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Abstract

Software transactional memory (STM) is a promis-
ing technique for controlling concurrency in mod-
ern multi-processor architectures. STM aims to
be more scalable than coarse-grained locking and
easier to use than fine-grained locks. However,
STM implementations have yet to demonstrate
that their runtime overheads are acceptable. To
date, empiric evaluations of these implementa-
tions have suffered from the lack of realistic bench-
marks. Measuring performance of an STM in an
overly simplified setting can be at best uninforma-
tive and at worst misleading as it may steer re-
searchers to try to optimize irrelevant aspects of
their implementations.

This paper presents STMBench7: a benchmark
for evaluating STM implementations. The under-
lying data structure consists of a set of graphs and
indexes intended to be suggestive of many com-
plex applications, e.g., CAD/CAM. A collection of
operations is supported to model a wide range of
workloads and concurrency patterns. Companion
locking strategies serve as a baseline for STM per-
formance comparisons.

STMBench7 strives for simplicity. Users may
choose a workload, number of threads, bench-
mark length, as well as the possibility of struc-
ture modification and the nature of traversals of
shared data structures. We illustrate the use of
STMBench7 with an evaluation of a well-known
software transactional memory implementation.

∗EPFL Technical Report LPD-REPORT-2006-xxx. A part of
this work has been submitted for publication.

1 Introduction

Multi-threading is well on its way to becoming
the norm in the future with the foreseen gen-
eral migration to modern multi-processor systems.
Whereas forking large numbers of threads is ap-
pealing for performance, controlling their con-
current interactions is tricky. The most com-
mon method for thread synchronization—using
lock-based structures, like monitors—poses both
efficiency and engineering problems. Coarse-
grained locking is blamed for its limited scalabil-
ity, whereas fine-grained locking is considered er-
ror prone.

Transactional memory [8], implemented either
in software or in hardware, is an alternative to
explicit locking1 which has garnered considerable
attention of late. The idea is that manipulation
of shared data structures is performed within the
scope of in-memory transactions. These can either
commit, in which case the results of their compu-
tations become instantly visible to other threads,
or abort, in which case all changes to shared state
are lost. An aborted transaction may either be
transparently restarted by the run-time, or the con-
trol may be handed by to the application. Dead-
lock and priority inversion are avoided because
non-committed transactions can be aborted at any
time. Furthermore, some implementations (e.g.,
obstruction-free ones [7, 9]) are fault-tolerant in a
sense that a faulty transaction that crashes cannot
cause an inconsistent state or block other transac-
tions forever.

A Software Transaction Memory (STM) [12]

1We use here the term explicit locking to contrast it with im-
plicit locking that might underly some transactional memory
implementations.
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implementation guarantees atomicity and isola-
tion of transactions through software mechanisms.
These are used for undoing changes made by
aborted transactions and for resolving conflicts
between transactions that compete for the same
shared objects. STM systems are of particular in-
terest because they do not require change to the
underlying hardware—they can be implemented
either as part of the high-level language com-
piler, the virtual execution environment, or even
as an external library. Many implementations (e.g.,
ASTM [9] (Java), SXM [6] (C#), RSTM [10, 2] (C++))
have been proposed. So far, there has been very
little in the way of empiric evaluation of the trade-
offs in the different systems. This for two rea-
sons: Firstly, direct comparison is difficult for sys-
tems based on different programming languages
or running on customized virtual execution envi-
ronments. Secondly, because there are no bench-
marks that provide realistic workloads for STMs.
The upshot is that all experimental evaluation to
date have either relied on “toy” benchmarks based
on simple data structures (e.g., lists, red-black
trees), benchmarks with limited concurrency (like
SPEC JVM98 or Java Grande) which were not de-
signed for transactional memory. In most of the
existing evaluations, a clear, uncontroversial, base-
line is generally missing—a comparison with fine-
grained and coarse-grained locking—and so it is
difficult to estimate the real cost of using an STM
(which is usually not negligible).

The motivation of this work is to come up with
a comprehensive benchmark suite for STM imple-
mentations. More specifically, our goal is to pro-
duce a set of workloads that:

• corresponds to realistic, complex, object-
oriented applications which benefit from
multi-threading;

• are non-trivial to synchronize in a scalable
way;

• do not depend on any particular STM technol-
ogy or programming language. Concurrency
can be controlled by different mechanisms at
different granularities;

• are easy to use and provide results of which
can be readily interpreted.

This paper presents STMBench7, a first step to-
wards achieving that objective. Instead of start-
ing from scratch, we considered extending a rich
data structure with a long history of use for bench-
marking purposes: the OO7 benchmark [4]. OO7

has been originally designed to compare various
object-oriented database systems. It is not specific
to any particular application, but, as shown by the
authors, represents a wide variety of commercial
applications including CAD, CAM or CASE sys-
tems. Like OO7, STMBench7 operates over a rich
object-graph with millions of objects and many
interconnections between them. There are over
forty operations with various scope and complex-
ity. This allows for simulating many different real-
world scenarios and makes concurrency a non-
trivial issue.

The set of operations we designed and imple-
mented for STMBench7 is, however, significantly
more involved than in OO7. Basically, OO7 was
used to evaluate the performance of isolated trans-
actions, whereas STMBench7 is aimed to con-
sider various concurrency patterns and work-
loads. Furthermore, unlike in OO7, the data
structure of STMBench7 is highly dynamic, which
better matches the requirements of applications
that allocate and deallocate memory at high rates.
STMBench7 is multi-threaded and we needed to
define precisely how updates to different objects
performed by a single operation have to become
visible to concurrent threads. STMBench7 also
provides locking mechanisms that can serve as
a comparison baseline for STM implementations.
In its default configuration, STMBench7 comes
with a coarse-grained locking strategy and a fine-
grained one in order to highlight the performance
and scalability tradeoffs of different strategies. In
the long run we expect to provide more refined
lock-based implementations.

The current implementation of STMBench7 is a
little over 4000 lines of code and is available at [3].
Our version is written in Java, although, we expect
to provide versions of the benchmark for other
languages (such as C# or C++). STMBench7 uses
standard classes from the java.util package. We
used the new features of Java 5, such as gener-
ics and enumerations to improve the quality and
readability of code. The locking strategies use the
read-write locks from the java.util.concurrent
package.

We illustrate the use of STMBench7 with an
evaluation of a variant of ASTM, and we indirectly
highlight the difficulty in outperforming locking
strategies. Our straightforward implementation
of STMBench7 using ASTM performs 2–4 orders
of magnitude worse than the lock-based versions.
That is because of long traversals and large ob-
jects that would need more adaptive mechanisms
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than the ones ASTM uses. One way to overcome
this problem would be to refactor the implemen-
tation of the data structures so that small objects
are grouped and larger ones are split into smaller
objects. But doing so would require significant ef-
fort and weaken the main selling point of the STM
technology—namely, that it makes implementing
scalable concurrent data structure easy.

Our results may be surprising for some pre-
liminary performance evaluations have shown sit-
uations where ASTM outperforms DSTM that,
in turn, scales better than coarse-grained locking
strategies [9, 7]. We argue that there is actually
no contradiction here. When selecting STMBench7
workloads that resemble the ones of synthetic
benchmarks used so far, the ASTM-based imple-
mentation is nearly as fast as the lock-based ones,
outperforming the coarse-grained locking strategy
for read-dominated workload. The performance
problems of ASTM are, we believe, common to
many STMs that use invisible reads and object-
level logging of changes made by transactions.
Fortunately, some solutions to overcome these is-
sues have already been proposed [5, 10, 11, 13].

The rest of the paper is organized as follows.
We first give an overview of STMBench7. Then,
we focus on its operations and concurrency as-
pects. We also show some experimental results
that highlight the differences between the two
locking strategies built in STMBench7. Finally, we
illustrate the use of our benchmark by evaluating
a variant of the ASTM framework.

2 Overview

As we pointed out, STMBench7 is based on the
data structure underlying OO7. We had to pro-
vide, however, a new collection of operations to
match the demands of concurrent applications.
Basically, the implementation of STMBench7 has
about 4300 lines of code of which only 2500 corre-
sponds to the OO7 specification. In this section,
we recall the OO7 benchmark and then give an
overview of STMBench7, before describing its de-
tails in the next sections.

2.1 The OO7 Benchmark

The OO7 benchmark [4] has been originally
designed to compare various object-oriented
database systems. A precise description of OO7
can be found in its specification and the accompa-

nying source code [1]. Here we only give a general
overview of OO7 that is necessary to understand
the specifics of STMBench7.

The data structure underlying OO7 is depicted
in Figure 1. It consists of several modules, each con-
taining a tree of assemblies. The internal nodes
of the tree are called complex assemblies and the
leaves—base assemblies. Each base assembly con-
tains several composite parts. A composite part has
a document assigned to it and links to a graph of
atomic parts which are connected via connection ob-
jects. Each element of the data structure contains
links to its parents. As a consequence, a traver-
sal is possible both top-down and bottom-up. The
many-to-many connections between base assem-
blies and composite parts are implemented with
two bags each: one containing all composite parts
belonging to a given assembly, and one containing
all base assemblies a given composite part belongs
to. Each document and each graph of atomic parts
is associated with one composite part. On the con-
trary, composite parts form a design library that is
shared between all base assemblies.

OO7 includes three kinds of operations: traver-
sals, queries and structure modifications. Traversals
go through the data structure top-down, starting
from the root assembly, or bottom-up, starting
from a random atomic part. Most of them ac-
cess (read or update) a large subset of all shared
objects. Queries generally search for a subset of
objects using an index or a set. Structure modi-
fication operations create or delete a base assem-
bly and the descendant composite parts together
with their documentation objects and their graphs
of atomic parts. In general, only atomic parts and
documentation objects can be updated, while all
others are read-only.

2.2 From OO7 to STMBench7

OO7 was designed to measure the latency of
isolated operations issued to an object-oriented
database system. Specific aspects of OO7 were ori-
ented towards multi-client systems, but the bench-
mark was rather intended for use in low-load sce-
narios, where interaction between concurrent op-
erations is not taken into account.

Our main goal in designing STMBench7 was
to measure the performance (throughput and la-
tency) of a set of operations that are interleaved by
a scheduler or run in parallel, and that compete
for access to shared objects. Thus, we are inter-
ested in the behavior of both the overall system
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Figure 1: Overview of the basic OO7/STMBench7
data structure: module objects contain a tree of
assemblies. Internal nodes of the tree are called
complex assemblies and leaves are base assemblies.
A base assembly contains several composite parts.
A composite part has a document and links to a
graph of atomic parts connected via connection ob-
jects. Each element contains links to its parents al-
lowing bottom-up as well as top-down traversals.

and each individual operation, under high load
and high contention. The data structure and oper-
ations of OO7 were a good starting point, but they
were clearly insufficient for our purpose. Firstly, in
many concurrent applications one can often find
a large number of very short operations the per-
formance of which is crucial. The traversals and
queries forming the OO7 suite are mostly long and
access a large number of shared objects. Secondly,
the choice of the operations in OO7 makes most
of the shared data structure effectively read-only.
This is not very important when there is no concur-
rency. However, having a large number of read-

Key Value
1 Atomic part ID Atomic part
2 Atomic part build date Atomic part
3 Composite part ID Composite part
4 Document title Document
5 Base assembly ID Base assembly
6 Complex assembly ID Complex assembly

Table 1: The list of indexes used in STMBench7.

only objects makes the synchronization problem
unrealistically easy. Clearly, for read-dominated
workloads, updates of object attributes are rare,
but still the synchronization strategy, be it lock-
ing or STM-based, has to account for these rare
changes that usually may appear in every part of a
data structure.

While extending OO7, we wanted to retain the
realism of its operations. However, we needed
to enlarge the set of operations so that many in-
teresting data access patterns, which often appear
in concurrent programs, are tested and the re-
lated problems of synchronizing concurrent ob-
jects are faced. We give a precise description of
STMBench7 operations in Section 3. We left the
original data structure of OO7 almost untouched.
We only removed few parts that only make sense
in a database context. In particular, we removed
some indexes and sets (we left the indexes listed in
Table 1.) as well as indirect links between atomic
parts and documents that were introduced for the
sole purpose of evaluating join operations (which
are quite meaningless outside the database con-
text).

We also confined the data structure of STM-
Bench7 to a single module. This is because mul-
tiple modules would limit the concurrency of op-
erations and would require a much higher load to
discover all the efficiency problems resulting from
contention. However, we chose the “medium”
size of OO7 as the base for our benchmark, which
gives quite a large data structure. Namely, there
are six levels of complex assemblies, having three
children assemblies each, 500 composite parts al-
together, each corresponding to a graph of 100000
atomic parts and at least three times as many con-
nections between them.

STMBench7, unlike OO7, is inherently multi-
threaded. Therefore, additional care had to be
taken so that the specification of operations is un-
ambiguous even in presence of concurrency and
contention. For example, we needed to define pre-
cisely, how updates to different objects performed
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by a single operations have to become visible to
concurrent threads. STMBench7 also provides two
locking strategies with different granularity and
complexity. We describe them precisely, together
with the multi-threading issues, in Section 4.

2.3 Using STMBench7

The command-line interface of STMBench7 in-
volves the following parameters: the length of the
benchmark, the number of threads, the type of the
workload (read-dominated, read-write or write-
dominated) and two parameters that can indepen-
dently disable long traversals and structure mod-
ification operations. The benchmark, by default,
outputs the count and maximum latency numbers
for each operation type and for each category of
operations, as well as the total throughput. It also
computes the error of the sample of randomly cho-
sen operations, as compared to the ratios derived
from the benchmark parameters. The benchmark
can also optionally produce latency histograms for
each operation. (See Appendix A for an STM-
Bench7 user’s guide.)

STMBench7 does not output a single number
as a benchmark result. This would lead to sim-
plistic comparisons: for some applications it is
crucial to optimize the latency of long operations
whereas others focus more on the throughput of
short queries. Besides, interpreting a single result,
computed from many others with a convoluted
formula would say very little on where optimiza-
tions should actually be performed.

3 Operations, Workloads and
Concurrency Patterns

STMBench7 contains 45 operations on the shared
data structure. This is a large number and leav-
ing a user full control over how often each of them
is executed would be unacceptable. Therefore, we
divided the operations into several categories. The
benchmark assigns ratios to these categories au-
tomatically, based on the abstract description of a
target application provided by a user. Then, STM-
Bench7 operations are executed by a number of
threads, in proportions that depend on the com-
puted ratios (operations from the same category
have equal ratios).

There are four main categories of STMBench7
operations:

1. Long traversals—go through all assemblies
and/or all atomic parts. Some of them update
documents or atomic parts. They all originate
from OO7 (traversals T1–T6 and queries Q6,
Q7).

2. Short traversals—traverse the structure via a
randomly chosen path, starting from a mod-
ule, a document or an atomic part. Some of
them use indexes. One short traversal be-
haves differently: it iterates over all base as-
semblies and checks some of their descendant
composite parts. Short traversals are denoted
by ST1–ST10. Some of them originate in OO7
(T7, Q4 and Q5 in OO7) and some perform
updates on atomic parts or documents.

3. Short operations—chose some object (or a few
objects) in the structure (randomly or with
some search criteria, mostly using an index)
and perform an operation on the object(s) or
its local neighborhood. They are denoted by
OP1–OP15. Five of them originate from OO7
(Q1–Q3 and T8, T9 in OO7).

4. Structure modification operations—create or
delete elements of the structure or links be-
tween elements (randomly). The operations
are constrained though, so that the structure
is never degenerated in a significant way. For
example, the root complex assembly is always
connected to all base assemblies. Also the
maximum size of the structure is confined.
Structure modification operations are denoted
by SM1–SM8. They have no exact equivalents
in OO7. A simple example of a structure mod-
ification operation is depicted in Figure 2.

We also split the STMBench7 operations into two
other categories, spanning all traversals and short
operations: read-only operations and update ones.
Appendix B contains the full specification of STM-
Bench7, including the description of all the opera-
tions.

A user describes a target application by provid-
ing the following information:

• Workload type: which can be read-
dominated, read-write or write-dominated.

• Types of allowed operations: i.e., whether
long traversals and/or structure modification
operations are enabled.

• Number of concurrent threads.
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Figure 2: A structure modification operation that
removes a complex assembly with its descendants

The default ratios for different operation cate-
gories are presented in Table 2. These are com-
bined and adjusted, based on the benchmark pa-
rameters.

The operations of STMBench7 represent all the
important ways the shared data structure can
be accessed. There is one significant exception,
though. Namely, we do not exploit concurrency
patterns in which a thread must wait for results
of operations performed by other threads. Thus,
STMBench7 is not meant to evaluate the perfor-
mance of producer-consumer-like scenarios. STM-
Bench7 approaches the problem in a different way:
it allows an operation that cannot proceed without
being blocked to fail. We use this mechanism ex-
tensively, because operations lack input data and
thus have to make choices randomly. For example,
some operations chose an object in the structure by
picking a random ID and searching an appropriate
index. If the ID does not correspond to any exist-
ing object, the operations fail. Clearly, we could
make them check first which IDs are available, so
that they can never fail, but this would be more
costly than a simple index search, which, in turn,
would skew the benchmark results.

4 Multi-threading and Locking

STMBench7 runs a user-specified number of con-
current threads, all performing operations on the
shared data structure. The threads are uniform in

a sense that each picks its next operation randomly
from the whole pool of 45 STMBench7 operations.
Each thread registers locally its performance mea-
surements. These are combined at the end of the
benchmark.

There is an important question about the be-
havior of STMBench7 operations executed concur-
rently. More precisely, one has to decide whether
an operation should be executed (logically) atomi-
cally or whether the updates it makes to the shared
data structures can become gradually visible to all
threads. The problem is difficult, because the op-
erations of OO7, or the ones we added for STM-
Bench7, are not tightly bound to any specific ap-
plication so there is no clear semantics behind
them. For real programs atomicity is not always
a must—it can be weakened sometimes for effi-
ciency reasons, when the application can take ad-
ditional measures to prevent dangerous inconsis-
tencies in the global state. We, however, have to
be conservative. We thus assume that every op-
eration is atomic, i.e., that the changes it makes
to the shared data structure have to become visi-
ble instantaneously to others. It does make lock-
ing more difficult, but it also makes the lock-based
version of STMBench7 have the same semantics as
an STM-based one in which every operation is a
single transaction.

The core code of STMBench7 does not contain
any concurrency control mechanisms. This makes
it possible to directly use STMBench7 with an ar-
bitrary STM framework, without the need to re-
move locks and convert critical sections. Never-
theless, we do provide two locking strategies that
can serve as a baseline for STM performance re-
sults, but these are provided separately and can be
automatically merged with the core STMBench7
code at compile time.

The two locking strategies of STMBench7 dif-
fer in their granularity and complexity. The first,
which we call “coarse-grained”, uses a single read-
write lock to protect the whole data structure.
Clearly, it induces minimal locking overhead on
operations, but limits scalability in a significant
way, except for read-dominated workloads. The
second strategy could be described as a pragmatic
approach. It is not fully fine-grained, but its com-
plexity (from a programmer’s perspective) is sim-
ilar to that of an STM-based solution. It represents
what, we believe, an average software engineer
would try in the first place. We call it “medium-
grained”. This locking strategy, in short, (1) pro-
tects each level of the data structure with a sin-
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Workload type
Category Read-dom. Read-write Write-dom.

Read-only ops 90 60 10
Update ops 10 40 90

Long Traversals 5
Short traversals 40
Short operations 45
Structure mods 10

Table 2: Default ratios for operation categories (in %).
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Figure 3: Comparison of coarse- and medium-grained locking strategies included in the STMBench7
suite. Maximum latency for traversal T1 (read-dominated workload) or T2b (write-dominated work-
load). All operations enabled. Left: 2-cpu Xeon, right: 8-cpu Sun V40z.
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Figure 4: Comparison of coarse- and medium-grained locking strategies included in the STMBench7
suite. Total throughput with all operations except for long traversals enabled. Left: 2-cpu Xeon, right:
8-cpu Sun V40z.

gle read-write lock, and (2) makes all the struc-
ture modification operations performed in isola-
tion (see Figure 5). More precisely, there is a single

read-write lock for: (1) each level in the assembly
tree, (2) all composite parts, (3) all atomic parts, (4)
all documents, and (5) the manual. An additional
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read-write lock isolates structure modification op-
erations (it is acquired in write mode by structure
modification operations and in read mode by all
other ones). Indexes, sets and bags do not have to
be synchronized separately in this case.

A fine-grained locking could be implemented
for STMBench7. It would probably make no
sense to protect each atomic part with a single
lock, but locking each assembly and composite
part separately could result in better scalability.
However, the diversity of STMBench7 operations
makes the problem of fine-grained locking very
difficult. That is because the data structure can
be accessed in many ways and traversed in many
directions. Thus, there is a need for each opera-
tion to build a list of objects it wants to access, sort
the list and then acquire locks in the right order
to avoid deadlocks. This, clearly, adds additional
overhead which, together with the significant en-
gineering cost, would be difficult to justify with an
increase in scalability.

To illustrate the difference between the two
strategies, we present here some experimental re-
sults. These were obtained on two machines: a
2-cpu Xeon and an 8-cpu Sun V40z. The maxi-
mum latency of long traversals T1 (read-only, for

read-dominated workload) and T2b (updates all
atomic parts, for write-dominated workload), in
executions with all operations enabled, is plotted
in Figure 3. The throughput results for three possi-
ble workload types, with long traversals disabled,
are presented in Figure 4. Note that measuring to-
tal throughput when long traversals are allowed,
as well as latency for short operations, makes lit-
tle sense. That is why STMBench7 measures and
outputs a variety of parameters.

Clearly, the medium-grained locking approach
has a slightly larger overhead than the coarse-
grained one, but it exploits the power of the multi-
processor architecture better when there are at
least two concurrent threads. The scalability of
medium-grained locking is hampered for write-
dominated workloads, though. This is because
most of the update operations and short traver-
sals, and all structure modification operations, ac-
quire the same locks in write mode, which means
that only few can be executed in parallel. How-
ever, most of them may, at least partially, overlap
with read-only operations. A finer-grained locking
strategy could help here, but, as we already men-
tioned, implementing it efficiently would be much
more complex than using an STM.

The throughput results are not surprising. How-
ever, the latency ones need some explanation, for
the latency of long traversals T1 and T2b is, on av-
erage, higher for medium-grained locking than for
coarse-grained one. We believe this is due to the
fact that long traversals have to acquire 9 locks in
the former case, and only a single lock in the latter
case. Thus, with medium-grained locking a thread
executing T1 or T2b has to wait more often in lock
queues.

5 Illustration: ASTM

To test our benchmark, we have implemented a
version of STMBench7 synchronized using a vari-
ant of ASTM—an STM framework available as a
Java library. The tests were performed on two ma-
chines: a 2-cpu Xeon and an 8-cpu Sun V40z, using
JDK 1.6 (beta) and the Polka contention manager
included in ASTM.

Our STM-based implementation is a straightfor-
ward, and so not necessarily optimal, approach to
the problem. We tried to look from the perspec-
tive of an average programmer who has chosen
STM because it is advertised as being almost as
easy to use as coarse-grained locking. Thus, we
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Figure 6: Comparison of ASTM-based synchronization with coarse- and medium-grained locking
strategies included in the STMBench7 suite with all long operations disabled. Left: 2-cpu Xeon, right:
8-cpu Sun V40z.
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Workload type
Read-dominated Read-write Write-dominated

Threads Lock ASTM Lock ASTM Lock ASTM

1 2396 1.1 1361 1.60 813 6.6
2 2982 1.6 1396 1.5 814 8.9
4 2976 2.1 1430 2.3 779 2.1
8 2876 0.7 1343 0.7 788 7.6

Table 3: Comparison of total throughput (operations per second) for coarse-grained locking and ASTM,
with long traversals disabled

made each non-immutable object in the data struc-
ture transactional2 and converted each operation
to a single, flat transaction. Of course, the perfor-
mance results we provide could be used for further
improvements of the STM implementation.

Our simple ASTM-based implementation per-
forms very poorly when long traversals are
enabled—a single execution of traversal T1, for ex-
ample, could last as much as half an hour (with a
single thread, on the 2-cpu machine; as compared
to about 1.5 s for locking). With long traversals dis-
abled, we got the throughput results presented in
Table 3.

The cause of the poor performance of the ASTM-
based STMBench7 are two kinds of operations: the
ones that acquire a large number of objects in read
mode and the ones that perform updates on very
large objects (like the manual). The reason for
that are two elements of the ASTM design: invis-
ible reads and logging granularity, i.e., object-level
granularity of logging changes made by running
transactions. More precisely, when a transaction
acquires an object in a read-only mode, it adds the
object to its private list. The list is not visible to
other transactions. Therefore, an object acquired
for reading can be subsequently acquired for writ-
ing by another transaction. This means that, in
a general approach, which is also used in ASTM,
a transaction has to validate its private list every
time the transaction acquires an object for read-
ing. Thus, the cost of validation for every transac-
tion is O(k2), where k is the number of objects the
transaction acquired for reading. This explains the
problem with long traversals, some of which, in
our ASTM-based implementation of STMBench7,
have to acquire more than 50 millions of objects.

ASTM performs logging of changes made by
transactions by copying the objects that were ac-
quired for writing. Therefore, even if only a sin-
gle attribute of an object is changed, a copy of the

2Transactional objects are shared objects access to which is
controlled by an STM.

whole object has to be made. This clearly poses a
problem, because the manual and each index are
represented by single objects. As our ASTM-based
implementation does not split large objects into
smaller parts, the performance of operations that
updates these objects is significantly limited.

A solution would be to group small objects and
split the large ones. For example, one could make
composite parts contain, logically, all their atomic
parts. Then, only composite parts would be trans-
actional and thus the cost of read-only traversals
would be significantly lowered. However, com-
posite parts would then become big objects, up-
dates to which would be quite costly. One can
also split the manual into a number of chunks,
each being a separate transactional object. The
indexes could be implemented manually, using,
for example, B-trees, with each node synchronized
separately—this would make them highly scalable
data structures. Nevertheless, one can easily see
that if such amount of changes is necessary to use
STM in an optimal way, the software engineering
advantages of STMs become less visible. In this
sense, STMBench7 requires a tough job from STMs
and as such it becomes even more interesting.

To check that our suspicions are correct, we dis-
abled all operations that acquire too many objects
in read mode or modify either the large index of
atomic parts or the manual. The resulting data
structure, with remaining set of supported oper-
ations, resembles applications that are based on
short queries over partially static, tree-based data
structure. This come close to the synthetic bench-
marks that have been used for evaluating STMs so
far (e.g., [7, 9, 5]).

We repeated all the experiments with the so-
modified STMBench7. The results, presented in
Figure 6, confirm that ASTM performs very well
in some, specific scenarios. Namely, for read-
dominated workload ASTM-based synchroniza-
tion is as scalable as medium-grained locking (see
the plot for the 8-cpu machine) and outperforms
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coarse-grained locking if enough processors and
threads are available. This should not be surpris-
ing. The ASTM-based implementation, however,
seems to behave in a quite instable way when the
ratio of update operations is larger. Unfortunately,
we do not understand the cause of this behavior at
the time of the submission.

6 Summary

This paper presents a first step towards a bench-
mark for evaluating software transactional mem-
ory implementations. STMBench7 has the follow-
ing desirable properties:

• Its data structure and workload are realistic
and correspond to an important class of appli-
cations (e.g., CAD, CAM or CASE software).

• The data structure is dynamic thus exercising
the aspects of STMs related to memory alloca-
tion.

• Tests that are known to be problematic for
STMs such as long traversals and complex ob-
jects are included. In a sense, STMBench7 can
be viewed as a “crash test” for software trans-
actional memory.

• The set of input parameters is small and has
intuitive semantics, which make the bench-
mark easy to use.

• The output is very detailed, allowing for in-
depth analysis of performance bottlenecks.

• It provides two lock-based synchronization
mechanisms that can be used to set a baseline
for comparison.

STMBench7 is open source and can be down-
loaded from the authors’ web site[3].

Clearly, STMBench7 is in a preliminary stage
and more experiments will help evolve our bench-
mark. For instance, adding a fine-grained, highly-
optimized locking strategy would help define the
“ultimate” baseline test of STMs. Also, more
workloads need to be explored.
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Appendix

A STMBench7 User’s Guide

A.1 Running the Benchmark

To run the benchmark you will need:

• JRE 1.5 or later,

• AspectJ run-time libraries (aspectjrt.jar,
tested with version 1.5).

The easiest way to run STMBench7 is to use the
run script included in the source code archive. It
accepts the same command-line parameters as the
benchmark, i.e.:

• -t numThreads
set the number of threads (default: 1),

• -l length
set the length of the benchmark (in seconds),

• -w r|rw|w
set the workload type (r = read-dominated,
rw = read-write, w = write-dominated; default:
read-dominated),

• -g coarse|medium
set the lock granularity (will fail if the bench-
mark compiled without the built-in lock
strategies),

• --no-traversals
disable long traversals,

• --no-sms
disable structure modification operations,

• --ttc-histograms
print TTC (latency) histograms to stdout.

The output of the benchmark, printed to stdout,
is divided into the following sections:

1. Benchmark parameters—a list of input parame-
ters for a given benchmark run.

2. TTC histograms (only if --ttc-histograms
command-line option used)—a list of latency
histograms. For each operation named X a
single line is printed: TTC histogram for X:
followed by a space-delimited list of pairs
ttc, count, which say that a count number of
operations X have completed in time from
range [ttc, ttc − 1] (in milliseconds).

3. Detailed results—for each operation named X
the following data is displayed: (1) the num-
ber of times X has been successfully com-
pleted (by any thread), (2) the maximum time
it took to successfully complete X (in millisec-
onds), and (3) the number of times X started
but failed before completion.

4. Sample errors—for each operation type (cate-
gory) named T the following data is output:
(1) the ratio CT for operations of type T com-
puted from the input parameters, (2) the ratio
RT of the number of successful operations of
type T to the number of all successful opera-
tions in the current benchmark run, (3) com-
puted error: ET = |CT − RT |, (4) the ratio
AT of the number of successful and failed op-
erations of type T to the number of all suc-
cessful operations, and (5) computed error:
FT = |AT − RT |.

5. Summary results—contains the following in-
formation:

• For each operation type named T the fol-
lowing data is displayed: (1) the num-
ber times operations of type T have been
successfully completed, (2) the maxi-
mum time it took to successfully com-
plete any of the operations of type T, (3)
the number of times operations of type
T started but failed before completion,
and (4) the number of times operations of
type T started (and completed or failed).

• The total sample errors E and F com-
puted as a sum of all ET , or FT , respec-
tively, numbers for every type T.

• The total throughput given with two
numbers, both in operations per sec-
ond: (1) the total number of operations
that have been successfully completed
divided by the elapsed time, and (2) the
total number of operations that started
(and completed or failed) divided by the
elapsed time.

• The elapsed time, in seconds.

All other messages are printed to stderr. These
are either error messages, or information not nec-
essary for interpreting the benchmark results.

A.2 Compiling the Benchmark

To compile the benchmark code you will need:
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• JDK 1.5 or later,

• AspectJ (tested with version 1.5), if locking
strategies are to be merged with the bench-
mark core code,

• GNU make (not strictly necessary, but makes
the build process much easier).

To unpack and build STMBench7 with locking
strategies compiled-in:

1. tar -xvzf

2. stmbench7-version.tgz

3. cd stmbench7-version

4. make

To unpack and build STMBench7 without any
locking strategies compiled-in:

1. tar -xvzf

2. stmbench7-version.tgz

3. cd stmbench7-version

4. make build-without-locking

Note that this version will not work by default. It
should be first synchronized using an STM, a cus-
tom locking scheme or another mechanism.

To create a JAR file, type: make jar.

B STMBench7 Specification

B.1 The Data Structure

See Section 2 and the specification of OO7 [1].
What is important from the synchronization per-
spective is that only the module and connection
objects are immutable. The others, including in-
dexes, sets and bags, can be updated by STM-
Bench7 operations.

The specification of OO7 does not say precisely,
how some of the attributes of the created objects
should be initialized. Please, see the STMBench7
source code to see how we do it. This is mostly
consistent with the way objects are initialized in
the source code of OO7, with exceptions being the
result of some “cosmetic” changes.

B.2 The Operations

In this section we describe all 45 operations of
STMBench7. As already mentioned, each opera-
tion should be executed atomically, i.e., the results
of all updates made by an operation should be-
come visible to others (logically) at a single point
in time.

B.2.1 Long Traversals

All long traversals originate from traversals and
queries of OO7. The original naming has been pre-
served. Long traversals can never fail.

1. T1: traverse the whole structure depth-first,
starting from the module and the root com-
plex assembly. That is, for each complex
assembly traverse all its sub-assemblies, for
each base assembly traverse the descendant
composite parts, for each composite part tra-
verse, depth-first, the graph of its atomic
parts, and perform a read-only operation on
each atomic part. Return the number of
atomic parts visited.

2. T2a: the same as T1, except that an update op-
eration on non-indexed attributes (x and y) is
performed on each root atomic part.

3. T2b: the same as T1, except that an update
operation on non-indexed attributes is per-
formed on each atomic part.

4. T2c: the same as T2b, except that each update
on an atomic part is performed 4 times, one-
by-one.

5. T3a: the same as T1, except that an update op-
eration on an indexed attribute (buildDate) is
performed on each root atomic part.

6. T3b: the same as T1, except that an update op-
eration on an indexed attribute is performed
on each atomic part.

7. T3c: the same as T3b, except that each update
on an atomic part is performed 4 times, one-
by-one.

8. T4: traverse the structure depth-first, from
the module and the root complex assembly
down to all the document objects. That is,
for each complex assembly traverse all its sub-
assemblies, for each base assembly traverse
its descendant composite parts, and for each
composite part perform a read-only operation
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(search for character “I” in the text of the doc-
ument) on its descendant document object.
Return the total number of “I” characters in
all documents.

9. T5: the same as T4, except that an update op-
eration is performed on each document object
(replace “I am” by “This is”, or vice versa, in
the text of the document). Return the number
of replaced sub-strings in all documents.

10. T6: the same as T1, except that only the root
atomic part is visited (i.e., there is no depth-
first search on each graph of atomic parts).

11. Q6: find all complex assemblies that are as-
cendants of some base assembly such that
buildDate of the base assembly is lower than
buildDate of at least one of its descendant com-
posite parts. That is, for each complex assem-
bly traverse its sub-assemblies and for each
base assembly iterate through its descendant
composite parts until a one with larger build-
Date is found. Perform a read-only operation
on every assembly that matches the query. Re-
turn the number of matched assemblies.

12. Q7: iterate through all atomic parts, using the
atomic part ID index, and perform a read-only
operation on each of them. Return the num-
ber of atomic parts visited.

B.2.2 Short Traversals

Read-only short traversals:

1. ST1: traverse the structure top-down, from
the module to an atomic part, via a random
path. That is, for each complex assembly
traverse its random sub-assembly, for each
base assembly traverse its random descen-
dant composite part (if any) and for every
composite part perform a read-only opera-
tion on its random descendant atomic part
(traversing the graph of atomic parts is not
necessary for each composite part contains a
set of pointers to its descendant atomic parts).
Return the sum of the attributes x and y of the
visited atomic part. The traversal fails if a base
assembly with no descendant composite parts
is visited.

2. ST2: traverse the structure top-down, from
the module to a document, via a random path
(similarly to ST1). Return the number of “I”
characters in the text of the visited document.

The traversal fails if a base assembly with no
descendant composite parts is visited.

3. ST3 (T7 in OO7): traverse the structure
bottom-up, from a randomly chosen atomic
part (using the atomic part ID index) to the
root complex assembly. That is, choose a ran-
dom atomic part ID, find the corresponding
atomic part (fail if not found), go to its par-
ent composite part, and for each ascendant
base assembly (fail if none) traverse its as-
cendant complex assemblies up to the root
one. Visit, however, each complex assembly
at most once. Perform a read-only operation
on each visited complex assembly and return
the number of complex assemblies visited.

4. ST4 (Q4 in OO7): generate 100 random doc-
ument titles and find the corresponding doc-
ument objects using the document title index.
Perform a read-only operation on each base
assembly ascendant (via a composite part) of
at least one of the found documents. Return
the number of base assemblies visited.

5. ST5 (Q5 in OO7): find all base assemblies
such that their buildDate is lower than build-
Date of some of their descendant composite
parts. Perform a read-only operation on each
found base assembly and return their number.
This short traversal does not traverse the com-
plex assemblies—it iterates over the index of
base assembly IDs.

6. ST9: the same as ST1 except that all atomic
parts descendant of a given composite part
are visited—a depth-first search on their
graph is performed. Returns the number of
atomic parts visited.

Non-read-only equivalents of some of the short
traversals ST1–ST9:

1. ST6: the same as ST1, but performs an up-
date operation on non-indexed attributes of
the visited atomic part.

2. ST7: the same as ST2, but performs an update
operation on the (non-indexed) text of the vis-
ited document (replace “I am” by “This is”, or
vice versa, in the text of the document). Re-
turns the number of sub-strings replaced.

3. ST8: the same as ST3, but updates each vis-
ited assembly (the non-indexed buildDate at-
tribute).
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4. ST10: the same as ST9, but performs an up-
date operation on non-indexed attributes of
all the visited atomic parts.

B.2.3 Short Operations

Read-only short operations:

1. OP1 (Q1 in OO7): choose 10 random atomic
parts, using the atomic part ID index, and per-
form a read-only operation on each of them.
Return the number of atomic parts that were
processed (this may be lower than 10 for some
index lookups may fail as IDs are chosen ran-
domly).

2. OP2 (Q2 in OO7): find all atomic parts that
have buildDate in range [1990, 1999] using the
atomic part build date index. Perform a read-
only operation on each atomic part found. Re-
turn the number of processed atomic parts.

3. OP3 (Q3 in OO7): the same as OP2, but the
range is [1900, 1999].

4. OP4 (T8 in OO7): count the number of occur-
rences of character “I” in the text of the man-
ual. Return the computed number.

5. OP5 (T9 in OO7): check if the first and the
last characters of the text of the manual are the
same. Return 1 if true, 0 if not.

6. OP6: choose a random complex assembly, us-
ing the complex assembly ID index, and per-
form a read-only operation on all its sibling
complex assemblies. Return the number of
complex assemblies processed. Fail if the ran-
domly chosen ID does not correspond to any
existing complex assembly.

7. OP7: choose a random base assembly, using
the base assembly ID index, and perform a
read-only operation on all its sibling base as-
semblies. Return the number of base assem-
blies processed. Fail if the randomly chosen
ID does not correspond to any existing base
assembly.

8. OP8: choose a random base assembly, us-
ing the base assembly ID index, and perform
a read-only operation on all its descendant
composite parts (if any). Return the number
of processed composite parts. Fail if the ran-
domly chosen ID does not correspond to any
existing base assembly.

Non-read-only equivalents of some of the oper-
ations OP1–OP8:

1. OP9: the same as OP1, except that it per-
forms an update operation on non-indexed at-
tributes of every visited atomic part.

2. OP10: the same as OP2, except that it per-
forms an update operation on non-indexed at-
tributes of every visited atomic part.

3. OP11: replaces all the occurrences of character
“I” with character “i”, or vice versa, in the text
of the manual. Returns the number of changes
made.

4. OP12: the same as OP6, except that an update
operation is performed on each visited com-
plex assembly.

5. OP13: the same as OP7, except that an update
operation is performed on each visited base
assembly.

6. OP14: the same as OP8, except that an update
operation is performed on each visited com-
posite part.

7. OP15: the same as OP1, except that it per-
forms an update operation on the indexed
buildDate attribute of every visited atomic
part.

B.2.4 Structure Modification Operations

1. SM1: create a composite part, with its cor-
responding document and a graph of atomic
parts, and add it to the design library (without
linking to any base assembly). Fail if the max-
imum number of composite parts has been
reached.

2. SM2: delete a composite part with a ran-
domly chosen ID, together with its corre-
sponding document and the graph of descen-
dant atomic parts. Fail if the lookup operation
on the composite part ID index fails.

3. SM3: create a link between a base assembly
and a composite part with randomly chosen
IDs. Fail if any of the index lookup operations
(on the base assembly ID index or the com-
posite part ID index) fails.

4. SM4: chose a random base assembly ID and
find the corresponding base assembly (fail if
the index lookup operation fails). Then, delete
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a randomly chosen link between the base as-
sembly and some composite part.

5. SM5: add a base assembly in the following
way. First, chose a random base assembly ID
and find the corresponding base assembly B
(fail if the index lookup operation fails). Then,
create a base assembly B′ as a sibling of the
base assembly B. Fail if the maximum num-
ber of base assemblies has been reached.

6. SM6: delete a base assembly with a randomly
chosen ID. Fail if the lookup operation on the
base assembly ID index fails or if the chosen
base assembly is the only descendant of its
parent complex assembly.

7. SM7: add an assembly sub-tree under a
randomly chosen complex assembly. First,
choose a random complex assembly ID and
find the corresponding complex assembly C
(fail if the index lookup operation fails). Then,
add an assembly sub-tree of degree 3 and
height k − 1 under node C, where k is the level
at which C is placed in the assembly tree. The
added subtree must have base assemblies at
its level 1 and complex assemblies at all its
higher levels, if any. (Note that we count lev-
els bottom-up, so that base assemblies are on
the level 1 and the root complex assembly is
on the level 7). Fail if at any point the maxi-
mum number of complex or base assemblies
has been reached.

8. SM8: choose a random complex assembly ID
and find the corresponding complex assem-
bly C (fail if the index lookup operation fails).
Delete the whole subtree of assemblies (base
and complex) descendant from, and includ-
ing, C. Fail, however, if C is the root com-
plex assembly or C is the only descendant of
its parent complex assembly.
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