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Abstract— Max-min fairness is widely used in various
areas of networking. In every case where it is used, there
is a proof of existence and one or several algorithms for
computing it; in most, but not all cases, they are based on
the notion of bottlenecks. In spite of this wide applicability,
there are still examples, arising in the context of wireless
or peer-to-peer networks, where the existing theories do
not seem to apply directly. In this paper, we give a unifying
treatment of max-min fairness, which encompasses all
existing results in a simplifying framework, and extend
its applicability to new examples. First, we observe that
the existence of max-min fairness is actually a geometric
property of the set of feasible allocations. There exist sets
on which max-min fairness does not exist, and we describe
a large class of sets on which a max-min fair allocation does
exist. This class contains, but is not limited to the compact,
convex sets ofRN . Second, we give a general purpose
centralized algorithm, called Max-min Programming, for
computing the max-min fair allocation in all cases where
it exists (whether the set of feasible allocations is in our
class or not). Its complexity is of the order ofN linear
programming steps in R

N , in the case where the feasible
set is defined by linear constraints. We show that, if the set
of feasible allocations has the free-disposal property, then
Max-min Programming reduces to a simpler algorithm,
called Water Filling, whose complexity is much lower.
Free disposal corresponds to the cases where a bottleneck
argument can be made, and Water Filling is the general
form of all previously known centralized algorithms for
such cases. All our results apply mutatis mutandis to min-
max fairness. Our results apply to weighted, unweighted
and util-max-min and min-max fairness. Distributed algo-
rithms for the computation of max-min fair allocations are
outside the scope of this paper.
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I. INTRODUCTION

A. Max-min Fairness

Max-min fairness is a simple, well-recognized
approach to define fairness in networks [7]; it aims
at allocating as much as possible to users with
low rates, and, at the same time, not unnecessarily
wasting resources (see Section II-A for a formal
definition). It was used in window flow control pro-
tocols [9], then became very popular in the context
of bandwidth sharing policies for ABR service in
ATM networks [3]. It is now widely used in various
areas of networking [26], [28], [27], [12], [10], [8],
[17], [15], [9], [1].

One of the simplest max-min fairness examples,
given in [7], is single-path rate allocation. Suppose
we have a network consisting of links with fixed
capacities, and a set of source destination pairs that
communicate over a single path each, and with fixed
routing. The problem is to allocate a rate to each
source-destination pair, while keeping the rate on
each link below capacity. Here, we call a rate allo-
cation max-min fair if one cannot increase the rate
of a flow without decreasing the rate of an already
smaller flow. A set of feasible rate allocations for a
simple two source example is given in Figure 1. A
definition dual to a max-min fair allocation is min-
max fair allocation, and is used in the context of
workload distribution, where the goal is to spread a
given workload evenly to all the parties (see [14])
and where rates have to be allocated to available
links as evenly as possible.

B. Microeconomic Approaches to Fairness

Microeconomic theories of social welfare func-
tions and social optima discuss a fair choice of
alternatives (such as goods distribution or policy
making) [2]. Each possible alternative is assigned
a utility, that represents its value to each individual
in the system. A social welfare function is a way
to aggregate individual utilities into a social utility.
The optimal choice of the alternative is the one that
maximizes the social welfare function [2].
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There are numerous ways to define social welfare
functions. One is a maximin or Rawlsian social
welfare function [21] that maximizes the utility of
the worst-off individual. It has been widely used
in the design of communication systems (see for
example [16]).

The main problem of the maximin social welfare
function is that the optimal alternative is not neces-
sarily Pareto optimal. In other words, starting from
the maximin optimal alternative one can increase the
utility of one individual without decreasing utilities
of the others, and this is clearly not a desirable
property of an efficient alternative.

A leximin social welfare ordering is a refinement
of the maximin social welfare function [5], [4]. It
is based on the notion of theleximin ordering: one
vector is said to be leximin larger or equal than the
other if its ordered permutation is lexicographically
larger or equal to the ordered permutation of the
other vector (a precise definition is given in Defini-
tion 4 in Section II-B). The leximin social welfare
optimum is always Pareto optimal [2].

The fairness criteria in networking are based
on findings from social welfare theory. Max-min
fairness is closely related to leximin ordering. We
discuss this issue in depth in Section II-B.

Another important concept from microeconomics
used in this paper is thefree disposal property. In
economics, it is defined as the right of each user to
dispose of an arbitrary amount of owned commodi-
ties [2], or alternatively, to consume fewer resources
than maximally allowed. The formal definition is
given in Definition 6 in Section III-B.

C. Bottleneck and Water-Filling

Most of the existing works on max-min fairness
rely on the notion of bottleneck link. Referring again
to the single-path rate allocation example given in
Figure 1, we say that a link is a bottleneck for a
given flow if the flow uses the link, if the link is fully
utilized, and if the flow has the maximal rate among
all the flows that use the link (see [7] for the exact
definition). It is shown in [7] for the above example
that if each flow has a bottleneck link, then the rate
allocation is max-min fair. This finding, which we
call the bottleneck argument, is often used to prove
the existence of max-min fairness.

The most widely used algorithm for obtaining
max-min fairness is thewater-fillingalgorithm (WF)
[7]. The principles of WF are the following: rates of
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Fig. 1. An example of a feasible rate set and water-filling. On
the left, a network of 3 links is given. Flow x1 connects S1 and D

and flow x2 connects S2 and D. The set of feasible rates (x1, x2)
is given on the right (c1 = 7, c2 = 3, c3 = 8). The water-filling [7],
is depicted by the bold arrow. The max-min fair rate allocation is
(5, 3).

all flows are increased at the same pace, until one or
more links are saturated. The rates of flows passing
over saturated links are then frozen, and the other
flows continue to increase rates. The algorithm is
repeated until all rates are frozen. A more precise
description of WF algorithm is given in Section III-
B. It is proven in [7] that the output of WF, applied
on a wired network, yields max-min fair allocation.

A simple example of WF in two dimensions on a
wired network with single-path routing is given in
Figure 1. We see in the example that although WF,
as defined in [7], is related to the network topology,
max-min fair allocation itself is solely a property of
the set of feasible rates.

An extension of this scenario is introduced, for
example, in [12] and [27]. Each flow is separately
guaranteed a minimal rate. The algorithm used in
[12] and [27] for computing the max-min fair rate
allocation is a modified WF. Specifically, all rates
are set to their minimal guaranteed values, and
only the lowest rates are increased. A simple 2-
dimensional example with an illustration of WF is
given on the left of Figure 2.

Max-min fairness for single-rate multicast ses-
sions is defined in [10]. This is generalized to multi-
rate multicast sessions in [8]. Rates are again upper-
bounded by links’ capacities, and here we are inter-
ested in max-min fair allocation of receivers rates.
A set of feasible allocations is linearly constrained,
and a WF approach can be used. The geometric
shape of the feasible set is essentially the same as
in single-path routing.

The aforementioned scenarios have in common
that the linearity of the constraints defining the
feasible set. In [28], a single-path routing scenario
is considered, and each source is assigned a utility,
which is an increasing and concave function of its
rate. Instead of searching for a max-min fair rate
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Fig. 2. More examples of feasible rate sets. We consider the
topology given on the left of Figure 1. We first assume there
are minimum rates, m1 = 0.5 and m2 = 1, for flows x1 and x2

respectively. The feasible set for this case is depicted on the left.
The water-filling [12], [27] is represented with the bold arrow. On
the right we consider utility max-min fairness as defined in [28],
[8], on the network from Figure 1. The utility function is U(x) =
x2. The set of feasible utilities (non-convex set) is depicted on
the right and the water-filling is represented with the bold arrow.

allocation, the authors of [28] look for max-min
fair utility allocation. This approach is generalized
in [8], where a max-min fair utility allocation is
considered in the context of a multicast network.
Here, the authors only required that a utility function
be a strictly increasing but not necessarily concave
function of rate, hence the feasible set is not neces-
sarily convex. A simple 2-dimensional example is
given in the right hand side of Figure 2. The WF
algorithm can be used in this case as well.

D. When Bottleneck and Water-Filling Become Less
Obvious

It is not always obvious how to generalize the
notion of a bottleneck link and the water-filling ap-
proach to an arbitrary problem. To see why, consider
a point-to-point multi-path routing scenario, where,
to our knowledge, max-min fairness was not studied
before. We look at the same set-up as above, but
now allow for multiple paths to be used by a sin-
gle source-destination pair. The end-to-end rate of
communication between a source and a destination
is equal to the sum of the rates over all used paths.
An example is given in Figure 3: when node 1 talks
to node 4, it transmit using the direct path over link
1-4 and in parallel it can relay through node 3. The
end-to-end rate of communication between 1 and 4
equals to the sum of rates over paths 1-4 and 1-3-4.
We are interested in a max-min fair rate allocation
of end-to-end source-destination rates.

In the example in Figure 3, if we increase all the
rates at the same pace, we will have rates of all
paths equal to 1/2 when link 3-4 saturates. Now,
if we continue increasing the rate over path 1-4,
the rate of source-destination pair 1 will be higher
than the rate of source destination 2, and path 2-3-
4 will loose its bottleneck since it is no longer the
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Fig. 3. A simple multi-path example. Top-left: S1 sends to D1

over two paths, 1-3-4 and 1-4, while S2 sends to D2 over a single
path 2-3-4. All links have capacity 1. Right: the set of feasible
rates. Bottom-left: the corresponding virtual single path problem.

biggest end-to-end flow that uses 3-4. If we change
the previous definition of the bottleneck given in
Section I-C, and instead of taking the biggest end-
to-end flow, we consider the path with the highest
rate, we obtain the max-min fair path rate allocation
that differs from the end-to-end max-min fair rate
allocation.

A first question that arises is how to define
a bottleneck, such that the water-filling algorithm
finds the max-min fair end-to-end rate allocation, if
it is possible at all. Also, it is not clear if for a given
definition of a bottleneck we can still claim that if
each path has a bottleneck, the allocation is max-
min fair. Finally, we do not even know, using the
existing state of the art, if the max-min fair end-to-
end rate allocation exists on an arbitrary multi-path
network.

This example can be solved by observing that
the max-min fair allocation depends only on the
set of feasible rates. Consider again the example in
Figure 3, top left. Callx1 = y1+y2 the rate of source
1, andx2 the rate of source2, wherey1 is the rate of
source1 on path1−4, andy2 on path1−3−4. The
set of feasible rates is the set of(x1 ≥ 0, x2 ≥ 0)
such that there exist slack variablesy1 ≥ 0, y2 ≥ 0
with y1 ≤ 1, y2 + x2 ≤ 1 and x1 = y1 + y2.
This is an implicit definition, which can be made
explicit by eliminating the slack variables; this gives
the conditionsx1 ≤ 1, x1 + x2 ≤ 2 (Figure 3,
right). The set is convex, with a linear boundary,
as in Figure 1, left. We can re-interpret the original
multi-path problem as a virtual single path problem
(Figure 3, bottom left), and apply the existing WF
algorithms. On the virtual single-path problem we
can define bottlenecks in a usual way. Note however
that the concept of bottleneck in the virtual single
path problem has lost its physical interpretation on
the original problem.
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Fig. 4. When water-filling does not work - consider the network
topology on the left (c1 = 7, c2 = 3, c3 = 8). Suppose that
node D receives parts of the same stream from both S1 and
S2, through flows x1 and x2, and suppose it needs a minimal
total rate of x1 + x2 ≥ 7. We want to minimize loads of servers
S1 and S2, and we are interested in min-max fair allocation of
(x1, x2). The feasible rates set is given on the right. Min-max
fair allocation exists, and it is (4, 3).

E. When Bottleneck and Water-Filling Do Not Work

Unfortunately, the approach with a virtual bottle-
neck does not always work. Consider the following
workload distribution example: servers in a peer-
to-peer network send data to a client; every client
receives data from multiple servers, and has a guar-
anteed minimal rate of reception. Each flow from a
server to a client is constrained by link capacities.
Our goal is to equalize load on the servers while
satisfying the capacity constraints.

A natural definition of fairness in this setting is
min-max fairness, where we try to give the least
possible work to the most loaded server. We say that
a load on the servers is min-max fair if we cannot
decrease a load on a server without increasing a load
of another server that already has a higher load.
A 2-dimensional example is given and explained
in Figure 4. One can verify that is not possible to
define a virtual bottleneck in this case. We discuss
this example in more detail in Section III-B.2 and
Section IV-A.

A similar, but simpler, example is given in [14],
which focuses on finding a leximax minimal al-
location (we show in Section III that the leximax
minimal allocation obtained in [14] is in fact min-
max fair). Its complexity is of the order ofN
polynomial steps inR

N , in the case where the
feasible set is defined by linear constraints.

In Section IV-B we present another example
where water-filling does not work. We consider the
lifetime of nodes in a sensor network, inspired by
the example introduced in [13], which studied the
minimum lifetime. The lifetime of a node is a time
until a node exhausts its battery, and it depends on
the routing policy of a network. Unlike in [13], we
study the routing strategy that achieves the min-max

fair allocation of lifetimes of nodes. We characterize
the set of lifetimes that can be achieved with any
possible routing strategy, and we show that the min-
max fair lifetime allocation exists. However, as we
also show, it is not possible to obtain it by water-
filling.

F. Our Findings

Our first finding is on the existence of max-
min fairness. We give a large class of continuous
sets on which a max-min fair allocation does exist,
and we theoretically prove the existence. This class
contains, but is not limited to the all compact,
convex subsets of an arbitrary dimension Euclidean
spaceRN . We also illustrate in a few examples that
there are sets on which max-min fairness does not
exist, thus that our result is not trivial.

Our second finding is on algorithms to locate the
max-min fair allocation. In Section III, we give a
general purpose, centralized algorithm, calledMax-
min Programming (MP), and prove that it finds
the max-min fair allocation in all cases where it
exists. Its complexity is of the order ofN linear
programming steps inRN , in general, whenever the
feasible set is defined by linear constraints.

The third finding is on the relation between the
general MP algorithm and the existing WF algo-
rithm. We recall the definition of the free disposal
property and show that, whenever it holds, Max-
min programming (MP) degenerates to the simpler
Water-filling (WF) algorithm (originally defined in
[7]), whose complexity is much lower. The free-
disposal property corresponds to cases where a
bottleneck argument can be made, all previously
known centralized algorithms for such cases rely on
the water-filling approach. We note that WF requires
the feasible set to be given in explicit form, unlike
MP, and we discuss the case of an implicit feasible
set with the free-disposal property.

We use a novel approach to analyze properties of
max-min fairness. Instead of considering a specific
networking problem with an underlying network
topology, we focus only on the feasible rate sets.
Therefore, our framework does not depend on a
specific problem; it is general and it unifies the
existing approaches that analyze max-min fairness.

In Section IV we show applications of the results
for two networking examples. We give specific,
numerical examples where the min-max fair allo-
cation exists, but the feasible sets do not have the
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free-disposal property, hence a classical water-filling
cannot be used. We show in these examples how
MP does find max-min fair allocation even when
the free-disposal does not hold. This way, we verify
that our framework unifies previous results, and
extends the applicability of max-min fairness to new
scenarios. For additional examples, see [20].

All our results are given for max-min fairness;
they apply mutatis mutandis to min-max fairness.
They are valid for weighted and unweighted max-
min and min-max fairness, using the transformation
given in Section II-A. Distributed algorithms for the
computation of max-min fair allocations [9], [1] are
left outside the scope of this paper.

G. Organization of The Paper

In Section II we define our framework (max-min
and min-max fairness inN continuous variables).
We mention a number of elementary results, such as
the uniqueness and the reduction of weighted max-
min fairness to the unweighted case. We recall the
definition of leximin ordering that we use in a latter
analysis. We prove our first main result about the ex-
istence of max-min fairness. In Section III, we give
the definitions of the two analyzed algorithms: Max-
min Programming (MP) and Water-filling (WF),
and we discuss the other two main findings. In
Section IV we illustrate our framework on two
networking examples. We conclude in Section V.
Proofs are in the appendix. An extended version of
this paper can be found in [20].

II. M AX -M IN AND M IN-MAX FAIRNESS IN

EUCLIDEAN SPACES

In this section we provide a precise definition of
max-min and min-max fairness and give results on
their existence.

A. Definitions and Uniqueness

Consider a setX ⊂ R
N . We define the max-min

and min-max fair vectors with respect to setX as
follows:

Definition 1: [7] A vector ~x is “max-min fair on
set X ” if and only if for all ~y ∈ X such that
there existss ∈ {1, ..., N}, ys > xs, there exists
t ∈ {1, ..., N} such thatyt < xt ≤ xs. In other
words, increasing some componentxs must be at
the expense of decreasing some already smaller or
equal componentxt.

Definition 2: A vector ~x is “min-max fair on
set X ” if and only if for all ~y ∈ X such that
there existss ∈ {1, ..., N}, ys < xs, then there
exists t ∈ {1, ..., N} such thatyt > xt ≥ xs. In
other words decreasing some componentxs must
be at the expense of increasing some already larger
componentxt.

It is easy to verify that if~x is a min-max fair
vector onX , then−~x is max-min fair on−X and
vice versa. Thus, in the remainder of the paper, we
give theoretical results only for max-min fairness,
and the results for min-max follow directly.

Uniqueness of max-min fairness is assured by the
following proposition:

Proposition 1: [7] If a max-min fair vector exists
on a setX , then it is unique.

The proof of the proposition is given in [7].
Weighted min-max fairness is a classical variation

of max-min fairness, defined as follows. Given some
positive constantswi (called the “weights”), a vector
~x is “weighted-max-min fair” on setX , if and
only if increasing one componentxs must be at
the expense of decreasing some other componentxt

such thatxt/wt ≤ xs/ws [7]. This is generalized in
[8], which introduces the concept of “util max-min
fairness”: givenN increasing functionsφi : R → R,
interpreted as utility functions, a vector~x is “util-
max-min fair” on setX if and only if increasing one
componentxs must be at the expense of decreasing
some other componentxt such thatφt(xt) ≤ φs(xs)
(this is also called “weighted max-min fairness” in
[17]). Consider the mappingφ defined by

(x1, · · · , xN ) → (φ1(x1), · · · , φN(xN)) (1)

It follows immediately that a vector~x is util-max-
min fair on setX if and only if φ(~x) is max-min
fair on the setφ(X ), the case of weighted max-min
fairness corresponding toφi(xi) = xi/wi. Thus, we
now restrict our attention to unweighted max-min
fairness.

B. Max-Min Fairness and Leximin Ordering

In the rest of our paper we will extensively
use leximin ordering, a concept we borrow from
economics, and which we now recall. Let us define
the “order mapping”T : R

N → R
N as the

mapping that sorts~x in non-decreasing order, that
is: T (x1, · · · , xn) = (x(1), · · · , x(n)), with x(1) ≤
x(2) · · · ≤ x(n) and for alli, x(i) is one of thexjs. Let
us also define the lexicographic ordering of vectors
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in X by ~x
lex
> ~y if and only if(∃i) xi > yi and (∀j <

i) xj = yj. We also say that~x
lex

≥ ~y if and only if

~x
lex
> ~y or ~x = ~y. This latter relation is a total order

on R
N .

Definition 3: [2] Vector ~x is leximin larger than

or equal to~y if T (~x)
lex

≥ T (~y).
Definition 4: [2] Vector ~x ∈ X is leximin maxi-

mal on a setX if for all ~y ∈ X we haveT (~x)
lex

≥
T (~y).

Note that a leximin maximum is not necessarily
unique. See Figure 5 on the left for a counter-
example.

Proposition 2: [23] Any compact subset ofRn

has a leximin maximal vector.
It has been observed in [28], [12], [8] that a max-

min fair allocation is also leximin maximal, for the
feasible sets defined in these papers. It is generalized
to an arbitrary feasible set in [23], as follows.

Proposition 3: [23] If a max-min fair vector ex-
ists on a setX , then it is the unique leximin maximal
vector onX .

Thus, the existence of a max-min fair vector
implies the uniqueness of a leximin maximum. The
converse is not true: see Figure 5, right, for an
example of a set with unique leximin maximal vec-
tor which is not max-min achievable. [23] defines
a weaker version of max-min fairness, “maximal
fairness”; it corresponds to the notion of leximin
maximal vector, hence it is not unique, and exists on
a larger class of feasible sets. We leave this weaker
version outside the scope of this paper.

It is shown in [2] that if a vector is leximin
maximal, it is also Pareto optimal. Therefore, from
Proposition 3 it follows that the max-min fair vector,
if it exists, is Pareto optimal. The converse is not
necessarily true.

C. Existence and Max-Min Achievable Sets

As already mentioned, a number of papers
showed the existence of max-min fair allocation in
many cases, using different methods. We give here
a generalized proof that holds on a larger class of
continuous sets that incorporates, but is not limited
to convex sets. This class of continuous sets includes
the feasible sets of all the networking applications
we are aware of. Note that a max-min fair vector
does not exist on all feasible sets, even sets that are
compact and connected. Simple counter-examples

(1,3)

(3,1)

(1,2)

(3,1)

x1x1

x2x2

Fig. 5. Examples of 2-dimensional sets that do not have max-
min fair allocation. Point (1, 3) is not max-min fair in the example
on the left since there exists point (3, 1) that contradicts with
definition Definition 1. Both points (1, 3) and (3, 1) are leximin
maximal in this example. In the example on the right, point points
(3, 1) is the single leximin maximal point. Still, it is not the max-
min fair point. Note that there exist no real networking example
we are aware of that has these feasible rate sets – these sets
are only artificial examples that illustrate properties of leximin
ordering.

are given in Figure 5. However, these counter-
examples are hand-crafted and do not correspond
to any networking scenario. In the reminder of
this section we give a sufficient condition for the
existence of a max-min vector.

Definition 5: A set X is max-min achievable if
there exists a max-min fair vector onX .

Theorem 1:Consider a mappingφ defined as
in Equation 1. Assume thatφi is increasing and
continuous for alli. If the set X is convex and
compact, thenφ(X ) is max-min achievable.

The proof is in the appendix. As a special case,
obtained by lettingφi(x) = x, we conclude that
all convex and compact sets are max-min achiev-
able. Takingφi(x) = x/wi, we also conclude that
weighted max-min fairness exists on all compact,
convex sets. More generally, util-max-min fairness
exists on all compact, convex sets, if the utility
functions are continuous (and increasing).

In [28], the utility functions φi are arbitrary,
continuous, increasing and concave functions. With
these assumptions, the setφ(X ) is also convex
and compact. Note that in general, though, the set
φ(X ) used in Theorem 1 is not necessarily convex.
Examples with non-convex sets are provided in [17]
and [8].

III. M AX -M IN PROGRAMMING AND

WATER-FILLING

In the following section present the max-min pro-
gramming (MP) algorithm, which finds the max-min
fair vector on any feasible set, if it exists. We also
define a condition called a free-disposal property,
and show that, under that conditions, a commonly
used water-filling (WF) algorithm coincides with the
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MP algorithm, and is guaranteed to find the max-
min fair allocation.

A. The Max-Min Programming (MP) Algorithm

The idea of the MP algorithm is first to find
the smallest component of the max-min fair vector,
which is done by maximizing the minimal coor-
dinate. Once this is done, the minimal coordinate
is fixed, and the dimension corresponding to the
minimal coordinate is removed. This step is repeated
until all coordinates are fixed, and we show that a
vector obtained in such way is indeed the max-min
fair one. A precise definition of the algorithm is
given below.

1. let S0 = {1, ..., N},X 0 = X ,R0 = X , n = 0
2. do
3. n = n + 1
4. ProblemMP n: maximizeT n subject to:

{

(∀i ∈ Sn−1) xi ≥ T n

for some ~x ∈ X n−1

5. let X n = {~x ∈ X n−1 | (∀i ∈ Sn−1) xi ≥ T n,
(∃i ∈ Sn−1) xi > T n},

Rn = {~x ∈ X n−1 | (∀i ∈ Sn−1) xi ≥ T n}
and Sn = {i ∈ {1...N} | (∀~x ∈ X n) xi > T n}

6. until Sn = ∅
7. return the only element inRn

The algorithm maximizes in each step the minimal
coordinate of the feasible vector, until all coordi-
nates are processed. Then-th step of the algorithm
is a minimization problem, calledMP n, whereX n

represents the remaining search space,Sn represents
the direction of search, in terms of coordinates that
can be further increased, andRn is the set that will,
in the end, contain a single rate allocation, the max-
min fair one.

1) Proof of Correctness:The algorithm always
terminates ifX is compact and max-min achievable,
andX n is reduced to one single element, which is
the required max-min fair vector, as is proved in the
following theorem:

Theorem 2:If X is compact and max-min
achievable, the above algorithm terminates and finds
the max-min fair vector onX in at mostN steps.

The proof is in the appendix. Note that the the-
orem requires setX to be compact but this usually
just a technical assumption since in most of the
practical examples the feasible sets are compact.

The algorithm presented in [14] for calculating
the leximax minimal allocation is a particular im-
plementation of MP. In each step, this algorithm
maximizes the minimum rate of links, which is
exactly step 4 of the MP algorithm, tailored to the
problem considered. The overall complexity of the
algorithm in [14] is thus the same as the complexity
of MP. Since the feasible set considered there is
compact convex, it follows from Theorem 1 and
Proposition 3 that the leximax minimal allocation
obtained in [14] is in fact a min-max fair allocation.

2) Numerical Examples:In order to illustrate the
behaviour of MP, we consider two simple examples.
The first one is the network from Figure 1. The set
of feasible rates is

X = {(x1, x2) | 0 ≤ x1 ≤ 7,
0 ≤ x2 ≤ 3, x1 + x2 ≤ 8},

(2)

and it is depicted on the right of Figure 1. We are
looking for the max-min fair rate allocation.

In the first step of the algorithm we haveX 0 =
X ,R0 = X , S0 = {1, 2}. By solving the linear pro-
gram in step 4, we obtainT 1 = 3. We further have
X 1 = {(x1, 3) | 3 < x1 ≤ 5},R1 = {(x1, 3) | 3 ≤
x1 ≤ 5}, S0 = {1}. Again by solving the linear
program in step 4 we obtainT 2 = 5. Now we have
X 2 = ∅,R2 = {(5, 3)}, S2 = ∅. The algorithm
terminates and setR2 contains only the max-min
fair rate allocation.

The second example we consider is the load
distribution example from Figure 4. The set of
feasible rates is

X = {(x1, x2) | 0 ≤ x1 ≤ 7,
0 ≤ x2 ≤ 3, 7 ≤ x1 + x2 ≤ 8},

(3)

and it is depicted on the right of Figure 4. We are
looking for the min-max fair rate allocation on set
X , which is equivalent of finding max-min fair rate
allocation on set−X , as discussed in Section II-A.

In the first step of the algorithm we haveX 0 =
−X ,R0 = −X , S0 = {−1,−2}. By solving the lin-
ear program in step 4 we obtainT 1 = −4. We then
haveX 1 = {(−4,−3)},R1 = {(−4,−3)}, S0 =
∅. The algorithm terminates and setR2 contains
a single allocation which. The min-max fair rate
allocation is thus(4, 3).

Note that when the max-min fair allocation does
not exist, MP will not give one of the leximin
maximal points, as one might expect. To see this,
consider the examples from Figure 5. In both exam-
ples, in the first step of MP, we will haveT 1 = 1
and S1 = ∅, and the algorithm will return(1, 1)
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as the optimal point. This point is neither leximin
maximal, nor Pareto optimal.

Before applying MP to a specific class of prob-
lems, it is thus important to verify, e.g. using results
from Section II, that max-min fairness exists. This
has to be done only once, since the existence of
max-min fairness depends on the nature of the
problem. Once the existence is verified, the MP
algorithm can be further applied on any instance of
the problem and will always yield the correct result.

B. The Water-Filling (WF) Algorithm

We now compare MP with the water-filling ap-
proach used in the traditional setting [7]. We here
present a generalized version that includes minimal
rate guarantees, as in [27].

We first introduce the concept of free disposal
property. It is defined in economics as the right
of each user to dispose of an arbitrary amount of
owned commodities [2], or alternatively, to consume
fewer resources than maximally allowed. We then
modify it slightly, as follows. Call~ei a unitary vector
(~ei)j = δij .

Definition 6: We say that a setX has the free-
disposal property if (1) there exists~m with xi ≥ mi

for all ~x ∈ X and (2) for alli ∈ {1, ..., N} and for
all α such that~x−α~ei ≥ ~m, we have~x−α~ei ∈ X .

Informally, free disposal applies to sets where
each coordinate is independently lower-bounded,
and requires that we can always decrease a feasible
vector, as long as we remain above the lower
bounds. We now describe the Water-Filling algo-
rithm.
0. AssumeX is free-disposal
1. let S0 = {1, ..., N},X 0 = X ,R0 = R, n = 0
2. do
3. n = n + 1
4. ProblemWF n: maximizeT n subject to:

{

(∀i ∈ Sn−1) xi = max(T n, mi)
for some ~x ∈ X n−1

5. let X n = {~x ∈ X n−1 | (∀i ∈ Sn−1) xi ≥ T n,
(∃i ∈ Sn−1) xi > T n},

Rn = {~x ∈ X n−1 | (∀i ∈ Sn−1) xi ≥ T n}
and Sn = {i ∈ {1...N} | (∀~x ∈ X n) xi > T n}

6. until Sn = ∅
7. return the only element inX n

1) Equivalence of WF and MP:The following
theorem demonstrates the equivalence of MP and
WF on free-disposal sets.

Theorem 3:Let X be a max-min achievable set
that satisfies the free-disposal property. Then, at
every stepn, the solutions to problemsWF n and
MP n are the same.

The proof is in the appendix. Thus, under the con-
ditions of the theorem, WF terminates and returns
the same result as MP, namely the max-min fair
vector if it exists. The theorem is actually stronger,
since the two algorithms provide the same result at
every step. However, if the free-disposal property
does not hold, then WF may not compute the max-
min fair allocation. We refer to Section III-B.2 for
such an example.

The examples previously mentioned of single
path unicast routing [7], multicast util-max-min
fairness [10], [8] and minimal rate guarantee [27],
[12] all have the free-disposal property. Thus, the
water-filling algorithm can be used, as is done in
all the mentioned references. In contrast, the load
distribution example [14] is not free-disposal, and
all we can do is use MP, as is done in [14] in a
specific example.

The multi-path routing example also has the free-
disposal property, but the feasible set is defined
implicitly. We discuss the implications of this in the
next section.

2) Numerical Examples:To illustrate the be-
haviour of WF, we consider again the same two
examples as in Section III-A.2. In the first example,
depicted in Figure 4, the feasible rate set, described
by (2), has the free-disposal property. It is easy
to verify that sets{X i}i=1···3, {R

i}i=1···3, {S
i}i=1···3

are taking exactly the same values as in the case of
MP, described in Section III-A.2. This confirms the
findings of Theorem 3.

The second example we consider is the load dis-
tribution example depicted in Figure 4 and described
by (2). For this type of problem we cannot a priori
set the upper limits in~m, as [12], [27], as they are
not universal (they would need to depend on given
network topology and are not known in advance).
Then, it is easy to verify that the linear program in
step 4 (with minimization instead of maximization
since we are looking for min-max fairness) has no
solution. Therefore, in this case, WF cannot find the
min-max fair rate allocation.

Note that the free-disposal property is a sufficient
but not a necessary condition for MP to degenerate
to WF. This becomes evident when considering
again the example from Figure 4. Suppose thatc1 =
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3, c2 = 3, c3 = 4, and, in addition, the minimum rate
constraint isx1 + x2 ≥ 3. The feasible rate set in
this example has the same shape and orientation as
in Figure 4, but it is translated to the left such that
it touches bothx1 and x2 axes. In this particular
example, it is easy to verify that the set still does
not have the free-disposal property. However WF
finds the min-max allocation in a single step.

C. Complexity Of The Algorithms In Case Of Lin-
ear Constraints

Let us now assume thatX is an n-dimensional
feasible set defined bym linear inequalities. Each
of the n steps of the MP algorithm is a linear pro-
gramming problem, hence the overall complexity is
O(nLP (n, m)), whereLP (n, m) is the complexity
of linear programming. The WF algorithm also has
n steps, each of complexityO(m) (since in step
4 we have to find the maximum value ofT that
satisfies the equality in each of them inequalities,
and take as the result the smallest of those). Hence
the complexity of WF isO(nm). Linear program-
ming has solutions of exponential complexity in the
worst case, however in most practical cases there
are solutions with polynomial complexity.

Assume next thatX is defined implicitly, with
an l-dimensional slack variable (for an example
scenario, see multi-path case on Figure 3). We can
use MP, which works on implicit sets, resulting
in complexity O(nLP (n, m)). If the set is free-
disposal, we can also use WF, but we need to find
an explicit characterization of the feasible set. In
most cases, finding an explicit characterization of
the feasible set can be done in polynomial time. To
see that, consider again the example from Figure 3.
The slack variables represent rates of different paths,
whereas we are interested only in the end-to-end
rates. Finding a set of feasible end-to-end rates
is equivalent to a well known problem of finding
maximum flows in a network [24] (see [14] for an
example in the networking context). As shown in
[24], this is a problem of a polynomial complexity.
Note that it might be possible to construct an im-
plicitly defined feasible set that cannot be converted
to an explicit form in a polynomial time. However,
we are not aware of any existing example of such
a set. A further analysis is out of the scope of our
paper.

Once we have an explicit characterization, the
remaining complexity of WF is stillO(mn). In

practical applications, we are likely to be interested
in explicitly finding the values of the slack variables
at the max-min fair vector. Finding these values is a
linear program. Here, it is sufficient to make the set
explicit only once for a given problem. We conclude
that in many practical problems, it is likely to be
faster to make the set of constraints explicit and
use WF rather than MP.

IV. EXAMPLE SCENARIOS

In this section we provide two examples that
arise in a networking context, which were not pre-
viously studied, and to which our theory applies.
The examples are taken from problems that occur
in P2P and wireless sensor networks, respectively.
We show that in these two scenarios the feasible sets
do not have the free-disposal property. We illustrate
on simple but detailed numerical examples that WF
does not work, whereas MP gives a correct result.
For additional examples, see [20].

A. Load Distribution In P2P Systems

Let us consider a peer-to-peer network, where
several servers can supply a single user with parts
of a single data stream (e.g. by using Tornado codes
[11]). There is a minimal rate a user needs to
achieve, and there is an upper bound on each flow
given by a network topology and link capacities.

Let ~x be the total loads on the servers,~y the
flows from the servers to clients,~z the total traffic
received by clients,~c the capacities of links and~m
the minimum required rates of the flows. We can
then represent the feasible rate set as

X = {~x : (∃~y, ~z) A~y ≤ ~c,
B~y = ~x, C~y = ~z, ~z ≥ ~m},

(4)

where A, B, C ≥ 0 are arbitrary matrices defined
by network topology and routing.

A simple example depicted in Figure 4. ClientD
receives data from both serversS1 and S2 and it
wants minimal guaranteed ratem. There is flowy1

going from S1 to D over links 1 and 3, and flow
y2 going fromS2 to D over links 2 and 3. We have
that the total egress traffic ofS1 is x1 = y1, and
of S2 is x2 = y2. The total ingress traffic ofD is
z1 = y1 + y2. We thus have the following matrices

A =





1 0
0 1
1 1



 , B =

[

1 0
0 1

]

, C =
[

1 1
]

,

that define the constraint set, visualized in Figure 4.
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In a peer-to-peer scenario, each server is inter-
ested in minimizing its own load, hence it is natural
to look for the min-max fair vector on setX , which
minimizes loads on highly loaded servers.

Since setX is convex, it is min-max achievable.
Since it does not have the free-disposal property
in general, WF is not applicable. This is shown
in Section III-B.2 on a simple example. Min-max
fair allocation can be found by means of the MP
algorithm. This is illustrated on the example in
Section III-A.2.

Note that this form of a feasible set is unique
in that it introduces both upper and lower bounds
on a sum of components of~x and, as such, is more
general than the feasible sets in the above presented
examples, such as [14].

B. Maximum Lifetime Sensor Networks

In this section we consider a sensor network
example, and we want to minimize the average
transmitting powers of sensors. This example mo-
tivated by [13], [22]. We assume a network has a
certain minimal amount of data to convey to a sink,
and we consider different scheduling and routing
strategies that achieve this goal. Each of these strate-
gies yields different average power consumptions,
and we look for min-max fair vector of average
power consumptions of sensors. We suppose that the
network is built on the top of the ultra-wide band
physical layer described in [25], or low power, low
processing gain CDMA physical layer, described in
[6].

Consider a set ofn = {1 · · ·N} nodes, some of
which are sensors and some are sinks. We assume
sensors feed data to sinks over the network, and can
do so by sending directly, or relaying over other
sensors or sinks. When nodes sends data to node
d, it does so using some transmission powerPs. The
signal attenuates while propagating through space,
and is received atd with power Pshsd, wherehsd

is an arbitrary positive number, referred to as the
attenuation betweens andd.

Receiverd tries to decode the information sent by
s in presence of noise and interference. IfN denotes
the white background noise, than the total interfer-
ence experienced by D isI = N +

∑

i6=s Pihid. The
maximum rate of informationd can achieve is then
[25], [6]

xsd = K
Pshsd

N +
∑

i6=s Pihid

.

We also assume that a node can only send to or
receive from one node at a time.

In addition, nodes can change their transmission
power over time. We assume a slotted protocol,
where in every slott, every nodes can choose an
arbitrary transmission powerPs(t). If s chooses not
to transmit, it setsPs(t) = 0. A succession of slots
in time is called a schedule. Linksd achieves rate
xsd(t) where the rate depends on allocated powers,
as explained above. We denote withx̄sd the average
rate of link sd throughout a schedule. Let̄x be
the vector of all{x̄sd}1≤s,d≤N . We denote byX
a set of feasiblēx, that is such that there exists
a schedule and power allocations that achieve those
rates. Similarly to the average rate, we can calculate
the average power dissipated by a node during a
schedule, which we denote bȳPs. We denote by
P(x̄) a set of possible average power dissipations
that achieve average ratēx. Refer to [18] for a more
detailed explanation of the model.

From the application point of view, we assume
sensors measure the same type of information. Each
of the several sinks needs to receive a certain rate
of the information, regardless from what sensor it
comes. Let us denote withRd the total rate of
information received by sinkd. We then have a
constraintRd ≤ Md.

In order to define routing, we further introduce
a concept of paths, similarly as in the previous
example. Pathp = {1 · · ·P} is a set of links. We
say Al,p = 1 if link l = (s, d), for some s, d,
belongs to pathp. Otherwise,ap,l = 0. We also
sayBs,p = 1 andCs,p = 1 if node s is the starting
or the finishing point of the pathp, respectively. Let
yp be the average rate on pathp.

The goal is to minimize the average power dis-
sipations, under the above constraints. The set of
feasible average power dissipations can be formally
described asP = {p̄ | (∃x̄ ∈ X ) p̄ ∈ P(x̄), Ay ≤
x̄,R = Cy ≤ M} We are interested in finding the
min-max average power allocation over setP.

This is a difficult optimization problem that has
not been fully solved, and we do not intend to solve
it here in its general form. Instead, we want to
illustrate in a simple example from Figure 6, that the
feasible set does not always have the free-disposal
property, and furthermore that WF, as such, cannot
be used.

In our simple example from Figure 6, we consider
two sensors,S1 andS2, and two sinks,D1 andD2.
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S1

S2

D1

D2

(0.75,1)

(0.38,0.62)

P̄1

P̄2

Fig. 6. Sensor example: On the left an example of a network
with 2 sensors and 2 sinks is given. We let P M = N = 1, and
hS1D1

= hS1D2
= 1, hS2D1

= 10, hS2D2
= 0.7, and the lower

bounds on rates are M1 = 0.6, M2 = 0.4. On the right, the set
of feasible average power dissipations is given.

We have three links,(S1, D1), (S2, D1), (S2, D2),
and three paths that coincide with each link (we
assume other links cannot be established due to for
example a presence of a wall).

It is shown in [19] that in this type of network
any average rate allocation can be achieved by using
the following simple power allocation policy: when
a node is transmitting, it does so with maximum
power; otherwise it is silent. It follows that any
possible schedule in the network can have four
possible slots:
Slot 1 of duration α1: Only sensorS1 sends to sink
D1 with full power P M andS2 is silent.
Slot 2 of duration α2: SensorS1 sends toD1 while
S2 sends toD2.
Slot 3 of duration α3: Only S2 sends toD1.
Slot 4 of duration α4: Only S2 sends toD2.

If we normalize the duration of the schedule, we
haveα1 + α2 + α3 + α4 = 1.

Under the above scheduling, we have the follow-
ing average rates and average dissipated powers

R1 = α1
P MhS1D1

N
+ α2

P MhS1D1

N + P MhS2D1

(5)

+ α3
P MhS2D1

N
, (6)

R2 = α2
P MhS2D2

N + P MhS1D2

+ α4
P MhS2D2

N
, (7)

P̄1 = (α1 + α2 + α3)P
M , (8)

P̄2 = (α2 + α4)P
M . (9)

The set of feasible average powers is thusX =
{(P̄1, P̄2) | (∃α1···4)

∑4
i=1 αi = 1, R1 ≥ M1, R2 ≥

M2}.
To obtain a numeric example, we setK = P M =

N = 1, hS1D1
= hS1D2

= 1, hS2D1
= 10, hS2D2

=

0.7, and M1 = 0.6, M2 = 0.4. Setting these
values in (6)-(9) and simplifying the constraints, we
achieve the following set of inequalities that defines
setX :

P̄1 + P̄2 ≥ 1,

P̄1 + α3 ≤ 1,

7P̄1 + 14α3 + 1 ≤ 7P̄2,

P̄1 + 110α3 − 3.4 ≥ 10P̄2,

P̄1, P̄2, α3 ∈ [0, 1].

The setP is depicted on the right of Figure 6.
It is easy to verify that this set does not have the
free-disposal property. We verify that the first step
of WF algorithm has no solution, hence water filling
does not give the min-max allocation. On the other
hand, a single iteration of MP gives us the min-
max allocation on the setX which in this case is
(0.38, 0.62). We underline again that only due to
the simplicity of the example, WF fails at the first
step, and MP solves the problem in one step. In a
more complex example WF might fail on any step
whereas MP will again solve the problem. However,
due to the simplicity of the presentation we give
here only a 4 node example.

V. CONCLUSION

We have given a general framework that unifies
several results on max-min and min-max fairness
encountered in networking examples. We have ex-
tended the framework to account for new examples
arising in mobile and peer-to-peer scenarios. We
have elucidated the role of bottleneck arguments in
the water-filling algorithm, and explained the rela-
tion to the free-disposal property; we have shown
that the bottleneck argument is not essential to the
definition of max-min fairness, contrary to popular
belief. However, when it holds, it allows us to
use simpler algorithms. We have given a general
purpose algorithm (MP) for computing the max-min
fair vector whenever it exists, and showed that it
degenerates to the classical water-filling algorithm,
when free disposal property holds. The existence of
a max-min fair vector is not always guaranteed, even
on compact sets. We have found a class of compact
sets on which max-min fairness does exist. The
extension of the class to other useful cases (such as
discrete sets [23]) remains to be studied. Finally, we
have focused on centralized algorithms for calculat-
ing max-min and min-max fair allocations. It will be
interesting to explore their distributed counterparts.
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APPENDIX

A. Proof of Existence of MMF

We first give an intuition on how we shall prove
the theorem. We consider vector~x that is leximin
maximal on the setφ(X ), and we want to prove that
this is at the same time the max-min fair vector. The
proof is done by contradiction. We assume that there
exists a vector~y that violates the definition of max-
min fairness of vector~x. We will then construct
vector ~z from ~x and ~y such that~z is leximin-
larger than~x, which will lead to contradiction.
Functionφ() is strictly increasing, hence there exists
and inverseφ−1(), which is also strictly increasing.
Although setφ(X ) is not convex, setX is convex.
Therefore, we will choseα such that vector~z,
constructed asφ−1(~z) = αφ−1(~x) + (1− α)φ−1(~y),
is leximin larger than~x.
Proof of Theorem 1: Let ~x ∈ φ(X ) be a vector

such that for all~y ∈ φ(X ) we haveT (~x)
lex

≥ T (~y).
Such a vector exists according to proposition 2,
since setX is compact. In order to prove the
theorem, we proceed by contradiction, assuming
that there exist~y and an indexs ∈ {1, ..., N} such
that ys > xs and for all t ∈ {1, ..., N}, xt ≤ xs

we haveyt ≥ xt. We then define a permutation
π : {1, ..., N} → {1, ..., N} such that for alli < j,
~xπ(i) ≤ ~xπ(j), and eitherxπ(l) < xπ(l+1) or l = N ,
wherel = π−1(s). The last part of the requirement
is important if there are several components of the
vector that are equal toxs, hence there are several
permutations that maintain non-decreasing ordering.
We then wants to be mapped byπ to the largest
such index: ifl = π−1(s) than eitherxs < xπ(l+1)

or l is the last index (l = N).
Next, let us define vector

~z(α) = φ(αφ−1(~x) + (1 − α)φ−1(~y)). (10)
Although we cannot make a convex combination of
~x and~y since setφ(X ) is not convex, we can make
a convex combination ofφ−1(~x) andφ−1(~y) in the
setX which is convex.

For α ∈ (0, 1), ~z(α) belongs to φ(X ) due
to convexity of X . From (10) we have for all
α ∈ (0, 1), i ∈ {1, ..., N}, min(φ−1(xi), φ

−1(yi)) <
φ−1(~z(α)i) < max(φ−1(xi), φ

−1(yi)), hence
min(xi, yi) < ~z(α)i < max(xi, yi), due to strictly
increasing properties of functionsφi andφ−1

i . Also,
for all i let us pick an arbitraryαi satisfying

αi ∈

{ (

φ−1

i
(xs)−φ−1

i
(yi)

φ−1

i
(xi)−φ−1

i
(yi)

, 1
)

, xs ∈ [yi, xi),

[0, 1), otherwise

and we callαm = maxi(αi) and~z = ~z(αm) ∈ φ(X )
(sinceαm ∈ [0, 1)). Intuitively, if for somei, yi <
xs, we want to havezi > xs. If xi ≤ xs (including
when i = s) we than by assumption haveyi ≥ xi,
and we chooseα such that we getzi > xi. Finally,
if both yi > xs, xi > xs, than we can select anyα
and we will havezi > xs.

We have chosen the highest ofαi, hence we now
have that ifxi ≤ xs, thanzi ≥ xi, otherwisezi ≥ xs.
We also havezs > xs. From this, we derive the
property of the sorted vectors thatzπ(i) ≥ xπ(i) for
i < l, andzπ(i) > xπ(l) for i ≥ l.

We first notice that for alli, zπ(i) ≥ xπ(1), and

as T (~x)
lex

≥ T (~z) we conclude thatz(1) = zπ(1) =
xπ(1). Next, assuming that for somei < l and for
all j < i we havez(j) = zπ(j) = xπ(j), then again

as for all j ≥ i, zπ(j) ≥ xπ(i), and T (~x)
lex

≥ T (~z)
we conclude thatz(i) = zπ(i) = xπ(i). Hence, by
induction we have proved that for alli < l we have
z(i) = zπ(i) = xπ(i). Finally, since for alli ≥ l we
havezπ(i) > xπ(l), hencez(i) > xπ(l) we necessarily

have thatT (~z)
lex
> T (~x), which brings us to the

contradiction.
Therefore, we conclude that a leximin maximal

vector on a setX is also a max-min fair vector, and
setX is max-min achievable.

B. Proof of Correctness of MP

The idea of the proof is the following. We first
want to show that in every step we decrease the
size of Sn, that is Sn ⊂ Sn−1. From this we will
conclude that the algorithm finishes in at mostN
steps. We then show that what remains in the set
Rn once the algorithm stops (that isSn = ∅), is the
max-min fair allocation.

We willl introduce several lemmas before proving
the main theorem. Recall that the definitions of
X n,Rn, Sn, T n andMP n are given in Section III-A

We first prove a lemma that illustrates the main
idea of the algorithm, that in each steps we fix
one by one the smallest coordinates of vectors to
correspondingT values.

Lemma 1:For all n whereT n exists, for allx ∈
X n, and for all i ∈ Sn−1 \ Sn, we havexi = T n.
Furthermore, if for allm < n and for alli ∈ Sm−1\
Sm we havexi = Tm, for all i ∈ Sn we have
xi ≥ T n, and for somei ∈ Sm we havexi > Tm,
then~x ∈ X n.
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Proof: For n = 0 we haveS0 = {1, ..., N} and
the result is trivial. Let us select arbitrary~x ∈ X n,
n > 0, andi ∈ Sn\Sn+1. From the definition ofX n

we have for alli ∈ Sn−1, xi ≥ T n, and from the
definition of Sn we have for alli 6∈ Sn, xi ≤ T n.
Hence we havexi = T n.

For the second part, we also proceed by induction.
Obviously ~x ∈ X 0. Suppose, for somem < n,
~x ∈ Xm−1. Then it is easy to verify~x satisfies
conditions from the definition ofXm, hence~x ∈
Xm. By induction, we verify that also~x ∈ X n.

SetX n is not compact by definition and we do
not know if the maximumT n of the problemMP n

exists. The following lemma is rather technical, and
it proves the maximum always exists.

Lemma 2: If set X is compact, then the maxi-
mum T n of the problemMP n exists for alln.

Proof: We start by induction. SinceX 0 = X is
compact, the maximum exists forn = 0. Suppose
n > 0, and the claim holds for allm < n. Let
us denote withT ′ = sup~x∈Xn−1 mini∈Sn−1 xi. T ′

always exists andT ′ > T n−1. We proceed by
contradiction. Suppose that the maximum does not
exist henceT ′ 6∈ X n. By definition ofT ′, for every
integer k > 0 there exists~xk ∈ X n−1 such that
T ′ − mini∈Sn−1 xk

i < 1/k.
We next want to select a subsequence of sequence

{~xk} such that for each member of the subsequence,
the minimal component always has the same index,
denoted byl. More formally, sinceSn−1 is a finite
set, we can selectl ∈ Sn−1 such that there is an infi-
nite subsequence{~xk(l)} ∈ X n−1 of sequence{~xk}
where for allk(l) we havearg mini∈Sn−1 x

k(l)
i = l.

This subsequence converges to~x′ =
limk(l)→∞ ~xk(l). We have that~x′ ∈ X due to
compactness ofX . By construction, we also have
for all i ∈ Sn−1, x′

i ≥ x′
l = T ′ > T n−1. By

lemma 1 we have that for alli 6∈ Sn−1, k1(l), k2(l),
~x

k1(l)
i = ~x

k2(l)
i = ~x′

i, hence~x′ ∈ X n−1, again by
lemma 1. We see that vector~x′ satisfies all the
conditions of the definition ofX n, hence it belongs
to X n which leads to a contradiction.

We next show another property of the coordinates
of vectors inX n

Lemma 3:For all n, ~x, ~y ∈ X n and t ∈
{1, ..., N} such thatxt ≤ T n, we haveyt ≥ xt.

Proof: We prove lemma by induction overn.
If n = 1, we have for allt, xt ≥ T 1 and yt ≥
T 1, hence forxt = T 1, we haveyt ≥ xt. Next
assume the above is true forn − 1. Supposext <

T n. We then also havext ≤ T n−1, hence by the
induction assumption we haveyt ≥ xt. Finally, if
for somet, xt = T n thenyt ≥ T n or else we have
a contradiction with the definition ofT n.

Finally, we show that in each step we keep the
max-min fair vector inX n in order to show that in
the last step, when we have a single point remaining,
this point will indeed be the max-min fair one.

Lemma 4: If ~x is max-min fair vector onX then
for all n such thatX n 6= ∅, ~x ∈ X n. The same holds
for Rn.

Proof: We prove lemma by induction. If~x 6∈
X 1 then~x is not leximin maximal, hence the contra-
diction. Let us next assume~x ∈ X n−1 and~x 6∈ X n,
where X n 6= ∅. Then there exists~y ∈ X n and
s ∈ Sn such thatys > xs. Also, by lemma 3, for all
t ∈ {1, ..., N} such thatxt ≤ T n, we haveyt ≥ xt.
This contradicts the assumption that~x is max-min
fair which proves the lemma. SinceX n ⊆ Rn, we
have the second claim.

Now we are ready to prove the main theorem.
Proof of theorem 2: Let us call~x max-min fair
vector on X . From lemma 2 we know that the
minimumT n in MP n is achieved. Therefore, there
exist i∗ ∈ Sn−1, ~x∗ ∈ X n−1 such thatx∗

i∗ = T n, and
we havei∗ 6∈ Sn, thus we provedSn ⊂ Sn−1. We
conclude that sequence|Sn| decreases and we will
haveSn = ∅ in at mostN steps.

We also notice that for everyi ∈ {1, ..., N} there
exists m such thati ∈ Sm−1 and i 6∈ Sm. From
i ∈ Sm−1 we have that for all~x ∈ Xm, xi ≤ Tm.
From i ∈ Sm we have that for allx ∈ Xm−1 we
havexi ≥ Tm in the constraints forMP m. Now as
for all n, X n ⊆ X n−1 we have that for alln ≥ m
and ~x ∈ X n we havexi = Tm. Once we have
Sn = ∅ it means that all components of vectors in
Rn are fixed hence|Rn| = 1. According to lemma
4, this single vector inRn is also max-min fair on
X .

C. Proof of Equality of MP and WF

Proof of theorem 3:Let us callT 1
MP the solution to

the MP 1 andT 1
WF the solution to theWF 1. T 1

WF

is obviously achievable inMP 1 so we haveT 1
MP ≥

T 1
WF . Suppose thatT 1

MP > T 1
WF . This implies that

for all s ∈ {1, ..., N} we have(~x1
MP )s ≥ T 1

MP . Due
to the free-disposal property, we can successively
decrease each of the components of~x larger than
corresponding lower bound in~m, until arriving to
a vector ~y, yi = max(T 1

MP , mi). This vector is
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feasible, which contradicts the optimality ofT 1
WF .

The same reasoning can be applied to the successive
algorithm steps, by decreasing the dimension of the
feasible set.
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