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Abstract- Seega is an ancient Egyptian two-phase board
game that, in certain aspects, is more difficult than chess.
The two-player game is played on either a 5 × 5, 7 × 7,
or 9 × 9 board. In the first and more difficult phase of
the game, players take turns placing one disk each on
the board until the board contains only one empty cell.
In the second phase players take turns moving disks of
their color; a disk that becomes surrounded by disks
of the opposite color is captured and removed from the
board. We have developed a Seega program that em-
ploys co-evolutionary particle swarm optimization in the
generation of feature evaluation scores. Two separate
swarms are used to evolve White players and Black play-
ers, respectively; each particle represents feature weights
for use in the position evaluation. Experimental results
are presented and the performance of the full game en-
gine is discussed.

1 Introduction

Games such as chess [4], backgammon [15], checkers [13],
Othello [1, 9], and Go [11, 2] have been of interest to the
AI research community [16]. The ancient Egyptian board
game of Seega is a challenging game that, in some ways,
is more difficult than chess, and may even be comparable
to Go in difficulty. Seega is a two-player game and is most
frequently played on a 7 × 7 board, but can also be played
on a 5×5 or a 9×9 board, with complexity increasing with
board size. For a 5×5 board, which we use in this paper, the
White and Black players each have 12 disks, colored white
and black respectively.

The first game phase is considered the heart of the game
and the one where the bulk of the skill is needed; the second
game phase is considered easier and requires less skill than
the first phase. In the first phase, players take turns placing
one disk each anywhere on the board except in the central
cell, until only the central cell remains empty. In the second
phase, each player, in each turn, is allowed to move one disk
a single step, vertically or horizontally, if it has an adjacent
empty cell. A disk that becomes surrounded, vertically or
horizontally, by disks of the opposite color is considered
captured and is removed from the board. If a player has no
moves, then he is forced to pass, but cannot elect to pass if
he has at least one legal move. The game continues until
one player loses because all, or all but one of his disks have
been removed, or there is a draw because 40 moves have
been made without any captures.

The game is difficult for a minimax-based lookahead

strategy, especially for larger board sizes, because in the
first phase, when the important decisions must be made, it is
not feasible for the lookahead to reach into the second phase
where the actual captures are made. The evaluation function
therefore has to incorporate much more game knowledge
than a chess or Othello evaluation function.

In this paper we use a minimax search that looks ahead
a number of ply and then applies an evaluation function.
The evaluation function uses 6 feature evaluators in the first
phase and 9 in the second phase; a weighted linear com-
bination is used to combine the features into a single po-
sition evaluation. The vector of coefficients for the feature
combiner is evolved by co-evolutionary particle swarm op-
timization.

Two swarms of 64 particles each are used for the White
and Black colors, respectively. In each iteration a number of
tournaments are played between players of the White swarm
and players of the Black swarm. The games to be played are
distributed across a cluster of 24 Intel Zeon 2.2GHz pro-
cessors. The performance of each particle is determined
by its performance in playing against members of the other
swarm.

In the following section we present a fuller description
of Seega and its rules. In Section 3 we review PSO and
co-evolutionary PSO. Section 4 describes the features that
are extracted by the feature evaluators. Section 5 discusses
implementation and results. A sample game is shown in
Section 6. Additional discussion and future work directions
are presented in Section 7.

2 Game of Seega

Seega is a two-player ancient Egyptian capture board game,
developed in Roman Egypt, and is still being widely played
in rural areas of Egypt.

The game is most often played on a checkered 7 × 7
board, with 24 white and 24 black pieces. An easier version
of the game uses a 5× 5 board, and a more difficult version
uses a 9× 9 board. In theory, the game can be played on an
r × r board for any odd r.

The game consists of two phases. White starts the first
phase, during which pieces are placed on the board by each
player in turn until all the squares, but the central one, are
occupied. Players may place pieces on any unoccupied
square except the central one.

Black starts the second phase, the aim of which is to
capture as many of the opponent’s pieces as possible. The
player that ends up with one or fewer pieces loses the game.
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A player is allowed to move any of his pieces into a hor-
izontally or vertically adjacent unoccupied square on a turn.
Of course, for the first move of the second phase, there is no
choice but to move a piece into the central square. A player
that makes a capture is allowed to play again.

A player captures one of the opponent’s pieces by en-
closing it from two opposite sides (horizontal or vertical),
but only when this is the result of a move. If a player has no
legal moves available, the opponent may play again until a
path is cleared for the other player.

Seega is difficult because during the first phase, the
player needs to plan ahead to the second phase, even though
looking ahead to the second phase is not feasible except at
the very end of the first phase. The difficulty and skill of
the game therefore lies in placing the pieces during the first
phase in preparation for the second phase.

3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) [7], first presented in
[5, 6] by Kennedy and Eberhart, is an optimization tech-
nique inspired by the concept of swarms in nature, such as
bird flocking, fish schooling or insect swarming. The idea is
that “individual members of the school can profit from the
discoveries and previous experience of all other members of
the school during the search for food [6].”

In the algorithm each individual in the particle swarm
(hereafter referred to as a particle) is represented as a n-
dimensional vector ~w for which we seek some kind of opti-
mum.

A neighborhood is defined on the population as some
mapping from each particle to some subset of the popula-
tion. Here, we use a hypercube-neighborhood topology; for
a population of size 2k, every particle is assigned a corner
of a k-dimensional hypercube. Two particles are said to be
neighbors if they are exactly one edge away from each other.

A velocity vector ~v, which defines a particle’s current
motion through the weight-space, and a vector ~b containing
the best solution vector seen so far, are kept track of for each
particle. Furthermore, a score value for ~v and ~b are stored
for each particle.

Preceding every iteration of the PSO algorithm is an
evaluation phase, during which the scores of the current
weight vector is determined. This is achieved by finding
the best particle for every neighborhood and accumulating
the particle’s score.

The algorithm first checks whether a vector is better than
the best seen so far. Next, the best neighbor in terms of score
is found, whose vector is denoted by ~p.

Then the vectors are updated according to the following
equation:

~vt = m · ~vt−1 + φ1(~p − ~ct−1) + φ2(~b − ~ct−1)
~ct = ~ct−1 + ~vt

(1)

The momentum m can be used to control how ‘light’ par-
ticles are, i.e. how difficult it is to accelerate them. The
parameters m, φ1, and φ2 define the kinetic behavior of par-
ticles.

3.1 Co-evolutionary PSO

The idea of having multiple parallel populations in an evolu-
tionary algorithm was first introduced in [12], where it was
applied to Genetic Algorithms (GA). Potter and De Jong
suggested the use of a species to represent a sub-component
of a particular solution and to evolve each such species as
a regular GA. By amalgamating the components resulting
from each sub-population, a final solution is created for the
problem.

Similar models are proposed in [10, 14] for PSO. Ac-
cording to Shi and Krohling, each population is run using
the standard PSO algorithm, using the other population as
its environment.

We have adopted this method since it has been observed
that in Seega one has an advantage by playing Black (start-
ing the second phase of the game, see section 2). The strate-
gies of a Black player would therefore tend towards ex-
ploiting that advantage and attacking, while a White player
would be more inclined to perfecting its defense strategies.

Applied to the algorithm presented above, this means
that two population weight vectors coexist, one for Black,
the other for White. During the evaluation phase, tourna-
ments take place between the two species among particles
of the two populations. The rest of the algorithm remains
unchanged, and is performed independently on each popu-
lation.

4 Feature Evaluators

Our approach uses minimax search with a small lookahead.
At the leaves of the minimax tree, board positions are as-
sessed using several feature evaluator functions which quan-
titatively describe certain aspects of the board. These func-
tions are either atomic or configurations. As defined in [3],
atomic functions analyze one criterion.

Most atomic features are bipolar, meaning they return a
real number between -1 and 1. The larger that number, the
more characteristic its measuring is for Black and not for
White and vice versa.

Take the feature material as an example. For a 5×5
board, each player has at most 12 pieces and at least 2 (oth-
erwise the game is over). Subtracting the number of white
pieces from the number of black ones gives a value between
12 − 2 = 10 and 2 − 12 = −10. We then divide this value
by 10 to produce a value between ±1.

Other features are unipolar, returning a value between 0
and 1. These features give a color-neutral evaluation of a
certain board aspect. The “mass-distance” features are ex-
amples of this, which compute the centers of mass for both
Black and White, and return the distance between them.
The atomic features are:

• corners (f1): Corner domination.

• borders (f2): Border domination.

• clustering (f3..6): This feature is implemented four
times, for Black (f3 and f4) and White (f5 and f6),
and for each of those in the horizontal (f3 and f5) and



the vertical (f4 and f6) direction. It simply counts the
number of horizontally/vertically adjacent
white/black pieces.

• massdist (f7,8): This feature exists twice, for hori-
zontal (f7) mass-distance and for vertical (f8) mass-
distance: the center of mass is computed for each
color, and the magnitude of the difference is returned.

• entrapment (f9,10): This feature again exists for the
horizontal (f9) and vertical (f10) orientations. It gives
a measure of how a color dominates the outer part of
the board, i.e. to what degree one color surrounds the
other.

• material (f11): Reflects the count of black vs. white
pieces on the board.

• phase two start (f12): This feature reflects how many
captures Black will make on the first move in phase
one – this feature turns out to be extremely important.

• black can start (f13): This feature returns 0 if the
four squares around the middle square are occupied
by White (i.e. Black cannot make the first move), and
returns 1 otherwise.

These are combined into higher level configurations
through addition and/or multiplication.

The final score returned by the evaluation function is a
linear combination of the results of those compound fea-
tures. In vector notation this can be expressed as follows;
For phase one,

s1 = (~w1)
T~c1

and for phase two,

s2 = (~w2)
T~c2

where ~w is the weight vector, ~c is the vector of compound
features, and s is the board score. The vector ~c is computed
from the basic features as follows:

~c1 =
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These expressions were chosen to represent meaningful
playing strategies. Take for example the expression

− 1
2f11(f3 + f4), which is the 2nd entry of ~c2. Here, ma-

terial (f11) which is a bipolar feature is multiplied by the
sum of vertical and horizontal clustering (unipolar). This
means that for a negative value of f11 (which usually means
White is winning) and a high clustering value for Black (a
defense mechanism), the entire expression will return a pos-
itive number which in effect counts this as an advantage for
Black.

The relative importance of these features is optimized
by the weight vector ~w. The values of these weights are
determined by the PSO algorithm (see section 3) and are
different for each player.

Often, several different board positions will have the
same score. To prevent the minimax algorithm from always
selecting the same one, a very small random bias is added
to the score before it is returned by the evaluation function.
In this way, a different game is played every time even if the
weight vectors stay the same.

5 Implementation and Results

The program we developed in this paper can basically be
divided into two sub-systems. The game engine that car-
ries out a game, and the PSO-based evolutionary compo-
nent. The evolutionary component uses the game engine in
a master-slave relationship in order to evaluate the fitness of
its particles.

The game engine implements a regular minimax search-
tree algorithm to determine a best next move for a certain
board position. It is based on an evaluation function, which
assigns a score to a board position, based on which the mini-
max algorithm selects best moves from the leaf nodes of the
search tree. The best scores are propagated upward to fi-
nally determine the best next move. See [8] for more details
on the minimax algorithm.

To increase the efficiency of the program, the depth of
the minimax tree was modeled as a linear function of the
pieces on the board at any given point in time, ranging from
2 to 10-ply. For example, at the beginning of the first phase
when it is not fruitful to look too far ahead, the tree goes
only 2 levels deep. The depth increases proportionally to the
number of pieces on the board. In the first phase, the depth
of the search is determined using the following equation:

d = 2 + bp(b) · 0.3c

where d is the depth, and p(b) represents the total number of
pieces on a particular instance b of the board. In the second
phase, the depths of the search tree range between 4 and 6,
this time according to this equation:

d = 4 + b(p(b) − 12)2 · 0.02c

This technique has increased the speed of the games tremen-
dously and avoids any unnecessary calculation. Further-
more, it tries to exploit the game-tree search algorithm at
the most critical point of the game, namely, towards the end
of the first phase, where the search reaches a depth of 10-
ply.



The evolutionary subsystem is meant to optimize the
weights given to the evaluation function, to make it return
meaningful scores. Two swarms of 26 particles are used,
where each swarm is based on a 6-dimensional hypercube
topology. Therefore, each particle has 6 neighbors, and the
intersection of any two neighborhoods includes no more
than one particle.

At the end of each iteration each particle plays 5 consec-
utive games (the use of a small random bias in the evalua-
tion function, as described earlier, allows for the possibility
of different outcomes) against its image in the other swarm
and 5 consecutive games against each of the six neighbors
of its other-swarm image. This is a total of 5×64×7 = 2240
games that are played in each iteration.

Each game carried out by the game engine returns a score
to its master. This score is calculated to incorporate not only
who won or lost the game, but also other data, such as the
number of pieces left on the board, as well as the number of
moves made throughout the game. This is necessary, for ex-
ample, to reward players who lost a well-fought game over
a player who simply lost without any resistance. The score
s is calculated as follows:

s = r(1.0 + ∆p − ∆m)

∆p = k · ec1(ln 1/2)(p−12)/12

∆m = k · ec2(ln 1/2)(m−25)/25

where r is the result of the game, either 1 if Black won, -1
if White won or 0 if the game resulted in a draw. ∆p repre-
sents the margin added according to the number of pieces p

that were left at the end of the game out of the possible 24
pieces (since we are using a 5×5 board) and ∆m stands for
the reward/punishment for the number of moves in a game.
These were chosen to be exponential functions, opposed to
linear functions to put an upper limit to their values. The
other variables, k, c1 and c2 are constants adjusted accord-
ingly.

The large number of games were executed on a
24-processor cluster of Intel Zeon 2.2 GHz processors, with
512 MB of RAM on each processor.

Figure 2 shows the development of relative fitness for
Black over the course of 800 iterations. This reveals an in-
crease in relative fitness over time for Black, increasing the
gap separating Black and White even further.

The White population displayed a general tendency to
play towards a draw. This also becomes apparent by looking
at Figure 2, which visualizes the progress of Black’s relative
fitness over time (White’s is the exact mirror image reflected
along the y-axis). The first 200 iterations contain larger fluc-
tuations, after which relative fitness becomes quite stable at
a relative fitness value of about 425.

The relationship here is that White relatively quickly
found a way to efficiently play towards a draw, making it
more and more difficult for Black to still make a win. As a
result, the population ‘settled’ on a local optimum, produc-
ing players that could go several iterations without losing a
single time.

Seeing two trained weight vectors play against each
other (see next section) gives further evidence of this. White
tries to accumulate its pieces on one side of the board and to

occupy corners and borders. In this way, it is encouraging a
draw rather than being ambitious and hoping for a win.

Figure 1 also shows how Black’s weights have evolved
over the 800 epochs. Note that the initial values are random.
For the first 500 epochs or so the weights are still being ad-
justed and fluctuate in the process, after which stagnation
is reached, remaining stable for the remaining 300 epochs.
This particular particle has decided that vertical clustering -
both for Black and White - is extremely important (f4 and
f6), whereas horizontal clustering (f3 and f5) are the least
important features. Occupying borders (f2) as well as cor-
ners (f1) seems to be relatively important to this player.

The source code for the present version of the program
will be made publicly available.

6 A Sample Game

This section shows a game as carried out on the game engine
between two particles after 800 epochs, one from the White
and one from the Black swarm, each with its own weight
vector.

Below is a list of the moves made throughout the game:
a white or a black circle signifies whose turn it is; one co-
ordinate is given in the first phase of the game, which rep-
resents the position where the disk was placed; both source
and destination coordinates are given for phase two.

The first board illustration (Figure 3) shows the board at
the end of phase one of the game. The strategies the players
are following are already quite obvious, especially White’s.
The white pieces are all clustered to one side of the board,
showing the effect of both the clustering (f3..6) - which can
also be observed in Figure 1 as the most important feature -
and the center of mass (f7,8) features. It is also noticeable
that Black has tried to ensure that it can start (f13), but has
not taken control of the first few captures of the game and
two of its pieces are immediately captured at the beginning
of phase two.

1: ◦ c1, 2: • c5, 3: ◦ a3, 4: • e3,
5: ◦ d1, 6: • d5, 7: ◦ e4, 8: • a4,
9: ◦ c2, 10: • e5, 11: ◦ e1, 12: • a5,
13: ◦ d2, 14: • e2, 15: ◦ b3, 16: • c4,
17: ◦ a1, 18: • b4, 19: ◦ b2, 20: • a2,
21: ◦ d4, 22: • b5, 23: ◦ b1, 24: • d3,

The next 26 moves are displayed below. Even though
White has managed to capture 2 of Black’s pieces right at
the beginning of the second phase and could have easily
driven the game to its advantage, White prefers to go into
defensive mode and play for a draw by clustering its pieces
and avoiding any intermingling with the black pieces. This
is especially evident from the second board illustration in
Figure 4, which does not differ much from the original po-
sition at the start of phase two.

25: • c4-c3, 26: ◦ d4-c4, 27: ◦ e4-d4, 28: ◦ d2-d3,
29: • e5-e4, 30: ◦ d1-d2, 31: • d5-e5, 32: ◦ b3-c3,
33: • c5-d5, 34: ◦ a3-b3, 35: • a4-a3, 36: ◦ c1-d1,
37: • d5-c5, 38: ◦ c2-c1, 39: • e5-d5, 40: ◦ c1-c2,
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Figure 1: A black particle’s feature weights for phase one
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Figure 2: Black’s relative fitness over time
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Figure 3: End of Phase One

41: • e4-e5, 42: ◦ b1-c1, 43: • b4-a4, 44: ◦ b2-b1,
45: • a4-b4, 46: ◦ c2-b2, 47: • b4-a4, 48: ◦ c1-c2,
49: • a4-b4, 50: ◦ d1-c1,

Insisting on its retreat, White waits till 40 capture-less
moves have passed by simply moving back-and-forth, lead-
ing to the final result of a draw. The final board position is
shown in Figure 5, again with only very slight changes that
seem to be due to Black’s efforts to attack.

This game is a clear example of the problems we are fac-
ing with the evolved White players, which we hope to tackle
in future work.

51: • b4-a4, 52: ◦ c1-d1, 53: • a4-b4, 54: ◦ d1-c1,
55: • b4-a4, 56: ◦ c1-d1, 57: • a4-b4, 58: ◦ b1-c1,
59: • e5-e4, 60: ◦ c1-b1, 61: • a5-a4, 62: ◦ d1-c1,
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Figure 4: After 50 moves

63: • e4-e5, 64: ◦ e1-d1, 65: • e2-e1, 66: ◦ d2-e2,
67: • e3-e4 — draw!
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Figure 5: End of Game

7 Conclusions and Future Work Directions

This paper represents a first attempt at developing a PSO-
based game engine for the ancient Egyptian board game
Seega. The performance of the program against human
players is found to improve as the number of PSO iterations
increases. In the present work, we used the smaller 5 × 5
board, however, we would like to transfer to the 7×7 board
once this size has been sufficiently mastered.

In the future, we would like to explore other tournament
schemes with the aim of reducing the number of games used
to evaluate the members of the co-evolutionary Black and
White swarms, and also of increasing the amount of com-
petition in the games played, by ensuring that players get
more challenging partners.

We are having more difficulty evolving White players
than Black. The game is of course asymmetric, with White
playing first in the first phase but Black playing first in the
second phase. As a result, one’s strategy playing as White
is very different from when playing as Black.

In the future, it would also be interesting to combine
the PSO approach with a GA. The hybrid algorithm pro-
posed in [10] integrates selection and crossover operators
into the PSO algorithm. This is done at each time step:

when the vectors of the particles are recalculated, certain
particles from the swarm are selected and recombined with
each other to create a new generation of particles. The idea
behind this approach is to increase the variation between
particles of each generation, which has the potential of im-
proving performance for the Seega application.
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