
eter to the program SaveTreeModel allows to save the tree structure in a file to
be used with FPDetector. A plot of this tree can be seen in figure (C.1).

Table C.1: List of connections in the tree of classifiers

ID  Connected Classifiers IDs

0 1,2,3,4
1 5,6,7,8

2 9,10,11,12

3 13,14,15,16
4 17,18,19, 20
5 21,22,23

6 21,22, 24,25, 26
7 22,25, 26,27, 28
8 22,23, 29,30
9 25,31, 32,33, 35
10 33,34,35

11 34,35, 36,37
12 25,32, 35,38, 39
13 38,39, 40, 43, 44
14 36,37, 40,41
15 40,41, 42

16 40,42, 43,44, 45
17 29, 30, 48,49
18 27,28, 43,46, 49
19 43,46, 47,49, 50
20 48,49, 50
27 53, 54
28 54,55
29 51,52
30 52,53
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ID  Connected Classifiers IDs

36 57,58
37 58,59
38 55, 56

39 56,57
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Figure C.1: Tree of classifiers generated using the connections specified in table
(C.1). The General Classifier is drawn with a square and the Leaf nodes are
painted in grey.
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Appendix D

Cascade of Classifiers

A cascade of classifiers allows to accelerate the rejection of negative inputs, with
respect to “monolitic” classifiers, because those samples rejected by a stage do
not go to the lower stages. In a “monolitic” classifier, the decision of rejection or
acceptance is carried out after computing all the features, while in the cascade
only the features corresponding to the filters in the stage that is being computed
are calculated to take a decision.

To show this, some outputs from the training of classifier number 55 (see Ap-
pendix B) are shown. In the first output there are some of the results of calcu-
lating the first stage threshold. As it can be seen, for the “optimum” threshold
(less than 1% of faces rejected), 82.046 non-face images from the total of 97.947
are discarded. Then, more than an 80% of the images do not go to the lower
stages and have been discarded using only 5 features.

Testing model...

Model OK!

Face nb:7237 NFace nb:97947

Results on iteration O:
FalseNegativeRate = 44.9909
FalsePositiveRate = 0.0653415
TotalTestError = 3.15646

Face errors: 3256 Non face errors: 64
Threshold = 1.95

Results on iteration 20:

FalseNegativeRate = 0.704712

FalsePositiveRate = 16.2371

TotalTestError = 15.1671

Face errors: 51 Non face errors: 15901

Threshold = 0.950001

Optimum obtained (TAR>=99%) for Threshold=0.950001

This second output shows the results for the same classifier but with two stages.
With these two stages (5-+10 filters), 12.744 of the samples that go to the second
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stage are discarded, making a total of 94.790 samples from the 97.947 discarded.
Then, to the third stage will only go 3.157 non-face images.

Testing model...

Model OK!

Face nb:7237 NFace nb:97947

Results on iteration O:
FalseNegativeRate = 93.1288
FalsePositiveRate = 0
TotalTestError = 6.40824

Face errors: 6740 Non face errors: O
Threshold = 1.95

Results on iteration 19:
FalseNegativeRate = 0.994888
FalsePositiveRate 3.22306
TotalTestError = 3.06994
Face errors: 72 Non face errors: 3157
Threshold = 1
Optimum obtained (TAR>=99%) for Threshold=1

In this third output, the same is shown when the classifier already has 3 stages.
The third stage discards 2.155 of the 3.157 non-face images that it receives,
giving to the fourth stage only 1.002 non-face images from the initial set of
97.947 non-face images.

Testing model...

Model OK!

Face nb:7237 NFace nb:97947

Results on iteration O:
FalseNegativeRate = 99.9958
FalsePositiveRate = 0O
TotalTestError = 6.8808
Face errors: 7237 Non face errors: 0O
Threshold = 1.95

Results on iteration 21:

FalseNegativeRate = 0.994888

FalsePositiveRate = 1.02301

TotalTestError = 1.02106

Face errors: 72 Non face errors: 1002

Threshold = 0.900001

Optimum obtained (TAR>=99%) for Threshold=0.900001

Finally, in this fourth output, the threshold for the fourth and last stage is
calculated. Knowing that the stages have 5, 10, 20, and 40 filters in the first,
second, third and fourth stage respectively it has computed a total of 5-97.947 +
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10-15.901 4 20-3.157+40-1.002 = 751.965 features from the non-face samples,
while a “monolitic” classifier with only 40 filters has to compute 40 - 97.947 =
3.917.880 features over the same non-faces set.

Testing model...

Model OK!

Face nb:7237 NFace nb:97947

Results on iteration O:
FalseNegativeRate = 99.9958
FalsePositiveRate = 0
TotalTestError = 6.8808
Face errors: 7237 Non face errors: O
Threshold = 1.95

Results on iteration 20:

FalseNegativeRate = 0.994888

FalsePositiveRate = 0.353252

TotalTestError = 0.3974

Face errors: 72 Non face errors: 346

Threshold = 0.950001

Optimum obtained (TAR>=99%) for Threshold=0.950001
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