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In� ltration of Fibrous Preforms by a Pure Metal: Part V.
In� uence of Preform Compressibility

V.J. MICHAUD, J.L. SOMMER, and A. MORTENSEN

In� ltration by a pure matrix in the presence of preform deformation and partial matrix solidi� cation
is analyzed using a bounding approach for the preform rheology where solid metal is present. It is
found, using parameters for the in� ltration of short alumina � ber preforms by aluminum, that the
two bounds are close in comparison to other factors of uncertainty in the prediction of in� ltration
rate. Using this approach, preform compression is shown to exert a signi� cant in� uence on the
in� ltration rate for the system explored; in particular, the analysis shows the existence of an optimal
value of applied pressure. Simpli� cations in the analysis are also presented, which yield fairly ac-
curate results while easing their computation signi� cantly.

I. INTRODUCTION

THE in� ltration of a porous preform of reinforcing ma-
terial by a liquid matrix material is one of the principal
processes used in the production of metal matrix compos-
ites.[1,2] Physical phenomena which govern this process for
an unalloyed matrix material were analyzed in previous
publications of this series,[3–7] to show, in particular, that
there can be a strong interplay in this process between liq-
uid matrix � ow and matrix solidi� cation caused by initially
low preform or mold temperatures.

It is generally assumed, in modeling in� ltration, that the
porous preform does not deform. In many practical cases,
however, the liquid matrix is injected under high pressure
to increase the rate of production of the composite and to
overcome capillary forces which, particularly with metallic
matrices, oppose in� ltration and can leave residual porosity.
These high pressures are transmitted to the preforms during
in� ltration and may, therefore, cause it to deform, in� uenc-
ing both the kinetics of the process and the structure of the
composite thus produced. Since � ber preforms are rela-
tively compliant porous materials, and since the applied
pressure can be as high as 100 MPa, signi� cant preform
deformation is often observed in in� ltrated composites.[8–23]

In analyzing the in� ltration process for these cases, preform
deformation, then, cannot be neglected.

Composite in� ltration processing is not the only practical
situation involving � ow of a liquid through a deformable
porous medium: similar problems are found in biomechan-
ics,[24–33] in magma mechanics,[34,35] and in soil mechanics,
including groundwater hydrology, soil consolidation, and
reservoir engineering.[36–41] Relevant physical laws are well
established, having been presented in several articles[37–42]

and con� rmed by experimental studies.[43–47] In general, the
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formulation and solution of � uid � ow through deformable
porous media is complex, motivating the use of computer
codes and the frequent introduction of various simplifying
assumptions.[38,39,42,48–50]

Within this relatively large body of work, comparatively
few authors have addressed the problem of in� ltration of
an initially dry deformable porous medium. Relevant work
includes the analysis by J.R. Philip of unidirectional in� l-
tration in swelling soils, which takes into account the effect
of gravity and unsaturated � ow and introduces the Boltz-
mann transformation in Lagrangian coordinates to treat the
small-time limit, for which gravity effects can be ne-
glected.[36] Other work includes unidirectional spontaneous
in� ltration experiments aimed at measuring the permeabil-
ity of swelling soils[51,52] and numerical multidimensional
analyses of two-phase � ow and in� ltration in deformable
porous media.[53,54,55 ]

Sommer and Mortensen[56] recently proposed a treatment
of in� ltration of initially dry deformable porous media
which, unlike previous analyses, is not restricted to small
strains of the porous medium. This treatment neglects in-
ertial forces as well as thermal and chemical transport phe-
nomena and uses the slug-� ow assumption, which assumes
all in� ltration to take place along a two-dimensional front
within the preform. With this assumption, in� ltration takes
place at a single capillaric threshold pressure (DPg ), which
depends on the preform volume fraction, on the internal
pore geometry, and on the wettability of the preform ma-
terial by the liquid in� ltrant. The slug-� ow assumption has
been shown to be justi� ed in the in� ltration of nondeform-
ing porous media under suf� ciently high applied pres-
sure.[3–5,9,38,5 7] It was also shown in Reference 56 that an
additional assumption, namely, the neglect of solid-phase
velocity in favor of the average local liquid velocity, pro-
vides a considerably simpli� ed method of treating the prob-
lem, which yields reasonably accurate results at moderate
porous medium strains. This analysis was implemented
fully for unidirectional in� ltration under constant applied
pressure using the Boltzmann transformation and was val-
idated using experiments on the in� ltration of a polyure-
thane sponge by ethylene glycol. A subsequent analysis
along similar lines by Preciozi et al.[58] provided an evalu-
ation of the effects of inertial forces and of variations in
constitutive equations for the stress term.
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As mentioned previously, in practical cases of metal ma-
trix composite in� ltration processing, partial matrix solidi-
� cation often takes place within the preform during
in� ltration. Preform deformation and matrix solidi� cation
are, then, strongly coupled and cannot be analyzed sepa-
rately using existing theory. Indeed, preform deformation
alters the local volume fraction of reinforcing phase and,
hence, the local extent of matrix solidi� cation, while solid
present within the matrix interferes with preform defor-
mation; the two processes are, thus, interdependent. Exper-
imental results so far indeed tend to indicate that solid metal
can lock the preform in a compressed state, preventing it
from relaxing both during and after in� ltration.[21,22,59] This
observation has motivated a few simpli� ed treatments of
the problem. In particular, Yamauchi and Nishida addressed
the in� ltration of a whisker preform under a steadily in-
creasing pressure with no metal superheat. These authors
assumed that solid metal formed during in� ltration prevents
further deformation of all portions of the preform once
these are in� ltrated; relatively good agreement with exper-
imental results was obtained.[22]

We extend here the analysis developed in Reference 56
by using a bounding approach to address the adiabatic in-
� ltration under constant applied pressure of a compressible
� ber preform by a pure metal in the presence of matrix
solidi� cation caused by initially cold � bers. The bounding
approach we adopt is motivated by the fact that the exact
rheological behavior of the preform in the presence of a
partly solid matrix will generally remain unknown, given
the microstructural complexity of the three-phase material
at hand and the complex time-dependent behavior expected
of solid metals at their melting point. This approach is,
furthermore, justi� ed by results obtained in � ne, namely,
that, under practical circumstances, the two bounds are
quite close for systems of engineering relevance.

The bounds we consider represent a lower and an upper
bound for the kinetics of in� ltration corresponding, respec-
tively, to the upper and lower bounds for the rigidity of the
in� ltrated preform in the presence of solid metal. The lower
bound assumes that the presence of solid metal prevents all
local deformation of the preform once in� ltrated (as was
assumed by Yamauchi et al.), while the upper bound as-
sumes that solid metal has no effect at all on preform re-
laxation during in� ltration.

In what follows, we � rst treat the simpler case for which
the metal has no superheat, and show, for a case of practical
interest, that the two bounds are close, i.e., within the range
of generally observed experimental error. We then compare
the results of the upper-bound calculations to those obtained
using the simpli� ed treatment proposed in Reference 56.
We � nally investigate the effect of metal superheat, con-
sidering again the two bounds and assuming that the pre-
form is fully relaxed in the remelted zone.

II. GENERAL STATEMENT OF THE PROBLEM

A. Assumptions

We consider the unidirectional in� ltration of a porous
preform, initially at a temperature Tf and containing gas at
pressure Pg, by liquid metal, which is injected under a con-
stant pressure Po and at temperature To at one end of the
porous medium. We assume that the porous medium is

� xed at its other far end. Both � ow and preform deforma-
tion take place only along the x direction. All assumptions
concerning � uid � ow and capillarity follow closely those
of Reference 56 (the terminology used here differs, how-
ever, somewhat from that in Reference 56, for consistency
with previous articles of the present series[3–6]). In particular,
we use the slug-� ow assumption and estimate the capillary
pressure DPg , which must be overcome for full in� ltration
of pores, as[60]

DP 5 2S s cos (u) [1]g f LA

where u is the contact angle of the liquid metal on the � at
solid substrate material, sLA is the liquid matrix surface en-
ergy, and Sf is the total surface area of solid/liquid interface
per unit volume of the liquid matrix in the in� ltrated porous
material.

We consider the porous medium to be a continuum and
de� ne the local volume fraction of solid phase, including
solid metal formed during in� ltration, as Vsf 5 Vf 1 Vs,
where Vf is the local � ber volume fraction, and Vs is the
volume fraction of solid metal formed, if any. Where liquid
is present, its volume fraction is, thus, everywhere (1 2
Vsf). We assume that the system is adiabatic and that heat
exchange between � bers and metal takes place, within a
representative volume element DV, rapidly compared to the
time for overall preform in� ltration; hence, the temperature
T can be considered uniform within DV. Also, we assume
that any solid metal formed moves together with the � ber
and, hence, attribute only one velocity to all solid within
DV. We take the thermal properties of the � ber preform and
of the liquid metal to be independent of temperature, the
solid and liquid metal densities to be equal, and neglect
heat transfer in the nonin� ltrated preform. All these as-
sumptions have been shown to be justi� ed for in� ltration
of nondeformable preforms.[3,4]

We neglect all body forces, including gravitational
forces. This assumption is valid when pressure gradients
within the in� ltrated portion of the porous medium are
larger than the sum of all body forces in the � uid (this is
generally the case, in practice). We also neglect inertial
forces, both within the preform and within the � owing liq-
uid, in favor of viscous forces at the boundary between the
liquid and solid phases; as a corollary, � uid � ow follows
Darcy’s Law. We assume that the porous medium is iso-
tropic in a plane perpendicular to the x-axis, such that the
in� ltration direction is a principal direction of the preform
permeability tensor.

B. General Description of the Problem

Writing Po 5 DPT 1 Pg, we de� ne the pressure differ-
ential DPT , which drives � ow of the � uid into the preform.
It is this pressure differential, transmitted to the preform by
the � uid, which causes deformation of the porous solid me-
dium during in� ltration. This deformation is, in turn, de-
pendent on the intrinsic rheology of the porous solid
preform. In the con� guration (unidirectional in� ltration) of
present interest, this rheology is characterized by the stress-
strain curve measured on a dry sample of the porous me-
dium in a unidirectional compression test with no strain
transverse to the loading direction. For porous ceramic pre-
forms used in the fabrication of composite materials, this
curve generally has the form depicted in Figure 1(a), drawn
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Fig. 1—(a ) Schematic illustration showing the uniaxial compression
behavior of a dry porous solid during in� ltration by a nonwetting liquid
under a constant applied pressure DPT. (b ) The same solid before and
during nonisothermal in� ltration by a nonwetting superheated liquid under
a constant applied pressure DPT.

for loading to DPT and unloading to zero stress, using the
� ber volume fraction instead of strain for the horizontal
axis. Barring chemical interaction between the in� ltrant and
the preform, the stress-strain behavior of the preform is not
affected by the presence of � uid if the latter can � ow freely
out of the pores and has a low viscosity.[61] When solid
metal is present, however, the preform may well exhibit a
highly different mechanical behavior than when it is dry.

In the very � rst instant of contact between the liquid and
the preform, there is a transient period during which the
liquid is decelerated by the porous medium. Simultane-
ously, the preform is rapidly compressed to a volume frac-
tion of Vf 5 Vf c , the preform volume fraction corresponding
to s 5 DPT on the stress–volume fraction curve (Figure
1(a)). As in Reference 56, we do not consider the dynamics
of this initial transient and simplify the problem by assum-
ing compression of the porous material to be instantaneous
at t 5 0 and Darcy’s law to be valid throughout in� ltration.
At the time t 5 0, the in� ltration front is then located pre-
cisely at the entrance of the porous preform compressed
under the full applied pressure DPT (Figure 1(b)). Using a
Eulerian x-axis that remains � xed in relation to the unin� l-
trated portion of the preform and that is oriented along the
direction of in� ltration, we de� ne x 5 0 as this common
location of the preform entrance and in� ltration front at t
5 0.

Where liquid is present, deformation of the preform is
governed by the effective stress s, which, in this system of
relatively low solid-phase percolation (since compressible
preforms are generally made of stacked discrete solid ele-
ments such as � bers or particles), equals the total stress
acting on DV minus the � uid pressure P.[46,55,62–64] At t . 0,
therefore, as the in� ltration front traverses the preform, the

effective stress jumps from s 5 Po 2 Pg 5 DPT ahead of
the in� ltration front to s 5 DPT 2 DPg right behind the
in� ltration front. The preform strain then decreases to the
value given by the unloading stress–volume fractioniVf

curve in Figure 1(a) at s 5 DPT 2 DPg if DPg . 0, i.e.,
if the liquid does not wet the porous material, as is gener-
ally the case in metal matrix composite in� ltration (if DPg

, 0, the preform is further compressed right behind the
in� ltration front).

At the same time, heat exchange takes place between the
preform and liquid metal, and solid metal forms at the in-
� ltration front. When the temperature of the incoming metal
is above Tm, a remelted zone is formed, which extends be-
tween xs and xe (Figure 1(b)).

From behind the in� ltration front to the preform en-
trance, the liquid pressure increases from DPg 1 Pg to DPT

1 Pg. The effective stress, therefore, decreases, so that the
preform relaxes behind the in� ltration front.

C. Fluid and solid mechanics

For simplicity, we focus from the onset on one-dimen-
sional in� ltration along the x direction (three-dimensional
generalization of governing equations is fairly trivial, as
noted in References 3 and 56) and use the stationary x-axis
de� ned previously. Darcy’s law dictates that

K ]P
u 2 u 5 2 [2]1 s (1 2 V ) m ]xsf

where ul is the (positive) average local velocity of the liquid
within the pores, us is the (negative) local velocity of the
solid, K (a function of Vsf) is the permeability of the porous
medium in DV, m is the liquid viscosity, and P is the pres-
sure in the liquid.

Mass conservation in the solid and liquid phases, respec-
tively, dictates that

]V ] (V u )sf sf s1 5 0 [3]
] t ]x

and that

]V ]((1 2 V ) u )sf sf l2 1 5 0 [4]
] t ]x

Finally, having neglected inertial and body forces in both
solid and liquid, stress equilibrium dictates that

]P ]s
5 2 [5]

]x ]x

where s is the effective stress acting in the solid along x,
counted as positive in compression and averaged over a
surface area comprising both solid and liquid.

D. Heat Transfer

As in in� ltration of a nondeformable preform by pure
metal,[3] when the preform temperature is below the matrix
melting point and the superheat (To 2 Tm) is not too large,
a region where solid and liquid metal coexist forms behind
the in� ltration front (called region 1, as in Reference 3).
Maintaining the assumptions made in Reference 3 that the
interface between the solid and liquid matrix material is at
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equilibrium everywhere and that the in� uence of capillary
forces on the metal melting point can be neglected, the
temperature remains � xed at Tm where solid matrix is pres-
ent.

Superheated metal entering the preform will remelt the
solid metal formed at the in� ltration front, leading to the
formation of a remelted zone comprising only liquid matrix
and � bers (region 3 in Figure 1 of Reference 3). Within a
volume element DV in this region, the heat-transfer equa-
tion is written as

] ]T ]T
z k 5 r cc c c~ !]x ]x ]t [6]

]T
1 (r c (1 2 V ) u 1 r c V u ) zm m f 1 f f f s ]x

where kc is the thermal conductivity of the composite, r is
the density, c is the heat capacity, and subscripts c, m, and
f, refer to the composite, matrix, and � bers, respectively.
The values of kc and cc are estimated as in Reference 3 and
are functions of Vf .

Given that the local permeability within the remelted
zone is far higher than that in the upstream region contain-
ing solid metal, the pressure gradient is shallow in the re-
melted region, so that the � uid pressure remains close to
Po. In what follows, we therefore make the simpli� cation
that, everywhere within the remelted region, P 5 Po 5 DPT

1 Pg and Vf 5 , corresponding to s 5 0 on the un-r rV Vf f

loading portion of the stress-strain curve.

E. Inter-Region Boundary Equilibria

Mass and energy conservation must be obeyed at moving
boundaries separating the different regions. We neglect heat
transfer in the (generally poorly conducting) � ber preform
ahead of the in� ltration front. The main equations are, then,
as follows (cf. References 3 and 56 for a more complete
description):

c At the in� ltration front, x 5 xf

P 5 P 1 DP [7]g g

T 5 T [8]m

r DHV 5 r c V (T 2 T ) [9]m s f f f m f

iV 5 V [10]f f

c iV 2 Vf fu 5 u [11]s 1 cV f

c At the remelting front, x 5 xs

2 1P (x ) 5 P (x ) [12]s s

2 1T (x ) 5 T (x ) 5 T [13]s s m

]T ]xs2 (k ) 5 r DHV [14]c m s
2]x ]txs

2 2 1 1(1 2 V ) u 5 (1 2 V ) u [15]f (x ) l (x ) sf (x ) l (x )s s s s

1 11 V us (x ) s (x )s s

2 2 1 1V u 5 V u [16]f (x ) s (x ) f (x ) s (x )s s s s

where DH is the enthalpy of fusion of the metal.

III. SOLUTION METHODOLOGY

A. Lower- and Upper-Bound Estimation of the
In� ltration Rate

When solid metal forms during in� ltration, the stress-
strain curve of the preform containing solid metal can no
longer be expected to coincide with that of the dry preform.
This introduces a signi� cant complication in prediction of
in� ltration kinetics, since the rheology of the solid phase
must be known for an exact solution of the problem to be
derivable and since, where solid metal is present, this rhe-
ology is both dif� cult to measure (particularly for all pos-
sible amounts of solid formed) and likely to be strongly
time-dependent. To approach the solution, we therefore
consider two limiting cases which provide bounds for the
local preform strain and, hence, for the rate of in� ltration.
These bounds describe the greatest and the least possible
extent of preform relaxation.

(1) An upper bound for the in� ltration rate is obtained by
assuming that the solid metal present exerts no in� u-
ence on the stress-strain behavior of the preform. The
compressive strain on the porous medium, therefore,
decreases along the preform toward its entrance, along
the stress-strain curve for unloading, from s 5 DPT 2
DPg to s 5 0 (Figure 1(a)). Since the solid metal re-
mains attached to the preform and moves locally with
it, Vs is always locally related to Vf through Eq. [58] of
Reference 3,

(T 2 T ) r c Vm f f f fV 5 [17]s r DHm

(2) A lower bound for the in� ltration rate is obtained by
assuming that solid metal locks the preform in its ini-
tial, most fully compressed state, wherever solid metal
is present, at Vf 5 .iV f

These conditions represent, respectively, an upper and a
lower bound on the in� ltration rate, because solid metal will
always impede preform relaxation and, hence, prevent an
increase in preform permeability. These bounds are, fur-
thermore, mathematically convenient because the preform
rheology is, for each extreme, everywhere independent of
time. This, in turn, allows use of the Boltzmann transfor-
mation for simultaneous solution of all the governing equa-
tions.

B. The Boltzmann Transformation

When considering each of these bounds, the set of Eqs.
[2] through [6] can be transformed as in Reference 56 into
ordinary differential equations using the Boltzmann trans-
formation. To this effect, we de� ne x as

(x 2 x )ex 5 [18]
=c t

where xe is the position of the porous preform entrance at
time t. Because the preform relaxes, xe , 0. The scalar c
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is chosen such that the position of the in� ltration front cor-
responds to x 5 1;

=L 5 c t [19]

where L is the total length of the in� ltrated portion of the
preform, as shown in Figure 1(b). Functions l(x) and s(x)
are de� ned by

c l (x)
u 5 [20]1

=2 t

c s (x)
u 5 [21]s

=2 t

Using this transformation, Eqs. [2] through [6] become
a set of nonlinear ordinary � rst-order differential equations
which can be solved numerically, along with the boundary
conditions [8] through [16].

C. The Approximate Solution

For the isothermal in� ltration of a deformable porous
medium,[56] a far simpler approximate solution of the � uid
� ow equations can be obtained by considering the average
local velocity of the solid porous medium to be signi� cantly
smaller throughout than the average local liquid velocity:
(2us) ,, ul. With this assumption, the in� ltration rate con-
stant c is obtained directly using a straightforward numer-
ical integration. As discussed in Reference 56, this solution
is not rigorous because it violates conservation of volume;
however, this approximation was shown, for isothermal in-
� ltration, to yield results which are quite close to those of
the full analysis, with far greater computational simplicity.
The underlying reason for this is that the approximation
made is most inconsequential where the preform is most
compressed, i.e., right behind the in� ltration front; this is
precisely the ‘‘bottleneck’’ which governs the rate of in� l-
trant � ow.

In what follows, we will � rst extend the validity of this
approximation for in� ltration in the presence of matrix so-
lidi� cation, using the (computationally simpler) case of
nonisothermal in� ltration with no metal superheat. We will
then use this solution in our analysis of the in� uence of
metal superheat on in� ltration kinetics.

IV. PREDICTION OF INFILTRATION KINETICS

A. In� ltration with no Metal Superheat: To 5 Tm and xs

5 xe

1. Upper-bound solution: full preform relaxation

a. Complete solution
Transformation of Eqs. [2] through [5] is identical to that

presented in Reference 56, with parameter u of Reference
56 equal to (1 2 Vf 2 Vs), with Vs given by Eq. [17] and

]s
D (u) 5 D (V ) 5 K (V )f sf ]Vf

Eqs. [2] through [5] (which correspond to Eqs. [17] through
[19] of Reference 56) then become

2(l 2 s ) (1 2 V 2 V ) m cf sV ’ (x) 5 [22]f 2 D (V )f

2V’fs ’ (x) 5 [s(x) 2 x 2 s(0)] [23]~ !Vf

V ’sfl ’ (x) 5 [l (x) 2 x 2 s(0)] [24]~ !1 2 V sf

where the prime symbol denotes derivation with respect to
x. The boundary conditions (Eqs. [20], [21], [25], and [26]
in Reference 56) are

i 2V 5 V at x 5 1 [25]f f

rV 5 V at x 5 0 [26]f f

i cV 2 Vf f2s (x 5 1 ) 5 [1 1 s(0)] [27]
iV f

and
i1 2 V f2l(x 5 1 ) 5 [1 1 s(0)] [28]
i1 2 V sf

This set of nonlinear � rst-order equations is solved nu-
merically for the parameter c and the functions Vf (x), l(x),
and s(x), using a midpoint Runge–Kutta scheme for inte-
gration[65] and a three-dimensional Newton–Raphson
method to adjust the initial guesses of c 2, l(x 5 0), and
s(x 5 0) for convergence, as in Reference 56.

b. Simpli� ed solution
(2us) ,, ul. The in� ltration rate parameter c is now di-
rectly obtained by settingVf 5 at x 5 0 in the followingrV f

equation (derived as in Reference 56):
iV f

i 2* 2 K s ’ dV 5 (1 2 V ) m c (1 2 x) [29](V ) (V ) f fs f fV f(x )

and solving for c. The volume fraction and the effective
stress can then be calculated as functions of x by solving
Eq. [29] again, but for an arbitrary x.

2. Lower bound: no preform relaxation
In this case, solid metal prevents the preform from re-

laxing, and Vf is, everywhere, . Governing and boundaryiV f

equations then simply reduce to the equations of Reference
3 for the case of no metal superheat, and the rate of in� l-
tration, measured by the parameter c, is given by

i2 (DP 2 DP ) K (V )T g sf2c 5 [30]
im (1 2 V )f

B. In� uence of Metal Superheat

We now consider the case where To . Tm, so that there
is a region of xe , x , xs, as in Figure 1(b), where solid
metal formed initially upon contact with the � bers has re-
melted. We assume that the temperature at x 5 xe is To at
all times and, as indicated in Section II–D, we assume that
P 5 Po and Vf 5 for xe , x , xs.rV f

1. Upper bound
Solid metal present between xs and xf is considered not

to affect relaxation of the porous medium, and we use the
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simpli� ed solution described in Section III–C, considering
us @ 0 in the region where solid metal is present. Setting
Dx f 5 xf /c , Dxe 5 xe /c , and Dxs 5 xs /c , the follow-= = =t t t
ing relations are obtained:

c from Eqs. [18] and [19], Dx f 2 Dxe 5 1, and
c from Eq. [18], xs 5 Dxs 2 Dxe.

Boundary conditions [25] and [26] are still valid, and
[28] becomes

i1 2 V f2l (x 5 1 ) 5 [31]
i1 2 V sf

The boundary condition at x 5 xs is given by Eqs. [12]
through [16]. Eq. [14] becomes

r 222 k T ’ (xs) 5 r DH V c D [32]c m sf xs

Since Vf remains constant within the remelted zone, the
solid velocity at xs is the same as that for x 5 xe, so

2s(xs ) 5 D [33]xe

Since the preform relaxes fully, there is no discontinuity in
preform volume fraction at the remelting front; hence, Vf

( ) 5 Vf ( ), and, from Eq. [16], s( ) 5 s( ). Eq. [15]2 1 2 1x x x xs s s s

then yields

r 2 1(1 2 V ) [l (x ) 2 l (x )]f s s [34]
r 1 11 V [l (x ) 2 s (x )] 5 0s s s

In region 1, where solid and liquid metal coexist T 5 Tm,
Eqs. [2] and [5] imply that

2 K (V ) dssfl(x) 5 V ’ [35]f2(1 2 V ) m c dVsf f

and, as in the previous case, Eqs. [3] and [4] yield

i r 1(1 2 V ) l (x ) 5 (1 2 V ) 5 (1 2 V ) l(x ) [36]sf f sf s

Hence, the following relationship between x and c is ob-
tained, valid as well for x 5 xs and Vf 5 :rV f

iV f ds* 2 K (V ) dVsf fV f(x) dVf [37]
i 25 (1 2 V ) (1 2 x) m cf

In region 3, where superheated metal has remelted the solid
present, using Eqs. [15] and [33], we have

i1 2 V f2l (x ) 5 D 1 [38]s xe r1 2 V f

which yields, by insertion into Eq. [6],

22 k T ’’c 5 (x 2 b) T ’ [39]
r r 2r c cc c

with

i r r rr c {(1 2 V ) 1 (1 2 V ) V D } 1 r c V Dm m f f s xe f f f xeb 5 D 1xe r rr cc c

[40]

Equation [39] is solved between x 5 0 (T 5 To) and x 5
xs (T 5 Tm), using an error function solution as in Reference
3, to yield the following temperature pro� le in region 3

c c
erf (x 2 b ) 2 erf (x 2 b)s

r r@ # @ #= =2 a 2 ac cT (x ) 2 Tm 5
T 2 T0 m c c

erf (2b ) 2 erf (x 2 b )s
r r@ # @ #= =2 a 2 ac c

[41]

where 5 / . Finally, global conservation of � berr r r ra k r cc c c c

volume, between the initial compressed state and a relaxed
state, yields

x
f

i rx V 5 (x 2 x ) V 1 * V (x) dx [42]f f s e f fxs

This equation can be written to give the value of Dx f as
iV f1

D 5 1 2 * x (V ) dV [43]rx f f fVi fV f

with x (Vf) given from Eq. [37].
For a given set of parameters, a solution is easily found

by an inverse method, which can then be used iteratively:
� rst choose a value of xs, then evaluate c from Eq. [37],
then calculate Dx f from Eq. [43], evaluating the function
x(Vf) from Eq. [37]. The values of Dxe and Dxs are then
computed from Eqs. [18] and [19]. By then setting as equal
the values of T’(xs) found from Eq. [32] and the derivative
of Eq. [41], one calculates the corresponding value of Tm.

2. Lower bound
We now assume that solid metal locks the � bers in the

compressed state corresponding to the pressure DPT 2 DPg.
Hence, for xs , x , l, Vf (x) 5 . Equations describingiV f

the problem are very similar to those presented for case I:
Eqs. [18], [19], [25], [26], [28], [32], [33], and [39] through
[41] all remain unchanged. Equation [42] reduces to

r i(x 2 x ) V 5 x V [44]s e f s f

Equation [34] is different, as s( ) 5 0, and becomes1xs

r 2 r 2 i 1(1 2 V ) l (x ) 1 V s (x ) 5 [1 2 V ] l (x ) [45]f s f s sf s

The value of b, given by Eq. [40], therefore becomes

i iV r c r c (1 2 V )f m m m m fb 5 D (1 2 ) (2 2 1 [46]xe r r r r rV r c r cf c c c c

The set of � ow equations in region 1 is simply derived from
Eq. [2] and from the � rst two terms of Eq. [36] (1 2 Vsf)
l(x) 5 1 2 , neglecting any pressure drop within regioniV f

3.

i22 K (V ) (DP 2 DP )sf T g2c 5 [47]
im (1 2 V ) (D 2 D )f x f xs

Once again, the solution is found by choosing a value of
xs and deriving Dxs, Dxe, Dx f, and c 2 successively and then
by deriving Tm from Eqs. [32] and [41].

V. RESULTS AND DISCUSSION

As a practical example of an application of the present
analysis, we consider the unidirectional in� ltration of pure
aluminum into a SAFFIL* d-alumina preform, of initial

*SAFFIL is a trademark of ICI Americas, Inc., Wilmington, DE.
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Table I. Values of Constants for Aluminum and SAFFIL[4,5]

Property Units Aluminum SAFFIL

rc (J z K21 z m23) 2.6 z 106 4.0 z 106

rm DH (J z m23) 9.5 z 108 —
k (W z m23 z K21) 93 8
a (m2 z s21) 36 z 1026 2 z 1026

m (Pa z s) 1.3 z 1023 —
sLA (J z m22) 0.914 —
u (deg) 106 —
Sf (m21) — 2977,800 1 2.2217

107 Vf

Fig. 2—Stress-strain curves for uniaxial cyclic compression of a dry
SAFFIL preform, initial volume fraction Vf 5 0.188, at Tf 5 150 7 C, with
a maximum load of 3.45 MPa.

volume fraction Vf 5 0.188, under constant applied pres-
sure. The physical data relevant to this system are given in
Table I. The in� ltration direction is orthogonal to the � ber
axis, and the function K(Vsf) is taken as in Reference 3,
assuming that the solid metal forms as a sheath around the
� bers and that the initial � ber radius (rf) is equal to 2.72
mm. The terms DPg and Sf in Eq. [1] are functions of the
� ber volume fraction Vf (DPT) at the onset of in� ltration;
their dependence on Vf is estimated by linear interpolation
of results given in Reference 5 for the range from 0.1 to
0.25 (Table I).

The relation between s and Vf used in the calculations
(with s expressed in pascal) is given as follows.

(1)For the compression part of the curve,

2 3 4 5V (s ) 5 a 1 b s 1 c s 1 d s 1 e s 1 f s , [48]f comp

for s , 2.07 MPa, and

V (s ) 5 g 1 h s, for s . 2.07 MPa [49]f comp

29where a 5 0.18838, b 5 5.3766 10 ,

215 221c 5 23.966583 10 , d 5 5.5275 10 ,

227 233e 5 25.1431848 10 , f 5 1.865145 10 ,

28g 5 0.136477, and h 5 3.47692 10 .

(2) For relaxation after compression to Pa,

2 3s (V ) 5 P (1 2 (t 1 uA 1 vA 1 wA )) [50]f a

where t 5 0.027219, u 5 55.4816, v 5 21169.453, w 5
8646.153, and

1/3

V (P ) 2 Vf com p a fA 5 ~ !V (P ) 2 0.188f comp a

This expression is obtained from a curve � t of oedometer
test (con� ned compression) data of a dry SAFFIL preform,
at 423 K, with an initial volume fraction of 0.188 (Figure
2). These data were measured using an INSTRON* testing

*INSTRON is trademark of Instron, Inc., Canton, MA.

machine at a crosshead speed of 0.51 mm per minute (fur-
ther details concerning the experimental procedure are
given in Reference 66). The curves of s vs Vf � rst exhibit
a region of elastic deformation in which the apparent mod-
ulus is high and where unloading curves superimpose on
loading curves. This is followed by a region of lower ap-
parent modulus, in which unloading shows signi� cant re-
sidual deformation of the preform. Irreversible deformation
of the preforms is most likely caused by � ber and binder
breakage, as well as � ber rearrangement, as proposed by
Clyne and Mason.[59] Since none of the likely preform de-
formation mechanisms (elastic deformation, � ber breakage,
and � ber rearrangement) are time-dependent, data from me-
chanical tests should accurately replicate the preform de-
formation experienced during in� ltration, despite the
much-higher strain rates imposed during in� ltration. The
observed stress-strain behavior is quite similar to that ob-
served during oedometric compression of preconsolidated
soils.[61] This probably results from the preform fabrication
process, namely, compression of a water-based slurry con-
taining the � bers and colloidal silica as a binder. We note
that this behavior is different from the power-law behavior
usually observed in compression experiments of unconso-
lidated long � bers or short-� ber mats also used in compos-
ite material processing.[67,68,69 ]

Calculated values of c 2 are plotted in Figures 3 through
5, for the considered SAFFIL preform of initial Vf 5 0.188
with no metal superheat, for plausible values of in� ltration
parameters. Three different calculations are plotted on each
of these � gures: curve a, obtained by assuming that the
preform is incompressible; curve b, using the upper-bound
solution; and curve c, using the lower-bound solution. In
all cases, if DPT is lower than the capillary pressure drop
given in Eq. [1], no in� ltration occurs. This determines the
minimum threshold pressure found in Figures 3 and 4.

When neglecting preform compression (curve a), Vf stays
constant at 0.188, and the in� ltration rate parameter c 2 in-
creases linearly with the applied pressure DPT , with a slope
of 2 K(Vsf)/m(1 2 Vf), as derived in Reference 4. When
preform compression is taken into account (curves b and
c), c 2 deviates strongly from the linear behavior predicted
with no preform compression. This is because an increase
in applied pressure now activates the two competing mech-
anisms of (1) increased driving force and (2) reduced per-
meability due to preform compression. As the applied
pressure is increased, the in� ltration rate therefore increases
up to a maximum, to decrease when preform deformation
becomes predominant. The in� ltration rate is found to drop
to zero when Vsf reaches the packing density limit, at which
point the solid phase completely blocks � ow at the in� ltra-
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Fig. 3—Theoretical values of c 2 vs DPT at TF 5 100 7 C for in� ltration
with no superheat: (a ) assuming that the preform does not compress; (b )
upper-bound assuming that the solid metal surrounding the � bers leaves
the mechanical relaxation of the preform unaffected; and (c ) lower-bound
assuming that the solid metal retains the preform everywhere to iVf

corresponding to s 5 DPT 2 DPg.

Fig. 4—Theoretical values of c 2 vs DPT at TF 5 200 7 C for in� ltration
with no superheat: (a) assuming that the preform does not compress; (b)
upper-bound assuming that the solid metal surrounding the � bers leaves
the mechanical relaxation of the preform unaffected; and (c) lower-bound
assuming that the solid metal retains the preform everywhere to iVf

corresponding to s 5 DPT 2 DPg.

Fig. 5—Theoretical values of c2 vs TF for DPT 5 2.07 MPa for in� ltration
with no superheat: (a) assuming that the preform does not compress; (b)
upper-bound assuming that the solid metal surrounding the � bers leaves
the mechanical relaxation of the preform unaffected; and (c) lower-bound
assuming that the solid metal retains the preform everywhere to iVf

corresponding to s 5 DPT 2 DPg.

tion front (where K 5 0). From these � gures, it appears
clearly that an increase in applied pressure may not always
result in a faster in� ltration rate, that preform compression
can even prevent in� ltration altogether, and that there exists
an optimal in� ltration pressure in the presence of preform
compression.

A second important result apparent in these curves is that
the calculated upper and lower bounds are quite close to
each other (for this system), especially if one keeps in mind
that permeabilities and in� ltration rates are seldom pre-

dicted with a precision better than a factor of 2. This in-
dicates that one could bracket fairly accurately the range of
in� ltration kinetics for a given set of processing parameters,
having only measured the dry preform compression behav-
ior.

The value of the applied pressure corresponding to a
maximal rate of in� ltration shifts slightly to higher pres-
sures when the preform temperature is increased (Figure 4),
because less solid metal is formed. For a given applied
pressure, an increase in preform temperature will, as ex-
pected, increase the rate of in� ltration since less solid metal
is present (Figure 5).

Results from the simpli� ed solution of the upper-bound
limit (crosses i’), are compared to results of the upper (curve
i) and lower (curve ii) bounds in Figure 6, for conditions
identical to those in Figure 3. It is seen that error induced
from the approximate solution is very small, con� rming the
conclusion of Reference 56 that this solution, far more
straightforward to compute, can give a good approximation
of the in� ltration kinetics for deformable preforms. This is
also seen in Figure 7, which plots the distribution of Vf for
typical in� ltration conditions and no superheat, for the up-
per (curve i) and lower (curve ii) bounds and the simpli� ed
solution (crosses i’). For the upper bound and the simpli� ed
solutions, a similar distribution in volume fraction is ob-
tained between at the in� ltration front and at the pre-i rV Vf f

form entrance. This � gure also shows that, if solid metal
does not prevent relaxation of the preform (as in the upper-
bound solution), a signi� cant gradient in volume fraction
� ber is obtained in the � nal, solidi� ed composite material.

The effect of superheat (DTs 5 To 2 TM) is presented in
Figures 8 and 9, for typical in� ltration parameters, for three
conditions: (1) for the upper bound, using the simpli� ed
solution where solid metal is present and assuming that the
preform is relaxed to in the remelted zone; (2) for therV f
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Fig. 6—Theoretical values of c2 vs DPT at TF 5 100 7 C for in� ltration
with no superheat: (i) upper-bound assuming that the solid metal
surrounding the � bers leaves the mechanical relaxation of the preform
unaffected; (i’) (crosses) approximate upper-bound solution calculated
assuming that the velocity of the solid phase is negligible; and (ii) lower-
bound assuming that the solid metal retains the preform everywhere to

corresponding to s 5 DPT 2 DPg.iVf

Fig. 7—Volume fraction pro� le along the length of a sample, for DPT 5
2.58 MPa, TF 5 100 7 C, and no superheat: (i) upper-bound assuming that
the solid metal surrounding the � bers leaves the mechanical relaxation of
the preform unaffected; (i’) (crosses) approximate upper bound solution
calculated assuming that the velocity of the solid phase is negligible; (ii)
lower-bound assuming that the solid metal retains the preform everywhere
to corresponding to s 5 DPT 2 DPg.iVf

Fig. 8—Theoretical values of c2 vs amount of superheat DTS for DPT 5
2.58 MPa and TF 5 100 7 C: (a) upper bound, solid metal leaving
mechanical relaxation of the preform unaffected; (b) lower bound, solid
metal where present retaining the preform volume fraction at and withiVf

full preform relaxation elsewhere; and (c) assuming that the preform is
everywhere compressed to .iVf

Fig. 9—Theoretical values of xs vs amount of superheat DTS for DPT 5
2.58 MPa and TF 5 100 7 C: (a) upper bound, solid metal leaving
mechanical relaxation of the preform unaffected; (b) lower bound, solid
metal where present retaining the preform everywhere to and with fulliVf

preform relaxation elsewhere; and (c) assuming that the preform is
everywhere compressed to .iVf

lower bound, with the � ber preform locked into the com-
pressed state Vf 5 where solid metal is present and re-iV f

laxed to in the remelted zone; and (3) assuming that therV f

preform remains compressed to over the total length ofiV f

the composite. The upper and lower bounds are once again
close, although they tend to separate somewhat further for
high amounts of superheat. As expected from previous re-

sults with no compression,[4] the effect of superheat on in-
� ltration kinetics is rather small compared to that of
preform initial temperature or volume fraction (Figure 5).
This is because the superheat tends to remelt solid metal
present at the gate region, but does not affect much the
bottleneck region, located near the in� ltration front, in
which the fraction solid is high and the local permeability
low. The in� uence of superheat on the length of the re-
melted zone is strong (Figure 9); this effect can be signif-
icant for compressible preforms, since it affects the volume
fraction distribution in the composite produced.

Simple calculations, as derived in Reference 3, were used
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to derive the in� ltration rate for a constant volume fraction
of � bers (condition c), neglecting the effect of relaxation
within the remelted zone. This calculation is not rigourous,
as the boundary condition Vf 5 for x 5 0 is not re-rV f

spected, but leads to only a slight underestimation of the
lower bound. This result con� rms that in� ltration kinetics
are not strongly in� uenced by the value of the volume frac-
tion � ber within the remelted region (as the relaxation of
the � ber preform is not very extensive) and justi� es the
assumption of a uniform volume fraction in the remelted
region, which was used for the upper- and lower-bound
calculations. This result also justi� es the use of such a sim-
ple method as a � rst approximation of the in� uence of su-
perheat on the size of the remelted region and on volume
fraction � ber distribution: satisfactory agreement was re-
ported in Reference 21 between experimental results from
die-casting experiments and a similar analytical approach.

In summary, for the practical case explored here at least,
upper and lower bounds on the one hand, and rigorous and
simpli� ed approaches on the other, all yield relatively sim-
ilar results. The signi� cant in� uence exerted by preform
compression on in� ltration rate can, therefore, be analyzed
with relative simplicity and precision using the simpli� ca-
tions and the bounding approach proposed here. The un-
derlying reason for this conclusion is, in all cases, the fact
that the rate of � ow is determined mostly by the bottleneck
region located right behind the in� ltration front and that,
as long as the slug-� ow assumption remains valid, this bot-
tleneck is described with relatively good precision when
simpli� cations proposed here are used.

The � nal distribution of reinforcement found in the com-
posite is, however, more strongly dependent on the in� uence
exerted by solid metal on preform relaxation: a nonrelaxed
and a fully relaxed preform will show signi� cantly different
� ber distributions, particularly if relaxation continues after
cessation of � ow. Fiber distributions found in References 21
and 22 indicate that, in squeeze casting at least, process times
are suf� ciently short for solid metal to hinder � ber preform
relaxation signi� cantly. This, in turn, indicates that, for this
relatively rapid in� ltration process at least, reality is more
closely described by the present lower bound.

VI. CONCLUSIONS

The in� ltration rate and � ber volume fraction distribu-
tion, during slug-� ow in� ltration of a deformable porous
medium in the presence of matrix solidi� cation, are pre-
dicted using a bounding approach. The approach is moti-
vated by the fact that the in� uence of matrix partial
solidi� cation on the rheological behavior of the porous pre-
form is, in general, hard to predict or to measure. The upper
bound for the in� ltration rate assumes that solid metal ex-
erts no in� uence on preform relaxation, while the lower
bound assumes that solid metal confers complete rigidity to
the preform, which, thus, remains compressed under the
externally applied pressure minus the capillary pressure
drop. A full solution of the governing equations is given
for the case where a constant pressure differential drives
the � uid � ow, using the Boltzmann transformation.

A simpli� ed approach for the upper bound is also pro-
posed, based on the assumption that the solid velocity can
be neglected throughout in favor of the liquid velocity. The

in� uence of superheat within the in� ltrating metal is also
addressed, using the simpli� ed solution and neglecting the
pressure drop in the remelted region.

Application of this analysis to the in� ltration of short-
� ber preforms by pure aluminum shows that compression
of the � ber preform causes the in� ltration rate to deviate
strongly from that which is calculated by assuming that the
preform is rigid. The predicted rate of in� ltration increases
with applied pressure to a maximum, then decreases sig-
ni� cantly, leading eventually to complete blockage of � ow.
The upper- and lower-bound solutions are close and, thus,
provide brackets for the in� ltration-rate parameter which
are well within the usual experimental scatter. Moreover,
the proposed simpli� ed solution agrees well with the upper-
bound solution and, hence, provides a far-simpler method
to compute this bound.

Superheat in the in� ltrating metal is shown to exert only
a minor effect on in� ltration kinetics, a result that is con-
sistent with the case of a rigid preform. Its effect on the
length of the remelted region is, however, signi� cant;
hence, superheat can in� uence the � nal reinforcement dis-
tribution in the composite when matrix solidi� cation pre-
vents preform relaxation signi� cantly. This is, indeed,
observed in squeeze-cast aluminum matrix composites.

An important overall conclusion that emerges from this
work is that the relatively high analytical complexity of the
problem at hand can be reduced signi� cantly using simpli-
� cations explored in this work. These simpli� cations con-
sist of initially (1) neglecting the solid-phase velocity in
favor of that of the liquid, and (2) considering the melt
superheat to be zero. With these assumptions, bounds on
the in� ltration rate become relatively simple to calculate
with good precision. The underlying reason for this is that
the region near the in� ltration front, which serves as a bot-
tleneck for � ow, remains well described for both bounds
with these assumptions. In general, it is expected that the
two bounds will be close; hence, this approach should allow
fairly precise prediction of the in� ltration rate and of the
optimal applied pressure for rapid in� ltration. Then, with
the in� ltration rate thus estimated, bounds (corresponding
to the same limits for the in� uence of solid metal on pre-
form deformation, but which will generally not be close)
can be proposed for the distribution of reinforcement vol-
ume fraction in the composite during, and after, in� ltration.
To this end, the in� uence of melt superheat must be taken
into account in the lower-bound calculation, because this
parameter exerts a signi� cant in� uence on the reinforce-
ment distribution; however, the calculation remains simple.
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APPENDIX: GLOSSARY
DPg capillary pressure drop (Pa)
DPT applied pressure (Pa) 5 Po 2 Pg

DV representative volume element (m3)
Dx f 5 xf /c=t
Dxe 5 xe /c=t
Dxs 5 xs /c=t
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m liquid viscosity (Pa z s)
c kinetics parameter, such that L 5 c=t
rc cc volumetric heat capacity of the composite

(J z K21 z m23)
rm cm volumetric heat capacity of the matrix

(J z K21 z m23)
rm DH volumetric latent heat of solidi� cation of the

metal (J z m23)
s effective stress (Pa)
sLA liquid matrix surface energy (J z m22)
u contact angle of the liquid metal on the � at,

solid substrate material
x fractional distance along the composite
K permeability tensor of the porous medium

(m2)
kc thermal conductivity of the composite

(W z m21 z K21)
L total length of the in� ltrated portion of the

preform (m)
l(x) reduced liquid-phase velocity
P local pressure in the liquid (Pa)
Pg gas pressure (Pa)
Po total applied pressure (Pa)
Sf total surface area of solid/liquid interface per

unit volume of matrix (m21)
s(x) reduced solid-phase velocity
t time (s)
Tf initial preform temperature (K)
Tm metal melting temperature (K)
To initial metal temperature (K)
ul (positive) average local velocity of the liquid

within the pores (m z s21)
us (negative) local velocity of the solid (m z s21)
Vf local � ber volume fraction
Vf

c � ber volume fraction corresponding to s 5
DPT

Vf
i � ber volume fraction corresponding to s 5

DPT 2 DPg

Vf
r � ber volume fraction corresponding to s 5 0

Vs volume fraction of the solid metal phase
Vsf volume fraction of all solid phases (� ber 1

metal)
x position (m)
xe position of the porous preform entrance at

time t (m)
xs position of the remelting front at time t(m)
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