
RoclET– A Tool for Wrestling with OCL
Specifications

Cédric Jeanneret and Leander Eyer and Slavǐsa Marković and Thomas Baar

École Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences

CH-1015 Lausanne, Switzerland
{cedric.jeanneret, leander.eyer, slavisa.markovic, thomas.baar}@epfl.ch

Abstract. In this paper, we describe the architecture and the function-
ality of our own OCL tool called RoclET1. Besides standard features
of OCL tools such as editing of class and object diagrams and parsing
of OCL assertions (invariants, pre-/post-conditions), our tool supports
also the evaluation of OCL constraints in a given system snapshot (ob-
ject diagram), refactoring of UML/OCL models, and impact analysis.
RoclET is deployed in form of an Eclipse plugin.

1 Precise Modeling with OCL

The Unified Modeling Language (UML) is today the most popular object-oriented
modeling language for software systems. UML is in the first place a graphical no-
tation what makes software models easily accessible by humans. UML diagrams
can give a good overview on the modeled software system, but there is a lack of
expressive power once the details of the software system have to be captured as
well. A prevailing practice to resolve this problem is to add comments to UML
diagrams and to clarify the intended meaning using natural language. Such in-
formal comments, however, do not alter the formal meaning of the model and
are ignored by tools when processing the model, e.g. in order to generate code.
Another disadvantage is, that reading informal comments can become easily a
hard and also ambiguous task once the comments are a little bit more complex.

The Object Constraint Language (OCL), see [1] for both an introduction and
the language specification, is a textual language with formal syntax and seman-
tics. OCL constraints capture a wide range of details that software developers
wish to express in precise software models. The main application scenario are
UML class diagrams. Here, OCL constraints can express conditions that should
be obeyed in each system state (invariants) and contracts for system operations
(pre-/post-conditions).

Most of the current OCL tools – USE [2], Octopus[3], Dresden OCL Toolkit
[4] and OCLE [5] being the most influential ones – were developed in academia.
Whereas almost each tool offers, besides parsing facilities for OCL, a functional-
ity to generate implementation stubs out of UML/OCL models, relatively little
1 RoclET is freely available from www.roclet.org

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147920085?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


effort has been made so far to analyze the OCL constraints themselves, to pro-
vide functionalities for automatic constraint simplification, for refactoring, for
analyzing of which impact a (small) change in a snapshot on the validity of a
given OCL invariant has.

RoclET aims at providing facilities for a painless authoring, processing and
analysis of OCL constraints. The main functionalities of RoclET are2:

– Parsing and type analysis3
– Evaluation in a given object diagram (applying the technique described in

[6])
– Refactoring of UML class diagrams including necessary changes on attached

OCL constraints (see [7])
– Blocking state analysis for operation contracts
– Impact analysis of changes made in the object diagram wrt. the validity of

OCL constraints (this feature is based on the pioneering work of Cabot and
Teniente [8, 9])

2 Architecture of RoclET

We have chosen a 3-layer architecture for RoclET (comp. Fig. 1): presentation
layer, application layer and data layer.

The presentation layer consists of the editors and views the user interacts
with. Due to a lack of flexible editors for class and object diagrams, we have
decided to implement our own editors. The presentation layer has direct access
to the data layer where the models are stored in a repository as instances of
the UML/OCL metamodel. Currently, the versions UML 1.5 and OCL 2.0 are
supported.

RoclET’s functionalities are implemented in the application layer, mainly
in form of transformation rules written in QVT. These transformations work on
the repository and usually alter it directly.

2.1 Technologies

The architecture shown in Fig. 1 is a birds eye view on the system and does not
reveal much of the used technology. The layered approach makes the architecture
stable even if in future releases of our tool we would decide to realize parts of
the tools on a different technology.

Before OCL constraints can be processed by our tool, they have to be trans-
formed from their textual notation into an instance of the OCL metamodel.
For this task we rely on the Dresden OCL parser [4]. Unfortunately, this parser
can currently not handle the most recent UML version 2.0. Another restriction
is that only a MOF-based MDR repository is supported for storing the parsed
OCL constraints. The latter restriction was a serious problem we had to solve
when implementing RoclET as a plugin for Eclipse, which is designed to work
with Ecore-based repositories.
2 Some of the functionalities are not fully implemented yet.
3 Currently, the Dresden-OCL parser [4] is integrated for this purpose.



Clic
k t

o buy N
OW!

PDF
X

C
H

A
NG

E

www
.d

oc
u

tr
ac

k.
com

Clic
k t

o buy N
OW!

PDF
X

C
H

A
NG

E

www
.d

oc
u

tr
ac

k.
com

Fig. 1. Architecture

References

1. OMG. UML 2.0 OCL Specification – OMG Final Adopted Specification. OMG
Document ptc/03-10-14, Oct 2003.

2. USE team. USE homepage. http://www.db.informatik.uni-
bremen.de/projects/USE/, 2006.

3. OCTOPUS team. OCTOPUS homepage. http://octopus.sourceforge.net/, 2006.

4. Dresden-OCL team. Dresden-OCL homepage. http://dresden-ocl.sourceforge.net/,
2006.

5. OCLE team. OCLE homepage. http://lci.cs.ubbcluj.ro/ocle/, 2006.

6. Slavǐsa Marković and Thomas Baar. An OCL semantics specified with QVT. In
Oscar Nierstrasz, Jon Whittle, David Harel, and Gianna Reggio, editors, Proceed-
ings, MoDELS/UML 2006, Genova, Italy, October 1-6, 2006, volume 4199 of LNCS,
pages 660–674. Springer, October 2006.

7. Slavǐsa Marković and Thomas Baar. Refactoring OCL annotated UML class dia-
grams. In MoDELS’05, volume 3713 of LNCS, pages 280–294. Springer, 2005.

8. Jordi Cabot and Ernest Teniente. Computing the relevant instances that may violate
an OCL constraint. In Oscar Pastor and João Falcão e Cunha, editors, 17th Inter-
national Conference on Advanced Information Systems Engineering, CAiSE 2005,
Porto, Portugal, June 13-17, 2005, volume 3520 of LNCS, pages 48–62. Springer,
2005.

9. Jordi Cabot and Ernest Teniente. Incremental evaluation of OCL constraints.
In 18th International Conference on Advanced Information Systems Engineering,



CAiSE 2006, Luxembourg, June 5-9, 2006, volume 4001 of LNCS, pages 81–95.
Springer, 2006.


