
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne
Mechanics of Materials 37 (2005) 1–17

www.elsevier.com/locate/mechmat
Longitudinal deformation of fibre reinforced metals:
influence of fibre distribution on stiffness and flow stress

Andreas Rossoll *, Benedikt Moser 1, Andreas Mortensen

Laboratory for Mechanical Metallurgy (LMM), �Ecole Polytechnique F�ed�erale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

Received 7 March 2003; received in revised form 12 November 2003
Abstract

A computational analysis of the longitudinal deformation of continuous fibre reinforced metals is presented. Elastic

and elastic–plastic matrix behaviour are considered. Analytical approaches are confronted with finite element analyses

(FEA) for varying fibre distributions, ranging from single fibre unit cells to complex cells. Analysis of microfields shows

that the main cause for deviation from the equistrain rule of mixtures is a stiffening effect of matrix confinement when

surrounded by touching fibres arranged as ‘‘rings’’. Comparison with FEA shows that Hill�s [J. Mech. Phys. Solids 12

(1964) 199, 213] bounds, although best possible in terms of volume fraction, are of limited value in so far as Hill�s upper
bound lies far above any practical limit for a fibre reinforced material, whereas Hill�s lower bound loses its bounding

property when extended to non-linear behaviour via an incremental scheme. This latter effect can be corrected by

changing slightly Hill�s derivation in a way that preserves the bounding property. Finally, implications are given for the

derivation of in situ matrix flow stress curves from experimental tensile curves on fibre reinforced composites. It is

suggested that linear three-point bounds can in practice be used for this purpose.

� 2004 Elsevier Ltd. All rights reserved.

Keywords: Fibre reinforced composites; Inelastic behaviour; Bounds; Stiffness; Finite element modelling; In situ matrix flow stress
1. Introduction

Assessing the flow stress or stiffness of a unidi-

rectional fibrous material, in which all phases are

cylindrical (Hashin, 1983), parallel to the fibres

(i.e., in axial loading) is a trivial problem as long as
‘‘engineering precision’’ is sufficient: the equistrain
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rule-of-mixtures (RoM) applied to the flow stress

or stiffness provides adequate precision. The

underlying reason is that, when the composite is

stressed parallel to aligned fibres, stress and strain

are (i) relatively uniform and (ii) far higher along

the fibres than in other directions. Hence the
average axial stress in each phase roughly equals

that which is measured in a tensile bar of the same

material taken to the same axial strain � as the

composite, i.e.,

rc ¼ V1r1 þ V2r2 ð1Þ
with the corollary that, for elastic deformation:

Ec ¼ V1E1 þ V2E2 ð2Þ
ed.
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where E denotes Young�s modulus, V the volume

fraction, and subscripts c, 1 and 2 stand for the

composite, Phase 1 and Phase 2, respectively. Eq.

(1) and its corollary Eq. (2), adapted when neces-

sary to account for the presence of residual stress
in each phase (due for example to thermal con-

traction mismatch between the phases, see, e.g., de

Silva and Chadwick, 1969; Garmong, 1974; Tyson,

1975), are widely known to provide good de-

scriptors of longitudinal composite deformation.

Occasionally, there may arise the need to obtain

better precision in linking the longitudinal flow

stress of composites with that of its phase con-
stituents. One instance is found with the inverse

problem, namely extracting individual phase flow

properties from the measured composite stress–

strain curve. This has for example been done with

fibre reinforced metals to expose size effects in

metal plasticity (Kelly and Lilholt, 1969; Isaacs

and Mortensen, 1992; Bystricky et al., 1999). This

inverse problem is of interest because, with fibre
reinforced metals stressed along their axis, phase

stresses are relatively uniform in both elastic and

elastoplastic deformation (Hill, 1964a,b; Mulhern

et al., 1967; Dvorak, 1991; Brockenbrough and

Suresh, 1990; Brockenbrough et al., 1991; B€ohm
et al., 1993; B€ohm and Rammerstorfer, 1994). In

essentially all other configurations (transversely

stressed or laminated fibrous composites, short-
fibre or particulate composites . . .) the matrix

stress and strain distributions are highly non-uni-

form and triaxial, such that the measured average

stress has less fundamental meaning without a

fully accurate mechanical model (which itself re-

quires knowledge of the in situ phase properties as

its input). The reason why higher precision is then

required is that, when back-calculating the matrix
flow stress from that of a long-fibre composite, the

load borne by the generally very stiff fibres far

exceeds that which is carried by the matrix. The

back-calculated matrix flow stress then results

from the subtraction of two far larger numbers

(Eq. (1)). Even very minor error in Eq. (1) then

causes major uncertainty in the back-calculated

matrix flow curve.
Mechanics-related deviations in the composite

flow stress or modulus from the rule of mixtures

arise from the presence of lateral stresses, them-
selves due to incompatibility in lateral deformation

between the matrix and the reinforcement. In

elastic deformation, this is the case whenever the

Poisson ratio differs between matrix and fibres: the

two phases then exert a mutual constraint on each

other that raises the composite stiffness above the
value predicted by the RoM, such that:

EDm � Ec � ðV1E1 þ V2E2ÞP 0 ð3Þ

Hill has derived bounds for the longitudinal stiff-

ness of unidirectional fibrous materials, and hence

for EDm (Hill, 1964a):

4V1V2ðm1 � m2Þ2

V1=k2 þ V2=k1 þ 1=G1

6EDm6
4V1V2ðm1 � m2Þ2

V1=k2 þ V2=k1 þ 1=G2

ð4Þ

where m designates the Poisson ratio, G ¼ E=
ð2ð1þ mÞÞ designates the shear modulus, k ¼ E=
ð2ð1þ mÞð1� 2mÞÞ the plane strain bulk modulus,

and the indices 1 and 2 designate the soft and hard
phase, respectively. The lower bound corresponds

to the longitudinal modulus of an elementary

cylindrical composite consisting of a single fibre of

the stiffer phase with circular section embedded in

a circular cylindrical shell of the more compliant

phase. This simple arrangement yields the same

result as the composite cylinder assemblage (CCA)

proposed by Hashin and Rosen (1964). The upper
bound is constructed by inverting the phase

properties.

The Hill bounds, although tight in absolute

numbers, are relatively slack with regard to the

possible error in ‘‘back-calculation’’ of the flow

stress of a soft matrix. In particular, it is intuitively

clear that the solution for the upper bound is lar-

gely above that of any typical (stiff elastic) fibre
reinforced composite, since it describes a hard

interconnecting matrix with compliant fibres.

More elaborate models can only be constructed

by incorporating information on the spatial

arrangement of the two phases. Higher order

bounds, e.g., Milton (1982), Torquato (1991),

Torquato and Lado (1992) and estimates (Torqu-

ato, 1998) are constructed by incorporating sta-
tistical information on the arrangement of the

phases, e.g., on random arrangements of hard fi-

bres in a soft matrix. Three-point bounds are much
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tighter than the Hill bounds (which are two-point

bounds), but present the inconvenience that real

microstructures (e.g., diffusion-bonded monofila-

ment reinforced metals) are not necessarily ran-

dom, such that these microstructures may yield

responses that lie outside these bounds.
Non-linearity of one or both phases, notably

matrix plasticity, introduces considerable compli-

cations. Hill (1964b) suggested an extension of his

linear derivation (Hill, 1964a) to elastic–plastic

behaviour, via an approximated yield criterion and

flow rule, using incremental plasticity. The prin-

cipal approximation made by Hill is that the

instantaneous moduli are uniform within the
elastic–plastic phase. Eqs. (3) and (4) then remain

valid, except that the constant values of the moduli

are now replaced by instantaneous values (tangent

moduli). Young�s modulus, E, now becomes the

slope of the uniaxial stress–strain curve (strain

hardening rate), H ¼ or=o�, where r and � denote
the axial matrix stress and strain components,

respectively. The (instantaneous) slope of the
composite stress–strain curve, Hcð�Þ, is now given

as

Hcð�Þ ¼ V1H1ð�Þ þ V2H2ð�Þ þHDmð�Þ ð5Þ

Hcð�Þ is a constant under the assumptions given

above. The bounds are particularly simple if the
weak phase is non-hardening and the strong phase

is linear elastic:

4V1V2ðm1 � m2Þ2

V1=k2 þ V2=k1 þ 1=G1

6HDm6
4V1V2ðm1 � m2Þ2

V1=k2 þ V2=k1 þ 1=G2

ð6Þ

Here, the Poisson�s ratio of the phase undergoing

plastic deformation, m1 is set to 0.5. The corre-
sponding plane strain bulk modulus, k1 ¼ 3K1=
ð2ð1þ m1ÞÞ then equals K1, which is the conven-

tional bulk modulus (i.e., under hydrostatic load-

ing). According to Hill, the shear modulus of the

soft phase, G1, retains its elastic value. Since Hill�s
analysis was published (Hill, 1964b), numerous, in

part more elaborate, schemes have been proposed.

Hill (1965) suggested an incremental self-consis-
tent model. Ebert et al. (1968) also propose an

incremental approach, but make a micromechan-

ical analysis of the spread of plasticity. Mulhern
et al. (1967) include also fibre non-linearity in their

analysis. Most other analytical approaches are

based on modifications of the Mori–Tanaka mean

field scheme (Mori and Tanaka, 1973; Benveniste,

1987). Plasticity may be accounted for via incre-
mental schemes, see e.g., Lagoudas and Gavazzi

(1991), or following deformation theory based on

secant stiffness, see e.g., Tandon and Weng (1988).

Common to all of these extended mean field

approaches is that they use the same approxima-

tion as Hill: both the yield criterion and the cur-

rent (incremental or secant) matrix stiffness are

evaluated from average values, with the implica-
tion that the spatial variation of the matrix stress

state is neglected. Using a mean-value based yield

criterion then results in a sudden transition from

elastic to plastic behaviour, and an over-estima-

tion of apparent post yield composite stiffness.

Secant approaches are somewhat less stiff than

incremental approaches, partly it seems because, in

the latter, errors are accumulated during the inte-
gration with strain.

Improvements can be made in order to diminish

some of these shortcomings. For instance, instead

of calculating the equivalent stress entering the

yield criterion from averaged stresses, it can be

computed from distortional energy (Qiu and

Weng, 1992; Hu and Weng, 1998) or from statis-

tical theories (Buryachenko, 1996). Such ap-
proaches are typically based on secant plasticity or

on the use of variational principles (Ponte Cas-

ta~neda, 1992). These approaches are therefore

limited to (roughly) radial load paths, which can

be an important drawback because local load

paths typically deviate from radial loading in a

composite even under imposed global radial

loading, and also because global non-radial load-
ing may be important to consider. For instance,

thermal loading in the course of composite pro-

cessing may precede mechanical loading, and

cyclic loading and unloading may be of interest

(for example to distinguish isotropic and kinematic

hardening components in the measured in situ

matrix flow stress). The improvement of analytical

bounding and estimation methods for non-linear
composites is currently an active field of research,

see e.g., Ponte Casta~neda (1996); Talbot and Willis

(1997); Ponte Casta~neda (1997); Suquet (1997);
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Fig. 1. Hill�s single fibre elementary composite. A hard fibre

(black) embedded in a soft shell (white) yields Hill�s lower

bound (H)). A soft fibre (white) embedded in a hard shell

(black) yields Hill�s upper bound (H+).
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Talbot and Willis (1998); Ponte Casta~neda and

Suquet (1998); Ponte Casta~neda (2002), where

attention is being paid notably to an appropriate

representation of local field fluctuations. Apart

from their limitation to radial loading, another

major inconvenience of these models is their
unwieldiness in practical application.

In contrast to the above mentioned analytical

methods, numerical methods, above all finite ele-

ment analysis (FEA), are based on the computa-

tion of microfields. This necessitates the definition

of a distinct microstructure to be analysed: this

may be a simple elementary cylindrical composite

as in Hill�s (1964a) analytical analysis, periodic
regular fibre arrangements, or complex cells that

represent a repeated ‘‘window’’ of the micro-

structure. Complex cells of fibre reinforced com-

posites have also been analysed by FEA

(Brockenbrough and Suresh, 1990; Brocken-

brough et al., 1991; Nakamura and Suresh, 1993;

Moulinec and Suquet, 1994, 1998; Yang et al.,

2000), as well as various idealized regular fibre
arrangements (B€ohm et al., 1993; B€ohm and

Rammerstorfer, 1994).

This study examines, using FEA, the influence

of fibre distribution on the (incremental) stiffness

and flow stress of fibre composites under axial

loading, in a continuum mechanics framework.

Our concern is mainly to what extent the fibre

distribution influences stress and strain heteroge-
neity in the matrix. We find limitations to some

analytical models that have been proposed, and

show how matrix ‘‘constraint hardening’’ (Hill,

1967) acts in regions that are surrounded by reg-

ular rings of touching fibres. Finally we draw

conclusions from the present numerical simula-

tions towards deriving the matrix in situ flow stress

from that of the composite.
hex- hex+

Fig. 2. Periodic hexagonal extension of Hill�s elementary

composite. The frame designates the unit cell for FEA. Hard

fibres (black) embedded in a soft matrix (white) yield a lower

bound (hex)). Soft fibres (white) embedded in a hard matrix

(black) yield an upper bound (hex+).
2. Analysis

2.1. Fibre arrangements and boundary conditions

In order to examine matrix ‘‘constraint hard-

ening’’ through fibre confinement, and for the
purpose of comparison with analytical solutions,

several fibre arrangements have been studied.
These range from very simple to ‘‘realistic’’ com-

plex cells.

(a) The original Hill single fibre elementary

composites, hard fibre in soft shell and vice versa,

Fig. 1, were studied at two fibre volume fractions,

namely 0.50320 and 0.68517 (referred to in the
following as 50% and 68%, respectively). When

analytically computed, Hill�s arrangements are

referred to as ‘‘H)’’ and ‘‘H+’’ for Hill�s lower and
upper bounds, respectively. The corresponding

numerically computed bounds are abbreviated

‘‘H)num’’ and ‘‘H+num’’.

(b) Hexagonal cells, Fig. 2, corresponding to the

periodic hexagonal extension of the two Hill cases,
were studied at the same fibre volume fractions as
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the single fibre composites described in (a). Gui-

novart-D�ıaz et al. (2001) recently obtained ana-

lytical bounds for this arrangement that are very

close to Hill�s bounds. Here, lower and upper

bounds were only computed numerically and are

referred to as ‘‘hex)’’ and ‘‘hex+’’.
(c) Complex cells, Fig. 3, were generated with

the same fibre volume fractions as the simple cells

described above. These feature the following

characteristics: (i) The non-dimensional scale

parameter d, defined as the ratio of the cell size L
to the size of a characteristic microstructural

dimension (Jiang et al., 2001), here the fibre

diameter d, equals L=d � 9. This size of the cell
makes it a fairly, but not perfectly, representative

(and transverse isotropic) volume element. Stiff-
(A)

(C)

Fig. 3. Complex cells modelled via FEA. The fibre distributions are

metals. The arrangements A, B, and C are similar (Vf � 0:50), except t

D: Vf � 0:68. See Table 2 for detailed information.
ness values are thus strictly speaking not ‘‘effec-

tive’’ but rather ‘‘apparent’’ (Huet, 1990);

however, since loading along the fibre axis does

not induce localisation of deformation in planes of

intense shear, our ‘‘apparent’’ stiffness values can

be expected to be very close to ‘‘effective’’ ones. (ii)
The fibre arrangement in the complex cells is such

that it allows for periodic boundary conditions

(see at the end of this section). (iii) The fibre

arrangement is not directly derived from micro-

graphs of an actual composite, since these are

never truly periodic; however, it is inspired from

images of fibre reinforced aluminium (Isaacs and

Mortensen, 1992; Bystricky et al., 1999; Moser
et al., 2001). Three fibre arrangements with dif-

fering number of fibre contacts were studied for
(B)

(D)

representative for typical high volume fraction fibre reinforced

hat the number of fibre-to-fibre contacts increases from A to C.
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the cell with Vf � 50%. These were obtained by

varying slightly the position of the fibres and fea-

ture either no touching fibres (‘‘A’’), some touch-

ing fibres (‘‘B’’), or ‘‘rings’’ of touching fibres that

confine the matrix (‘‘C’’). The cell with a fibre

volume fraction of roughly 68% is abbreviated
‘‘D’’ and contains several touching fibres with

enclosed matrix areas––as expected given the

higher fibre packing density.

(d) Matrix confinement through fibre rings is

pushed further with ‘‘artificial’’ arrangements

(‘‘E1’’ to ‘‘E5’’, Fig. 4). In arrangement E1 matrix

is only present inside the ring of fibres, whereas in
E1

E2 E3

E4 E5

Fig. 4. Artificial arrangements of fibres forming rings. The

frame designates the unit cell for FEA. E1: Single ring of 12

fibres confining the matrix. E2: Periodic cubic arrangement of

E1. E3: Periodic hexagonal arrangement of E1. E4: Periodic

cubic arrangement of E1, but fibre rings are distant. E5: Peri-

odic hexagonal arrangement of E1, but fibre rings are distant.

In cells E2–E5 the matrix is both inside the fibre rings as well as

in between them.
arrangements E2 to E5 matrix is also present be-

tween the individual fibre rings. Study of these

‘‘artificial’’ arrangements is largely motivated by

the expectation that they yield estimates of upper

bounds for composites reinforced with monodi-

spersed fibres.
(e) Finally, two cells were generated that cor-

respond to the percolation limit of monodisperse

cylinders in square (‘‘E6’’, Vf ¼ 0:78540) or hexa-

gonal (‘‘E7’’, Vf ¼ 0:90690) packing (Fig. 5).

Tables 1–3 summarise main characteristics of

all arrangements that were studied. They differ

notably in the number of fibre-to-fibre contacts,

and the fraction of matrix that is confined by
touching fibres. ‘‘Artificial’’ arrangements E2, E3,

E6 and E7 are composed of an in-plane network of

touching fibres. An almost closed network of fibres

is also present in complex cell D (for Vf � 0:68),
where the fraction of matrix that is confined by

fibres would exceed 50% by shifting only slightly a

few fibres to different positions.

The distribution of fibres in the complex cells is
not perfectly random; a check of the lateral

deformation components was conducted for the

cells with Vf � 0:50 in order to estimate the extent

to which transverse isotropy in respect to the fibre

axis is achieved. The maximum difference between

the two lateral strain components is a few percent

for elastic–plastic matrix behaviour, and smaller

by an order of magnitude for an elastic matrix.
The deviation from transverse isotropy is thus

considered negligible.
E6 E7

Fig. 5. Cells of fibres at the percolation limit. The frame des-

ignates the unit cell for FEA. E6: Cubic. E7: Hexagonal.



Table 2

Characteristics of the complex fibre arrangements studied

Abbreviation

A B C D

Fibre volume fraction Vf 0.50320 0.50320 0.50320 0.68517

Number of fibres 52 52 52 71

Number of fibre-to-fibre contacts 0 24 31 84

Percentage of matrix that is confined by hard phase [%] 0 0.1 10.5 28.8

Table 3

Characteristics of the ‘‘artificial’’ fibre arrangements studied

Abbreviation

E1 E2 E3 E4 E5 E6 E7

Fibre volume fraction Vf 0.56456 0.39841 0.46005 0.15784 0.24300 0.78540 0.90690

Average number of

contacts per fibre

(2) 2.33 2.5 2 2 4 6

Percentage of matrix that is

confined by fibres [%]

100 100 (51.3 inside

fibre rings)

100 (65.7 inside

fibre rings)

14.8 25.0 100 100

Table 1

Characteristics of the simple fibre models

Abbreviation

H)(num) H+(num) hex) hex+

Fibre volume fraction Vf 0.50320/0.68517 0.50320/0.68517 0.50320/0.68517 0.50320/0.68517

Average number of contacts per fibre 0 a 0 a

Percentage of soft phase that is confined

by hard phase [%]

0 100 0 100

a Fibre and matrix phase in ‘‘reverse’’ arrangement, i.e., soft ‘‘matrix’’ in hard ‘‘fibre’’ shell.
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The problem is defined as generalised plane
strain with respect to the fibre axis. Loading is

applied via a homogeneous deformation parallel

to the fibre axis. The in-plane boundary conditions

are imposed by the symmetry of the problem with

regular arrangements (i.e., all but the complex

cells). For the complex cells, periodic boundary

conditions were chosen as most suitable.

2.2. Constitutive properties

The stiff phase is assumed isotropic linear elastic

with Ef ¼ 373 GPa and mf ¼ 0:235 for Young�s
modulus and Poisson�s ratio, respectively. These

properties correspond to those of continuous alu-

mina Nextele 610 fibres manufactured by 3M

(Wilson and Visser, 2001; Asmani et al., 2001).
Different cases are considered for the (fully iso-
tropic) soft phase, whose properties are roughly

inspired by those of pure aluminium: (i) linear

elastic with Em ¼ 70 GPa and mm ¼ 0:345; (ii)

‘‘soft’’ linear elastic and almost incompressible

with Em ¼ 7 MPa and mm ¼ 0:4999845 (corre-

sponding to the same bulk modulus as in (i)); this

choice is motivated by the fact that it corresponds

roughly to an elastic description of the next case;
(iii) elastoplastic with elastic properties as in (i), an

initial yield stress ry of 20 MPa, and a linear iso-

tropic hardening rate H ¼ orflow=o�pl of 7 MPa.

This very low hardening rate corresponds practi-

cally to ideal plasticity. This case is of interest

because any metallic matrix can be expected to

harden in a manner that is bounded by ideal

plasticity and elasticity. J2 flow theory is assumed.



Table 4

Constitutive properties of the matrix, used as input for the computations

Designation

E [GPa] m G [GPa] K [GPa] k [GPa] ry [MPa] H [GPa]

Elastic 70 0.345 (26) (75.27) (83.94) ) )
Soft elastic, almost incompressible 0.007 (0.4999845) (0.002) 75.27 (75.27) ) )
Elastic–plastic Hill (Eq. (6)) 0.007 0.5 26 75.27 75.27 ) )
Elastic–plastic FEA & MTM 70 0.345 (26) (75.27) (83.94) 20 0.007

Brackets ( ) indicate that Young�s modulus E, Poisson�s ratio m, the shear modulus G, the bulk modulus K and the plane strain bulk

modulus k are interdependent. By imposing two independent moduli they can be inferred via the usual relations. ry designates the yield

strength and H ¼ or=o�pl the plastic hardening modulus.
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In all cases, the strain range of interest is small,

typically below 0.5%, because even high-strength

ceramic fibres start breaking at this value. Table 4
summarises the constitutive properties of the ma-

trix, as used in analytical as well as in numerical

analysis.

2.3. Numerical solution

The boundary value problems defined above

were solved with the commercially available FEA
package Abaqus/Standard (version 5.8). An up-

dated Lagrangian framework (NLGEOM option

in Abaqus) was employed; however, overall strains

are small, and comparative computations with a

small strain assumption show that resulting dif-

ferences are negligible. The maximum size of

residuals was set to 1.0 · 10�6 of the average force.

For further details on the solution method, we
refer to HKS (1998).

Twenty fully integrated axisymmetric elements

with quadratic interpolation were used for the

discretisation of the original Hill geometry (single

fibre in shell, Fig. 1). Generalised plane strain

elements with quadratic interpolation were em-

ployed in the other mesh designs. 300 fully inte-

grated quadrilateral elements were used for the
simple hexagonal arrangement cells (Fig. 2); tri-

angular elements were employed for the other

cells, with a number ranging from roughly 600 (cell

E1, Fig. 5) to over 22,000 for the complex cells

(Fig. 3).

A convergence study on the ‘‘fibre rings’’ com-

plex cell C with elastic–plastic behaviour showed a

vanishingly small difference between stiffnesses as
compared to a much finer mesh (87,000 elements).
Differences in the values of average field variables,

evaluated at an axial strain of 0.005, between the

standard and fine mesh designs are slightly higher
but still negligible (Rossoll et al., 2003). Thus it

was concluded that the level of discretisation is

sufficient.

A perfect interface is assumed between the fi-

bres and the matrix, and there are no voids in the

fibres or in the matrix. Contact between fibres was

realised as a perfect bonding along a cylinder

generator via one common node. This solution
does not allow for sliding of one fibre on the other,

but allows for a relative rotation between fibres

around this common node, such that any forces

are transmitted, but only limited moments. For the

case studied, i.e., a stronger lateral contraction of

the matrix as compared to the fibres and axial

tensile loading, contact forces are mostly normal

compressive forces that are well handled with this
approach.

2.4. Analytical computations

Linear elastic solutions for some analytical

models were computed with the COMPCOMP

software (B€ohm, 1998). The models considered are

the rule of mixtures over stiffnesses, the Hill
bounds, and three-point bounds (Milton, 1982;

Torquato, 1991). The three-point bounds used

here consider the case of hard (i.e., non-pene-

trable) cylinders. Hashin�s CCA approach and the

Mori–Tanaka mean field (‘‘MTM’’) scheme cor-

respond to Hill�s lower bound.
Incremental elastic–plastic solutions were gen-

erated for the Hill (1964a) bounds (Eq. (6)) and for
the Mori–Tanaka model. The implementation of
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the latter follows Lagoudas and Gavazzi (1991)

and makes use of a numerical evaluation of Es-

helby�s tensor according to Gavazzi and Lagoudas

(1990).
3. Results

3.1. Composite flow stress and modulus

Stiffness values E or H were computed in FEA

from the reaction forces and nodal displacements.

These ‘‘globally’’ evaluated values are identical

with values evaluated from the averaged stresses
and strains. The stiffness values extracted from

elastic computation of matrix behaviour are initial

values (for zero strain).

Plotted in Fig. 6 are the values of the EDm or HDm

terms (from Poisson�s ratio mismatch), for the

three matrices examined: (a) elastic; (b) soft elastic,

nearly uncompressible; (c) elastic–plastic. EDm has

been defined in Eq. (3).HDm follows easily from Eq.
(3) as

HDm ¼ Hcð�Þ � V1H1ð�Þ � V2H2ð�Þ ð7Þ

The Hill bounds are shown together with three-

point bounds (for the elastic cases) or with results

from incremental MTM modelling (elastic–plastic
matrix), and results of numerical modelling.

For elastic matrix behaviour, the following

observations can be made, Fig. 6(a): (i) the Hill

bounds are tight and lie close to the RoM solution

(the abscissa on the plots); (ii) the numerical

computations of the Hill arrangements (H)num,

H+num) and of hexagonal unit cells (hex), hex+)
yield practically identical solutions that corre-
spond also to the analytical Hill bounds H) and

H+; (iii) the numerical solutions of the complex

cells (A–D) lie well within the three-point bounds,

with a tendency to approach the upper bound for

the higher volume fractions near the random per-

colation limit (no analytical solutions are available

for fibre volume fractions higher than roughly

70%); (iv) the ‘‘artificial’’ arrangements E yield a
solution that is well below Hill�s upper bound but

above the three-point bounds.

Nearly incompressible ‘‘soft’’ elastic matrix

behaviour is plotted in Fig. 6(b): (i) the analytical
bounds become much larger, with EDm reaching up

to almost 5 GPa for Hill�s upper bound, whereas

the analytical lower bounds fall as expected on the

RoM; (ii) the numerically computed simple cells

(H+num, H)num, hex), hex+) still coincide with

the analytical bounds; (iii) the complex cells (A–D)
also lie on the low side, but still with a tendency to

stiffen slightly towards high fibre volume fraction;

(iv) again the ‘‘artificial’’ arrangements fall be-

tween the Hill bounds, but lie closer to the lower

bound as compared to the elastic ‘‘hard’’ matrix

case (Fig. 6(a)).

For the elastic–plastic matrix, HDm is plotted in

Fig. 6(c) for an imposed nominal strain of 0.1%.
As compared to the elastic cases, the following

characteristics become apparent: (i) Hill�s analyti-
cal bounds are much wider than for the ‘‘hard’’

elastic case, but tighter than for the soft elastic/

nearly incompressible case. (ii) The numerical up-

per bound solutions lie a bit below the corre-

sponding analytical bounds; the numerical lower

bound solutions now lie well below the analytical
bounds and approach the RoM. (iii) The complex

cells are also below the analytical lower bounds.

(iv) Most of the ‘‘artificial’’ arrangements yield

solutions above the analytical lower bound except

at lower volume fraction (where fibre rings do not

touch).

3.2. Local stress and strain distributions

Fig. 7(a) and (b) depict contour plots of the

stress component along the fibre axis, in the fibre

and matrix phase, respectively, for complex cell

‘‘C’’ (some fibres confining the matrix), with elas-

tic–plastic matrix properties at an axial strain of

0.005. Lateral contact between fibres clearly

influences the stresses in the fibres. Touching fibres
carry on average a slightly lower stress than iso-

lated ones; however, the effect is limited. Relatively

more important is the confinement of matrix

through rings of touching fibres, which creates

‘‘islands’’ of increased stress triaxiality, causing in

turn an increase of the axial component of the

stress borne by the matrix (‘‘constraint harden-

ing’’). Beyond these regions, the stress distribution
is fairly uniform, apart from small regions that are

compressed by adjacent fibres (black regions).
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The distribution of the axial stress component

borne by the matrix is plotted in the form of an
accumulated frequency (corresponding to stress

values exceeding the values on the abscissa) in



Fig. 7. Contour plot of the stress borne in the axial direction (a)

by the fibres, and (b) by the matrix, in cell C (Vf � 0:50) at an

imposed axial strain of 0.005, for an elastic–plastic matrix

material.
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Figs. 8 and 9, for simple and complex cells. In Fig.

8(a), Vf � 0:50 and the matrix is elastic; in Fig.
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elastic matrix material, (b) for the soft elastic, nearly incompressible

arrangements (abbreviations as in Fig. 6).
8(b), the matrix is soft elastic, nearly incompress-

ible. In Fig. 9, the matrix is elastic–plastic; in (a)

Vf � 0:50, and in (b) Vf � 0:68. The following

observations apply for all plots: (i) The ‘‘hard-

fibre-in-soft-shell’’ (H)num) configuration always

exhibits a uniform stress distribution, which cor-
responds well to the mean value of the hexagonal

counterpart (hex)). (ii) Both single fibre and hex-

agonal upper bound solutions (H+num and hex+)

show a constant and identical value of stress borne

by the matrix. (iii) Local stress fluctuations are

largest in the complex fibre arrangements, as ex-

pected. The average matrix stress is always above,

but never far, from the H)num case, being a bit
further above for higher fibre volume fraction. The

average matrix stress in the H+num cell remains

above local maxima in all complex cells: the

H+num cell is thus not even representative of the

upper tail in stress distribution in the complex

cells. The more fibres touch, and the more matrix

is confined by fibres (compare with Table 3), the

larger becomes the upper tail in the stress distri-
bution, whereas the rest of the distribution re-

mains largely unchanged. The influence of matrix

confinement seems to be carried over a large por-

tion of the complex cells for elastic hard matrix

behaviour, whereas it is more localised for elastic–

plastic matrix behaviour.

Similar plots can be obtained for any local field

variable. Additional plots and tables containing
average field variables and standard devia-

tions can be found in Rossoll et al. (2003). These
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confirm the trends that are already outlined for

the axial stress component borne by the matrix.

Field fluctuations are always vanishingly small for
upper bound arrangements and fairly small for

lower bound arrangements, but may be consider-

able for the complex cells. ‘‘Constraint hardening’’

is reflected in high values of hydrostatic stress rh

and of stress triaxiality (T ¼ rh=req, where req

designates the von Mises equivalent stress), which

can be important for the soft elastic and almost

incompressible matrix and for the elastic–plastic
matrix. In the complex cells, the mean values of

all variables always lie much closer to the lower

bound solutions than to the upper bound solu-

tions.
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stiffness in the plastic regime of deformation (Vf � 0:50), computed w
3.3. Elastoplastic composite deformation

The described local fluctuation of field variables

occurs also with time (i.e. with loading) and may

be non-linear, e.g., if elastic–plastic behaviour is

considered. The evolution of the volume-averaged

axial matrix stress with strain is plotted in Fig.

10(a), for elastic–plastic behaviour. Corresponding

to variations of the term HDm across the different

models (Fig. 6(c)), the matrix hardening rate due
to constraint differs strongly, from a mere 0.3 GPa

for the numerical lower bound arrangement, via

values around 1 GPa for the complex cells and

some 5 GPa for the incremental Mori–Tanaka

scheme, to over 17 GPa for the numerical upper
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bound solution. The prediction of the yield stress,

on the other hand, is almost identical for all

models.

The differences in matrix ‘‘constraint harden-

ing’’ rates are also reflected in differences of the

overall composite stiffness, as plotted in Fig. 10(b)
for the plastic regime of deformation. Only the

(semi-)analytical MTM model yields a constant

value of Hð�Þ, whereas all numerical solutions

clearly show a variation of the composite stiffness

with strain. The transition from elastic to plastic

behaviour is not instantaneous but occurs over a

finite strain interval over which HDmð�Þ varies sig-

nificantly. This is evidently due to the local field
fluctuations, and the inhomogeneous and non-

proportional stress distribution during the transi-

tion from elastic to elastoplastic deformation

regimes. Past this transient, above about 0.1% or

0.2% strain, Hð�Þ becomes far more constant. The

existence of such a transient between elastic and

fully plastic regimes was also found in earlier work

on particulate composites with elastic-perfectly
plastic or Ramberg–Osgood matrices (Bao et al.,

1991).

A closer look at the evolution of stiffness with

strain is obtained by plotting only the HDmð�Þ term.

It is then found that this terms evolves with strain,

also for linear phase behaviour, as a consequence

of the influence of differential lateral contraction

on the instantaneous phase volume fraction (the
two phases contract laterally at different rates).

This effect is, however, of second order and can be

neglected. A more detailed analysis can be found

in Rossoll et al. (2003).
4. Discussion

4.1. Geometrical effects

The simulations show to what degree the global

longitudinal stiffness of a long-fibre reinforced

composite can be influenced by the local arrange-

ment of fibres (Fig. 6). Whereas a periodic hex-

agonal arrangement of fibres of each phase yields

global and local solutions that are indeed very
close to Hill�s elementary single fibre composite

bounds, typical stiff fibre composites have stiff-
nesses that vary over a significantly smaller range.

‘‘Realistic’’ fibre arrangements are somewhat stif-

fer than the lower bound; still, the composites re-

main far more compliant than the upper bound.

Even ‘‘artificial’’ fibre arrangements in the form of

regular rings produce a composite stiffness that
traverses only half the distance that separates soft-

shell/hard-fibre from hard-shell/soft-fibre arrange-

ments. The upper bound is thus far too high for

fibre composites.

Deviations in the modulus of fibre composites

from Hill�s lower bound are chiefly due to matrix

confinement (‘‘constraint hardening’’) where it is

surrounded by rings of contacting fibres. When the
fibre ring is not circular, the level of matrix triax-

iality attained is somewhat lower, Fig. 7, seemingly

because deformation of the ring can relieve some

of the lateral strain mismatch.

The correlation between such ‘‘constraint

hardening’’ and the amount of matrix that is

confined by rings of fibres, or the number of fibre-

to-fibre contacts, can easily be verified. Compare
the number of fibre-to-fibre contacts, and the

percentage of matrix that is confined by fibres,

both given in Tables 1–3, with the stiffness values

plotted in Fig. 6. This observation also holds for

elastoplastic matrix behaviour: the stiffness in-

crease HDm over the RoM equals, for the elastic–

plastic matrix and at a longitudinal strain of 0.1%,

258 (cell A), 411 (cell B), 528 (cell C), and 762 (cell
D) MPa. The same qualitative correlations be-

tween microstructure and stiffness can also be

made for the simple cells and the ‘‘artificial’’ fibre

arrangements. Confined matrix regions are also

responsible for the long upper tail of the matrix

stress distribution plotted in Figs. 8 and 9, which

extends with increasing importance from cell A to

D. Notably stress triaxiality is sensitive to fibre
arrangement (see the tables in Rossoll et al., 2003).

4.2. Elastic–plastic soft phase

Our calculations confirm that Hill�s linear

elastic bounds are the best possible for linear fi-

brous materials in terms of volume fraction alone

(which of course comes as no surprise). Without
exception, all numerical results lie within, or on,

these bounds (Fig. 6(a)). This is also true for soft
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elastic, almost incompressible, matrix behaviour

(Fig. 6(b)). Three-point bounds are much tighter

and enclose all solutions derived for the ‘‘realistic’’

complex cells, which eloquently demonstrates their

utility. ‘‘Artificial’’ cells may, on the other hand, lie

above the three-point upper bound.
Hill�s incremental elastic–plastic bounds (Hill,

1964b) are on the other hand too stiff. The lower

bound loses its bounding property: some of the

numerical solutions, notably those obtained for

the complex cells, lie well below Hill�s lower bound
and approach the RoM solution (Fig. 6(c)). The

incremental Mori–Tanaka model yields a solution

very close to Hill�s lower bound, and is thus also
not a very good descriptor of the composite

apparent rate of work hardening.

This overly stiff behaviour of Hill�s elastic–

plastic bounds does not seem to be due to the

incremental approach or assumptions taken with

regard to strain and stress distribution. Rather, it

is due to assumptions concerning the values used

for the different matrix stiffness moduli. Indeed,
whereas it is reasonable to attribute a value close

to 0.5 to Poisson�s ratio, a value close to zero for

Young�s modulus (for a non-hardening matrix)

and the elastic value to the bulk modulus, the

tangent shear modulus of an elastic–plastic mate-

rial cannot remain at its elastic value, as done in

the expression given by Hill (1964b). Instead,

preserving the elastic value only for the bulk
modulus together with the common relations be-

tween all the moduli (as for the soft elastic, almost

incompressible matrix material in this study, see
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behaviour. The analytical solutions are taken from Fig. 6(b), the num
Table 4) yields approximate bounds that can be

used for elastic–plastic matrix behaviour.

This is illustrated in Fig. 11, where the analyt-

ical solutions obtained for the soft elastic, nearly

incompressible matrix from Fig. 6(b) are combined

with the numerical solutions for an elastic–plastic
matrix from Fig. 6(c). Hill�s linear bounds now

work very well, and the linear three-point bounds

also bracket well the complex cells solutions

(random composites). In addition, the upper

bound fits the numerical solutions better than does

Hill�s original incremental approach (Fig. 6(c)).

Although no rigorous proof is given here and

although the strain dependence of HDmð�Þ is ne-
glected, these ‘‘modified Hill’’ linear bounds thus

seem usable in practice for elastic–plastic matrix

behaviour. Finally, for typical random micro-

structures, the linear three-point bounds for non-

hardening matrix are fairly narrow while still

bounding the numerical solutions. This suggests

that they constitute practically useful bounds for

HDm even with elastic–plastic matrix composites.

4.3. Implications for the ‘‘back-calculation’’ of

in situ matrix properties

From Eq. (7) it follows that the matrix in situ

uniaxial flow stress can be derived from

rflow
m ¼ rcð�Þ � ðVfEf þHDmÞ � �

1� Vf
ð8Þ

if the strain dependencies of Vf and HDm are ne-

glected. Assuming that the (initial) fibre volume
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Fig. 12. ‘‘Back-calculation’’ of the matrix flow stress. The fictitious ‘‘experimental’’ composite flow stress has been computed with

complex cell arrangement ‘‘B’’, using (a) weak linear hardening, or (b) a Ramberg–Osgood power law as input for the matrix flow

stress. From the fictious ‘‘experimental’’ composite flow stress rc the matrix flow stress rflow
m can be derived via Eq. (8). Inserting the

RoM, 3pt) or H) values for EDm yields an upper bound for the ‘‘back-calculated’’ matrix flow stress, inserting the 3pt+ or the H+

values yields lower bound solutions. The results are very similar for the other complex cells (A and C).
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fraction, Vf , and axial stiffness, Ef , are known, and

that the composite stress–strain curve rcð�Þ can be

measured with precision, the only unknown re-

mains HDm, comprising the stiffness contributions

from ‘‘constraint’’ hardening (influence of fibre

arrangement) and from ‘‘constitutive’’ hardening

(matrix flow stress), the latter being what one aims

to measure. We recall again that separation of
these two contributions from experimental data is

difficult, such that such measurements necessitate

either estimates or can only be bounded.

By generating a virtual experimental rcð�Þ curve
via FEA (forward analysis) we can now check how

different ways of estimating HDm influence the

‘‘back-calculated’’ in situ matrix flow stress (re-

verse analysis). We focus directly on the elastic–
plastic matrix case, as this is the most critical case

in this back-calculation problem. Two matrix

materials are considered: (i) a matrix with a very

low yield strength and a linear hardening rate, as

considered throughout this study, and (ii) a (more

realistic) Ramberg–Osgood type matrix. The uni-

axial matrix flow curves used as input for gener-

ating the virtual experimental composite flow
curve using complex cell arrangements are shown

in Fig. 12, together with the flow curves derived

using linear Hill and three-point bounds for HDm

(EDm) in Eq. (8) for the soft elastic, nearly incom-

pressible material (Table 4). It is seen that the

present approach yields useful bounds for the
‘‘back-calculated’’ in situ matrix flow stress, unlike

Hill�s original incremental lower bound solution.

Notably the fairly tight three-point bounds yield

very satisfying results for typical (random) com-

posite microstructures, thus showing their useful-

ness in this task.

Given the performance of these linear three-

point bounds, the use of non-linear higher order
bounds does not seem justified. Indeed, these are

expected to offer only a negligible gain in reducing

the bounding interval between the HDm terms. Ra-

ther, as shown in what precedes, whatever the

bounds used, their spacing is mostly determined by

the uncertainty in the extent to which touching fi-

bre rings constrain the matrix. In view of their very

cumbersome application in this back-calculation
problem, their use does not seem justified.
5. Conclusions

(1) Numerical simulations confirm that Hill�s
bounds are the best possible general bounds for

linear elastic fibrous composites under axial load-
ing, and confirm the validity of three-point bounds

for composites with relevant fibre–matrix topolo-

gies.

(2) FEA analysis of complex fibre arrangements

shows that the main cause for deviations from the

rule of mixtures in elastoplastic deformation is
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matrix confinement by rings of touching fibres.

This effect is clearly visible, but remains fairly

limited as long as ‘‘realistic’’ fibre arrangements

are considered. Even ‘‘artificial’’ fibre arrange-

ments that maximise this stiffening effect remain

more compliant than Hill�s upper bound.
(3) Hill�s (1964b) extension of his linear bounds

to elastic–plastic behaviour of the soft phase seems

to use an erroneous value for the shear modulus of

this phase. Instead of maintaining its elastic value,

as stated by Hill (1964b), it should apparently be

given by the common relations between the other

(incremental) moduli, while only the bulk modulus

preserves its elastic value.
(4) It is suggested that a simple and effective

approach to deriving in situ matrix flow curves

from composite axial flow curves is by using the

elastic three-point bounds, with appropriate phase

properties (i.e., non-hardening matrix). This ap-

proach, although not fully rigorous, yields very

satisfying results when confronted with numerical

simulation for Al/Al2O3 composites, and provides
good precision in the resulting matrix flow curves.
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