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Abstract

We present a rigorous method for estimating some of the calibration parameters in airborne laser scanning (ALS), namely the three
bore-sight angles and the range-finder offset. The technique is based on expressing the system calibration parameters within the direct-
georeferencing equation separately for each target point, and conditioning a group of points to lie on a common surface of a known
form such as a plane. However, the assumed a priori information about q chosen planar features is only their form not the spatial
orientation or position. Thus, the 4·q plane parameters are estimated together with the calibration parameters in a combined
adjustment model that makes use of GPS/INS-derived position and orientation as well as LiDAR range and encoder angle as
observations. To make the approach practical when working with voluminous ALS and GPS/INS data, the contribution of each laser
point to the normal equations is formed sequentially. The discussions focus on practical examples with data from a continuously-
rotating scanner that reveal the conditions under which almost complete de-correlation between the estimated parameters occurs. In
such a case, all bore-sight angles are determined with accuracy that is several times superior to the system noise level. Given
sufficiently strong geometry, the presented method is shown to be not only accurate but also very robust in terms of convergence.
When appropriate, the method is applicable for calibration of additional systematic effects such as laser-beam encoder offsets or scale
factor with minimal modification to the functional model.
© 2006 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights
reserved.
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1. Introduction

Airborne Laser Scanning (ALS) is a very effective
and accurate method for establishing detailed terrain
models from airborne platforms. In some applications
the requirements on point density and DTM accuracy
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can be as high as several points per m2 and 0.1 m,
respectively. The factors affecting laser-target position
accuracy are numerous (Schenk, 2001). Apart from the
target reflectivity properties and laser-beam incidence
angle, the main limiting factors are the accuracy of the
platform position and orientation derived from the
carrier-phase differential GPS/INS data and uncompen-
sated effects in system calibration. The calibration can be
divided into that of calibration of individual sensors such
as the laser range-finder and that concerning spatial
etry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V.
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(lever-arm) or orientation (bore-sight) offsets between
the sensors due to a particular assembly. In most system
installations, the lever-arms between LiDAR-IMU-GPS
sensors can be determined separately by independent
means, although this represents certain difficulties
related to the realization of the IMU body frame. On
the other hand, the determination of the bore-sight angles
is only possible in-flight once the GPS/INS-derived
orientation becomes sufficiently accurate.

Though several well-developed approaches to bore-
sight estimation for camera-IMU installations exist
(Kruck, 2001; Cramer and Stallmann, 2002; Skaloud
and Schaer, 2003), the correct recovery of the ALS-IMU
misalignment still remains elusive. The existing cali-
bration procedures, while functional, are recognized as
being sub-optimal since they are labor-intensive (i.e.,
they require manual procedures), non-rigorous and pro-
vide no statistical quality assurance measures (Morin
and El-Sheimy, 2002). Furthermore, the existing
methods often cannot reliably recover all three of the
angular mounting parameters. The undetermined pa-
rameter(s) propagate into the subsequently captured
data, therefore compromising its accuracy and that of
any derived information. Thus, much research effort is
devoted to their improvement worldwide. The adopted
approaches are usually based either on physical
boundaries or cross-sections (Schenk, 2001) or DTM/
DSM gradients (Burman, 2000). Also, Morin and El-
Sheimy (2002) suggest a photogrammetric calibration
approach using many signalized targets (tie points). The
drawback of this method is the need for interpolation of
tie point coordinates in the ALS data that limits the
pointing accuracy and, hence, calibration accuracy. The
problem is worsened by the angular uncertainty due to
the broad laser beamwidth (Lichti, 2004).

On the other hand, the cross-section method seems
to be popular in commercial systems (Optech, 2004)
and usually provides satisfactory results for the bore-
sight estimate in the roll direction. However, as will be
shown later, its use for the recovery of pitch and yaw/
heading direction is less appropriate. The use of the
slope gradients in DTM/DSM for bore-sight estimation
made its way to a popular software package used for
ALS data handling (Soininen and Burman, 2005). The
principal weakness of this approach is the strong
correlation of the bore-sight angles with unknown
terrain shape. Also, the implemented stochastic model
of the LiDAR trajectory assumes time-invariant
behavior of the GPS/INS errors that is not realistic.
Similar weaknesses also affect earlier methods related
to strip adjustment where offsets and rotations are
modeled in the object domain (Vosselman and Maas,
2001). The more rigorous class of calibration proce-
dures or strip adjustments uses the modeling of
systematic errors directly in the measurement domain
(Filin, 2003; Filin and Vosselman, 2004). More
recently, Friess (2006) reports a rigorous method also
based upon block adjustment principles, but only
presents results with simulated data. Although devel-
oped independently, the approach presented here builds
upon the same basic foundation. As will be seen, though,
it develops important differences.

Similar to Filin (2003) we start from correct modeling
of systematic effects in the direct georeferencing equa-
tions and conditioning the object coordinates of group of
points to lie on a common plane. It will be shown that
good calibration requires the use of many planar features
with different spatial orientation and these are easily
identified on urban structures where the access is often
limited. Therefore, it is useful to recover the plane
parameters together with the calibration parameters in a
combined adjustment model. This has an important
practical impact as no additional surveying campaign
apart from the calibration flight itself needs to be
organized for the system calibration. Also, the method
uses the aircraft trajectory and laser measurements as
observables and therefore can benefit from a rigorous
approach to the GPS/INS stochastic modeling and error
propagation from range observations to object space
coordinates.

The organization of the paper is as follows. After
giving definitions of system errors and emphasizing
their influence on mapping results, the functional model
for their recovery is developed and its linearization is
presented. The subsequent discussion concerns the
choice of the stochastic model and its practical impact
on the computational performance. It will be shown that
for a special case the normal equations can be formed
sequentially, which has an important practical impact
when handling voluminous ALS data sets. The initial
values for the plane parameters will be estimated
directly from the data by a computationally efficient
method. The stability of the solution will then be tested
for its sensitivity with respect to the choice of the initial
parameters and convergence rate using different data
sets. The discussion of the numerical examples will
address the conditions that affect the accuracy of and
correlation between the estimated parameters. As will be
demonstrated this is especially critical for the estimate of
the range-finder correction. The synthesis of these
investigations supported by numerical examples will
lead to important claims as to the suitability of the
presented approach for its wide use in ALS system
calibration.
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2. Airborne laser scanning

2.1. Direct georeferencing of LiDAR measurements

As already mentioned, the need for system calibra-
tion parameters arises from the LiDAR observations and
from their transformation by the GPS/INS data. Using
an arbitrary Cartesian mapping frame (m), the direct
georeferencing of LiDAR measurements at time t
(epoch i) with GPS/INS on a common platform takes
the following form:
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Thereby,
r
! ¼ ½x y z�T
 are the coordinates of a LiDAR target in

the mapping frame at time t

g
! ¼ ½X Y Z�T
 are the coordinates of IMU center in the

mapping frame at time t

Rb
m= f (r, p, y)
 is the orientation matrix from the IMU

body frame (b) to the mapping frame
parameterized by roll (r), pitch (p) and
yaw (y) observations at time t
0 �g b
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@ A
 is the skew-symmetric part of the bore-
sight matrix, with small angles α, β and γ
Ts
b*
 is an a priori known rotation matrix from

LiDAR frame to IMU body frame that
depends on a particular system mount
ρ, Δρ
 are the LiDAR range at time t and the
constant range-finder offset, respectively
θ
 is the LiDAR's encoder angular value at
time t (an offset Δθ or other beam
direction influences can be added)
a
! ¼ ½ax ay az�T
 is the lever-arm offset between the IMU

and LiDAR measurement centers
expressed in the IMU body frame.
Fig. 1. Influence of bore-sight error on a cross-section plotted
separately for the roll (a), pitch (b) and yaw (c) angles from 8 flight
lines of different directions and heights. The magnitude of each bore-
sight angle was deliberately set to 0.3 ° for each example.
In the above definition, the relative orientation from
the LiDAR frame to IMU body frame for a particular
system mount ‘M’ is decomposed into two subsequent
rotations: Ms

b=(I+Ωb⁎
b )Ts

b⁎ with Ts
b⁎ representing the

approximate axis orientation assumed to be known a
priori and (I+Ωb⁎

b ) being a matrix of small unknown
rotations defined as the bore-sight. Although this de-
finition of the bore-sight assumes its maximal uncer-
tainty at the level of few degrees only, this is usually
more than practically needed.
2.2. Definition of calibration parameters

In Eq. (1), the system calibration parameters due to
the system mount are the lever-arm vector a

!
and the

bore-sight angles α, β and γ. As mentioned earlier, it is
assumed that the vector a

!
is determined separately by

independent means and therefore excluded from the in-
flight calibration. In contrast, the bore-sight angles are
the main subject of the in-flight system calibration as it is
difficult to estimate them by other means. The practical
influence of the bore-sight on the mapping accuracy is
demonstrated by Fig. 1. This figure shows a cross-
section of a building recovered from 8 flight lines (two
cloverleaf patterns flown at different heights). As can be
seen from the profile, the discrepancies due to roll errors
(Fig. 1a) are clearly visible on the inclined and horizontal
planes. The errors due to pitch (Fig. 1b) are not apparent
in horizontal planes; however, they have an opposite
effect on inclined planes. Finally, the errors in yaw/
heading (Fig. 1c) cannot be discerned from the profile,
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which is why cross-section analyses are not suitable for
recovery of this component of the bore-sight.

The magnitude of systematic errors in LiDAR mea-
surements are influenced by the concept of the scanning
principle and the quality of fabrication. Although these
errors are best avoided by proper system design
(Katzenbeisser, 2003), some residual effects must be
expected even after factory calibration. In Eq. (1) we
have considered only a range-finder bias; other effects
such as the angle-encoder zero offset can be added if
appropriate. In addition, a scanning system using a
mirror of constant velocity, such as the one tested in this
study, does not suffer from non-linear effects due to
mirror acceleration; these were therefore omitted.

Additional candidates (at least theoretically) for ca-
libration are the systematic influences in the navigation
data. These are sometimes modeled as constant shift and/
or drift when adjusting adjacent strip (Filin and Vossel-
man, 2004). Although this is a justifiable approach for
alleviating remaining artifacts in laser point clouds
within a particular survey job, a rigorous approach re-
quires modeling remaining systematic effects in GPS/
INS integration directly within the navigation Kalman
Filter. Obviously, taking such an approach would not
only complicate the matter but may also degrade the
quality of the parameter estimates due to additional cor-
relation. Fortunately, the choice of the calibration area
and the flight conditions can usually be optimized in
terms of the flight dynamics and satellite constellation to
a level that the residual effects in GPS/INS trajectory
estimation are lower than 0.05–0.1 m and 0.005–0.01°
in position and attitude, respectively, when considering
the use of dual frequency GPS receivers and a tactical-
grade INS. No additional parameters due to navigation
(or timing) errors were necessary in the examples pre-
sented herein thanks to optimal flight conditions. These
include close separation (b5 km horizontally, b0.4 km
vertically) from the base receiver, optimal satellite
constellation, accurate alignment of the inertial system,
short flight lines and good estimation of the IMU sys-
tematic errors between the flight lines thanks to spe-
cifically-flown maneuvers.

3. Estimation model

3.1. Functional model

The development of the functional model is based on
conditioning the georeferenced LiDAR target points to
lie on surfaces of known form, particularly planes. The
parameters of these planes are estimated together with
the calibration parameters. The parameters of a plane j
are represented as sYj ¼ ½s1j s2j s3j s4j �T where s1, s2 and
s3 are the direction cosines of the plane's normal vector
and s4 is the negative orthogonal distance between the
plane and the coordinate system origin. The observation
equation for an object point i expressed by its coordinates
xi, yi, zi lying on plane j is given by s1j xi+ s2j yi+ s3j zi
+ s4j=0 or
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substitution of the LiDAR georeferencing Eq. (1) into
the observation Eq. (2) leads to the desired form of the
functional used for the parameter estimation:
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Note that the direction cosines must satisfy the
following unit length constraint

s21j þ s22j þ s23j−1 ¼ 0 ¼ gðx!2Þ ð6Þ

For p points and q planes, then the following basic
quantities can be formed:
# conditions
 m=p

# unknowns
 u=u1+u2=4+4q

# observations
 n=8p

# constraints
 c=q

# degrees of freedom
 r=p−4−3q
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Note that if the range-finder offset, Δρ, is not esti-
mated, then the number of unknowns is reduced to 3+4q.

3.2. Linearization of the functional model

Since the observations and parameters of the point-
on-plane observation equation are not separable and each
condition includes more than one observation, the com-
bined (or Gauss-Helmert) adjustment model must be
used (Förstner and Wrobel, 2004). As there are two sets
of unknowns, xY1, and xY2, the linearized system of
equations will be partitioned and takes the form:
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where A1 ¼ Af =Ax
!
1 and A2 ¼ Af =Ax

!
2 are the respective

designmatrices of partial derivatives of the functional (5)
taken with respect to the calibration parameters and the
plane parameters; �

^
1 and �
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2 are the respective vectors of

corrections to the approximate parameter values; B ¼
Af =A‘

!
is the design matrix of partial derivatives of the

same functional taken with respect to the observations;
v̂ is the vector of residuals; w ¼ f ð‘!; x

!0Þ is the
misclosure vector, i.e. the functional (5) evaluated at
current estimates of the parameters and observations.

The constraint (6) on the direction cosines (i.e. their
sum of squares must equal unity) is implemented as a
weighted parameter constraint, which essentially takes
the form of a “classic” observation equation where the
observation is zero, i.e. s1j

2 + s2j
2 + s3j

2−1= v̂c. The linearized
matrix form of the constraints is given by
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where G ¼ Ag=Ax
!
2 is the design matrix of partial

derivatives of the constraint functional g taken with
respect to the plane parameters; wc ¼ gðx!0

1 Þ is the
constraint functional misclosure vector; and v̂c is the
constraint residual.

3.3. Stochastic model

The influence of considering correlations within the
GPS/INS observations for the IMU-camera bore-sight
determination is demonstrated by Skaloud and Schaer
(2003). There are two types of correlation in the GPS/
INS data. The first is reflected in the correlation between
the 6 parameters of the exterior orientation; the other is
the time-correlation between the successive estimates.
As shown in Skaloud and Schaer (2003), the second is
far more significant for optimal bore-sight estimation
with respect to the camera and thus most likely also with
respect to the laser system. Although similar influences
can be expected for the IMU-LiDAR case, the present
stochastic model will assume all observational errors (of
the eight observations per point and the constraint
observations) to be zero-mean and uncorrelated with
each other. These assumptions are sub-optimal and will
be partly compensated by increasing the time varying
covariances of the individual GPS/INS observations. On
the other hand, considering purely diagonal covariance
matrices allows important simplifications in the model
formulation when processing voluminous ALS data.
Considering this, the weight matrices, P for the obser-
vations and Pc for the constraints, are assumed to be
diagonal:
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and Pcc;c
¼ ð1=r2cÞI . It is assumed that the constraints for

all planes are to be weighted equally. Note that the
variance of the constraint σc

2 must be chosen much
smaller than the variances of the measurements for the
‘weighted parameter constraint’ model to be effective.

3.4. Least squares solution

The solution is derived using the traditional approach
of least-squares adjustment when dealing with the
combined model. In our particular case, the scalar varia-
tion or objective function to minimise is the sum of
weighted squares of the residuals (of observations and
constraints) subject to the constraints of the two functional
models. Following standard procedures, the resulting
final form of the normal equations used herein is:
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or, in abbreviated notation Nδ̂+u=0.

The ALS instruments operate with high data rates that
vary between 10 and 150 kHz depending from the type.
Considering 8 observations per point, the size of the
design matrices can quickly reach a size that is not



Fig. 2. Images and color-coded reliefs of the two test fields with highlighted planar features: (a) soccer field, (b) urban area (only plane nos. 2–12 were
used in the adjustment while the plane nos. 13–16 served for control purposes).

Table 1
Characteristics of used data sets

Test area Soccer field Urban

Size 110 m×120 m 110 m×70 m
Height
disparity

9 m 7 m

Flight
pattern

1× cloverleaf (4 lines)
at relative flying
heights between 180 m
and 210 m

2× cloverleaf (8 lines)
at two relative flying
heights: ∼150 m
and ∼250 m

Planar
segments

3 (ground) 11 (roofs and ground)

Plane
orientation
and slope

Limited (1 horizontal,
2 inclined in similar
direction)

Several
slopes (up to 20°) and
orientations

Point
observations

∼14,000 ∼18,000
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practical for manipulation. Hence, it is worth exploiting
the sparse structure of the design matrices and for-
mulating a contribution of individual observation
equations in such a way that they can be added directly
to the normal equations in a sequential manner. Once the
normal equations are formed, the parameters �

^
1 and �

^
2

are computed from Eq. (10) as �^=−N�1u. The other
estimable quantities like residuals are then computed by
back-substitution. The parameter estimates are further
improved iteratively. For the iterative solution to start,
the approximate calibration parameters (bore-sight
angles and the range-finder offset) can be set to zero
because these are expected to have relatively small
values. However, good approximate plane parameters
must be derived. This can be done using the method of
orthogonal regression. As shown in Shakarji (1998) the
least-squares solution for the normal vector n! belonging
to the plane j reduces to the eigenvalue problem of the
covariance matrix, C, with all m points r

!
i belonging to

the plane j reduced to their centroid:

Cn! ¼
Xm
i¼1

ð r!i r!i T Þ
( )
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Xm
i¼1

x2i xiyi xizi
xiyi y2i yizi
xiz yizi z2i
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3
5 s1j

s2j
s3j

2
4

3
5

¼ kn! ð11Þ
Since C is a symmetric, positive semi-definite matrix,
i.e. all its three eigenvalues, λ, are real and greater than
or equal to zero, the sum of squares of orthogonal
distances is minimised when the smallest eigenvalue is
selected. Once the normal vector has been computed,
the orthogonal distance from the coordinate origin to the
plane, s4 (negative using this definition), is calculated
as s4j¼ −nYTȲr . The principal advantage of thismethod is
its computational efficiency and thus practicality when
using large ALS data sets.
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4. Experimental description

4.1. System used

The numerical examples will make use of a compact
remote-sensing system built at EPFL (Skaloud et al.,
2005) that integrates high accuracy navigation sensors
(GPS/INS) with an ALS and high-resolution digital
(CCD) camera. The system is operated from the side of a
helicopter and is tailored for corridor and large scale/
small area mapping requiring high resolution and
accuracy. Thanks to the custom design of the system,
all aspects of data flow and processing are controlled
from acquisition at the sensor level to final DSM/DTM/
orthophoto generation. Apart from the LiDAR and
digital camera, the sensor head incorporates an LN200/
A1 tactical grade IMU with 400 Hz measurement rate
from Northtrop Grumann and a dual-frequency GPS
receiver (Javad Legacy GD) with the airborne antenna
mounted on a carbon mast that can change orientation
with respect to LiDAR/camera plane in fixed intervals
from 15° to 90° according to mapping requirements. The
lever-arm separation between the individual instruments
is determined to better than 1 cm by laboratory ca-
libration and is independent of system installation. The
ALS is a short-range 2D scanner (Riegl LMS-Q240)
with a scanning angle of 60° andmaximal range of 450m
at 80% reflectance. Its rotating-mirror mechanism
provides linear, unidirectional and parallel scan lines
with a programmable rate. The rate is chosen as a
function of desired point density and flight parameters,
typically with several points per m2. Contrary to most of
today's airborne scanners, this instrument adapts a
relatively short laser wavelength of 900 nm and a
range-finder that is specified to maintain 5 cm resolution
and 3 cm-level accuracy under optimal conditions.

4.2. Calibration fields

In the following analyses, we make use of the two test
fields depicted in Fig. 2. The first is essentially the flat
Table 2
Influence of plane geometry and range-finder correction on bore-sight estim

With Δρ

Soccer field Urban

Param. σ Param. σ

α (°) 0.138 0.0007 0.137 0.0008
β (°) −0.069 0.0009 −0.059 0.001
γ (°) −0.036 0.011 −0.076 0.010
Δρ (m) −0.158 0.016 0.109 0.022
terrain of a soccer field with gently-inclined slopes in its
vicinity. The second calibration field was chosen over a
group of buildings with rooftops of different slope and
aspect. More details about the properties of the captured
data sets are listed in Table 1. As will become apparent,
the differences between the two terrain types will serve to
demonstrate the effects of weak/strong geometry on the
quality of the calibrated parameters when applying the
proposed method.

The GPS conditions were almost optimal for both
data sets, with favorable satellite geometry and close
separation from the reference receiver. The flight lines
were short (few minutes) and high-dynamic turns were
executed between them. The rapid change in direction
and the increased horizontal acceleration makes the
individual systematic errors within the inertial system
well observable by GPS position and velocity updates
while operating flight lines of short duration limits their
accumulation. These facts, together with the low-flying
height, contributed to the good determination of the
GPS/INS trajectory (σ position per coordinate b5 cm, 1σ
orientation b0.01 °).

5. Solution analyses

5.1. Parameter estimates

After generating the laser point clouds for both data
sets, the planar features had to be selected. The assump-
tion of their planarity (i.e. no departures greater than the
noise level of surface measurements) is central to this
method and especially those that use natural terrain (e.g.
Filin, 2003). In case of the urban data set, such a
classification can be quickly performed bymanual ‘fence
drawing’. Finding the planar features in the ‘natural’
terrain requires the use of special classification routines
or visual guidance by means of orthophoto or approx-
imate elevationmodels. Our experience in this regard has
been that finding suitable natural terrain even on such
‘planar’ surfaces like soccer field is problematic. Only
small patches could be considered to be sufficiently flat.
ation

Without Δρ

Soccer field Urban

Param. σ Param. σ

0.136 0.0006 0.139 0.0007
−0.066 0.0008 −0.060 0.0009
−0.106 0.009 −0.057 0.009
– – – –



Table 3
Plane fit results before and after calibration

Plane ID Number of points σ (before; m) σ (after; m)

2 1728 0.042 0.003
3 714 0.038 0.003
4 1546 0.045 0.002
5 1410 0.045 0.003
6 3366 0.047 0.002
7 1585 0.047 0.003
8 1366 0.049 0.003
9 990 0.040 0.002
10 678 0.041 0.003
11 1345 0.045 0.001
12 3523 0.035 0.003
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Although not investigated here, it is very likely that the
parameters most influenced by a warped surface would
be s4 and Δρ. Together with the target coordinates and
GPS/INS trajectory, the point-cloud classification is the
only pre-requisite to the model input. The initial para-
meter values for the planes are then found directly from
the data, and the rest of the adjustment can follow the
described automated procedure.
Fig. 3. The surface plots of the plane-fit residuals with corresp
Table 2 depicts the system-parameter estimates for
both calibration fields and range-finder offset included
as an option. As can be seen from the table, the inclusion
of the range-finder parameter has a serious influence on
the bore-sight estimate and the Δρ magnitude appears
significant when considering the sigma-to-value ratio.
This can be partially explained by the existing moderate
correlation (∼0.4) between Δρ and all bore-sight
angles. Furthermore, the estimated magnitude of Δρ
varies between data sets in the decimeter range which is
outside the LiDAR accuracy specification (1σ=2.5 cm).
The high estimates of Δρ were later confirmed to be
unrealistic by independent static testing using electronic
distance measurements as a reference. There, no
statistically significant discrepancies from the given
instrument specifications were found. Therefore, its
presence in the adjustment needs to be traced to a dif-
ferent cause, as will be done later on. The second im-
portant observation is the difference in γ (heading)
estimation between both data sets. This is most likely
caused by the weak geometry of the soccer-field terrain,
with one horizontal and two gently inclined slopes of the
onding histograms: (a) before and (b) after adjustment.



Table 4
Independent plane fit results before and after calibration

Plane ID Number of points σ (before; m) σ (after; m)

13 1361 0.107 0.060
14 735 0.053 0.040
15 413 0.078 0.043
16 894 0.082 0.039
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same aspect. The bore-sight angles α and β are less
sensitive in this regard and are also more precisely
estimated. The subsequent analysis will therefore focus
on the urban data set that has a good geometry thanks to
significant variations in plane inclination and aspect.

5.2. Planar surface analysis

This section quantifies the impact of applying the
estimated bore-sight parameters with respect to the
planar surfaces. Table 3 shows standard deviations of
plane fits computed from the individual point clouds by
orthogonal regression before and after application of the
parameters from the proposed calibration method. Also,
Fig. 4. The point cloud plots of the plane-fit residuals with corre
the numbers of points per plane are indicated for
reference. Clearly, these results demonstrate that large
improvement–an order of magnitude–was consistently
achieved. The following plots offer more insight into the
distributions of the out-of-plane residuals before and
after the adjustment.

Fig. 3a (top) shows a representative surface plot of
plane-fit residuals before application of the calibration
parameters for plane No. 2. The point cloud is plotted in
plane-centric coordinate system in which the origin is at
the roof centroid and the u-, v- and w-axes correspond
to the principal axes from the planar point-cloud
covariance-matrix eigenvalue decomposition. Correla-
tion in the residuals is evident in the mottled texture of
the ‘out-of-surface’ w-axis and the linear trends in these
patterns and high magnitude of errors (up to ±0.4 m)
indicate systematic effects. Fig. 3a (bottom) shows the
histogram of the residuals for plane No. 2 without
calibration correction. The point clouds show two
distinct surfaces caused by un-modeled bore-sight errors
that correlate to flight direction and explain the bimodal
histograms.
sponding histograms: (a) before and (b) after adjustment.
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After-calibration results for plane No. 2 are shown in
Fig. 3b. The first observation of the surface-plot resi-
duals is the lower magnitude of the residual range
(±6 mm). Though the texture of this surface suggests the
presence of spatial correlation, presumably caused by
some temporal correlation process, it occurs at a rela-
tively high spatial frequency so it is not due to un-
modeled bore-sight angles. This is further confirmed by
analyzing the histogram of Fig. 3b (bottom). Here there
is a single surface visible in the point cloud and the
histogram is uni-modal. Though the histogram is not
exactly Gaussian-shaped, systematic errors due to bore-
sight have been removed and those that remain are well
below the system noise level.

Four additional planes from the same site were also
extracted to independently evaluate the success of the
calibration method. These planes are generally smaller
and were not used in the adjustment. Presented in Table 4
are the ‘before’ and ‘after’ residual standard deviations
from these planes. The after-calibration values are more
realistic and correspond to the theoretical system noise-
level of ∼5 cm due to the fact that the measurements
related to these planes were not adjusted. Therefore, the
improvement is not as large as in Table 4 but is still
significant. The notable exception is plane 14, for which
the standard deviation only improves by 1 cm. This is not
unexpected since this plane is horizontal and, as
demonstrated in Fig. 1, bore-sight errors are thus more
difficult to detect. The improvement gained is best repre-
Fig. 5. Correlation between the estimated parameters (3·bore-sight+4·q pl
excluded (b). The gray scale varies from black (zero correlation) to white (c
sented by the ‘before’ and ‘after’ point clouds and histo-
grams of plane fit residuals given in Fig. 4a and b,
respectively. Similarly to plane No. 2, Fig. 4a (top) shows
the un-modeled bore-sight errors as two disparate
surfaces, which are more evident in the bimodal structure
of the histogram (bottom). Fig. 4b shows the effect has
been removed in both the point cloud and more
Gaussian-like histogram.

5.3. Parameter correlation

The correlation between the estimated parameters can
be considered as a good indicator of the adjustment
quality. Fig. 5 displays the full correlation matrix for the
urban data set when including (a) Δρ in the estimated
values or not (b). As can be seen from Fig. 5a, Δρ (4th
parameter) is not only correlated with all bore-sight
angles (first 3 parameters) but also with all s4 parameters
(the orthogonal distances between the planes and the
origin). Such correlations disappear completely onceΔρ
is eliminated from the adjustment (Fig. 5b). In this case,
the estimated bore-sight angles are no longer correlated
with the plane parameters as the covariance matrix has a
dominant block-diagonal structure. They also de-corre-
late with respect to each other, although small correlation
between the pitch and the heading angles persists. The
remaining correlations among the parameters of the
individual planes are not important as there is a con-
ditional relation between them. Hence, these results can
anes, n=11) with Δρ included as the optional 4th parameter (a) and
orrelation of ±1).



Fig. 6. Histogram of residuals for the urban data (withoutΔρ estimate),
for observations in x and z positions, orientation in pitch and range.
Note that for the other observables, the histogram of y is similar to x,
heading is similar to pitch while roll and encoder-angle histograms
show less zeros.

Fig. 7. Magnitude of residuals (left vertical axes) by point index and the
indication of the planes that the points belong to (right vertical axes). Due
to similarities, the residuals are plotted only in x and z positions, pitch and
range. The vertical line indicates the change in the flying height and the
higher altitude exhibits an expected increase in noise level.
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be considered as very satisfactory in terms of parameter
de-correlation.

Let us briefly return to the situation where the bore-
sight angles and the range-finder error shall be estimated
together. One might argue that a better de-correlation
could be achieved by determining the plane parameters
by some independent means (Filin, 2003), which would
correspond to sacrificing the practical benefits of this
approach. However, the authors are less convinced that
such approach can yield satisfactory results for high-
precision systems when Δρ needs to be recovered with
the cm-level accuracy. The limiting factor is probably the
positioning noise level of the GPS/INS trajectory where
errors of ∼0.1 m magnitude can exist due to differential
troposphere error and/or the satellite constellation. In
other words, regardless of the contribution of the ab-
solute plane parameter values, the accuracy of the GPS-
derived height at the flight level will most likely remain
the limiting factor when attempting the in-flight recovery
of Δρ at the sub-decimeter level. Other contributing
factors could be range biases caused by different inten-
sity levels due to different surface reflectivity among the
various planes, incidence angle, lower intensity returns
at the higher flying height (i.e. power loss due to
dependence on the reciprocal of range squared for an
extended diffuse target) or a combination of all three.
The task of finding a suitable correction function to
account for these factors would be quite involved.

5.4. Model analysis

The quality of the modeling can be judged from the
distribution of observation residuals after the adjustment.



Table 5
Adjustment's radius of convergence

Approximate values No. of
iteration
required

Converged
to same
values?

α (°) β (°) γ (°)

0 0 0 4 –
5 0 0 5 Yes
0 5 0 5 Yes
0 0 5 5 Yes
5 5 5 5 Yes
10 10 10 5 Yes
20 20 20 6 Yes
30 30 30 6 Yes
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Fig. 6 shows the histogram of the residuals for four series
of observables together with their respective RMS.
Several important phenomena can be noticed. First of all,
the RMS values are fairly small (mm or cm level in
position and range; arc-second level for the angular
quantities) and centered around zero (i.e. they are
unbiased). It can therefore be concluded that no
important parameters were omitted from the model,
and that the overall estimation is in good condition.
Secondly, there is significant number of residuals that
remain close or equal to zero in certain observations. To
explain these occurrences, the residuals are plotted with
respect to their magnitude and plane index in Fig. 7. As
can be seen from this figure, the zero residuals correlate
with the large horizontal planes 11 and 12 (indicated by
the arrows). This confirms the previous findings that
horizontal planes contribute very little to the estimates of
bore-sight angles in pitch and heading direction (or shifts
in horizontal position, would they be included).
Intuitively, this could be explained as a result of the
laser 2D measurement principle where the scan lines are
roughly oriented across track and the third dimension is
introduced by the motion of the carrier. Note also that the
magnitude of residuals increases with the higher flying
height as shown in Fig. 7 (indicated by the vertical line).

It is also interesting to compare the absolute values of
the bore-sight angles to those estimated by cross-section
method. Considering the de-correlated bore-sight esti-
mate from urban data set as a reference (bold numbers in
Table 2), a good correspondence is found only in the roll
while the value of the pitch differs by 100% of its
magnitude. As previously stated, the cross-section me-
thod cannot estimate the bore-sight in heading direction.

5.5. Stability of convergence

The sensitivity of the adjustment concerning the
approximate calibration values is another important fac-
tor for judging method's robustness and applicability.
We have assumed the initial bore-sight angles and range-
finder offset to be zero and the approximate plane
parameters were derived using all points. In these cases
the adjustment converged in 4 iterations with the a-
posteriori σ̂0

2 =0.3. However, what was valid for a par-
ticular system where bore-sight angles are ‘physically’
small cannot be assumed in general. Therefore, a test was
designed to determine the adjustment radius of conver-
gence or its ‘pull-in range’. For this purpose, the urban
calibration field was used and the convergence criterion
for all parameters was set to 10−5. The range-finder
offset was not estimated in this case. Table 5 shows the
magnitude of different approximate values used for each
calibration angle up to the extreme value of 30°. As it can
be seen from the last two columns of this table, the
estimated parameters always converged to the same
values with the small penalty of looping through one or
two additional iterations. Hence, the method can be
considered as very robust in terms of convergence and
largely insensitive to the initial parameter values.

6. Summary

We have presented a new method of bore-sight self-
calibration in ALS. Our approach stemmed from
modeling the systematic influences on the sensor level
and within the direct-georeferencing equations for each
target point and conditioning groups of points to lie on a
common surface. Using planes as the parametric surfaces
is not only easy to implement but also practical as these
are abundant in urban areas and man-made structures.
Though a similar approach has been recently published
elsewhere, results with real data have not been published.
Contrary to other previous work in this area, the absolute
plane parameters need not be supplied by other means
and are recovered together with the system parameters.
Hence, many and even planes not directly accessible can
be used within the calibration field. However, to achieve
sufficient de-correlation between the plane and system
parameters it is important that the planes vary in slope
and orientation. Furthermore, the estimation was formu-
lated in a way that allows convenient handling of volu-
minous ALS data. The proposed model can be extended
in a straightforward manner to include other systematic
errors either of the LiDAR or of the navigation data; yet,
such augmentation may result in strong correlation
among some parameters as was demonstrated for the
range-finder correction. In the presented cases, the
recovery of Δρ was limited by the residual biases in
GPS-height at the 1-dm level. The effect of absolute
height accuracy on the range error estimate can be, at
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least theoretically, reduced if vertically orientated planes
are also observed. However, this is possible only in the
particular case of the presented system that is pointed
manually and does not apply to ALS in general. On the
other hand, the control of the range-finder performance
can be performed by static testing, as was done in our
case. Hence, the conditions for the calibration flight
should be chosen as favorable as possible for the GPS/
INS integration and other systematic influences in
LiDAR observations shall be estimated by independent
means whenever feasible. The numerical examples
showed that RMS residuals as low as 3 cm in height of
GPS/INS, 2 arc seconds in angles and 1 cm in laser-range
can be achieved with a precise close-range ALS system
after the correct recovery of systematic sources. Though
the testing has been conducted using a continuously-
rotating mirror system, the proposed method's mathe-
matics have been formulated independent of scanning
mechanism. Further testing is required to confirm its
benefit to oscillating-mirror systems, for example.
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