
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

physicien diplômé de Yerevan State University, Arménie
de nationalité arménienne

acceptée sur proposition du jury:

Lausanne, EPFL
2006

Prof. B. Faltings, président du jury
Prof. R. Hersch, directeur de thèse

Prof. P. Lorenz, rapporteur
Prof. C. Petitpierre, rapporteur
Prof. J.-F. Wagen, rapporteur

three topics in parallel communications

Emin GABRIELYAN

THÈSE NO 3660 (2006)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 27 octobre 2006

à la faculté informatique et communications

Laboratoire de systèmes périphériques

SECTION D'informatique

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147920065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To Ani, Eva, and Léa

 iii

Acknowledgements

First, I would like to thank my research director, Professor Roger Hersch, who gave me
guidance throughout this research project, and spent hours reading and commenting the drafts of
my papers and dissertation.

Next I would like to thank all my colleagues who made the lab an interesting and
entertaining place. First, those who already left the lab: Yvette Fishman, Victor Ostromoukhov,
Benoît Gennart, Oscar Figueiredo, Jean-Christophe Bessaud, Joaquín Tárraga Giménez, Marc
Mazzariol, Patrick Emmel, Edouard Forler, Emzar Panikashvili, Laurent Saroul, and those who
are still here: Isaac Amidror, Sebastian Gerlach, Fabienne Allaire, and Basile Schaeli.

I am grateful to participants of the Swiss-Tx project, Ralf Gruber, Ivan Sipos, Bill Camp,
and Martin Frey for an incredibly motivating atmosphere.

I would also like to thank Aram Nanasyan and Suren Simonyan, for motivating me to
start and accomplish this research.

I am very grateful to my parents, Romik Gabrielyan and Nazik Mkrtchyan, who
developed my curiosity. I am particularly indebted to my father, Romik, for his unlimited and
unconditional efforts to support any of my endeavors. I am grateful to my wife, Sona
Gabrielyan, for her unconditional love, and for her infinite patience. Additional thanks go to her
and also to my brother, Aram Gabrielyan, for their full support of our VOIP businesses in
Switzerland and in USA during my research.

 v

Summary

The main objectives pursued by parallelism in communications are network capacity
enhancement and fault-tolerance. Efficiently enhancing the capacity of a network by parallel
communications is a non-trivial task. Some applications may also allow one to split the sources
and destinations into multiple sources and destinations. An example is parallel Input/Output
(I/O). Parallel I/O requires scalability, high throughput and good load balance. Low granularity
enables good load balance but tends to reduce throughput. In this thesis we combine fine
granularity with scalable high throughput. The network overhead can be reduced and the
network throughput can be increased by aggregation of data into large messages. Parallel
transmissions from multiple sources to multiple destinations traverse the network through many
different paths which have numerous intersections in the network. In low latency high
performance networks, serious congestions occur due to large indivisible messages competing
for shared resources. We propose to optimally schedule parallel communications by taking into
account the network topology. The developed liquid scheduling method optimally uses the
potential transmission capacity of a network. Fault-tolerance is typically achieved by
maintaining backup communication resources, which are kept idle as long as the primary
resource is operational. A challenging idea, inspired by nature, is to simultaneously use all
parallel resources. This idea is applied to fine-grained packetized communications. It also relies
on erasure resilient codes for combating network failures.

KEYWORDS. Parallel communications, fault-tolerance, liquid scheduling, capillary
routing, circuit-switching, circuit-switched networks, VOIP, Internet telephony, SIP, packetized
telephony, real-time streaming, path diversity, redundancy overall requirement, ROR, coarse-
grained networks, fine-grained networks, wormhole switching, optical lightpath routing, cut-
through switching, graph coloring, congestion graph, traffic partitioning, mutually non-
congesting subsets, conflict graph, low granularity striping, scalable I/O, parallel I/O, Message
Passing Interface, MPI-I/O, network aggregation, I/O access aggregation, erasure resilient
codes, channel coding, forward error correction

 vii

Résumé

Les communications parallèles ont pour objectif d’augmenter la capacité ainsi que la
tolérance aux pannes des réseaux de transmission de données. Augmenter efficacement la
capacité d’un réseau par des communications parallèles est une tâche non triviale, car les liens
de communication parallèles peuvent être disposés selon une topologie arbitraire et peuvent
partager certaines ressources. Certaines applications permettent aussi de séparer des sources et
destinations uniques en multiples sources et destinations. Les entrées/sorties (E/S) parallèles
constituent un tel exemple. Les E/S parallèles doivent permettre la croissance du système, un
débit élevé, et un bon équilibrage des charges. Une granularité faible permet un bon équilibrage
des charges, mais tend à réduire le débit. Dans cette thèse, nous combinons une granularité fine
avec un débit élevé tout en permettant la croissance du système. L’agrégation des données dans
des messages de grande taille permet d’augmenter le débit tout en réduisant les surcoûts sur le
réseau. Des transmissions parallèles de sources multiples vers des destinations multiples
traversent le réseau par de nombreux chemins s’intersectant en de nombreux points. Dans des
réseaux haute-performance à faible latence, des congestions importantes sont causées par de
gros messages indivisibles en compétition pour des ressources partagées. Nous proposons
d’ordonnancer les communications parallèles de manière optimale en prenant en considération
la topologie du réseau. La méthode d’ordonnancement liquide (liquid scheduling) développée
utilise au maximum les capacités de transmission potentielles du réseau. La tolérance aux
pannes est généralement obtenue en maintenant des ressources de communication
supplémentaires qui ne sont pas utilisées tant que la ressource principale est opérationnelle. Une
idée stimulante, inspirée par la nature, est d’utiliser simultanément toutes les ressources
disponibles. Cette idée est appliquée à des communications par paquets à granularité fine. Elle
s’appuie aussi sur des codages permettant de compenser les pertes d’informations lors des
pannes du réseau.

MOTS CLÉ. Communications parallèles, tolérance aux pannes, ordonnancement liquide,
routage par capillarité, commutation de circuits, réseau à communication de circuits, voix sur IP,
téléphonie par Internet, SIP, téléphonie IP, réseaux à granularité grossière, réseaux à granularité
fine, routage optique, graphes de congestion, partitionnement de trafic, distribution à granularité
faible, E/S parallèles, Message Passing Interface, agrégation d’accès E/S, redondance, codage de
canal, correction d’erreurs en boucle ouverte (FEC)

 ix

Table of Contents

Acknowledgements v

Summary vii

Résumé ix

Table of Contents xi

Chapter 1. Introduction 1

Section 1.1. Parallel communication challenges...1
Section 1.2. Capacity enhancement and fault-tolerance ...3
Section 1.3. Fine-grained and coarse-grained network paradigms4

1.3.1. Packet switching or hot potato routing ... 4
1.3.2. Wormhole routing .. 6

Section 1.4. Three topics in parallel communications ..7
1.4.1. Problems and the objectives ... 7
1.4.2. Structure of the thesis ... 8

Chapter 2. Parallel I/O solutions for cluster computers 11

Section 2.1. Introduction...11
Section 2.2. Project framework...12
Section 2.3. File striping ...14
Section 2.4. Implementation layers...15
Section 2.5. The SFIO Interface..16
Section 2.6. Optimization principles...18
Section 2.7. Functional architecture and implementation ...21
Section 2.8. SFIO performance...23

2.8.1. Network and parallel I/O throughput when using Fast Ethernet 23
2.8.2. Network and parallel I/O throughput when using TNET ... 25

Section 2.9. MPI-I/O implementation on top of SFIO..28
Section 2.10. Conclusions and recent developments in parallel input-output.....................32

Chapter 3. Liquid scheduling of parallel transmissions in coarse-grained low-
latency networks 35

Section 3.1. Introduction...35
3.1.1. Parallel transmissions in circuit-switched networks... 35
3.1.2. Hardware solutions... 36
3.1.3. Liquid scheduling - an application level solution... 37
3.1.4. Overview of liquid scheduling ... 37

Section 3.2. Applicable networks..38
3.2.1. Wormhole switching .. 38
3.2.2. Optical networks... 39

 xi

Section 3.3. The liquid scheduling problem..42
Section 3.4. Definitions...44
Section 3.5. Obtaining full simultaneities ...46

3.5.1. Using categories to cover subsets of full simultaneities ...47
3.5.2. Fission of categories into sub-categories ..47
3.5.3. Traversing all full simultaneities by repeated fission of categories48
3.5.4. Optimization - identifying blank categories..49
3.5.5. Retrieving full teams - identifying idle categories ..49

Section 3.6. Speeding up the search for full teams ...50
3.6.1. Skeleton of a traffic...50
3.6.2. Optimization - building full teams based on full teams of the skeleton....................51
3.6.3. Evaluating the reduction of the search space ..51

Section 3.7. Construction of liquid schedules...53
3.7.1. Definition of a liquid schedule..53
3.7.2. Liquid schedule basic construction algorithm...55
3.7.3. Search space reduction by considering newly emerging bottlenecks56
3.7.4. Liquid schedule construction optimization by considering only full teams..............57

Section 3.8. Experimental verification..57
3.8.1. Swiss-Tx cluster supercomputer and 362 test traffic patterns...................................58
3.8.2. Real traffic throughout measurements ..61

Section 3.9. Conclusions...62

Chapter 4. Capillary routing for fault-tolerant real-time communications in
fine-grain packet-switching networks 65

Section 4.1. Introduction...65
Section 4.2. Capillary routing ...67

4.2.1. Basic construction...67
4.2.2. Numerically stable version ...69
4.2.3. Bottleneck hunting loop..71

Section 4.3. Redundancy Overall Requirement (ROR) ..73
4.3.1. Definition of ROR ..73
4.3.2. Computing FEC block size ...74
4.3.3. Streaming with large FEC blocks ...76

Section 4.4. Redundancy Overall Requirement in capillary routing.................................77
Section 4.5. Conclusions and perspectives ...79

Conclusions 81

Parallel I/O...81
Liquid schedules ..82
Capillary routing..83
Further work ..84

Appendix A. SFIO function calls 85

Section A.1. File management operations ...85
Section A.2. Data access operations ..85

 xii

Section A.3. Error management operations ...86

Appendix B. Congestion graph coloring heuristic approach 87

Appendix C. Comparison of the liquid scheduling algorithm with Mixed Integer
Linear Programming 91

Appendix D. Assembling a liquid schedule: Considering teams of the reduced
traffic instead of the teams of the original traffic 93

Appendix E. Assembling a liquid schedule: Considering full teams of the reduced
traffic instead of all its teams 97

Appendix F. Overall overview of all liquid schedule construction optimizations 99

Appendix G. Probability of simultaneous link failures in multi-path routing
patterns 101

Section G.1. Limitations of the single link failure assumption..101
Section G.2. Extension of ROR for considering also the overlapping failures................103

Bibliography 107

Biography i

Personal Bibliography iii

Publications related to parallel I/O .. iii
Conference papers on liquid scheduling problem.. iii
Papers related to capillary routing ..iv

Glossary v

List of Figures xi

List of Tables xv

Links xvii

 xiii

Chapter 1. Introduction

In this chapter we briefly introduce the history of parallel communications and the topics of
capacity enhancement and fault-tolerance. We present the fine-grained and coarse-grained network
paradigms and introduce the topics of the present thesis.

Section 1.1. Parallel communication challenges

We do not know if parallel communications were first used for bandwidth enhancement
or for fault-tolerance. Laying the first transatlantic cable took entrepreneur Cyrus Field twelve
years and four failed expeditions. Cables were constantly snapping and could not be recovered
from the ocean floor. On 5 August 1858 a cable started to operate, but for a very short time. The
signal was dead on September 18.

Figure 1. Loading the transatlantic cable into the ‘Great Eastern’ in
1865

 1

Eight years later, on 13 July 1866, the Great Eastern, by far the largest ship, began laying
another cable, this time made of a single piece, 2730 nautical miles long, insulated with a new
resin from the gutta-percha tree found in the Malay Archipelago. When two weeks later, on 27th
of July 1866, the cable began operating, for Cyrus Field the mission was not yet accomplished.
He immediately sent the Great Eastern back to sea to lay the second parallel cable. By 17
September 1866, not one, but two parallel circuits were sending messages across the Atlantic.

The transatlantic cable station, operating those links, was transmitting messages for nearly
100 years. It was still in operation when in March 1964, in the middle of the cold war, an article
appeared, entitled “On Distributed Communications Networks”. It was written by Paul Baran,
who at that time was working on a communication method which could withstand a nuclear
attack and enable transmissions of vital information across the country [Baran64], [Baran65].
Paul Baran concluded that extremely survivable networks can be built if structured with parallel
redundant paths. He showed that even moderated redundancy permits withstanding extremely
heavy weapon attacks. In 1965, the Air Force approved testing of Baran’s theory. Four years
later, on 1st October 1969, the forerunner of the global Internet, the Advanced Research Projects
Agency Network (ARPANET) of the U.S. Department of Defense, was born.

Figure 2. Diagrams from the 51-page report of Paul Baran to the U.S.
Air Force, 1964

While the inspiration for structuring the early Internet with parallel paths came from the
challenge to achieve a high tolerance to failures, almost a decade later IBM, at a much smaller

 2

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Baran64.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Baran65.pdf

scale, invented a parallel communication port for achieving faster communications. Since then,
many other research directions relying on parallel and distributed communications have
developed. Parallelizing the communications across independent networks aims at offering
additional security and protection of information, e.g. in voice over IP networks. Redundant
parallel transmissions can be required for precision purposes, e.g. in GPS, or for power
efficiency, e.g. in mobile networks [Ping06], [Luo06], [Kim06].

Section 1.2. Capacity enhancement and fault-tolerance

The focus of research in parallel communications aims mainly at maximizing capacity
and fault-tolerance. Bandwidth is enhanced by using several parallel circuits between a source
and a destination [Hoang06]. Yet a greater level of parallelism can be achieved by distributing
the sources and destinations across the network. For example, distributing storage resources in
parallel I/O systems parallelizes both the I/O access and the communications.

Regarding fault-tolerance, nature has created many systems relying on parallel structures.
When developing his distributed network models (the seeds of the Internet), Paul Baran himself
inspired by discussions with neurophysiologist Warren Sturgis McCulloch [Pitts47],
[McEneaney02], [McCulloch43] about the capability of the brain to recover lost functions by
bypassing a dysfunctional region thanks to parallel structures. Living multi-cellular organisms,
from insects to vertebrates, demonstrate numerous other examples of duplicated organs that
function in parallel. The evolution of life on earth made replicated organs nearly a universal
property of living bodies [Gregory35].

Renal
vein

Renal
vein

Renal
artery

Renal
artery

U
re

te
r

U
re

te
r

Figure 3. Kidney blood filtering in the human organism

The primary purpose of duplication of organs is the tolerance to failures. Often, the
capacity enhancement is of a secondary importance. The ideas of achieving extremely high
levels of fault-tolerance in bio-inspired electronic systems of the future (e.g. by reproducing and
healing) have always intrigued engineers and stimulated their imaginations [Bradley00].

 3

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Ping06.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Luo06.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Hoang06.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/McEneaney02.ppt
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gregory35.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Bradley00.pdf

Pu
lm

on
ar

y
ar

te
ry

Pu
lm

on
ar

y
ar

te
ry

Pu
lm

on
ar

y
ve

in

Pu
lm

on
ar

y
ve

in
Figure 4. Pulmonary circuit of the human organism

Maintaining an idle parallel resource has already been used in many mission-critical man-
made systems. In networking, communications can switch (often automatically) to a backup
path in case of failures of primary links. An appealing approach is however to use the parallel
resources simultaneously, similarly to biological organisms (see Figure 3 and Figure 4). This is
possible thanks to packetized communications where the communication can be routed
simultaneously over several parallel paths. Individual failures should cause only minimal
damages to the communication flow.

Section 1.3. Fine-grained and coarse-grained network
paradigms

1.3.1. Packet switching or hot potato routing

Store and forward routing was simultaneously and independently invented by Donald
Davies and Paul Baran. The term “packet switching” comes from Donald Davies. Paul Baran
called this technique “hot potato routing” [Boehm64], [Davies72], [Baran02]. Today’s Internet
relies on a store-and-forward policy: each switch or router waits for the full packet to arrive
before sending it to the next switch. The first store and forward routers of ARPANET were
called Interface Message Processors (see Figure 5).

 4

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Boehm64.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Davies72.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Baran02.pdf

Figure 5. One of the first Interface Message Processor (IMP) of
ARPANET connecting UCLA with SRI in August 1969

The router in packet switched networks maintains queues for processing, routing and
transmitting through one of the outgoing interfaces. No circuit is reserved from a source to a
destination. There is no bandwidth reservation policy. This may lead to contentions and
congestions. One way to avoid congestions is to simply discard the new packets arriving at the
switch, if no room is left in the buffer (e.g., UDP). The adjustable window method for avoiding
congestion, gives the original sender the right to send N packets before getting permission to
send more (e.g., TCP).

Figure 6. Packet switching network: packets are entirely stored at each
intermediate switch and only then forwarded to the next
switch

Since the packets are completely stored at each intermediate switch before being
transmitted to the next hop, a communication delay propagates between the end nodes as the
number of hops separating the nodes increases (Figure 6). The communication delay is a
function of the number of intermediate switches multiplied by the size of the packet.

 5

1.3.2. Wormhole routing

Wormhole or cut-through routing is used in High Performance Computing (HPC),
multiprocessor and cluster computer networks aiming at high performance and low latency.
Store and forward switching technology cannot meet the strict bounds on the communication
latencies dictated by the requirements of a computing cluster. Wormhole routing technology
solves the problem of the propagation of the delay across a multi-hop communication path - a
serious obstacle in store-and-forward switching.

The address is very short. It is translated at an intermediate switch before the message
itself arrives. Thus, as soon as the message starts arriving, the switch very quickly examines the
header without waiting for the entire message, decides where to send the message, sets up an
outgoing circuit to the next switch and then immediately starts directing the rest of the message
that is being received to the outgoing interface. The switch transmits the message out, through
an outgoing link, at the same time as the message arrives. By quickly setting up the routing at
each intermediate switch and by directing the message content to the outgoing circuit without
storing the message, the message traverses the entire network at once, simultaneously through
all intermediate links of the path. The destination node, even if it is many hops away, starts
receiving the message almost as soon as the sending node starts its transmission. The message is
simply “copied” from the source to the destination without ever being entirely stored anywhere
in between (Figure 7).

This technique is implemented by breaking the packets into very small pieces called flits
(flow units). The first flit sets up the routing behavior for all subsequent flits associated with the
message. The messages rarely (if ever) have any delay as they travel though the network. The
latency between two nodes, even if separated by many hops, becomes similar to the latency of
directly connected nodes.

Figure 7. Wormhole or cut-through routing network: a packet is
“copied” through the communication path from the source
directly to the destination without being stored in any
intermediate switch

Message
Source

Message
Sink

Message
Sink

Message
Source

 6

MYRINET is an example of a wormhole routing network for cluster supercomputers.
MPI is the most popular communication library for these networks.

Wormhole routing and store-and-forward packet switching are examples from two well
known network paradigms. Packet switching belongs to the fine-grained network paradigm and
wormhole routing is an example of the coarse-grained circuit switching paradigm. Nearly all
coarse-grained networks aim at low latencies and use connection oriented transmission methods.
ATM, frame relay, TDM, WDM or DWDM, all-optical switching, light-path on-demand
switching, Optical Burst Switching (OBS), MYRINET, wormhole routing, cut-through and
Virtual Cut-Through (VCT) routing are all broadband or local area network examples of the
coarse-grained switching paradigm [Worster97], [Qiao99].

More information about wormhole and optical lightpath routing is given in Chapter 3
(Subsections 3.2.1 and 3.2.2 respectively).

Section 1.4. Three topics in parallel communications

It is hard to imagine a single study consistently covering all areas of parallel and
distributed communications. In this dissertation we are focusing on three anchor topics. The first
topic is parallel I/O in computer cluster networks. The second topic addresses the problems in
high-speed low-latency networks arising from simultaneous parallel transmissions, e.g. those of
parallel I/O requests. The third topic addresses fault-tolerance in fine-grained packetized
networks.

These three topics are the most important in the domains covered by parallel
communications. While these three topics rely on parallel communications, they are pursuing
three orthogonal goals. For achieving the desired results we rely on techniques derived from
different disciplines, such as graph theory or erasure resilient coding.

1.4.1. Problems and the objectives

Parallel I/O relies on distributed storage. The main objectives pursued in parallel I/O are a
good load balance, the scalability as the number of I/O nodes grows and the throughput
efficiency when multiple computing nodes are concurrently accessing a shared parallel file.
Parallel I/O is used in computer clusters interconnected with a high performance coarse-grained
network (such as MYRINET [Boden95]) that can meet strict latency bounds. In such networks,
large messages are “copied” across the network from the source computer directly to the
destination computer. During such a “copy” process, all intermediate switches and links are
simultaneously involved in directing the content of the message. Low latency, however, is
attained at a cost of an increased tendency toward congestion. When the network paths of

 7

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Worster97.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Qiao99.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Boden95.pdf

several transmissions overlap, an attempt to carry them out in parallel will unavoidably cause
congestion. The system becomes more prone to congestions as the size of the messages and the
number of parallel transmissions increase. The routing scheme and the topology of the
underlying network have a significant impact. Properly orchestrating the parallel
communications is necessary to achieve a true benefit in terms of the overall throughput.

In the context of fine-grained packet-switching, achieving fault tolerance by streaming
information simultaneously across multiple parallel paths is a very attractive idea. Naturally, this
method minimizes losses occurring from individual failures on the parallel paths, but the large
number of parallel also paths increases the overall probability of individual failures influencing
the communication. Streaming across parallel paths can be combined with injection at the source
of a certain amount of redundant packets generated with channel coding techniques. Such a
combination ensures the delivery of the information content during individual link failures on
parallel paths. We propose a novel technique to measure the advantageousness of parallel
routing for parallel streaming with redundant packets.

Each of the three topics is addressed by a detailed analysis of the corresponding problems
and by proposing a novel method for their solutions.

1.4.2. Structure of the thesis

The parallelism in I/O access and communication relies on the distribution of the storage
resources. A high level of parallelism with a high load balance can be achieved thanks to fine
granularity. The drawbacks of fine granularity are the network communication and storage
access overheads. In Chapter 2, we present a library called Striped File I/O (SFIO) which
combines fine granularity with high performance thanks to several important optimizations. We
describe the interface and the functional architecture of the SFIO system along with the
optimization techniques and their implementation. Chapter 2 is concluded by benchmarking
results.

Optimized parallel I/O results in simultaneous transmissions of large data chunks over the
underlying network. Since parallel I/O is mostly used in supercomputer cluster networks having
strict bounds on the latency and the throughput, the underlying network typically relies on
coarse-grain switching. Such networks are prone to congestions when many parallel
transmissions carry very large messages. Depending on the network topology, the rate of
congestions may grow so rapidly that the overall throughput is reduced despite the increase in
the number of contributing nodes. The gain achieved from the aggregation of communications in
parallel I/O at the connection layer can be undermined by losses due to blocked messages
occurring at the network layer. Solving congestions locally by FIFO techniques may result in
idle times of other critical resources. Scheduling of transmissions at their sources aiming at an
efficient utilization of communication resources can optimally increase the application
throughput. In Chapter 3 we present a collective communication scheduling technique, called

 8

liquid scheduling, which in coarse grain networks achieves the throughput of a fine grain
network or equivalently, that of a liquid flowing through a network of pipes.

Chapter 4 is dedicated to fault-tolerant multi-path streaming in packetized fine grain
networks. We demonstrate that in packet-switched networks, combination of channel coding at
the packet level with multi-path parallel routing significantly improves the fault-tolerance of
communications, especially in real-time streaming. We show that further development of the
path diversity in multi-path parallel routing patterns often brings an additional benefit to the
streaming application. We create a capillary routing algorithm generating parallel routing
patterns of increasing path diversity. We also introduce a method for rating multi-path routing
patterns of any complexity with a single scalar value, called ROR, standing for Redundancy
Overall Requirement.

 9

Chapter 2. Parallel I/O solutions for cluster
computers

This chapter presents the design and evaluation of a striped file I/O (SFIO) library providing high
performance parallel I/O within a Message Passing Interface (MPI) environment. Thanks to small
striping units one can achieve high efficiency and a good load balance. Small stripe unit size,
however, increases the communication and disk access costs. By optimizing communications and
disk accesses, SFIO exhibits high performance even for very small striping factors. We present the
functional architecture of the SFIO system. Using MPI derived datatype capabilities, we transmit
highly fragmented data over the communication network by single network operations. By
analyzing and merging the I/O requests at the compute nodes, a substantial performance gain is
obtained in terms of I/O operations. At the end of the chapter we present the parallel I/O
performance benchmarks carried out on the Swiss-Tx cluster supercomputer consisting of DEC
Alpha computers, interconnected with both Fast Ethernet and a coarse-grain low latency
communication network, called TNET.

Section 2.1. Introduction

Parallelism in I/O access and communications relies on the distribution of storage
resources. A high level of parallelism with a high load balance can be achieved thanks to fine
granularity. The drawbacks of fine granularity are the network communication and storage
access overheads. The overheads resulting from fine granularity may considerably reduce the
gain in throughput achieved by parallelism.

We would like to combine an extremely fine granularity (providing a high load balance)
with a very high throughput, and at the same time, ensure a linear scalability. Scalability and
high performance at extremely small stripe unit sizes are achievable thanks to following three
proposed optimization techniques.

Firstly, a multi-block user interface enables the library to recognize the overall pattern of
multiple user requests. This multi-block interface permits the caching system (see below) to

 11

aggregate the network and disk accesses which can also be fragmented due to the user memory
layout (apart the striping of the global file across multiple disks).

Secondly, the compute nodes perform the caching of I/O requests. The caching system
aggregates all network transfers to and from individual I/O nodes. Fragmentations due to both
file striping and multi-block user layout are merged in the same caching system. Network
aggregation of the incoming traffic is also performed by the compute nodes. The data segments
traversing the network are therefore combined into very large messages, thus reducing the
communication overhead to the minimum. The drawback of this method is an increased risk of
congestion, which is the subject of the second topic addressed in this thesis (see Chapter 3).

Thirdly, at the compute nodes the caching system preprocesses the collected I/O requests
addressed to each individual I/O destination. It removes the overlapping segments and sorts the
requests according to their offsets. Whenever possible, the caching preprocessor merges
multiple remote I/O requests into a single contiguous I/O request. Since network transmissions
to individual destinations are already aggregated by both the compute nodes and the I/O nodes,
merging multiple I/O requests into single ones does not yield an additional gain with respect to
network communication performance. However, the performance gain from merging I/O access
requests is considerable with respect to disk access performance.

All three forms of optimizations carried out on the cached I/O requests are realized only at
the level of memory pointers and disk offsets, without accessing or copying the actual data.
Once the pointers and offsets stored in the cache are optimized, a zero-copy implementation
streams the actual data directly between the network and the fragmented memory pattern. The
zero-copy implementation relies on MPI derived datatypes [Snir96], which are built on the fly.

Section 2.2. Project framework

In 1998, EPFL, ETHZ, Supercomputing Systems (SCS), and Compaq Computer
Corporation, in a cooperation with the Sandia National Laboratory (SNL) and the Oak Ridge
National Laboratory (ORNL) started a common project called Swiss-Tx. The project aims at
developing and building a teraflop supercomputer based mainly on commodity parts, such as
Compaq Alpha Computers [SwissTx01]. The communication hardware and software were
designed by SCS. It comprises an efficient communication library, called Fast Communication
Interface (FCI) and custom-made communication hardware for the Swiss-Tx supercomputer,
called TNET [Brauss99A]. TNET is a proprietary high performance, low-latency and high-
bandwidth network. A full implementation of MPI for the TNET network is also available (on
top of FCI).

 12

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Snir96.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/SwissTx01.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Brauss99A.pdf

Figure 8. Swiss-Tx supercomputer in June 2001

In many parallel applications I/O is a major bottleneck. I was in charge of the design of an
MPI based parallel I/O system for the Swiss-Tx parallel supercomputer.

Although the I/O subsystems of parallel computers are designed for high performance, a
large number of applications achieve only about one tenth or less of the peak I/O bandwidth
[Thakur98]. The main reason for poor application-level I/O performance is that parallel-I/O
systems are optimized for large data size accesses (on the order of megabytes), whereas parallel
applications typically make many small I/O requests (of the order of kilobytes or less). The
small I/O requests made by parallel programs are due to the fact that in many parallel
applications, each process needs to access a large number of relatively small pieces of data that
are not contiguously located in the file [Baylor96], [Crandall95], [Kotz96], [Smirni96],
[Thakur96A].

We designed the SFIO library which optimizes not only large data size accesses but also
data size accesses as small as only one hundred bytes. Such an extremely small stripe unit size
provides a very high level of load balance and parallelism. The support of a multi block
Application Program Interface (API) enables the underlying I/O system to better optimize
accesses to fragmented data both in memory and in the logical file. The multi-block interface of
SFIO also allowed us to implement a portable MPI-I/O interface [Gabrielyan01]. Finally, thanks
to the overlapping of communications and I/O, and to optimizations of I/O requests cached at
the compute nodes, SFIO exhibits high performance and a nearly scalable throughput even at
very low stripe unit sizes (such as 75 bytes).

 13

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Crandall95.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Kotz96.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Smirni96.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Thakur96A.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gabrielyan01.pdf

Section 2.3. File striping

For I/O bound parallel applications, parallel file striping may represent an alternative to
Storage Area Networks (SAN). In particular, parallel file striping offers high throughput I/O
capabilities at a much cheaper price, since it does not require a special network for accessing the
mass storage sub-system [Bancroft00].

Figure 9. File Striping

A parallel I/O system should offer all parallel application processes highly concurrent
access capabilities to the common data files. It should exhibit a linear increase in performance
when increasing both the number of I/O nodes and the number of compute nodes. Parallelism
for input/output operations can be achieved by striping the data across multiple disks so that
read and write operations occur in parallel (see Figure 9). A number of parallel file systems were
designed ([More97], [Oldfield98], [Messerli99], [Chandramohan97], [Gorbett96], [Huber95],
[Kotz97]), which rely on parallel file striping.

MPI is a widely used standard framework for creating parallel applications running on
various types of parallel computers [Pacheco97]. A well known implementation of MPI, called
MPICH, has been developed by Argone National Laboratory [Thakur99A]. MPICH is used on
different platforms and incorporates MPI-1.2 operations [Snir96] as well as the MPI-I/O subset
of MPI-II ([Gropp98], [Gropp99], [MPI2-97B]). MPICH is most popular for cluster architecture
supercomputers, based on Fast or Gigabit Ethernet networks. In 2001, the I/O implementation
underlying MPICH’s MPI-I/O was sequential, and based on NFS [Thakur99A], [Thakur98].

In the 2001 version of MPICH, due to the locking mechanisms needed to avoid
simultaneous multiple accesses to the shared NFS file, MPICH MPI-I/O write operations could
out be carried only at a very slow throughput.

4

Logical File

11

0
1

2
5

6

12
13

148
9

10

16

17

18

7 15
16 8 0

17 9 1

18 10 2

19 11 3

6 14

5 13

4 12

3

7

15

Disk5

Disk6

Disk7

Disk8

Subfile 5 Disk4

Disk3

Disk2

Disk1
Subfile 1

Stripe Unit

 14

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Bancroft00.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/More97.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Oldfield98.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Messerli99.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Chandramohan97.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gorbett96.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Huber95.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Kotz97.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Thakur99A.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Snir96.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Thakur99A.pdf

Another factor reducing peak performance is the read-modify-write operation, useful for
writing fragmented data to the target file. Read-modify-write requires reading the full
contiguous extent of data covering the data fragments to be written, sending it over the network,
modifying it, and transmitting it back. In the case of high data fragmentation, i.e. small chunks
of data spread within the file over a large data space, network access overhead becomes
dominant.

SFIO aims at offering scalable I/O throughput. However, the fine granularity, required for
the best parallelization and load balance, increases the communication and disk access costs.
Our SFIO parallel file striping implementation carries out efficient optimizations by merging
sets of fragmented network messages and disk accesses into single contiguous messages and
disk access requests respectively. The data merging operation makes use of the MPI derived
datatypes.

The SFIO library interface does not provide non-blocking operations, but internally,
accesses to the network and disks are made asynchronously. Disk and network communications
are overlapped resulting in additional performance gain.

Section 2.4 presents the overall architecture of the SFIO implementation. The SFIO
interface description and small examples are provided in Section 2.5. Optimization principles
are presented in Section 2.6. The details of the system design, caching techniques and other
optimizations are presented in Section 2.7. Throughput performances are given for various
configurations of the Swiss-Tx supercomputer. The performances of SFIO on top of MPICH and
on top of the native FCI communication system are given in Section 2.8.

Section 2.4. Implementation layers

The SFIO library is implemented using MPI-1.2 message passing calls. It is therefore as
portable as MPI-1.2. The local disk access calls, which depend on the underlying operating
system, are non-portable. However, they are separately integrated into the source for the Unix
and Windows implementations.

The SFIO parallel file striping library offers a simple Unix-like interface extended for
multi-block operations. We provide an isolated MPI-I/O interface on top of SFIO
[Gabrielyan01]. In MPICH’s MPI-I/O implementation there is an intermediate level, called
ADIO [Thakur96B], [Thakur98], which stands for Abstract Device interface for parallel I/O. We
successfully modified the ADIO layer of MPICH to route calls to the SFIO interface (Figure
10).

 15

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gabrielyan01.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Thakur96B.pdf

MPI-I/O Interface

Modified ADIO

SFIO

MPICH MPI

Sockets
FCI

TCP/IP

Ethernet TNET

Figure 10. SFIO integration into MPI-I/O

On the Swiss-T1 machine (Swiss-T1 is a 64-processor implementation in scope of the
Swiss-Tx project), SFIO can run on top of MPICH as well as on top of MPI/FCI. MPI/FCI is an
MPI implementation making use of the low latency and high throughput coarse-grained
wormhole-routing TNET network [Horst95], [Brauss99A].

Unlike the majority of file access sub-systems SFIO is not a block-oriented library
[Gennart99], [Chandramohan97], [Lee95], [Lee96], [Lee98]. Independence from block
orientation provides a number of advantages. There is no need to send entire blocks over the
network or to access them on the disk. The stripe units do not form blocks; neither network
transfers nor disk accesses are rounded to the size of the stripe unit size. The amount of data
accessed on the disk and transferred over the network is the size resulting from SFIO calls.

Section 2.5. The SFIO Interface

This section presents the main interface functions of SFIO. The full list of API functions
is given in Appendix A. Two functions, mopen and mclose are provided to open and close a
striped file. In order to ensure the correct behavior of collective parallel I/O functions, these
functions are collective operations performed in all contributing processing nodes. In addition,
the operation of opening as well as that of closing a file implies a global synchronization point
in the program. The function mopen returns a descriptor of the global parallel file. This function
has a very simple interface. The first argument of mopen is a single string specifying the global
file name, which contains the locations and names of all subfiles, separated by semi-colons. The
second argument of mopen is the stripe unit size in bytes.

For example, the following call opens a parallel file with a stripe unit size of 5 bytes
consisting of two local subfiles located on hosts node1 and node2:

 16

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Horst95.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Brauss99A.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gennart99.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Chandramohan97.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Lee95.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Lee96.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Lee98.pdf

f=mopen("node1/tmp/a.txt;node2/tmp/a.txt",5);

Other file handling operations, such as mdelete or mcreate also rely on this simple global
file name format. SFIO does not maintain any global metafile, nor any hidden metadata in the
subfiles. The sum of sizes of all subfiles is exactly the size of the logical parallel file.

The generic functions for read and write accesses to a file are mreadc and mwritec
respectively. These functions have four arguments. The first argument is the previously opened
parallel file descriptor, the second argument is the offset in the global logical file, the third
argument is the buffer and the forth argument is its size in bytes. The multiple I/O request
specification interface allows an application program to specify multiple I/O requests within one
call. This permits the library to carry out additional optimizations which otherwise would not be
possible. The multiple I/O request operations are mreadb and mwriteb.

The following C source code shows a simple SFIO example. The striped file with a stripe
unit size of 5 bytes consists of two subfiles. It is assumed that the program is launched from one
MPI compute process. A single compute node opens a striped file with two subfiles /tmp/a1.dat
at p1 and /tmp/a2.dat at p2. Then it writes a message “Hello World” and closes the global file.

#include <mpi.h>
#include "/usr/local/sfio/mio.h"
int _main(int argc, char *argv[])
{
 MFILE *f;
 f=mopen("p1/tmp/a1.dat;p2/tmp/a2.dat;",5);
 //writes in the global file 11 characters at location 0
 mwritec(f,0,"Hello World",11);
 mclose(f);
}

Below is an example of multiple compute nodes simultaneously accessing the same
striped file.

#include <mpi.h>
#include "/usr/local/sfio/mio.h"
int _main(int argc, char *argv[])
{
 MFILE *f;
 int r=rank();
 //Collective open operation
 f=mopen("p1/tmp/a.dat;p2/tmp/a.dat;", 5);
 //each process writes 8 to 14 characters at its own position
 if(rank==0) mwritec(f,0,"Good*morning!",13);
 if(rank==1) mwritec(f,13,"Bonjour!",8);
 if(rank==2) mwritec(f,21,"Buona*mattina!",14);
 mclose(f); //Collective close operation
}

 17

We assume that the program is launched with three compute nodes and two I/O MPI
processes. The global striped file consisting of two sub-files has a stripe unit size of 5 bytes. It is
accessed by three compute nodes. Each of them writes at a different position simultaneously.

In MPI, the function rank returns to each compute process its unique identifier (0, 1 and 2
in this example). Thus each compute processor running the same MPI program can follow its
own computing scenario. In the above example, the compute nodes use their ranks to write at
their respective (different) locations in the global file. After writing to the parallel file, the global
file contains the text combined from the fragments written by the first, second and third compute
nodes, i. e:

"Good*morning!Bonjour!Buona*mattina!"

The text is distributed across the two subfiles such that the first subfile contains:

"Good*ng!Bo!Buontina!"

And the second subfile contains (see Figure 11):

"morninjoura*mat"

Figure 11. Distribution of a striped file across subfiles

The SFIO call mclose is a collective operation and is a global synchronization point for all
three computing processes.

Section 2.6. Optimization principles

In our programming model, we assume a set of compute nodes and an I/O subsystem. The
I/O subsystem comprises a set of I/O nodes running I/O listener processes. Both compute
processes and I/O listeners are MPI processes within a single MPI program. This allows the I/O

G o o d * m o r n i n g ! B o n j o u r ! B u o n a * m a t t i n a !

G o o d * n g ! B o ! B u o n t i n a !

m o r n i n j o u r a * m a tFirst
subfile

Global
file

Second
subfile

 18

subsystem to optimize the data transfers between compute nodes and I/O nodes using MPI
derived datatypes. The user is allowed to directly use MPI operations for computation purposes
only across the compute nodes. The I/O nodes are available to the user only through the SFIO
interface.

When a compute node invokes an I/O operation, the SFIO library takes control of that
compute node. The library holds the requests in the cache of the compute node queuing the
requests individually for each I/O node. The library then tries to minimize the cost of disk
accesses and network communications by preparing new aggregated requests, taking care of
overlapped requests and their order. Transmission of the requests and of data chunks is followed
by confirmation reply messages sent by the I/O listeners to the compute node.

Optimizations of network communications and the remote disk accesses are performed on
the compute node. Requests queued for each I/O node are sorted according to their offsets in the
remote disk subfile. Then all overlapping or consecutive I/O requests held in the cache are
combined, and a new optimized set of requests is formed (Figure 12). This new set of requests
creates a new fragmented access pattern within the user memory.

User Block 1 User Block 3

Figure 12. Disk access optimization

Optimized remote I/O node requests are kept in the cache of the compute nodes. They are
launched either at the end of the SFIO function call or when the compute node estimates that the
buffer size reserved on the remote I/O listener for data reception may not be sufficient. Memory
is not a problem on the compute node, since data always remains in the user memory and is not
copied. When launching I/O requests, the SFIO library performs a single data transmission to
each of the I/O nodes. It creates on the fly derived datatypes pointing to the fragmented memory
patterns in user space associated to each of the I/O nodes. Thanks to these dynamically created
derived datatypes, the data is transmitted to or from each I/O node in a single stream without
additional copies. The I/O listener also receives or transmits the data as a contiguous chunk.

Disk

Compute Node
I/O Node

The 6 original data
parts to be written to
disk are grouped into 2
remote subfile write
requests

User
Block 2

 19

Once the optimized data exchange pattern is carried our between the memory of a compute node
and the remote I/O nodes, the corresponding local disk access operations are triggered by
read/write instructions received at the I/O node from the corresponding compute node.

These optimizations are especially valuable for low stripe unit sizes. Figure 13 shows a
comparison of a typical non-optimized write operation and its optimized counterpart.

50

10
0

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

0

5

10

15

20

25

30

Write speed
(MB/s)

Stripe unit size (bytes)
non-optimized
optimized

Figure 13. Comparison of the optimized write access with a non-
optimized write access as a function of the file striping
granularity (3 I/O nodes, 1 compute node, global file size is
660 Mbytes)

The multi-block interface of SFIO enables one to carry out several contiguous blocks of
I/O access operations by a single multi-block operation. Thanks to the relevant network
optimizations, the performance gain achieved by multi-block access operations is significant.
Figure 14 compares the I/O throughput of a multi-block write operation with the throughput
achieved by a set of corresponding non-optimized single-block operations.

Multi-block user interface

0
1
2
3
4
5
6
7
8
9

20
0

8,
20

0
16

,2
00

24
,2

00
32

,2
00

40
,2

00
48

,2
00

56
,2

00
64

,2
00

72
,2

00
80

,2
00

88
,2

00
96

,2
00

10
4,

20
0

User block size (bytes)

I/O
 sp

ee
d

(M
B

yt
es

/se
c)

multi-block access separate single block accesses

Figure 14. Comparison of the optimized multi-block write access with
corresponding separate non-optimized single block accesses
(Fast Ethernet, stripe unit size is 1005 bytes, 7 I/O nodes)

 20

Since the single block operations of Figure 14 are not optimized, their total throughput is
bounded by an upper limit related to the striping factor of the global file (the same for all user
block sizes). Even at very large user block sizes the total throughput of the single block
operations is below 3.3 Mbytes/sec due to the striping factor of 1005 bytes (see also Figure 13
for a reference). The multi-block interface permits one to fully benefit from the optimization
subsystem [Gabrielyan00].

Section 2.7. Functional architecture and implementation

In this section we describe the functional architecture and the implementation of the
access functions. An overall diagram of the implementation of the SFIO access function is
shown in Figure 15.

Figure 15. SFIO functional architecture

mread mreadc mreadb mwritec mwriteb
mwrite

mrw (cyclic distribution)

SFP_CMD
_WRITE SFP_CMD

_READ

sfp_rflush sfp_wflush

sfp_readc sfp_writec

sfp_rdwrc (request caching)

flushcache

sfp_read
sfp_write sortcache

sfp_readb sfp_writeb
mkbset

bkmerge
sfp_wait

all

SFP_CMD_
BREAD

SFP_CMD_
BWRITE

SF
IO

 li
br

ar
y

on
 c

om
pu

te
 n

od
e

I/O
 N

od
e

MPIMPI MPI MPI

I/O
 L

is
te

ne
r

 21

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gabrielyan00.pdf

On top of the diagram we have the application’s interface to data access operations and at
the bottom, the I/O node operations. The mread and mwrite operations are the non-optimized
single block access functions and the mreadc and mwritec operations are their optimized
counterparts. The mreadb and mwriteb operations are multi-block access functions.

All the mread, mwrite, mreadc, mwritec, mreadb and mwriteb file access interface
functions are operating at the level of the logical file. For example, the SFIO write access
operation mwritec(f,0,buffer,size) writes data to the beginning of the logical file f. Access
interface functions are unaware of the fact that the logical file is striped across subfiles. In the
SFIO library, all the interface access functions are routed to the mrw cyclic distribution module.
This module is responsible for data striping. Contiguous requests (or a set of contiguous requests
for mwriteb and mreadb operations) are split into small fragments according to the striping
factor. The small requests generated by the mrw module contain information on the selected
subfile, and the node on which the subfile is located. Global pointers are translated to subfile
pointers. Subfile access requests contain enough information to execute and complete the I/O
operation.

Thus, for the non-optimized mread and mwrite operations, the library routes the requests
to the sfp_read and sfp_write modules that are responsible for sending appropriate single sub-
requests to the I/O nodes using MPI as the transport layer. The rest of the diagram (the right
half) is dedicated to optimized operations.

The network communication and disk access optimization is represented by the hierarchy
below the mreadc, mwritec, mreadb, mwriteb access functions. For these optimized operations
the mrw module routes the requests to the sfp_readc and sfp_writec functions. These functions
access the sfp_rdwrc module which stores the sub-requests into a 2D cache. The 2D cache
structure comprises the I/O nodes as one dimension, and the set of subfiles each I/O node is
dealing with, as the second dimension. Each I/O node can have more than one subfile per global
file.

Each entry of the cache can be flushed. Flushing happens either because the user
operation terminates, i.e. when a call is communicated down through the sfp_rflush and
sfp_wflush functions; or it can happen if the sfp_rdwrc module predicts a possible overflow of
reception buffers in the remote I/O nodes. The sfp_rdwrc function makes sure that all generated
requests fit within the buffers of the remote I/O nodes. The entries to be flushed are passed to
the flushcache operation that also frees the corresponding resources within the 2D cache.

When the flushcache operation is invoked, a large list of the sub-requests has already been
collected and needs to be processed. At this point the library can carry out effective
optimizations in order to save network communications and disk accesses. Note that the data
itself is never copied, and always remains in user space, thereby saving processor time and
memory space. Three optimization procedures are carried out, before an actual transmission
takes place. The requests are sorted by their offsets in the remote subfiles. This operation is
carried out by the sortcache module. Overlapping and consecutive requests are merged into

 22

single requests whenever possible by the bkmerge module. This merging operation reduces the
number of disk access calls on the remote I/O nodes.

The mkbset module creates on the fly a derived MPI datatype pointing to the fragmented
pieces of user data in the user’s memory. This allows one to efficiently transmit over the
network the data associated with many requests as a single contiguous stream. The data is
transmitted or received without any memory copy at the application or library level. In a zero-
copy MPI implementation relying on hardware Direct Memory Access (DMA), the entire
process becomes copy-less and the actual data (even if fragmented) is transmitted directly from
the user space to the network.

The transmission of data and instructions to the I/O nodes is performed by the sfp_readb
and sfp_writeb functions.

Section 2.8. SFIO performance

In this section we explore the scalability of our parallel I/O implementation (SFIO) as a
function of the number of contributing I/O nodes [Fujita03]. Performance results have been
measured on the Swiss-T1 machine. The Swiss-T1 supercomputer is based on Compaq Alpha
Server DS20 machines and consists of 64 Alpha processors grouped in 32 nodes. Two types of
network interconnect the processors, TNET and Fast Ethernet. The aggregate throughput of Fast
Ethernet and the performance of SFIO on top of Fast Ethernet as a function of the number of
contributing nodes are presented in Subsection 2.8.1. The aggregate raw throughput of the
TNET network and the throughput of SFIO running on top of the TNET network are presented
in Subsection 2.8.2.

2.8.1. Network and parallel I/O throughput when using Fast
Ethernet

To obtain information about the Fast Ethernet network capabilities, throughput as a
function of the number of nodes is measured by a simple MPI program. The nodes are equally
divided into transmitting and receiving nodes and an all-to-all traffic of relatively large blocks is
generated. Figure 16 demonstrates the cluster’s communication throughput scalability over Fast
Ethernet. The Fast Ethernet network of Swiss-T1 consists of a full crossbar switch and Figure 16
exhibits the corresponding linear scaling. Each pair of nodes (one receiver and one sender)
contributes to the overall throughput through a single link capacity.

 23

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Fujita03.pdf

T1 Ethernet

0
20
40
60
80

100
120
140
160
180

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of contributing nodes

N
et

w
or

k
th

ro
ug

hp
ut

 (M
B

/s)
 -

maximum
average

Figure 16. Aggregate throughput of Fast Ethernet as a function of the
number of contributing nodes

Let us now analyze the performances of the SFIO library on the Swiss-T1 machine on top
of MPICH using Fast Ethernet. We assign the first processor of each compute node to a compute
process and the second processor to an I/O listener (Figure 17).

Figure 17. SFIO architecture on Swiss-T1

We consider concurrent write accesses from all compute nodes to all I/O nodes, the
striped file being distributed over the disks of all I/O nodes. The number of I/O nodes is equal to
the number of compute nodes. The size of the striped file is 2Gbyte and the striped unit size is
only 200 bytes. The application’s SFIO performance as a function of the number of compute and
I/O nodes is measured for the Fast Ethernet network (see Figure 18). The white graph represents
the average throughput and the gray graph the peak performance. Once the number of
contributing nodes exceeds 12, the overall throughput decreases. The reduction in throughput

Com
pute

I/O
listen

Com
pute

I/O
listen

Com
pute

I/O
listen

Com
pute

I/O
listen

no
de

0

no
de

1

no
de

2

no
de

3

Fast Ethernet Full Crossbar Switch

 24

may possibly be due to a non-efficient implementation of data intensive collective operations in
the 2001 version of MPICH.

SFIO on top of MPICH using Fast Ethernet

0
10
20
30
40
50
60
70

1 2 3 4 5 6 7 8 9 10 11 12 13

Number of compute and I/O nodes

Th
ro

ug
hp

ut
 (M

B
/s)

 -

maximum
average

Figure 18. SFIO/MPICH all-to-all I/O performance for a 200 byte stripe
size, Fast Ethernet

2.8.2. Network and parallel I/O throughput when using TNET

Let us analyze the capacities of the TNET network of the Swiss-T1 machine. TNET is a
high throughput and low latency network (less than 20ms MPI latency and more than 50MB/s
bandwidth) [Brauss99B]. A high performance MPI implementation called MPI/FCI is available
for communication through TNET [Brauss99B].

T1 TNET

0

50

100

150

200

250

300

350

400

450

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of contributing nodes

N
et

w
or

k
th

ro
ug

hp
ut

 (M
B

/s
)

maximum
average

Figure 19. Aggregate throughput of TNET as a function of the number
of the contributing nodes

The Swiss-T1’s TNET network [Kuonen99B] consists of eight 12-port full crossbar
switches (Figure 20). The gray arrows in the figure indicate the static routing between switches
that do not have direct connectivity [Kuonen99A]. The topology together with the routing

 25

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Brauss99B.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Brauss99B.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Kuonen99B.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Kuonen99A.pdf

information defines the network’s peak collective throughput over the subset of processors
assigned to a given application.

The TNET throughput as a function of the number of nodes is measured by a simple MPI
program. The contributing nodes are equally divided into transmitting and receiving nodes
(Figure 19). Due to TNET’s specific network topology (Figure 20), the communication
throughput does not increase smoothly as the number of contributing nodes increases. A
significant increase in throughput occurs when the number of nodes increases from 8 to 10, from
16 to 18, and from 24 to 26.

The topology of the TNET network (Figure 20) is not equivalent to a full crossbar switch.
Depending on the physical allocation of processors, contributing nodes may be grouped into
clusters with limited communication capacities between them. Therefore, the overall throughput
depends not only on the number of contributing nodes, but also on their particular allocation.
For a given number of nodes, the overall throughput varies between a lower and an upper bound
for different allocation patterns. In Subsection 3.8.1 of Chapter 3, for a given fixed number of
allocated nodes we are analyzing the upper and lower bound of the underlying network’s
theoretical capacity depending on a particular allocation of nodes (see Figure 40).

Figure 20. The Swiss-T1 network interconnection topology

PR56

PR63

PR48

PR55

PR00

PR08

PR15

PR39

PR32

PR47

PR40

PR31

PR24
PR23

PR16

1 2

0

7

3

4

56

PR07

PR00

PR01

0 Switch

Compute Processor

I/O Processor TNET link

Routing

 26

The performance of the SFIO library relying on MPI/FCI using the proprietary TNET
network of the Swiss-T1 supercomputer is measured according to an allocation of I/O and
compute nodes identical to that of Figure 17. As before, the first processor of each compute
node is assigned to a compute process and the second processor to an I/O listener process.
Therefore, each node acts both as a compute node and as an I/O node.

As in SFIO/MPICH, the performance of SFIO over MPI/FCI is measured for concurrent
write accesses from all compute nodes to all I/O nodes, the striped file being distributed over all
I/O node disks.

In order to limit operating system caching effects, the total size of the striped file linearly
increases with the number of I/O nodes. With a global file size proportional to the number of
contributing I/O nodes, we keep the size of subfiles per I/O node fixed at 1GB/subfile.

The stripe unit size is 200 bytes. The global file size ranges from 1 GB to 31 GB. The
MPI/FCI application’s I/O performance is measured as a function of the number of compute and
I/O nodes (Figure 21). For each configuration, 53 measurements are carried out. At job launch
time, pairs of I/O and compute processes are assigned randomly to processing nodes.

SFIO on top of MPI/FCI

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Number of compute and I/O nodes

Pe
rfo

rm
an

ce
 (M

B
/s)

 -

write maximum
write average
read maximum
read average

Figure 21. SFIO all-to-all I/O performance on TNET

The I/O throughput on MPI/FCI scales well when increasing the number of nodes. This
configuration tests SFIO under extreme conditions in terms of the number of I/O nodes
(scalability), the number of compute nodes (simultaneous concurrent accesses) and the
extremely low stripe unit size (efficient optimizations of communications and disk accesses).

The speed-up may vary due to the communication topology of the TNET network (Figure
20) associated with the particular node allocation scheme. Once half of the cluster nodes are
allocated, the network becomes a major bottleneck if the network transmissions are not properly

 27

coordinated and scheduled. Network performance for collective parallel transfers is studied in
Chapter 3.

Section 2.9. MPI-I/O implementation on top of SFIO

Typical scientific applications make a large number of small I/O requests. A typical
example is access to columns or blocks of out-of-core matrices resulting in a large number of
highly fragmented non-contiguous requests. MPI’s derived datatypes provide the functionality
for dealing with fragmented data in memory.

Most parallel file systems (at the time of the design of SFIO) allowed a user to access
only a single, contiguous chunk of data at a time from a file. Non-contiguous data sets must
therefore be accessed by making separate function calls to access each individual contiguous
piece.

With such an interface, the file system cannot easily detect the overall access pattern.
Consequently, the file system is constrained in the optimizations it can perform. To overcome
the performance and portability limitations of existing parallel-I/O interfaces, the MPI Forum
defined a new interface for parallel I/O as part of the MPI-2 standard [MPI2-97], referred to as
MPI-IO. It is a rich interface with many features designed specifically for performance and
portability. It supports non-contiguous accesses, non-blocking I/O and a standard data
representation via MPI derived datatypes.

The MPI-I/O interface design allows the underlying parallel I/O subsystem to optimize
access operations. This is however possible only if the underlying I/O subsystem (on top of
which the MPI-I/O interface is to be implemented) supports and optimizes multi-block access
requests.

Thanks to the optimizations of multi-block access in SFIO, an implementation of MPI-I/O
on top of SFIO can both be efficient and benefit from the advanced features of the MPI-I/O
design.

For specifying fragmentation patterns for different purposes, the MPI-I/O interface does
not use arrays or vectors of locations and sizes. The fragmentation both in the memory and in
the file is specified by derived datatype objects.

In MPI-I/O, the file view is a global concept, which influences all data access operations.
Each process obtains its own view of the shared data file. In order to specify the file view the
user creates a derived datatype. Since each memory access operation may use another derived
datatype that specifies the fragmentation in memory, there are two orthogonal aspects to data
access: the fragmentation in memory and the fragmentation of the file view (see Figure 22). This

 28

figure presents four fragmentation scenarios from the perspective of one computing MPI
process. The file view pattern can be different from one process to another.

Figure 22. The use of derived datatypes in MPI-I/O interface

MPI-1 provides recursive techniques for creating datatype objects, which have an
arbitrary memory data layout (see Figure 23). A derived opaque datatype object can be used in
various MPI operations (e.g. communication between compute nodes). The main obstacle for
implementation of a portable MPI-I/O interface is that the derived datatypes are opaque objects;
once created by the user, they cannot be decoded.

Figure 23. The recursive construction of derived datatypes in MPI
(“Contiguous” is a derived datatype obtained by repeatedly
joining another datatype which in turn can be fragmented)

VectorVector

St
ru

ct
ur

e

C
on

ti g
uo

us

St
ru

ct
ur

e

C
on

ti g
uo

us

C
on

tig
uo

us

VectorVector

B
Y

TE

B
Y

TE

B
Y

TE
B

Y
TE

B
Y

TE

B
Y

TE

IN
TE

G
E R

B
Y

TE

B
Y

TE

B
Y

TE
B

Y
TE

B
Y

TE

B
Y

TE

IN
TE

G
ER

Memory

View

File

Memory

View

File

Memory

View

File

Memory

View

File

co
nt

ig
uo

us
 in

 m
em

or
y

fr
ag

m
en

ta
tio

n
of

 th
e

m
em

or
y

contiguous in memory, non-
contiguous in file

contiguous in memory
as well as in file

non-contiguous in memory,
contiguous in file

non-contiguous in memory
as well as in file

no
n-

co
nt

ig
uo

us
 in

 m
em

or
y

fragmentation of the file view
contiguous in file non-contiguous in file

 29

To implement an MPI-I/O interface we need to access the flattened fragmentation pattern
of a datatype created by a user. The difficulty is that the layout information, once encapsulated
in a derived datatype, can not be extracted from these opaque objects with standard MPI-1
functions (see Figure 24).

A solution for deducing the flattened fragmentation patterns (in the memory and in the
file) may consist in understanding for each particular MPI-1 implementation the internal
structure of the derived datatypes created by the user (see Figure 24). The disadvantage is that
(1) only the operations for constructing the derived datatypes are standardized and the internal
implementation of the opaque datatype objects can vary significantly from one implementation
of MPI-1 to another and (2) the source code of a particular MPI-1 implementation is often not
available or is subject to frequent updates. Our objective is to design a portable, implementation-
independent solution for MPI-I/O running on top of any MPI-1 implementation.

MPI-I/O Interface Implementation

Im
pl

em
en

ta
tio

n
D

ep
en

de
nt

D

at
at

yp
e

Fl
at

te
ni

ng

N
o

D
ec

od
in

g
In

te
rf

ac
e

Striped File I/O

Standard Interface of
MPI-1

MPI-1 Platform Specific
Implementation

Figure 24. The MPI-I/O implementation requires a method for
retrieving the fragmentation patterns of opaque MPI derived
datatypes

Our method relies on a reverse engineering technique for discovering the flattened pattern
of a user-created derived datatype.

The extension of a derived datatype is the size of the minimal contiguous space fitting the
fragmented pattern of the derived datatype. The size of the derived datatype is the sum of the
sizes of all contributing contiguous pieces of the datatype. Standard MPI-1 provides functions
for retrieving both the extension and the size of a derived datatype.

Derived datatypes can be used in many MPI operations. A typical MPI receive operation,
called MPI_Recv, receives a contiguous network stream and distributes it in memory according
to the data layout of the datatype. If the bytes in the memory are all previously initialized with a
constant value (e.g. by zeroes) referred to as “gray color”, and the network stream carries bytes
all initialized by another constant value (e.g. by ones) referred to as “black color”, then
analyzing the receiver’s memory after data reception will give us the necessary information on
the derived datatype’s data layout.

 30

Figure 25 shows the decoding of a derived datatype constructed in Figure 23. The size of
this derived datatype is 20 bytes and its extension is 30 bytes. The sender initializes a contiguous
block

ved datatypes used
for ch

Fi for discovery the
fragmentation pattern o y the
user

Instead of sendin d MPI_Unpack
operation for carrying o procedure in a single compute node. The operation MPI_Unpack

of the size of the derived datatype (i.e. a block of 20 bytes) with ones (appearing in black
in Figure 25). The receiving side initializes with zeroes (gray color) a contiguous block of the
size of the extension of the derived datatype (i.e. a block of 30 bytes). The sender transmits the
bytes from its contiguous block and the receiver, using MPI_Recv operation, distributes the
incoming data into the previously initialized memory block according to the corresponding
derived datatype. Once the transmission is over, one can construct a vector of blocks
representing the flattened datatype simply by reading the receiver’s memory.

Derived datatypes with cross-ordered fragmentation patterns cannot be decoded with this
technique. We rely on the fact that according to the MPI-2 specifications, deri

aracterizing the file view are restricted to specify only monotonically non-decreasing
offsets in the file. For example, a derived datatype that specifies offsets in the order {2, 6, 5, 7,
4} cannot be used as a valid datatype for the MPI-I/O file view (see “Using MPI-2”, Section
3.3.1, p. 61, [Gropp99]).

Buffer of the
size of the
datatype X

Contiguous
datatype

Derived
datatype X

Buffer of the

gur

size of the X’s
extent

MPI_Send(source,size,MPI_BYTE,…)
MPI_Recv(destination,1,X,…

1
 1
 1
 1

 0
1

1

0

e 25. A reverse engineering method
f an opaque datatype built b

g and receiving data it is possible to use the standar
ut this

)

0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

1
 1
 1
 1

1

1

1
 1

1

1
 1
 1
 1
 1

1

1

1
 1

0

0

0

0

0

0

0

 31

reads

s block lengths.

paces. Decoding only one unit is sufficient to discover the pattern.
Once

ntation. The Argonne National Laboratory’s (ANL)
MPIC

Figure 26. Isolated MPI-I/O interface
functional on an ntation

The M PI-I/O interface
with efficient parallel I/O facilities, without requiring any change or modification of the current
MPI-1

Section 2.10. Conclusions and recent developments in
parallel input-output

For cluster comput specialized dedicated I/O hardware.
It is a lightweight portable parallel I/O system for MPI programmers.

from a contiguous memory block with a size equal to the size of a single unit of a derived
datatype, and writes to a contiguous block with a size equal to the extension of that derived
datatype.

Once the pattern of the derived datatype is obtained, it is stored in a compact array of
contiguou

Typically the derived datatypes are used as repetition units to describe fragmentation
patterns over large data s

the derived datatype is decoded, its flattened array of block lengths is associated with the
MPI opaque object for all further reuses.

Thanks to derived datatype decoding, it becomes possible to create an MPI-I/O solution
on top of any standard MPI-1 impleme

H implementation of MPI-I/O is used in conjunction with our datatype reverse
engineering technique. A subset of MPI-I/O operations has been implemented (Figure 26).

MPI-I/O Interface Implementation

Striped File

implementation of a portable
y MPI-1 impleme

PI-I/O package making use of SFIO gives every MPI-1 owner an M

 implementation.

ing, SFIO is a cheap alternative to

I/O

S rd Inte f MPI-1 tanda rface o

MPI-1 Platform Specific
Implementation

R
ev

er
se

 in
g

r
E

ng
in

ee

 32

Since the design of SFIO, there were additional developments in parallel I/O. The impact
of the underlying network topology and the allocation scheme of the I/O and compute nodes is
studied in [Wu05A]. Further I/O access performance optimizations were achieved by taking into
account global knowledge in the case of off-line access requests and by using prefetching
relying on predictions of future access request patterns [Abawajy03], [Kallahalla02]. One may
increase the overall performance of collective read access operations not only by striping but
also by simple replication of data across several I/O nodes [Wu05B] and [Liu03]. Replication
and caching at I/O nodes requires a careful sequencing of all I/O operations in order to maintain
the consistency of replicated copies and of a global parallel file from the perspective of all
compute nodes. The required file locking mechanisms may induce a significant performance
drawback. Moreover, file locking is not always implemented in large systems. Several methods
were proposed for allowing replications at I/O nodes and caching at compute nodes while
maintaining the consistency of the global file by relying on orthogonal MPI level
communications between compute nodes without using file locking mechanisms [Wu05B],
[Coloma04]. Parallel communications between a compute node and each individual I/O node
may produce a greater network throughput performance [Liu03] and [Ali05]. An overall
throughput of 291 Mbps with 18 compute and I/O processors was reported [Ali05]. The
throughput of SFIO (between 150 and 350 MB/s for 31 compute and I/O nodes) still remains
competitive.

Regarding parallel I/O interfaces, portable implementations of the MPI-I/O interface have
been released [Thakur99B], [Baer04]. The fine granularity with the resulting high level of load
balance remains the strong point of SFIO, whose underlying optimizations support down to a
75-byte stripe size with only a negligible loss in performance. Usually the parallel I/O systems
are optimized for stripe unit sizes not smaller than a few kilobytes [Thakur99B]. For balancing
the I/O workload in the servers, a solution for dynamically adapting the striping factors and for
dynamically distributing the data was suggested in [Ma03B].

 33

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Wu05A.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Abawajy03.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Kallahalla02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Wu05B.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Liu03.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Wu05B.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Coloma04.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Liu03.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Ali05.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Ali05.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Thakur99B.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Baer04.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Thakur99B.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Ma03B.pdf

Chapter 3. Liquid scheduling of parallel
transmissions in coarse-grained low-
latency networks

The upper limit of a network’s capacity is its liquid throughput. The liquid throughput corresponds
to the flow of a liquid in an equivalent network of pipes. In coarse-grained networks, the aggregate
throughput of an arbitrarily scheduled collective communication may be several times lower than
the maximal potential throughput of the network. In wormhole and wavelength division optical
networks, there is a significant loss of performance due to congestion during simultaneous
transfers sharing a common communication resource. We propose to schedule the transfers of the
traffic according to a schedule yielding the liquid throughput. Such a schedule, called a liquid
schedule, relies on the knowledge of the underlying network topology and ensures an optimal
utilization of all bottleneck links. To build a liquid schedule, we partition the traffic into time
frames comprising mutually non-congesting transfers keeping all bottleneck links busy during all
time frames. The search for mutually non-congesting transfers utilizing all bottleneck links is of
exponential complexity. We present an efficient algorithm which non-redundantly traverses the
search space. We efficiently reduce the search space without affecting the solution space. The
liquid schedules for small problems (up to a hundred nodes) can be found in a fraction of a second.

Section 3.1. Introduction

3.1.1. Parallel transmissions in circuit-switched networks

It has been more than three decades since circuit-switched networks were successfully
replaced by their packet-switched counterparts. In the early 1970’s, this trend started by
replacing data modems with connections to the X.25 network. Today, the entire concept of
telephony is becoming packetized. It is commonly admitted that with fine-grained packet-
switching technology, network resources are utilized more efficiently, flows are more fluid and
resilient to congestion, network management is easier, and the networks can flexibly scale to
large sizes.

 35

Nevertheless, other networking approaches still based on coarse-grained circuit-switching
have been emerging. These approaches offer low latencies, which are not attainable with packet
switching technology. In addition, circuit switching is of importance for optical
communications.

Examples of circuit switching networks are wormhole and cut-through routing (e.g.
MYRINET [Boden95], InfiniBand, [Steen05], [InfiniBand], [Reinemo06], [Bermudez06]) and
optical Wavelength Division Multiplexing (WDM). In contrast to packet switching, in
wormhole and optical switching networks the number of network hops separating the end nodes
has almost no impact on the communication latency. With respect to optical networks, due to the
lack of optical memory, packet switching in optical networks does not exist at all today (at least
not commercially).

All coarse-grained circuit-switching networks suffer from a common problem: inter-
blocking of transfers and jamming of large indivisible messages occupying intersecting
resources of the network (e.g. lightpaths of a given wavelength). Several parallel multi-hop
transmissions cannot share the same link resource simultaneously. In contrast to the fluidity and
resiliency of packet-switching, in coarse-grained circuit-switching networks, hard and complex
interlocking contentions arise when the network topology grows and the load increases.

In WDM optical networks, a single fiber can carry several wavelengths: approximately 80
in standard WDM, 160 in DWDM, and 1000 in research prototypes [Kartalopoulos00].
However the contentions are still present, because wavelengths are typically conserved along the
whole communication path. There is no switching from one wavelength to another in the middle
of the network. The new wavelengths are simply increasing the network capacity. In wormhole
switching, when the head of the message is blocked at an intermediate switch (due to
contention), the transmission stays strung over the network, potentially blocking other messages.

WDM wavelength routing is briefly introduced in Subsection 3.2.2 and wormhole routing
is introduced in Subsection 3.2.1.

3.1.2. Hardware solutions

In optical and wormhole switching the problem of contentions can be partially or fully
solved at the hardware level.

For example, the optical switches of the network may be equipped with the capability to
change the incoming wavelengths (not only to switch across the ports, i.e. to control the
direction of the light, but also to change the wavelength). Wavelength interchange (changing of
colors) requires expensive optical-electric (O/E) and electro-optical (E/O) conversions. Without
O/E/O conversions, when the signal is constantly maintained in the optical domain, cost-
effective optical networks can be built by relying only on switching by microscopic mirrors,
using inexpensive Micro Electro-Mechanical Systems (MEMS). In addition, O/E/O conversions
necessarily induce additional delays.

 36

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Boden95.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Steen05.mht
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/InfiniBand.mht
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Reinemo06.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Bermudez06.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Kartalopoulos00.mht

Regarding wormhole routing, the switches typically need only to buffer the tiny pieces of
the message (flits) that are sent between the switches. However, the switches may be equipped
with memories large enough to store the entire message (according to the estimation of the
message size in the network). Thus, when the head of the message is blocked, the switch lets the
tail continue, accumulating the whole message into a single switch. This hardware extension of
wormhole routing is called cut-through switching. Storing the messages solves the contention
problem only partially but requires a substantial increase of the switch’s memory, up to
multiples of the largest message size (depending on the number of ports). Virtual cut-through
switching is yet another hardware extension, wherein the link is divided (similarly to WDM)
into a certain number of virtual links sharing the capacity of the physical link.

In coarse-grained circuit switching the hardware solutions of contention-avoidance
require costly modifications to hardware (e.g. O/E/O conversion in optical switching or
substantial memory in wormhole switches) and often provide only partial solutions. The
hardware solutions also reduce the benefits of low latency (for example in cut-through routing,
the entire messages are stored in the switches).

3.1.3. Liquid scheduling - an application level solution

In wormhole routing, by keeping the architecture simple, switches with a large number of
physical ports can be implemented in single chips at a very low cost. I propose liquid scheduling
as an application level method for obtaining the network’s highest overall throughput. The
scheduling is performed at the edge nodes and requires no specific hardware solutions.
Synchronization and coordination of edge nodes is required.

Numerous applications relying on coarse-grained circuit-switched networks require an
efficient use of network resources for collective communications. Such applications include
parallel acquisition and distribution of multiple video streams [Chan01], [Sitaram00], switching
of simultaneous voice communication sessions [H323], [EWSD04], [SIP], and high energy
physics, where particle collision events need to be transmitted from a large number of detectors
and filters to clusters of processing nodes [CERN04].

Liquid scheduling can be used in Optical Burst Switching (OBS) by the edge IP routers
for an efficient utilization of the capacities of an interconnecting optical cloud (all-optical
network providing interconnection for the edge routers).

3.1.4. Overview of liquid scheduling

The aggregate throughput of a collective communication pattern (transmissions between
pairs of end nodes) depends on the underlying network topology and the routing. The amount of
data that has to pass across the most loaded links of the network, called bottleneck links, gives
their utilization time. The total size of the traffic divided by the utilization time of one
bottleneck link gives an estimation of the liquid throughput, which corresponds to the flow

 37

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Chan01.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/H323.mht
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/EWSD04.mht
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/SIP.mht
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/CERN04.mht

capacity of a non-compressible fluid in a network of pipes [Melamed00]. Both in wormhole
switching networks and WDM optical networks, due to possible link or wavelength allocation
conflicts, not just any combination of transfer requests may be carried out simultaneously. The
objective is to minimize the number of timeslots and/or wavelengths required to carry out a
given set of transfer requests. Each transfer shall be allocated to one (and only one) time frame,
such that no pair of transfers allocated to the same time frame uses a common resource (link,
wavelength). The liquid scheduling problem is introduced and mathematically defined in
Section 3.3 and Section 3.4.

The liquid scheduling problem cannot be solved in polynomial time. Solving the problem
by Mixed Integer Linear Programming (MILP) [CPLEX02], [Fourer03] requires very long
computation times (see Appendix C). Solving the problem by applying a heuristic graph
coloring algorithm provides suboptimal solutions in short time. The throughputs corresponding
to the heuristic solutions of the graph coloring problem are often 10% to 20% lower than the
liquid throughput [Gabrielyan03] (see Appendix B). In the present contribution we propose an
exact method for computing liquid schedules, which is fast enough for real time scheduling of
traffic on small scale networks comprising up to a hundred nodes.

Section 3.2 gives a brief overview of the architectures of the optical and wormhole
switching networks. Section 3.3 and Section 3.4 introduce the liquid scheduling problem.
Section 3.5, Section 3.6 and Section 3.7 present the liquid schedule construction algorithm. In
Section 3.8 we present for many network traffic patterns their overall communication
throughputs when carried out according to both liquid schedules and to topology-unaware
schedules.

Section 3.2. Applicable networks

This section briefly introduces two coarse-grained switching concepts: wormhole
switching (Subsection 3.2.1) and lightpath routing (Subsection 3.2.2). The advantages of
applying liquid schedules are discussed for both types of networks.

3.2.1. Wormhole switching

Wormhole routing is used in many High Performance Computing (HPC) networks. In
wormhole routing, the links lying on the path of a message are kept occupied during the
transmission of that message. Unlike packet switching (or store-and-forward switching) where
each network packet is present at an intermediate router [Ayad97], wormhole switching [Liu01],
[Dvorak05] transmits a message as a “worm” propagating itself across intermediate switches.
The message “worm” is a continuous stream of bits which make their way through successive

 38

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Melamed00.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gabrielyan03.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Ayad97.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Liu01.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Dvorak05.pdf

switches. In a wormhole switching network [Duato99], [Shin96], [Rexford96], [Colajanni99],
[Dvorak05] a message entering into the network is continuously broken up into small parts of
equal size called flits (standing from flow-control digits). These flits are streamed across the
network. All the flits of a packet follow the same path. The head flit contains the routing header
for the entire message. As soon as a switch on the path of a message receives the head flit, it can
direct the incoming flow to the corresponding outgoing link. If the message encounters a busy
outgoing link, the wormhole switch stalls the message in the network along the already
established path until the link becomes available. Occupied channels are not released. A channel
is released only when the last tail flit of the message has been transmitted. Thus each link lying
on the path of the message is kept occupied during the whole transmission time of a message. In
virtual cut-through (VCT) networks, if the message encounters a busy outgoing link, the entire
message is buffered in the router and previously allocated portions of the message path are
released. A VCT switch has enough memory to store nearly as many messages as its number of
ports. A simple wormhole switch architecture capable of only pipelining the messages requires
no more than a very small buffer, regardless of the size of the largest possible message in the
network. It enables a cost effective implementation of wormhole switches with a large number
of ports on a single chip [Yocum97]. The ability of VCT switches to buffer large messages
increases their cost substantially.

Compared to store and forward switching, wormhole switching considerably decreases
the latency of message transmission across multiple routers. Wormhole switching makes the
latency insensitive to the distance between the end nodes. Most contemporary research and high-
performance commercial multi-computers use some form of wormhole or cut-through networks,
e.g. Myrinet [Boden95], fat tree interconnections for clusters [Petrini01], [Petrini03], [Quadrics],
InfiniBand [InfiniBand], [Steen05], [Reinemo06], [Bermudez06] and Tnet [Horst95],
[Brauss99B].

Due to blocked message paths, wormhole switching quickly saturates as the load
increases. The aggregate throughput can be considerably lower than the liquid throughput of the
network. The rate of network congestion depends on the order in which a given set of message
transfers is carried out. Liquid scheduling enables the partitioning of the transfers so as to avoid
simultaneous transmissions of congesting messages.

3.2.2. Optical networks

In optical networks, data is transferred by lightpaths. Lightpaths are end to end optical
connections from a source node to a destination node. In Wavelength Division Multiplexing
(WDM) optical networks, a lightpath is typically established over a single wavelength (color)
along the whole path. Different lightpaths in a WDM wavelength-routing network can use the
same wavelength as long as they do not share any common link. Figure 27 shows an example of
an optical wavelength-routing network. Switches of the optical network are called Optical Cross
Connects (OXC). An OXC switches wavelengths from one port to another, usually without

 39

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Duato99.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Shin96.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Rexford96.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Colajanni99.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Dvorak05.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Yocum97.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Boden95.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Petrini01.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Petrini03.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Quadrics.mht
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/InfiniBand.mht
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Steen05.mht
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Reinemo06.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Bermudez06.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Horst95.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Brauss99B.pdf

changing the color [Ramaswami97], [Stern99]. The Optical Line Terminal (OLT) multiplexes
multiple wavelengths into a single fiber and de-multiplexes a set of wavelengths from a single
fiber into separate fibers. Often the OLT units are integrated with OXC.

OLT OLT OLT

O
LT

O
LT

 O
LT

O
LT OXC OXC OXC

IP router D IP router B OLT

OLTIP router A IP router C 2λ

1λ 2λ

1λ

O
LT

O
LT

 O
LT

O
LTOXC OXC OXC

Figure 27. Wavelength routing in the optical layer

End nodes (or edge nodes) of an optical network (also called an optical cloud) are IP
routers, SONET terminals, or ATM switches. They are plugged into OXC switches (as shown in
Figure 27). In a simple design the end node can also be inserted into a fiber (statically) via an
Optical Add/Drop Multiplexer (OADM). The purpose of the optical cloud is to provide
lightpaths between the terminal edge nodes, for example between IP routers (as shown in Figure
27). The lightpaths between the end nodes can either be established permanently, or provided
dynamically on demand.

Relatively inexpensive OXC switches can be implemented by an array of microscopic
mirrors, build with Micro Electro-Mechanical Systems (MEMS). These switches only re-direct
the incoming wavelengths to appropriate outgoing ports, without converting the color. They are
called Wavelength-Selective Cross-Connect (WSXC). Changing of the wavelength is possible
through Optical/Electro/Optical (O/E/O) conversions. Optical switches providing wavelength
conversion features are called Wavelength-Interchanging Cross-Connects (WIXC). WIXC
switches do both space switching and wavelength conversion.

When using WIXC switches, the lightpaths may be converted from one wavelength to
another along their route. However from the optical network design point of view, it is essential

 40

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Ramaswami97.pdf

to keep transmissions in the optical domain as long as possible, i.e. to be able to provide the
required services using only inexpensive WSXC switches.

Wavelength continuity (the fact that the basic optical transmission channel remains on a
fixed wavelength from end to end) is the main constraint affecting the scalability of networks
built with WSCX switches only.

For example assuming only WSXC switches in Figure 27, two connections from IP router
A to B and from C to D must either be established on two different wavelengths 1λ and 2λ , or

must be scheduled in different timeslots.

Given that any lightpath must be assigned the same wavelength on all the links it traverses
and that two lightpaths traversing a common link must be assigned different wavelengths, the
wavelength assignment problem requires minimizing the number of wavelengths needed for
establishment of the required end to end connections. In this domain, the wavelength assignment
problem is commonly solved by solving the corresponding congestion graph coloring problem
[Bermond96], [Caragiannis02]. The vertices of the graph represent the lightpaths and two
vertices are connected if the corresponding lightpaths are sharing a common link. The graph
coloring problem requires the coloring of all vertices using a minimal number of colors such that
two connected vertices always have different colors. Graph coloring is an NP-complete problem.
Its solutions are generally based on heuristic methods.

Liquid scheduling is an efficient method for assigning transmissions a minimal number of
lightpaths or timeframes. If a liquid schedule exists, the solution of the liquid scheduling
algorithm corresponds to the optimal solution of the graph coloring algorithm. Our algorithm
does not associate the set of transfers with a graph. It considers not only the congestion between
pairs of transfers (congestion graph), but also the set of links occupied by each transfer. This
permits the building of liquid schedules relatively quickly for networks comprising up to a
hundred nodes. The corresponding congestion graphs comprise thousands of vertices. The
heuristic graph coloring algorithms often propose solutions requiring more timeframes than the
number of timeframes allocated by our liquid scheduling algorithm. The comparison of the
liquid scheduling algorithm with a heuristic graph coloring method is given in Appendix B.

Application of liquid schedules in the optical domain assumes a collaboration of the edge
nodes and therefore an appropriate signaling layer. Optical Burst Switching (OBS) is an
example where the collaboration of the edge nodes is assumed and the application of liquid
schedules may significantly improve the overall throughput of the optical cloud [Qiao99],
[Turner99], [Turner02]. In the case of continuous incoming IP traffic, the filled buffers of the
edge nodes are repeatedly emptied by applying liquid scheduling. For the buffered data, the
liquid schedule finds the minimal number of partitions comprising non-congesting lightpaths.
The same wavelength is allocated to all transfers of a partition. The number of wavelengths
available in the network may not suffice for all partitions found by the liquid schedule. In such a
case, when all transfers cannot be carried out within a single round (timeslot), new rounds (with
a new set of wavelengths) are allocated until all transfers are carried out. Regardless of the

 41

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Bermond96.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Caragiannis02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Qiao99.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Turner99.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Turner02.pdf

number of wavelengths available in the network, liquid scheduling minimizes the total number
of required rounds.

Local strategies for avoiding congestion rely on an admission control mechanism
[Jagannathan02], [Mandjes02] or on feed-back and flow control based mechanisms regulating
the sending nodes’ data transmission rate [Maach04], [Chiu89], [Loh96]. These mechanisms
avoid congestion by rejecting the extra traffic. Local decision based strategies utilize only a
fraction of the network’s overall capacity. The global liquid scheduling strategy ensures that the
network’s potential capacity is used efficiently.

Section 3.3. The liquid scheduling problem

In our model, we neglect network latencies, we consider a constant message (or packet)
size, we assume an identical link throughput for all links, and we assume a static routing
scheme.

Consider a simple network example consisting of ten end nodes , , two
wormhole cut-through switches , and twelve unidirectional links , , ,
all having identical throughputs (see Figure 28). Assume that the nodes are only
transmitting and the nodes are only receiving. The routing is straight-forward, e.g. a
message from to traverse links , and , a message from to uses only links
and .

51 tt L 51 rrL

as bs 51 tt ll L 51 rr ll L abl bal

51 tt L

51 rrL

4t 3r 4tl bal 3rl 1t 2r 1tl

2rl

2tl 3tl

1tl

1rl

2rl 3rl 5rl4rl

4tl 5tl

bal

abl

as bs
1t

2t 3t 4t 5t

1r

2r 3r 4r 5r

Figure 28. Example of a simple network

For demonstration purposes we represent the transfers of the network of Figure 28,
symbolically via small pictograms highlighting the links used by the transfer. For example the
transfer from to is symbolically represented as , the transfer from to as .

We may also represent a set of two or more simultaneous transfers by a pictogram highlighting
4t 3r 1t 2r

 42

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Jagannathan02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Mandjes02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Maach04.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Chiu89.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Loh96.pdf

all occupied links. For example, a simultaneous transmission of the two previous transfers (from
 to and from to r) is represented as . 4t 3r 1t 2

L

We assume that all messages have identical sizes [Naghshineh93]. Let each sending node
have messages to be transmitted to each receiving node. There are therefore 25 transfers to carry
out. The corresponding pictograms for these 25 transfers are shown in Figure 29.

Figure 29. The pictograms representing the 25 transfers from all
sending nodes to all receiving nodes of the network of Figure
28

Accordingly, each of the ten links t , must carry 5 transfers, but the two links
, must each carry 6 transfers. Therefore, for the 25 transfers to be carried out, the links
, are the network bottlenecks and have the longest active time. If the duration of the

whole communication is as long as the active time of the bottleneck links, we say that the
collective communication reaches its liquid throughput. In that case the bottleneck links are
obviously kept busy at all times during the communication. Assume in this example a single link
throughput of 1Gbps. The liquid throughput offered by the network is

.

51 t 51 rrL

abl bal

abl bal

GbpsGbps 17.41)6/25(=⋅

The liquid throughput of a traffic X is the ratio)(/)(# XX Λ multiplied by the single
link throughput (identical for all links), where is the total number of transfers and)(# X)(XΛ

is the number of transfers carried out by one bottleneck link (the messages have identical sizes).

Now let us see if the order in which the transfers are carried out in this network has an
impact on the overall communication throughput. A straight-forward schedule allowing one to
carry out these 25 transfers is the round-robin schedule. At first, each transmitting node sends
the message to the receiving node staying in front of it, then to the receiving node staying at the
next position, etc. Such a round robin schedule consists of 5 phases.

The transfers of the first , second and the fifth phases of the
round-robin schedule may be carried out simultaneously, but the third phase , ,

, , and the forth phase , , , , contain

congesting transfers (we say that two transfers are in congestion if they cannot be carried out
simultaneously due to a common resource). For example, the two transfers of the third phase:

 43

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Naghshineh93.pdf

 and , cannot be carried out at the same time since they are trying to simultaneously

use link (see Figure 28). Similarly, two other transfers of the third phase , are
also in congestion, since they are simultaneously competing for the same link l . The forth

phase of the round-robin schedule has two pairs of congesting transfers as well. Each of these
phases cannot be carried out in less than two time frames and therefore the whole schedule lasts
7 time frames and not 5 (the number of phases in the round-robin schedule). Five timeframes
would have been sufficient if there were additional capacities (links) between the switches
and . The throughput of the collective communication carried out according to the round-
robin schedule is messages per time frame, or

abl

ba

as

bs
57.37/25 = GbpsGbps 57.31)7/25(=⋅ , which is

below the liquid throughput of 4.17Gbps.

The 25 transfers can be scheduled within a fewer number of timeframes. The following
schedule , , , , , carries out the 25

transmissions in 6 timeframes. Each timeframe consists of 3 to 5 non-congesting transfers. The
whole schedule yields the liquid throughput of 4.17Gbps.

In the following sections we present algorithms permitting the construction of liquid
schedules for arbitrary traffic patterns on arbitrary network topologies.

Section 3.4. Definitions

The method we propose allows us to efficiently build liquid schedules for non-trivial
network topologies. Thanks to liquid schedules we may considerably increase the collective data
exchange throughputs, compared with traditional topology unaware schedules such as round-
robin or random schedules.

The present section introduces the definitions that will be further used for describing the
liquid schedule construction method.

A single “point-to-point” transfer is represented by the set of communication links
forming the network path between one transmitting and one receiving node according to the
given routing. Note that we will be limiting ourselves to data exchanges consisting of identical
message sizes.

We therefore define in our mathematical model a transfer as a set of all links lying on the
path between one sending and one receiving node. A traffic is a set of transfers (i.e. a collective
data exchange).

According to the definition of traffic, Figure 30 shows the traffic pattern of Figure 29
(corresponding to a collective data exchange carried out on the network of Figure 28) in the new
set-represented notation. The traffic of Figure 30 represents a scenario, wherein each

 44

transmitting node (the nodes at the top of Figure 28) sends one message to each receiving
node (the nodes at the bottom of Figure 28). Any other collective exchange comprising

transfers between possibly overlapping sets of sending and receiving nodes (a node obviously
can receive and transmit) is a valid traffic according to our definition.

51 tt L

51 rrL

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

},{},,{},,,{},,,{},,,{
},,{},,{},,,{},,,{},,,{

},,,{},,,{},,{},,{},,{
},,,{},,,{},,{},,{},,{

},,,{},,,{},,{},,{},,{

5545352515

5444342414

5343332313

5242322212

5141312111

rtrtrtrtrt

rtrtrtrtrt

rtrtrtrtrt

rtrtrtrtrt

rtrtrtrtrt

llllllllll
llllllllll

llllllllll
llllllllll

llllllllll

bababa

bababa

abab

abab

abab

lll
lll

ll
ll
ll

Figure 30. Example of a traffic comprising 25 transfers of Figure 29
(over the network of Figure 28) each represented as set of
links

A link l is utilized by a transfer x if xl∈ . A link l is utilized by a traffic X if l is utilized
by a transfer of X. Two transfers are in congestion if they share a common link, i.e. if their
intersection is not empty.

A simultaneity of a traffic X is a subset of X consisting of mutually non-congesting
transfers. Intersection of any two members of a simultaneity is always empty. A transfer is in
congestion with a simultaneity if the transfer is in congestion with at least one member of the
simultaneity. A simultaneity of a traffic is full if all transfers in the complement of the
simultaneity in the traffic are in congestion with that simultaneity. A simultaneity of a traffic
obviously can be carried out within one time frame (the time to carry out a single transfer).

The load),(Xlλ of a link l in a traffic X is the number of transfers in X using link l.

()}{#),(xlXxXl ∈∈=λ

(1)

The duration of a traffic X is the maximal value of the load among all links

involved in the traffic.

)(XΛ

),()(max Xl
xl

X

Xx

λ

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈
∈

=Λ

U

(2)

The links having maximal load values, i.e. when)(),(XXl Λ=λ , are called bottlenecks.

In the example of the traffic of Figure 30, all bottleneck links are marked in bold. The liquid
throughput of a traffic X is the ratio)(/)(# XX Λ multiplied by the single link throughput,
where is the number of transfers in the traffic X.)(# X

linkliquid t
X
Xt ⋅

Λ
=

)(
)(#

(3)

 45

We define a simultaneity of X as a team of X if it uses all bottlenecks of X. A liquid
schedule must comprise only teams since all bottleneck links must be kept busy all the time. A
team of X is full if it is a full simultaneity of X. Intuitively, there is a greater chance to
successfully assemble a liquid schedule that covers all transfers of the initial traffic, if one
considers only full teams during the construction, instead of also considering all possible non-
full teams (see Subsection 3.7.4).

Let be the set of all full simultaneities of X. Let)(Xℜ)(Xℑ′ and)(Xℑ be the sets of
all teams and the set of all full teams of X respectively. By definition,)()(XX ℜ⊂ℑ ,

, and the intersection of all teams with all full simultaneities is the set of all full

teams:

)()(XX ℑ′⊂ℑ

)()()(XXX ℜℑ′=ℑ I (4)

In order to form liquid schedules, we try to schedule transfers in such a way that all
bottleneck links are always kept busy. Therefore we search for a liquid schedule by trying to
assemble non-overlapping teams carrying out all transfers of the given traffic, i.e. we partition
the traffic into teams. To cover the whole solution space we need to generate all possible teams
of a given traffic. This is an exponentially complex problem. It is therefore important that the
team traversing technique be non-redundant and efficient, i.e. that each configuration be
evaluated once and only once, without repetitions.

Section 3.5. Obtaining full simultaneities

To obtain all full teams, we first optimize the retrieval of all simultaneities and then use
that algorithm to retrieve all full teams.

Recall that in a traffic X, any mutually non-congesting combination of transfers is a
simultaneity. A full simultaneity is a combination of non-congesting transfers taken from X,
such that its complement in X contains only transfers congesting with that simultaneity.

We can categorize full simultaneities according to the presence or absence of a given
transfer x. A full simultaneity is x-positive if it contains transfer x. If it does not contain transfer
x, it is x-negative. Thus the entire set of all full simultaneities)(Xℜ is partitioned into two non-
overlapping halves: an x-positive and an x-negative subset of)(Xℜ . For example, if y is

another transfer, the set of x-positive full simultaneities may be further partitioned into y-
positive and y-negative subsets. Iterative partitioning and sub-partitioning permits us to
recursively traverse the whole set of all full simultaneities)(Xℜ , one by one, without

repetitions.

The rest of this section describes in detail the algorithm for sequentially traversing all
possible distinct full simultaneities.

 46

3.5.1. Using categories to cover subsets of full simultaneities

Let us define a category of full simultaneities of X as an ordered triplet (includer, depot,
excluder), where the includer is a simultaneity of X (not necessarily full), the excluder contains
some transfers of X non-congesting with the includer, and the depot contains all the remaining
transfers non-congesting with the includer.

We define categories in order to represent collections of full simultaneities from the set of
all full simultaneities . The includer and excluder of a category are used as constraints for
determining the corresponding full simultaneities.

)(Xℜ

We therefore say that a full simultaneity is covered by a category R, if the full
simultaneity contains all the transfers of the category’s includer and does not contain any
transfer of the category’s excluder. Consequently, any full simultaneity covered by a category is
the category’s includer together with some transfers taken from the category’s depot. The
collection of all full simultaneities of X covered by a category R is defined as the coverage of R.
We denote the coverage of R as)(RΦ . By definition,)()(XR ℜ⊂Φ .

Transfers of a category’s includer form a simultaneity (not full). By adding different
variations of transfers from the depot, we may obtain all possible full simultaneities covered by
the category.

The category),,(∅∅ X is a prim-category. A prim-category covers all full

simultaneities of X :

)(),,(XX ℜ=∅∅Φ (5)

Since the includer and excluder of the prim-category are empty, the prim-category
represents no restrictions on full simultaneities. Therefore any full simultaneity is covered by the
prim-category (or in other words, all full simultaneities contain the empty includer of the prim-
category and do not contain a transfer of the excluder, because it is empty).

3.5.2. Fission of categories into sub-categories

By taking an arbitrary transfer x from the depot of a category R, we can partition the
coverage of R into x-positive and x-negative subsets. The respective x-positive and x-negative
subsets of the coverage of R are coverages of two categories derived from R: a positive
subcategory and a negative subcategory of R.

The positive subcategory is formed from the category R by adding transfer x to its

includer, and by removing from its depot and excluder all transfers congesting with x. Since
transfers congesting with x are naturally excluded from a full simultaneity covered by , we

may safely remove them from the excluder (and therefore avoid redundancy in the exclusion
constraint). The negative subcategory is formed from the category R by simply moving the

xR+

xR+

xR−

 47

transfer x from its depot to its excluder. The replacement of a category R by its two sub
categories and is defined as a fission of the category. xR+ xR−

By the definition of fission, the two sub-categories resulting from the fission are also valid
categories, according to the definition of category.

Figure 31 and Figure 32 show a fission of a category into positive and negative sub
categories.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΘΞΘΞΞΘ=

excluderdepotincluder
xR },{},,,{}{ 332211

Figure 31. An initial category before fission, where symbol Ξ ,
represents any transfer that is in congestion with x and
symbol represents any transfer which is simultaneous
with

Θ
x

Figure 31 shows an example of an initial category R and Figure 32 shows the resulting
two sub categories obtained from it by a fission relative to a transfer x taken from the depot. The
transfers congest with transfer x, and the transfers 31 ΞΞ L 31 ΘΘ L are simultaneous with x.

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎟
⎠
⎞ΘΞΘΞΞ⎜

⎝
⎛ Θ=

⎟
⎠
⎞ΘΘ⎜

⎝
⎛ Θ=

=

−

+

excluderdepotincluder
x

excluderdepotincluder
x

xR

xR

R

},,{,},,{,}{

}{,}{,},{

332211

321

Figure 32. Fission of the category of Figure 31 into its positive and
negative sub categories.

The coverage of R is partitioned by the coverages of its sub categories and , i.e.

the coverage of a category is the union of coverages of its sub categories (equation (6)), and the
coverages of the sub categories have no common transfers (equation (7)).

xR+ xR−

)()()(RRR xx Φ=Φ∪Φ −+ (6)

and

∅=Φ∩Φ −+)()(xx RR (7)

3.5.3. Traversing all full simultaneities by repeated fission of
categories

A singular category is a category that covers only one full simultaneity. That full
simultaneity is equal to the includer of the singular category. The depot and excluder of a
singular category are empty.

 48

We apply the binary fission to the prim-category (equation (5)) and split it into two
categories. Then, we apply the fission to each of these categories. Repeated fission increases the
number of categories and narrows the coverage of each category. Eventually, the fissions will
lead to singular categories only, i.e. categories whose coverage consists of a single full
simultaneity. Since at each stage we have been partitioning the set of full simultaneities, at the
final stage we know that each full simultaneity is covered by one and only one singular
category.

The algorithm recursively carries out the fission of categories and yields all full
simultaneities without repetitions.

3.5.4. Optimization - identifying blank categories

A further optimization is performed. Consider a category; a full simultaneity must contain
no transfer from that category’s excluder in order to be covered by that category. In addition,
since the full simultaneity is full, it is in congestion with all transfers that it does not contain.
Obviously any full simultaneity covered by some category must congest with each member of
that category’s excluder. Therefore, transfers congesting with the transfers of the excluder must
be available in the depot of the category (the category’s excluder, according to the fission
algorithm, keeps no transfer congesting with the includer). If the excluder contains at least one
transfer for which the depot has no congesting transfer, then we say that this category is blank.
The includer of a blank category cannot be further extended by the transfers of the depot to a
simultaneity which is full (and therefore congests with every remaining transfer of the excluder).
The coverage of a blank category is therefore empty and there is no need to pursue its fission.

3.5.5. Retrieving full teams - identifying idle categories

Let us now instead of retrieving all full simultaneities retrieve all full teams, i.e. those full
simultaneities which ensure the utilization of all bottleneck links.

A category within X is idle if its includer and its depot together don’t use all bottlenecks
of X. This means that we can not grow the current simultaneity (i.e. the includer of the category)
into a full simultaneity, which will use all bottlenecks. The coverage of an idle category
therefore does not contain a full simultaneity, which is a team. Idle categories allow us to prune
the search tree during the early stages of the algorithm and to pursue only branches leading to
full teams.

Carrying out successive fissions, starting from the prim-category and continuously
identifying and removing all the blank and idle categories, ultimately leads to all full teams.

 49

Section 3.6. Speeding up the search for full teams

This section presents an additional method for speeding up the search for all full teams
 of an arbitrary traffic X.)(Xℑ

3.6.1. Skeleton of a traffic

Let us consider from the original traffic X only those transfers that use bottlenecks of X
and call this set of transfers the skeleton of X. We denote the skeleton of X as)(Xς . Obviously,

XX ⊂)(ς .

According to equations (1) and (2), equation (8) specifies the skeleton of X so as to
comprise only the transfers using links whose load is equal to the duration of the traffic:

{ })(),(max)(XXlXxX
xl

Λ=∈=
∈

λς

(8)

Figure 33 shows the relative sizes of skeletons compared with the sizes of their
corresponding traffics. We consider 362 different traffic patterns across the K-ring network of
the Swiss-T1 cluster supercomputer comprising 32 nodes (see Figure 39 and Table 2 in
Subsection 3.8.1). In average, the skeleton size is 31.5% of its traffic size.

The skeleton content of traffic

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0
(0

0)
64

 (0
8)

10
0

(1
0)

12
1

(1
1)

14
4

(1
2)

16
9

(1
3)

19
6

(1
4)

22
5

(1
5)

22
5

(1
5)

25
6

(1
6)

28
9

(1
7)

32
4

(1
8)

36
1

(1
9)

40
0

(2
0)

44
1

(2
1)

48
4

(2
2)

57
6

(2
4)

62
5

(2
5)

90
0

(3
0)

Number of transfers (and number of contributing nodes) for 362
different traffic patterns

th
e

sk
el

et
on

's
re

la
tiv

e
si

ze
 (%

)

nodes:
transfers:

Figure 33. Fraction of transfers within a skeleton of a traffic, compared
with the total number of transfers in the traffic

 50

3.6.2. Optimization - building full teams based on full teams of
the skeleton

When considering the skeleton of a traffic X as another traffic, the bottlenecks of the
skeleton of a traffic are the same as the bottlenecks of the traffic. Consequently, a team of a
skeleton is also a team of the original traffic.

We may first obtain all full teams of the traffic’s skeleton by iteratively applying the
fission algorithm on the traffic’s skeleton and by eliminating the idle categories. Then, a full
team of the original traffic is obtained by adding a combination of non-congesting transfers to a
team of the traffic’s skeleton.

We therefore obtain the set of a traffic’s full teams)(Xℑ by carrying out the steps

outlined in Table 1.

Table 1. Optimized algorithm for retrieving all full teams of a traffic

1. Obtain the set of the skeleton’s full teams
))((Xςℑ by applying the fission algorithm on

the traffic’s skeleton.

2. Create for each full team of the skeleton, a
category by initializing:

2.1. The includer with the transfers of the
skeleton’s full team;

2.3. The excluder as empty;

2.2. The depot with all transfers of X which are
not congesting with the includer.

3. Apply the fission to each category,
discarding the check for idle categories,
since the includer is already a team, i.e.
it uses all bottlenecks.

By first applying the fission to the skeleton and then expanding the skeleton’s full teams
to the traffic’s full teams, we considerably reduce the processing time.

3.6.3. Evaluating the reduction of the search space

Let us evaluate the reduction of the search space achieved due to the search space
reduction methods proposed in Section 3.5 and in this section. We consider 23 different all-to-all
traffic patterns across the network of the Swiss-T1 cluster supercomputer (see Section 3.8). The
size of the algorithm’s search space is the number of categories that are being iteratively
traversed by the algorithm until all full teams are discovered.

Figure 34 shows the search space reduction for the four presented algorithms. The first
one is the naive algorithm that builds full teams only according to the coverage partitioning

 51

strategy (Subsection 3.5.3) without considering the other optimizations. We assume that the size
of the search space of the naive algorithm is 100% and we use it as a reference for the other
three algorithms. The naive algorithm is sufficiently “smart” to avoid repetitions while exploring
all full simultaneities. The second algorithm, which adds identification of blank categories (see
Subsection 3.5.4) permits, according to Figure 34, the reduction of the search space to an
average of 28% of the search space of the naive algorithm. The third algorithm identifies idle
categories and enables it to skip at an early stage the evaluation of all categories not leading to
teams (see Subsection 3.5.5). This third algorithm encloses all optimizations presented in
Section 3.5 and reduces the search space to an average of 20% of the search space of the initial
algorithm.

4.
7

5.
5 7.
4

7.
9

8.
1

8.
3 9.
2

9.
3

9.
6

9.
9

10
.0

10
.1

10
.7

10
.8

10
.9

11
.3

12
.0

12
.2

12
.6

12
.7

13
.4

14
.0 20

.0

0%

5%

10%

15%

20%

25%

30%

35%

46
6.

6K
 (1

00
)

92
6.

2K
 (1

21
)

4.
2M

 (1
21

)
4.

2M
 (1

21
)

21
2K

 (1
00

)
4.

9M
 (1

21
)

4.
1M

 (1
21

)
9.

2M
 (1

21
)

69
3.

2K
 (1

00
)

14
.1

M
 (1

21
)

15
.2

M
 (1

21
)

75
3.

7K
 (1

00
)

68
2K

 (1
00

)
93

6K
 (1

00
)

1.
2M

 (1
00

)
88

.1
K

 (8
1)

95
K

 (8
1)

11
5.

9K
 (8

1)
1.

8M
 (1

00
)

57
.6

K
 (8

1)
9.

2K
 (6

4)
13

6.
7K

 (8
1)

14
.2

M
 (1

21
)

Number of possible full teams (and number of transfers) for 23
different traffic patterns

Se
ar

ch
 s

pa
ce

 re
du

ct
io

n
(%

)

idle+skeleton+blank idle+blank blank

transfers:

full teams:

Figure 34. Search space reduction obtained by idle+skeleton+blank
optimization steps

Finally, the skeleton algorithm presented in this section, which is carried out in two
phases according to Table 1, reduces the search space to an average of 10.6% of the search
space of the initial algorithm. Full teams are therefore retrieved, on average, 9.43 times faster
than with the naive algorithm of Subsection 3.5.3, thanks to the three optimisation techniques
presented in Subsections 3.5.4, 3.5.5 and 3.6.2.

 52

Section 3.7. Construction of liquid schedules

In Section 3.5 and Section 3.6 we introduced efficient algorithms for traversing full teams
of a traffic. Relying on the full team generation algorithms, this section presents methods for
constructing liquid schedules for arbitrary traffic patterns on arbitrary network topologies.

3.7.1. Definition of a liquid schedule

Let us introduce the definition of a schedule. By recalling that a partition of X is a disjoint
collection of non-empty subsets of X whose union is X [Halmos74], a schedule α of a traffic X
is a collection of simultaneities of X partitioning the traffic X. An element of a schedule α is
called a time frame. The length)(# α of a schedule α is the number of time frames in α . A

schedule of a traffic is optimal if the traffic does not have any shorter schedule. If the length of a
schedule is equal to the duration of the traffic (the duration of a traffic X is the load of its
bottlenecks), then the schedule is liquid. Thus a schedule α of a traffic X is liquid if equation
(9) holds. See also equation (2) defining the duration of a traffic X.

)()(# XΛ=α (9)

Figure 35 shows a liquid schedule for the collective traffic shown in Figure 30, which in
turn represents an all-to-all data exchange (see Figure 29) across the network shown in Figure
28.

6 frame time
5 frame time

2

2

11

4 frame time
15

4

2

21

3 frame time
25

54

1

42

1

2 frame time
45

24

12

51

1 frame time
55

14

33

22

41

},,{
},{

},,{

},,{
},{

},,{
},{

},,{
},,{

},{
},{

},,{
},{
},{

},,{
},{

},{
},,{

},{
},,{

},{
},,{

},{
},{

},,{

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

r3bat5

r4t4

r5abt3

r3bat4

t3

r5ab

ba

abt3

r3

ba

t3

ab

r3

ba

ab

ba

ab

lll
ll

lll

lll
l

ll

l
ll

l

l

l
l

l

l

l

l

l

r

t

rt

rt

r

t

rt

rt

rt

r

rt

t

rt

rt

rt

rt

rt

rt

rt

rt

rt

l
l

ll

ll
l

l
ll

ll
ll
l

ll
l

ll
ll

ll
ll

ll
ll

ll
ll

ll

Figure 35. Time frames of a liquid schedule of the collective traffic
shown in Figure 30

One can easily check that the timeframes of Figure 35 correspond to the following
sequence , , epresented in the form of the

pictograms introduced in Section 3.3. Recall that each pictogram in the sequence represents

, , , , r

 53

several transmissions that can be carried out simultaneously. For example the sequence’s second
pictogram , visualizes four simultaneous transfers: to r , to r , to and to

, wherein are the source nodes and are the destination nodes of the network of

Figure 28. These four simultaneous transfers correspond to the second time frame of

Figure 35:

1t 5 2t 1 4t 2r 5t

4r 51 tt L 51 rrL

{ }},{},,,{},,{},,,{ 45241251 rtrtrtrt llllllll baab ll= (10)

If a schedule is liquid, then each of its time frames must use all bottlenecks. Inversely, if
all time frames of a schedule use all bottlenecks, the schedule is liquid.

The necessary and sufficient condition for the liquidity of a schedule is that all
bottlenecks be used by each time frame of the schedule. Since a simultaneity of X is defined as a
team of X, if it uses all bottlenecks of X, a necessary and sufficient condition for the liquidity of
a schedule α on X is that each time frame of α be a team of X.

A liquid schedule is optimal, but the inverse is not always true, meaning that a traffic may
not have a liquid schedule. An example of traffic having no liquid schedule is shown in Figure
37. This traffic is to be carried across the network shown in Figure 36. There are three
bottleneck links in the network { . Since there is no combination of non-congesting
transfers that can simultaneously use all three bottleneck links { , this traffic contains

no team and therefore has no liquid schedule.

},, cabcab lll

cabcab lll },,

1t

2t

3t

1r

2r

3r

as

bscs

cal abl

bcl

1tl

2tl

3tl

1rl

2rl

3rl

Figure 36. A traffic of three transmissions (shown in Figure 37) across
this network has no team and therefore no liquid schedule

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

},,,{
},,,,{
},,,,{

33

22

11

rt

rt

rt

ll
ll
ll

X

abca

cabc

bcab

ll
ll
ll

Figure 37. A traffic consisting of three transmissions to be carried
across the network shown in Figure 36

The rest of this section presents the liquid scheduling construction algorithm (Subsection
3.7.2) and two optimizations (Subsections 3.7.3 and 3.7.4).

 54

In Appendix C, we show how to formulate the problem of searching for a liquid schedule
with Mixed Integer Linear Programming (MILP), [CPLEX02], [Fourer03]. Appendix C presents
a comparison of the performance of the liquid schedule search approach presented here with that
of MILP. It shows that the computation time of the MILP method is prohibitive compared with
the speed of our algorithm.

3.7.2. Liquid schedule basic construction algorithm

In this subsection we describe the basic algorithm for constructing a liquid schedule. The
basic algorithm simply consists of recursive attempts to assemble a liquid schedule out of the
teams of the original traffic, until a valid liquid schedule incorporating all transfers is
successfully constructed. In the following subsections (Subsections 3.7.3 and 3.7.4), relying on
the basic algorithm, we show how to apply further optimizations.

Our strategy for finding a liquid schedule relies on partitioning the traffic into a set of
teams forming the sequence of time frames. Associate to the traffic X all its possible teams

 (found by the algorithm presented in Section 3.6) which could be selected as the

schedule’s first time frame.
nAAA L,, 21

() { }

() { }

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=ℵ

−=

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛
=ℵ

−=

=ℵ
−=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ =ℵ−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ =ℵ−=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

ℵ

=ℵ−=

=ℵ−=

=ℵ

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

⎭
⎬
⎫

⎩
⎨
⎧⎟

⎠
⎞⎜

⎝
⎛

444444444444444444444 8444444444444444444444 76

444444444444444444444 3444444444444444444444 21

L

4444444 84444444 76

4444444 34444444 21

L

LLLL

L

444444 8444444 76

444444 3444444 21
LLLL

L

L44444444444 844444444444 76

44444444444 344444444444 21

L
LLLL

L

LLLL

L

444444444 8444444444 76

444444444 3444444444 21
LLLL

L

L

L

,

,
}),(),(),{(

,,,
,

,
),,(),,(),,(

,,,,
,

,,,,
,

,

,
}),(),(),{(

,},,,{}{,

,
}),(),(),{(

,},,,{)(,

,
),,(),,(}),{),(,(

,},,,{)(,

,,,,,

,,,,,

2,2,21,2,22,2

2,222,2

3,1,22,1,21,1,2

3,1,22,1,21,1,21,2

1,221,2

3,22,21,22

22

3,3,12,3,11,3,13,13,113,1

3,2,12,2,11,2,12,12,112,1

3,1,12,1,11,1,11,1,1

3,1,12,1,11,1,11,11,111,1

3,12,11,1111

321

AAX
AXX

XXX

AAAX
AXX

AAAX
AXX

AAAXAXX

AAAXAXX

XXXX

AAAXAXX

AAAXAXX

AAAXX

Figure 38. Liquid schedule construction tree: denotes a
reduced subtraffic at the layer

niiiX L21

1+n of the tree and
 denotes a candidate for the time frame ; the

operator
121 +nniiiiA L 1+n

ℵ applied to a subtraffic yields the set of all
possible candidates for a time frame

subX

The variety of possible subtraffics remaining after the choice of the first time frame is
represented by the following: L,, 21 AXAX −− . Each of the possible subtraffics iX

 55

remaining after the selection of the first time frame has its own set of possibilities for the second
time frame , where },,,{)(3,2,1, Liiii AAAX =ℵ)(subXℵ is a choice function. The choice of the

second team for the second time frame yields a further reduced subtraffic (see Figure 38).

Dead ends are possible if there is no choice for the next time frame, i.e. no team of the
original traffic may be formed from the transfers of the reduced traffic. A dead end situation
may occur, for example, when the remaining subtraffic appears to be like the one shown in
Figure 36 and Figure 37. Once a dead end occurs, backtracking takes place.

The construction recursively advances and backtracks until a valid liquid schedule is
formed. A valid liquid schedule is obtained when the transfers remaining in the reduced traffic
form one single team for the last time frame of the liquid schedule.

We rely on the construction tree of Figure 38 and assume that at any stage the choice
 for the next time frame is among the set of the original traffic’s teams . Thus

the choice function is represented by the following equation:

)(subXℵ)(Xℑ′

})({)(subsub XAXAX ⊂ℑ′∈=ℵ (11)

In the next subsections we improve equation (11) by considering newly emerging
bottlenecks at each successive time frame.

3.7.3. Search space reduction by considering newly emerging
bottlenecks

We observe in Figure 35 that when we step from one time frame to the next, additional
new bottleneck links emerge. For example, from time frame 3 on, links and appear as

new bottlenecks.
t3l r3l

In the construction strategy presented in the previous subsection (3.7.2), according to
equation (11) we consider as a possible time frame any team of the original traffic X that can be
built from the transfers of the reduced subtraffic. A schedule is liquid if and only if (IFF) each
time frame is not only a team of the original traffic but is also a team of the reduced subtraffic
(see Appendix D for a formal proof). If α is a liquid schedule on X and A is a time frame of α ,
then }{A−α is a liquid schedule on AX − .

Thus a liquid schedule may not contain a time frame which is a team of the original traffic
but is not a team of a subtraffic obtained by removing some of the previous time frames.
Therefore, at each iteration, we can limit our choice by the collection of only those teams of the
original traffic which are also teams of the current reduced subtraffic. Since the reduced
subtraffic contains additional bottleneck links, there are fewer teams in the reduced subtraffic
than teams remaining from the original traffic.

Therefore, in the liquid schedule construction diagram presented in Figure 38, regarding
the choice function we can replace equation (11) by equation (12):)(subXℵ

 56

)()(subsub XX ℑ′=ℵ (12)

By considering in each time frame all occurring bottlenecks, with the new equation (12)
we speed up the construction considerably.

3.7.4. Liquid schedule construction optimization by
considering only full teams

In Appendix E we have shown that if a liquid schedule exists and if it can be constructed
by the choice of teams, then a liquid schedule can be also constructed by limiting the choice to
only full teams (see also [Gabrielyan03] and [Gabrielyan04A]).

Therefore in the construction algorithm represented by the diagram of Figure 38, the
function for the choice of the teams may be further narrowed from the set of all teams,

(as in equation (12)) to the set of full teams only:

)(subXℵ

)()(subsub XX ℑ=ℵ (13)

When upgrading the choice function)(subXℵ equation from (11) to (12) and then from

(12) to (13), we make sure that the new equations have no impact on the solvability of the
problem. The liquid schedule construction is sped up, thanks to the reduction in choice
summarized by expressions (14) and (15) below:

)()(})({ subsubsub XXXAXA ℑ⊂ℑ′⊂⊂ℑ′∈ (14)

and therefore also:

))((#))((#}))(({# subsubsub XXXAXA ℑ≤ℑ′≤⊂ℑ′∈ (15)

Section 3.8. Experimental verification

In this section we present the results of application of liquid schedules to data
communications carried out across a real network. In Subsection 3.8.1 we present the network
on which the experiments were carried out. We select several hundred traffic patterns across the
considered network. Measurements of aggregate communication throughputs, presented in
Subsection 3.8.2, enable us to validate the efficiency of applying liquid schedules in real
networks.

 57

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gabrielyan03.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gabrielyan04A.pdf

3.8.1. Swiss-Tx cluster supercomputer and 362 test traffic
patterns

The experiments are carried out across the interconnection network of the Swiss-T1
cluster supercomputer (see Figure 39). The network of Swiss-T1 forms a K-ring [Kuonen99B]
and is built on TNET switches. The routing between pairs of switches is static. The throughputs
of all links are identical and equal to 86MB/s. The cluster consists of 32 nodes, each one
comprising 2 processors [Kuonen99A], [Gruber01], [Gruber02], [Gruber05]. The cluster thus
comprises a total of 64 computing processors. Each processor has its own individual connection
to the network. The network enables transmissions of large messages at low latencies.
Wormhole switching is employed for this purpose.

n10 n11 n12 n17 n18 n19 n20 n9

n23n13 n14 n15 n16 n21 n22 n24Edge
nodes

Edge
nodes

n2 n3 n4 n25 n26 n27 n28 n1 s2 s3

n5 n6 n7 n8 n29 n30 n31 n32

s1 s4

8 switches
interconnected with

16 bi-directional links

s8 s5

n33 n34n57 n58 n59 n60 n35 n36

n62 n63 n37 n38 n39 n40 n61 n64 s7 s6

Edge
nodes

Edge
nodes n49 n50 n51 n52 n41 n42 n43 n44

n53 n54 n55 n56 n45 n46 n47 n48

Figure 39. Architecture of the Swiss-T1 cluster supercomputer
interconnected by a high performance wormhole switch
fabric

Communication between a pair of any two switches requires at most one intermediate
switch. The routing is summarized in Table 2. Transmissions from switch i to switch j are routed
through the switch whose number is located at position of the table. Symbol “↔”

indicates that the two switches are connected by a direct link.

),(ji

 58

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Kuonen99B.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Kuonen99A.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gruber01.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gruber02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gruber05.ppt

Table 2. The routing table of the Swiss-Tx supercomputer shown in
Figure 39

R

1
2
3
4
5
6
7
8

We perform our experiment
across the network of the Swiss-T
where within each node one of the
For any given allocation of nodes w
and we assume a traffic pattern wh
the same size) to each receiving pr
allocated nodes (i.e. pairs of process

The Swiss-T1 cluster superc
switch. We have therefore 5 possib
This yields different n
different patterns of underlying topo
the 390625 topologies (taking into
within the network, many of these
unique liquid throughput values w
each throughput value. Therefore 3
obtained.

39062558 =

Figure 40 shows these 362
number of contributing nodes and b
of nodes are allocated in the cluster
considerably. Therefore for any g
throughput varies considerably.

outing table
1 2 3 4 5 6 7 8
 ↔ 2 ↔ 4 ↔ 8 ↔
↔ ↔ 7 ↔ 3 ↔ 5
2 ↔ ↔ 4 ↔ 8 ↔
↔ 7 ↔ ↔ 7 ↔ 3
4 ↔ 4 ↔ ↔ 6 ↔
↔ 3 ↔ 7 ↔ ↔ 1
8 ↔ 8 ↔ 6 ↔ ↔
↔ 5 ↔ 3 ↔ 1 ↔
s on a number of different data intensive traffic patterns
1 cluster. We limit ourselves to only those traffic patterns
 processors only transmits and the other one only receives.
e have an equal number of sending and receiving processors
ere each sending processor transmits a distinct message (of
ocessor. Thus, according to our assumptions, if there are n
ors), then there are transmissions to be carried out. 2n

omputer comprises 32 nodes, 8 switches and 4 nodes per
ilities of allocating nodes to each switch (from 0 to 4 nodes).
ode allocation patterns. To limit our choice to substantially
logies, we have computed the liquid throughputs for each of
account the static routing). Because of various symmetries

 topologies yield identical liquid throughputs and only 362
ere obtained. We selected one representative topology for
62 topologies yielding different liquid throughput values are

traffic patterns (topologies), each one characterized by the
y its liquid throughput. Depending on how a given number

, the corresponding underlying network changes its topology
iven number of nodes, Figure 40 shows that the liquid

59

0

200

400

600

800

1000
1200

1400

1600

1800

0 4 8 12 16 20 24 28 32
Number of contributing nodes

Li
qu

id
 th

ro
ug

hp
ut

 (M
B

/s
) -

Figure 40. For a given number of contributing nodes, all possible
allocations of nodes yielding different liquid throughputs

The management system for Computing in Distributed Networked Environment
(CODINE) and the Load Sharing Facility (LSF) are the job allocation and the scheduling
consoles used in Swiss-T1 [Byun00], [Hassaine02]. Taking into account the data of Figure 40
the CODINE and LSF job allocation systems of Swiss-T1 are experimentally tuned for
communication intensive programs (of high priority). In these experiments the allocation
strategy is simple and the fairness among several communication intensive jobs is not
considered.

These 362 topologies may be also placed along one axis, sorted first by the number of
nodes and then according to their liquid throughput, as shown in Figure 41.

0
200
400
600
800

1000
1200
1400
1600
1800

0
 (0

0)
64

 (
08

)
10

0
 (1

0)
12

1
 (1

1)
14

4
 (1

2)
16

9
 (1

3)
19

6
 (1

4)
22

5
 (1

5)
22

5
 (1

5)
25

6
 (1

6)
28

9
 (1

7)
32

4
 (1

8)
36

1
 (1

9)
40

0
 (2

0)
44

1
 (2

1)
48

4
 (2

2)
57

6
 (2

4)
62

5
 (2

5)
90

0
 (3

0)

362 distinct traffic patterns accross the network of
Swiss-T1 cluster supercomputer

Li
qu

id
 th

ro
ug

hp
ut

 (M
B

/s
)

nodes:

transfers:

Figure 41. The 362 topologies of Figure 40 yielding different liquid
throughput values placed along one axis, sorted first by the
number of contributing nodes and then by their liquid
throughputs

 60

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Byun00.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Hassaine02.pdf

3.8.2. Real traffic throughout measurements

The 362 traffic patterns of Figure 40 and Figure 41 were scheduled both by schedules
found according to our liquid scheduling algorithms, and by a topology-unaware round-robin
schedule (or randomly). Overall throughput results for each method are measured and presented
for comparison. In each chart, the theoretical liquid throughput values of Figure 41 are given for
comparison with the measured values.

Figure 42 shows the overall communication throughput of the 362 traffic patterns carried
out by a topology-unaware round-robin schedule. The size of messages, i.e. the amount of data
transferred from each transmitting processor to each receiving processor, is equal to 2MB. 20
measurements were made for each traffic pattern, and the chart shows the median of their
throughputs (the black dots). According to the chart, the round-robin schedule yields a
throughput which is far below the liquid throughput of the network. Tests with various other
topology-unaware methods (such as transmission in random order or in FIFO order) yield
throughputs which are not better than that of the round-robin schedule.

Round-Robin Schedule

0
200
400
600
800

1000
1200
1400
1600
1800

0
 (0

0)
64

 (
08

)
10

0
 (1

0)
12

1
 (1

1)
14

4
 (1

2)
16

9
 (1

3)
19

6
 (1

4)
22

5
 (1

5)
22

5
 (1

5)
25

6
 (1

6)
28

9
 (1

7)
32

4
 (1

8)
36

1
 (1

9)
40

0
 (2

0)
44

1
 (2

1)
48

4
 (2

2)
57

6
 (2

4)
62

5
 (2

5)
90

0
 (3

0)

O
ve

ra
ll

th
ro

ug
hp

ut
 (M

B
/s

)

liquid throughput round-robin schedule

nodes:

transfers:

Figure 42. Theoretical liquid throughput and measured round-robin
schedule throughput for 362 network sub topologies.

Next, we carried out the same 362 traffic patterns but scheduled according to the liquid
schedules found by our algorithms. The overall throughput results are shown in Figure 43. The
size of the messages (processor to processor transfers) is of 5MB (larger than for the
measurements of Figure 42). Each black dot represents the median of 7 measurements. The chart
shows that the measured aggregate throughputs (black dots) are very close to the theoretically
expected values of the liquid throughput (gray curve).

 61

Liquid Schedule

0
200
400
600
800

1000
1200
1400
1600
1800

0
(0

0)

64
 (0

8)

10
0

(1
0)

12
1

(1
1)

14
4

(1
2)

16
9

(1
3)

19
6

(1
4)

22
5

(1
5)

22
5

(1
5)

25
6

(1
6)

28
9

(1
7)

32
4

(1
8)

36
1

(1
9)

40
0

(2
0)

44
1

(2
1)

48
4

(2
2)

57
6

(2
4)

62
5

(2
5)

90
0

(3
0)

O
ve

ra
ll

tth
ro

ug
hp

ut
 (M

B
/s

)

liquid throughput measured throughput

nodes:
transfers:

Figure 43. Predicted liquid throughput and measured throughput
according to the computed liquid schedule

Comparison of the chart of Figure 42 with that of Figure 43 demonstrates that for many
traffic patterns, liquid scheduling allows an increase in the aggregate throughput by a factor of
two compared with topology-unaware round-robin scheduling. The gain is especially significant
for large topologies and heavy traffics.

Thanks to the full team space reduction algorithms (Section 3.5 and Section 3.6) and
liquid schedule construction optimizations (Section 3.7), the computation time of a liquid
schedule for more than 97% of the considered topologies takes no more than 1/10 of a second on
a single PC.

Section 3.9. Conclusions

In circuit-switching coarse-grained networks (e.g. optical lightpath routing and wormhole
switching), significant throughput losses occur due to attempts to simultaneously carry out
transfers sharing common communication resources. The communications must be scheduled
such that congesting transmissions are not carried our simultaneously. We propose a liquid
scheduling algorithm, which properly schedules the transmissions within a time as short as the
utilization time of a bottleneck link. A liquid schedule therefore yields an aggregate throughput
equal to the network’s theoretical upper limit, i.e. its liquid throughput. To construct a liquid

 62

schedule, we must choose time frames utilizing all bottleneck links and perform as many
transfers as possible within each timeframe.

These saturated subsets of non-congesting transfers using all bottleneck links are called
full teams and are needed for the construction of a liquid schedule. Efficient construction of
liquid schedules relies on the fast retrieval of full teams. We obtained a significant speed up in
the construction algorithm by carrying out optimizations in the retrieval of full teams and in
their assembly into a schedule. The liquid schedule construction algorithm and its optimizations
are briefly outlined in Appendix F.

Measurements on the traffic carried out on various sub-topologies of the Swiss-T1 cluster
supercomputer have shown that for most sub-topologies, we are able to increase the overall
communication throughput by a factor between 1.5 and 2 (see Figure 66 of Appendix F).

In congestion-prone coarse-grain transmission networks, liquid scheduling considerably
improves the overall throughput by ensuring an optimal utilization of the transmission resources
(e.g. the bottleneck communication links, optical wavelengths and time frames). By preventing
contention, liquid scheduling minimizes the overall transmission time of large communication
patterns containing many congesting transfers.

 63

Chapter 4. Capillary routing for fault-tolerant real-
time communications in fine-grain
packet-switching networks

In off-line streaming, packet level erasure resilient codes rely on unrestricted buffering time at the
receiver. In real-time streaming, the extremely short playback buffering time makes FEC
inefficient for protecting a single path communication against long link failures. It has been shown
that one alternative path added to a single path route makes packet level FEC applicable even when
the buffering time is limited. However, path diversity increases the number of underlying links,
thereby increasing the total link failure rate, which may possibly require more FEC packets from
the sender. We introduce a scalar coefficient for rating a multi-path routing topology of any
complexity. It is called Redundancy Overall Requirement (ROR) and is proportional to the total
number of adaptive FEC packets required for protecting the communication. With the capillary
routing algorithm introduced in this chapter we build thousands of multi-path routing patterns. By
computing their ROR coefficients, we show that contrary to expectations, the overall requirement
in FEC codes is reduced when increasing the path diversity according to a new capillary routing
algorithm.

Section 4.1. Introduction

Packetized IP communication behaves like an erasure channel. Information is chopped
into packets, and each packet is either received without error or not received. Packet level
erasure resilient Forward Error Correction (FEC) codes can mitigate packet losses by adding
redundant packets, usually of the same size as the source packets.

In off-line streaming, erasure resilient codes achieve extremely high reliability in many
challenging network conditions [MacKay05]. For example, it is possible to deliver voluminous
files (e.g. recurrent updates of GPS maps) via a satellite broadcast channel (without feedback) to
millions of motor vehicles under conditions of fragmentary visibility [Honda04]. In the film
industry, instead of relying on the 48-hour delivery time of FedEx, the day’s film footage can be

 65

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/MacKay05.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/honda04.pdf

delivered from the location where it has been shot to the studio that is many thousands of miles
away over the lossy Internet even with long propagation delays (see [Hollywood03] and LT
codes [Luby02]). The third Generation Partnership Project (3GPP) recently adopted Raptor
[Shokrollahi04] as a mandatory code in Multimedia Broadcast/Multicast Service (MBMS). Off-
line streaming benefits from application of FEC thanks to time diversity, i.e. the receiver’s right
to not forward the received information to the user immediately. When long buffering time is
not a concern, the receiver can hold the received packets without restriction, and as a result,
packets representing the same information can be collected at distant periods of time.

In real-time single-path streaming, FEC can only mitigate short failures of fine granularity
[Choi06], [Johansson02], [Huang05], [Padhye00], [Altman01]. Due to the restricted playback
buffering time, packets representing the same information cannot be collected at very distant
periods of time. For application of FEC in real-time streaming, instead of relying on time-
diversity, one can rely on path-diversity. Recent publications show the applicability of FEC in
real-time streaming when using dual-path routes. It has been shown that strong FEC sensibly
improves video communication established along two disjoint paths and that in two correlated
paths, weak FEC codes are still advantageous [Qu04]. Tawan proposes adaptive multi-path
routing for Mobile Ad-Hoc Networks (MANET) mainly for load balancing and capacity issues,
but mentions also the potential advantages in respect to FEC [Tawan04]. Ma suggests simple
multi-path patterns in MANET and injection of FEC codes not only at the end nodes but also at
each intermediate node [Ma03A], [Ma04]. Nguyen and Byers study video streaming from
multiple servers [Nguyen02], [Byers99]. Nguyen later studies real-time streaming over a dual-
path route [Nguyen03]. He used a static amount of redundancy, streaming the media with FEC
blocks carrying 23 source packets and 7 redundant packets (using Reed-Solomon RS(30,23)).
Then, similarly to [Qu04], he compares dual-path scenarios with the single Open Shortest Path
First (OSPF) routing strategy and shows clear advantages of the dual-path routing. The path
diversity in all these studies is limited to either two (possibly correlated) paths, or in the most
general case to a sequence of parallel and serial links. Various routing topologies have so far not
been regarded as a space to search for an FEC efficient routing pattern.

In this chapter we try to present a comparative study for various multi-path routing
patterns. Since it is too hostile, single path routing is excluded from our comparisons. We build
steadily diversifying routing patterns layer by layer thanks to the capillary routing algorithm
(Section 4.2).

In order to rate the effectiveness of multi-path routing patterns, we introduce the
Redundancy Overall Requirement (ROR), a routing coefficient relying on the sender’s
transmission rate increases in response to individual link failures. By default, the sender streams
the media with static FEC codes, allowing the application to tolerate a certain small packet loss
rate. The packet loss rate is measured at the receiver and is constantly reported back to the
sender with the reverse flow. The sender increases the FEC overhead whenever the packet loss
rate is about to exceed the tolerable limit. This end-to-end adaptive FEC mechanism is

 66

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/hollywood03.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Luby02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Shokrollahi04.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Johansson02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Huang05.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Padhye00.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Altman01.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Qu04.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Tawan04.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Ma03A.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Ma04.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Nguyen02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Byers99.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Nguyen03.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Qu04.pdf

implemented entirely on the end nodes, at the application level, and is not aware of the
underlying routing scheme [Kang05], [Xu00], [Johansson02], [Huang05], [Padhye00]. The
overall number of transmitted adaptive redundant packets for protecting the communication
session against link failures is proportional (1) to the usual packet transmission rate of the
sender, (2) to the duration of the communication, (3) to the single link failure rate, (4) to the
single link failure duration and (5) to the ROR coefficient of the underlying routing pattern
which is followed by the communication flow. The novelty brought by ROR is that a routing
topology of any complexity can be rated by a single scalar value (Section 4.3).

In Section 4.4, we present ROR coefficients of different routing layers built thanks to the
capillary routing algorithm. Network samples are obtained from a random walk MANET with
several hundred nodes. We show that path diversity achieved by the capillary routing algorithm
reduces substantially the amount of redundant FEC packets required from the sender.

Section 4.2. Capillary routing

In Subsection 4.2.1 we present a simple linear programming (LP) method for building the
layers of capillary routing. A more reliable algorithm is described in Subsection 4.2.2. In
Subsection 4.2.3 we show how to detect the bottlenecks at each layer of the capillary routing
algorithm so as to construct the successive layers.

4.2.1. Basic construction

Capillary routing can be constructed by an iterative LP process, transforming a single-
path flow into a capillary route. First minimize the maximal value of the load of all links by
minimizing an upper bound value applied to all links. The full mass of the flow will be split
equally across the possible parallel routes. Find the bottleneck links of the first layer (see
Subsection 4.2.3) and fix their load at the found minimum. Minimize similarly the maximal load
of all remaining links without the bottleneck links of the first layer. This second iteration further
refines the path diversity. Find the bottleneck links of the second layer. Minimize the maximal
load of all remaining links, but now without the bottlenecks of the second layer as well. Repeat
this iteration until the entire communication footprint is enclosed in the bottlenecks of the
constructed layers.

Figure 44, Figure 45 and Figure 46 show the first three layers of the capillary routing on a
small network. The top node on the diagrams is the sender, the bottom node is the receiver and
all links are oriented from top to bottom.

 67

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Kang05.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Xu00.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Johansson02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Huang05.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Padhye00.pdf

Figure 44. In the first
layer the flow is equally
split across two paths. Two
of their links, marked by
thick dashes, are the
bottlenecks.

3
13

1

6
1

2
12

1

3
1

3
1

6
1

Figure 45. The second
layer minimizes to 1/3 the
maximal load of the
remaining seven links and
identifies three bottlenecks.

2
1

12
1

6
14

1

3
1

2
1

4
1

3
1

3
1

2
1

2
1

2
1

2
1

2
1

Figure 46. The third layer
minimizes to 1/4 the
maximal load of the
remaining four links and
identifies two bottlenecks.

Figure 47 shows the 10th layer of capillary routing between a pair of end nodes on a
network with 180 nodes and 1374 links. Links not carrying traffic are not shown. The solid lines
of the diagram represent 55 bottleneck links belonging to one of the 10 layers. The dashed lines
represent a min-cost solution of the remaining flow not enclosed in bottlenecks after the 10th
layer. There could be tens of additional routing layers before the complete capillarization is
achieved.

 links: 1374
 nodes: 180
 layers: 10
bottlenecks: 55
 remaining: 155

 1: 1.00000
 2: 0.50000
 3: 0.20000
 4: 0.16667
 5: 0.14286
 6: 0.11111
 7: 0.10714
 8: 0.10000
 9: 0.09524
10: 0.08571

Figure 47. Routing pattern of layer 10 built by the capillary routing
algorithm on a network sample with 180 nodes

By increasing the number of the underlying links, the overall rate of network failures
increases. High overall failure rate increases the probability of overlapping failures, except when
the link’s ratio of failure time over operational time is sufficiently small. Since for computing

 68

the ROR metric in Section 4.1 we assume a single link failure (more in Subsection 4.3.1), we
consider that the single link’s ratio of failure time over operational time is sufficiently small to
ensure that our assumption holds. In Appendix G we present the limits for which our single link
failure assumption holds. We also show how our theory can be further expanded to consider also
simultaneous link failures.

4.2.2. Numerically stable version

Although the described LP process is perfectly valid, it is numerically unstable. The
precision errors propagating through the layers of capillary routing reach noticeable sizes and,
when dealing with tiny loads, result in infeasible LP problems. We have found a different, stable
LP method which maintains the values of parameters and variables in the same order of
magnitude at all times.

Instead of decreasing the maximal value of loads of the links, the routing path is
discovered by solving max flow problems defined by the flow-out coefficients at each node.
Initially only the peer nodes have non-zero flow-out coefficients: +1 for the source and –1 for
the sink (Figure 48 and Figure 49).

Figure 48. Initial problem
with one source and one
sink node

Figure 49. Maximize the
flow, fix the new flow-out
coefficients at the nodes
and find the bottleneck
links (layer 1, 21 =F)

Figure 50. Remove the
bottleneck links from the
network and adjust the
flow-out coefficients at the
adjacent nodes

At each subsequent layer (Figure 50 to Figure 53) we have a bounded multi-source/multi-
sink problem: a uniform flow from a set of sources to a set of sinks, where all rates of
transmissions by sources and all rates of receptions by sinks increase proportionally in respect to
each node’s flow-out coefficient (either positive or negative). The multi-source/multi-sink
problems arise since the LP problem at each successive layer is obtained by complete removal
of the bottlenecks from the previous LP problem. By removing the bottlenecks we adjust
correspondingly the flow-out coefficients of the adjacent nodes (to respect the flow conservation

+1

–2

+1
+2

–2

+1

–1

 69

rule) and thus possibly produce new sources and sinks in the network. Except for the unicast
problem of the first layer, the successive layer problems do not, in general, belong to the simple
class of “network linear programs” (see [Fourer03], page 343).

Figure 51. Maximize the
flow in the new sub-
problem, fix the new flow-
out coefficients at the nodes
and find the new
bottlenecks (layer 2,

) 5.12 =F

Figure 52. Again remove
the bottleneck links from
the network and adjust
correspondingly the flow-
out coefficients at the
adjacent nodes

Figure 53. Maximize the
flow in the obtained new
problem, fixing the new
resulting flow-out
coefficients at the nodes
and find the new
bottlenecks (layer 3,

) 3/43 =F

We define the bounded multi-source/multi-sink problem at layer l by the sets of nodes,
and links and by the flow-out coefficients for sources and sinks (all indexed with an upper index
l) as follows:

• set of nodes , lN

• set of links , where and , lLji ∈),(lNi∈ lNj ∈

• flow-out coefficients for all l
if

lNi∈

• at layer l the max-flow solution yields the flow increase factor lF and the set of
bottlenecks lB , where ll LB ⊂

Then, the equations for computing the sets , 1+lN 1+lL and the flow-out coefficients

of the next layer are as follows:

1+lf

ll NN =+1
 (16)

the bottlenecks are removed from the network:
lll BLL −=+1
 (17)

and the flow out coefficients are correspondingly adjusted:

 ll
j

l
j Fff ⋅=+1

)1(

),(
∑
∈

++
lBji

∑
∈

−+
lBkj),(

)1(

(18)

add 1 for each

incoming bottleneck
link),(ji

subtract 1 for each
outgoing bottleneck

link),(kj

+2

–4/3

+2/3

–4/3

+1.5

–1

+0.5

–1

+1.5

–3

+1.5

 70

After a certain number of applications of the max-flow objective with corresponding
modifications of the problem, we will finally obtain a network having no source or sink nodes.
At this point the iteration stops. All links followed by the flow in the capillary routing are
enclosed in bottlenecks of one of the layers.

In order to restore the original proportions of the flow, the flow increases induced by the
preceding max-flow solutions must all be compensated. The true value of flow traversing the

bottleneck link of layer l, is the initial single unit of flow divided by the product of the
flow increase factors

jir ,

lBji ∈),(
iF (where li ≤≤1) of the present layer and all preceding layers:

 ∏
=

= l

i

i
ji

F
r

1

,
1

where is the layer for
which

l
lBji ∈),((19)

The max-flow approach proves to be very stable, because it maintains all values of
variables and parameters in the same order of magnitude (even for very deep layers with tiny
loads) and also because it enables us to detect and correct precision errors in the flow-out
coefficients of the LP problem according to the flow conservation rules. The LP problems
generated for each successive layer of capillary routing are freed from precision errors and
therefore the errors cannot propagate and lead to numerical instabilities.

In the next subsection we show how to identify bottlenecks after the max-flow solution of
the capillary routing layer is found.

4.2.3. Bottleneck hunting loop

In the example of Figure 54 with three transmitting nodes and two receiving nodes, the
flow can be proportionally increased at most by a factor of 4/3, and the bottleneck links are
among the four maximally loaded candidate links {a, b, d, e}, marked in Figure 55 by thick
dashes.

Figure 54. An example of a bounded multi-
source/multi-sink problem (obtained during
construction of the capillary routing from a
network with one source and one destination
node)

Figure 55. A max-flow solution with the flow
increase factor of 4/3, containing four
maximally loaded candidate links {a, b, d, e}

At each layer, after minimizing the maximal load of links, the bottlenecks of the layer are
discovered in a bottleneck hunting loop. At each iteration of the hunting loop, we minimize the

4/3 4/3

–2 –2

4/3
2/3 2/3

a
b

c
d

e

+1

–1.5

+1 +1

–1.5

 71

load of the traffic over all links having maximal load and being suspected as bottlenecks. Links
not maintaining their load at the maximum are removed from the suspect list. The bottleneck
hunting loop stops if there are no more links to remove.

In the example of Figure 55 the sum of loads of all four bottleneck candidate links can be
minimized (by an LP objective) to 3 (see Figure 56). Now only three links {a, b, e}, marked by
thick dashes, continue to maintain the maximal load. The sum of the loads of the three
remaining bottleneck candidate links can be further reduced to 2 (see Figure 57). These two
remaining links {b, e}, marked by thick dashes, maintain the maximal load at all times and are
the true bottleneck links since the sum of their loads cannot be further reduced.

Figure 56. The cost reduction applied to the
four fully loaded links of Figure 55 reduces
the load of suspected link d, and the
bottleneck candidate list is now {a, b, e}.

Figure 57. The cost reduction applied to the
three fully loaded links of Figure 56 reduces
the load of another suspected link a. The true
bottleneck links are {b, e}.

In this example the two bottlenecks are found in two iterations.

1

10

100

1000

la
ye

r1
la

ye
r2

la
ye

r3

la
ye

r4

la
ye

r5

la
ye

r6

la
ye

r7

la
ye

r8

la
ye

r9

la
ye

r1
0

Iterations of the hunting loop (from 1 to 14 up to 23)
for each of the first 10 layers of capillary routing

A
ve

ra
ge

 n
um

be
r o

f s
us

pe
ct

ed
 li

nk
s

Figure 58. Decrease in the number of suspected links during the
bottleneck hunting loop at each of the 10 capillary routing
layers

4/3 4/3

–2 –2

4/3
1/3 2/3

a
b

e c
d

4/3 4/3 4/3

–2 –2

2/3 1/3

a
b

e c
d

 72

For capillary routing layers built simultaneously on 200 independent network samples
each with 300 nodes (on average 2,555.7 links per network), Figure 58 shows the decrease in the
number of bottleneck candidate links during the bottleneck hunting loop of each capillary
routing layer from 1 to 10.

At the end of each hunting loop (from 14 to 23 iterations) the suspect list consists of only
true bottleneck links, in average between 5.9 and 9.9 bottlenecks per network.

Section 4.3. Redundancy Overall Requirement (ROR)

The definition and equations of the ROR metric are given in Subsection 4.3.1. The
computation of the transmitted FEC block size as a function of the packet loss rate p is presented
in Subsection 4.3.2. The equation of the ROR metric for the particular case of very large FEC
blocks is presented in Subsection 4.3.3.

4.3.1. Definition of ROR

We combine a small static tolerance of the media stream to weak failures, with a
dynamically added adaptive FEC for combating failures exceeding the tolerable packet loss rate.

For a given routing pattern, the ROR metric is defined as the sum of all transmission rate
overheads required from the sender for combating each non-simultaneous link failure in the
route. For example, if the communication footprint consists of five links, and in response to each
individual link failure the sender increases the packet transmission rate by 25%, then the ROR
coefficient will be equal to the sum of these five FEC transmission rate increases, i.e.

. If P is the usual packet transmission rate and is the increased rate of

the sender, responding to the failure of a link

25.1%255 =⋅=ROR lP

Ll∈ , where L is the set of all links, then:

∑
∈

⎟
⎠
⎞

⎜
⎝
⎛ −=

Ll

l

P
PROR 1

(20)

Let us consider a long communication, and let D be the total failure time of a single
network link during the entire duration of the communication. D is the product of the average
duration of a single link failure, the frequency of a single link failure and the total
communication time. According to equation (20):

 RORPD ⋅⋅ ∑
∈

⎟
⎠
⎞

⎜
⎝
⎛ −⋅⋅=

Ll

l

P
PPD 1

(21)

 ()∑
∈

⋅−⋅=
Ll

l PDPD

(22)

 73

Assuming one single link failure at a time (see Appendix G) and a uniform probability
and duration of link failures, according to equation (22), RORPD ⋅⋅ is the number of adaptive
redundant packets that the sender actually needs to transmit in order to compensate for all
network failures occurring during the total communication time. Therefore ROR is a routing’s
metric for computing the overall number of required redundant packets.

Redundant packets are injected into the original media stream for every block of M source
packets. During streaming, M is supposed to stay constant. However, the number of redundant
packets for each block of M media packets is variable, depending on the conditions of the
erasure channel. The M source packets with their related redundant packets form an FEC block.
By we denote the FEC block size chosen by the sender in response to a packet loss rate p.
We assume that by default the media is streamed in FEC blocks of length of such that the
flow has a static tolerance t to weak losses, with

pFEC

tFEC

10 <≤ t . When the loss rate p measured at the
receiver is about to exceed the tolerable limit t, the sender increases its transmission rate by
injecting additional redundant packets.

The random packet loss rate, observed at the receiver during the failure time of a link in
the communication path, is the portion of the traffic still being routed toward the faulty link.
Thus, a complete failure of a link l carrying a relative traffic load of 1)(0 ≤≤ lr according to the
routing pattern, produces at the receiver a packet loss rate equal to the same relative traffic load

.)(lr

Equation (20) for ROR can thus be re-written as follows:

 =ROR ∑
<≤∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

1)(|

)(1
lrtLl t

lr

FEC
FEC

(23)

a sum over all links

carrying a flow exceeding
the tolerable loss limit

The links carrying the entire traffic are skipped in the sum index of equation (23), since
the FEC required for the compensation of failures of such links is infinite. By construction
(Section 4.2), none of the considered multi-path routing schemes pass their entire traffic through
a non-critical single link.

4.3.2. Computing FEC block size

Let us compute the function (the number of packets in the FEC block as a function

of the packet loss rate p) assuming a Maximum Distance Separable (MDS) code [
pFEC

Seroussi86],
[Schwarz02]. With an MDS code we can successfully decode the M source packets if we receive
any M packets of the transmitted FEC block.

In order to collect a mean of M packets at the receiver at a random loss rate p,

packets must be transmitted at the sender. However the probability of receiving

)1/(pM −

1−M packets
or 2−M packets (which makes the decoding impossible) remains high. In order to maintain a

 74

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Seroussi86.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Schwarz02.pdf

very low probability δ of receiving less than M packets, we must send many more redundant
packets in the block than is necessary to receive an average of M packets at the receiver side.
We must fix the acceptable Decoding Error Rate (DER) such that DER≤δ , in order to compute
the function. MFECp ≥

The probability (NnPn) of having exactly n losses (erasures) in a block of N packets with

a random loss probability p is computed according to the binomial distribution:

() nNn
p qp

n
N

NnP −⋅⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

(24)

where)!(!
!

nNn
N

n
N

−⋅
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
 and pq −=1

The probability of having 1+−MN or more losses, i.e. the decoding failure probability,
is computed as follows:

∑
+−=

−⋅⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

N

MNn

nNn qp
n
N

1
δ

(25)

Therefore, for computing the carrier block’s minimal length for a satisfactory
communication (i.e. function), it is sufficient to steadily increase the block length N until

the desired decoding error rate (DER) is met.
pFEC

pFEC functions divided by M (i.e. transmission rate increase factors) are
bounded above by when

MFEC p /
)(log DERp 1=M and below by)1/(1 p− when (for packet

loss rates much larger than a very small DER).

∞→M

Regarding the upper bound, when M is equal to 1, the FEC block comprises copies of the
single source packet (repeated times). The probability that all packets will be lost is

, which is the probability that the source packets of the FEC block (in this case only one

packet) cannot be recovered, i.e. is the DER (equations (26) and (27)).

pFEC
pFECp

pFECp

DERp pFEC = when 1=M (26)

Therefore:

)(log DER
M

FEC
p

p = when 1=M (27)

Regarding the lower bound of , the larger the M (and thereby the number of the

packets in the transmitted FEC block), the smaller the probability that the actual ratio of the
received packets is significantly different from the expected mean ratio of received packets

. Therefore in such an ideal case, the sender needs to transmit only times more

packets to ensure the delivery of M packets (equation (31)).

MFEC p /

p−1)1/(pM −

 75

pM
FECp

M −
=

∞→ 1
1lim

(28)

For M from 1 to 10 these transmission rate increase factors are plotted in Figure 59 (for
). Figure 59 shows that the higher the number of media packets in the block, the

closer the transmission rate increase approaches the lowest theoretical limit.
510−=DER

MFEC p /

0
1
2
3
4
5
6
7
8
9

10
11
12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
packet loss rate (p)

tra
ns

m
is

si
on

 ra
te

 in
cr

ea
se

 fa
ct

or

FEC(p)/M 1/(1-p)

 M = 1, 2, 3, 4, 5 … 10

Figure 59. Transmission rate increase factor as a function of the packet
loss rate () 510−=DER

4.3.3. Streaming with large FEC blocks

The larger the number of media packets M in the FEC block, the smaller the cost of FEC
overhead, but the longer the buffering time at the receiver. For example, VOIP with a 20 ms
sampling rate restricts the number of media packets M in a single FEC block to 20 – 25 packets.

If the playback buffering time can be a couple of minutes long, then with thousands of
source packets in an FEC block (for example in packetized TV) we can assume that

. Although for large numbers of source packets MDS codes do not exist,

other capacity-approaching low-density parity-check codes (LDPC) [

)1/(pMFEC p −=

MacKay96],
[Richardson01] or fountain codes [MacKay05] can decode a large block of source packets,
requiring only a very few excess packets.

In such a case, by replacing in equation (23) with tFEC)1/(1 t− , and with

, the ROR metric of a multi-path routing pattern is computed according to the

following equation:

)(lrFEC
()(1/1 lr−)

∑
<≤∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

=
1)(|

1
)(1

1
lrtLl lr

tROR

(29)

 76

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/MacKay96.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Richardson01.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/MacKay05.pdf

Path diversity also offers advantages for off-line large file downloads. For a typical
Internet user, the connection bottleneck is usually the last mile (or last kilometer) link (for
example a DSL connection). Therefore, the best estimation of the download time is related to
the bottleneck’s capacity. Losses or temporary failures occurring on a single communication
path cause idle times. If the losses occur somewhere other than the bottleneck, the result is that
the capacity of the last kilometer bottleneck is not used efficiently. Thanks to path diversity, the
idle times of the last kilometer bottleneck occurring due to failures in the lossy Internet can be
avoided. Relying on multi-path routing, a sender with an adaptive transmission rate can feed the
last kilometer bottleneck link constantly at its maximal bandwidth so as to attain the minimal
download time (see [Nguyen02] and [Byers99] for video streaming from multiple servers). In
this case also, the choice of the multi-path routing pattern can be rated by equation (29). Note
that according to equations (23) and (29), the ROR coefficient of a routing pattern depends also
on the static tolerance t of the streaming media to weak failures.

Section 4.4. Redundancy Overall Requirement in
capillary routing

For capillary routing layers 1 to 10, we compute the average ROR coefficients
simultaneously over several networks. The network samples are drawn from timeframes of a
random walk MANET. Initially the nodes are randomly distributed on a rectangular area, and
then, at every timeframe, they move according to a random walk algorithm. If two nodes are
close enough (and are within the coverage range) then there is a link between them. At the same
time we also consider streaming media at 15 different tolerance values of static FEC codes
which tolerate small packet loss rates from 3.6% to 7.8% (with an increment of 0.3%).

In Figure 60 we plot the average ROR coefficients for 300 different network instances of
MANET having 115 nodes. The 300 timeframes are divided into seven nearly equal sets of
consecutive timeframes. Each set contains about 43 successive network instances (i.e. network
samples). For each set of samples and for each static FEC tolerance value we plot the average
ROR coefficient (over all considered network samples) as the routing layer increases. Figure 60
shows that the ROR metric, i.e. the overall requirement in adaptive FEC packets decreases with
capillarization. The ROR coefficients of the routing samples are computed according to equation
(23) assuming a short playback buffering time. The FEC block size is computed as a function of
the packet loss rate p according to equation (25). The number of media packets (M) per
transmission block is 20 and the desired decoding failure rate (DER) is . 510−

 77

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Nguyen02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Byers99.pdf

3.6%
3.9%
4.2%

4.8%
5.4%
6.0%
6.6%
7.2%
7.8%

5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35

1..10 1..10 1..10 1..10 1..10 1..10 1..10
Capillary routing layers from 1 to 10 for each set of samples

A
ve

ra
ge

 R
O

R

layers:

weak static
tolerance:

Figure 60. Average ROR metric as a function of the capillary routing
layer

In Figure 61 we plot the average ROR coefficients for 150 different instances of MANET
with 120 nodes. The 150 instances are divided into four sets of network samples. Each set of
network samples comprises about 38 consecutive timeframes. The upper 15 curves are
computed similarly to the curves of Figure 60 according to equations (23) and (25), where

 and . However, the lower 15 curves of Figure 61 are computed according
to equation (29) for streaming with large FEC blocks.

20=M 510−=DER

3.6%

3.6%

3.9%

3.9%

4.2%

4.2%

4.5%

4.5%

4.8%

4.8%

5.1%

5.1%

5.4%

5.4%

6.0%

6.0%

6.6%

6.6%

7.2%

7.2%
7.8%

7.8%
3.6%
4.5%
5.4%
6.6%
7.8%4

6
8

10
12
14
16
18
20
22
24
26
28
30
32

1
 2
3
 4
5
 6
7
 8
9

1
0

1
 2
3
 4
5
 6
7
 8
9

1
0

1
 2
3
 4
5
 6
7
 8
9

1
0

1
 2
3
 4
5
 6
7
 8
9

1
0

Capillary routing layers from 1 to 10 for each set of samples

A
ve

ra
ge

 R
O

R

Figure 61. Average ROR metric computed assuming real-time
streaming (the group of curves above) and off-line streaming
(the group below)

 78

When the application streams with large blocks, the ROR metric, representing the total
redundancy effort, is twice as low as when the application streams maintaining restricted
playback buffering time. The capillarization of routing is however beneficial in both cases.

Logically, the ROR curve of the media stream is shifted down as the statically added
tolerance increases. The ROR represents the total amount (during the whole communication
time) of redundant packets dynamically added as responses to temporary failures occurring in
the network. Therefore if the static portion of the constantly maintained redundancy is increased
a shifting of the ROR value must be expected.

Our simulations show however that the increase of the weak static tolerance emphasizes
also the efficiency gain achieved by capillarization. A small increment of the static tolerance
results in a small decrease of the ROR value if the diversity of the routing pattern is not strong.
As the capillary routing layer increases and the path diversity develops, every small increment
of the static tolerance results in a much more significant decrease of the ROR values.

The drawback of path diversity in general is that by forming long paths we increase the
number of links in the communication footprint, raising the overall failure rate and thus possibly
increasing the overall requirement in FEC codes. However, Figure 60 and Figure 61 show that
despite the larger communication footprint, with the routing patterns built by the capillary
routing algorithm, the requirement in redundant packets decreases noticeably in most cases.

Section 4.5. Conclusions and perspectives

The reliability issues of packetized real-time streaming are of growing importance.
Commercial real-time streaming applications, however, do not consider channel coding at the
packet level as a serious solution for improving the reliability of communication. This is because
in single path communications, even heavy FEC overheads cannot protect against failures
lasting longer than the short duration of the playback buffer. Recent studies demonstrated that
path diversity makes FEC applicable for real-time streaming. By studying a wide range of
routing topologies, we show that the combination of channel coding and appropriate multi-path
routing allows reliable real-time streaming with a low overall requirement in FEC codes.

For this purpose we introduced a layer-by-layer strategy for building multi-path capillary
routing patterns. The first layer provides a simple multi-path solution. As the layer number
increases, thanks to the developed underlying routing patterns the streaming communication
traverses the network more securely, using all parallel capacities available within the network.
Unlike max-flow or shortest path solutions, for a given source and destination, by construction
there exists only one solution of capillary routing.

 79

We introduced the ROR coefficient, a metric for rating multi-path routing patterns with
respect to the overall FEC effort by a single scalar value. The ROR rating corresponds to the
total redundancy overhead that the sending node must provide in order to combat the losses
occurring from non-simultaneous failures of links in the communication path. Despite the fact
that the increased path diversity results in an increase of the overall failure rate of underlying
links, with capillarization, the overall requirement in adaptive FEC packets decreases
substantially.

Capillary routing can be applicable to multi-hop mobile wireless networks, where
wireless content is streamed to and from the user via multiple base stations; or to the public
Internet, where, if the physical routing cannot be accessed, an overlay network can be used
[Guven04].

In case of a typical Internet user connected to the network with a single link (usually also
the bottleneck of the communication), path diversity cannot be achieved at that portion of the
route (the last kilometer). Capillarization of the entire routing therefore can protect the streaming
media only against the failures occurring in the Internet, and cannot prevent the failures
occurring in the last kilometer link. However, in almost all cases, the failures and losses in the
streaming communication (e.g. in VOIP) occurring in the last kilometer link are all due to
congestion with bursty TCP traffic (e.g. HTTP). Unless there are physical failures, all
congestion of the streaming media with the bursty traffic competing for the single last kilometer
link are solved by proper QoS settings at the router. The router in this particular case is under
control of the user (or at least of the immediate service supplier of the user). It is the rest of the
network which has unpredictable and uncontrollable QoS policies, that needs the capillary
routing. We hope that our investigation will provide some guidelines for future design of path
diversity-based real-time streaming systems.

 80

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Guven04.pdf

Conclusions

Parallel I/O

In Chapter 2 we presented the design and evaluation of a striped file I/O (SFIO) library
which provides high performance parallel I/O within a Message Passing Interface (MPI)
environment. We achieved a good load balance and equilibrated parallelism thanks to the fine
granularity of a stripe unit size as low as a hundred bytes. We reduced communication and disk
access overhead due to fine granularity by aggregating small data chunks into large messages.
The optimizations are performed in the caches of compute nodes. We sort the remote I/O disk
requests according to their offsets on the remote disks. Whenever possible we remove the
overlapping segments and merge the small requests into continuous large requests. Network
communication between any pair of nodes is also aggregated, even if the corresponding I/O
requests cannot be further aggregated. In addition to a simple Unix-like interface SFIO, also
supports a multi-block API. It allows the underlying I/O system to aggregate not only
fragmentations arising from the striping of the global file but also the fragmentations present in
the user memory layout. The gain from the multi-block interface is especially emphasized in
scientific applications, e.g. multidimensional matrices.

The optimization subsystem is CPU efficient and requires very little memory. The I/O
requests stored in the caches of compute nodes contain only pointers to the local memory and
offsets in the global file. Aggregation operations in compute nodes are carried out at the level of
pointers and offsets and no user data is actually copied.

The optimization subsystem converts the initial set of user requests into an optimized set
of requests. Based on the optimized set of requests, we create on the fly an MPI derived datatype
pointing to the fragmented layouts to be communicated to the remote I/O nodes. The
communication between the fragmented memory layout and the network is carried out by a
single MPI operation without memory copy.

SFIO exhibits high performance even for very small striping factors. It scales linearly as
the number of I/O nodes increases. With the increase of compute nodes, the overall performance
of the underlying I/O layer is not affected by concurrent accesses. For cluster computing, SFIO
is a lightweight, portable parallel I/O solution for out-of-core MPI programs.

We also designed an isolated MPI-I/O layer (part of the MPI-2 specifications) which
permits a user to interface with the SFIO subsystem through standard MPI-I/O operations.
According to the specifications of MPI-2, in MPI-I/O all communications and disk accesses
between the user processes and the I/O layer are carried out through derived datatypes. The user
specifies desired fragmentations both in the memory and in the global file by creating
corresponding derived datatypes. The derived datatypes are created recursively using dedicated
MPI-1 operations. Once the opaque datatype is created, it cannot be decoded by a third party

 81

library (e.g. SFIO) which uses standard MPI-1 operations. Therefore, for implementation of
MPI-I/O it is assumed that one has access to the source code and to the internal structure of the
particular MPI-1 implementation for which the MPI-I/O interface design is intended.

We developed a method permitting the library to decode opaque datatypes and recover
their flattened layout relying only on the standard MPI-1 interface. This reverse engineering
technique relies on analyzing the memory patterns after a virtual communication is carried out
locally. The technique for flattening arbitrary datatype patterns permits us to provide a portable
MPI-I/O interface, independent of a particular MPI-1 implementation.

Liquid schedules

High performance computing relies on networks with very low latencies. In such
networks, large messages are copied from one processor to another across the network. The
intermediate switches direct the content of the message without storing and forwarding the
messages at each intermediate hop.

Simultaneous transmissions of large, indivisible messages across the network may result
in congestion when the transmission paths intersect. When the number of parallel transmissions
increases (e.g. in I/O) the rate of congestions increases rapidly. The throughput gain achieved by
the data aggregation can be canceled by the high rate of congestions.

Optical networks are another example of coarse-grained circuit switching networks.
Lightpaths sharing a common wavelength on a common link cannot be established during
overlapping periods of time. Increasing the number of parallel transmissions may yield many
blocked lightpaths and affect the throughput.

The theoretical upper limit of a network’s capacity is its liquid throughput. The liquid
throughput corresponds to the flow of a liquid in an equivalent network of pipes. The aggregate
throughput of an arbitrarily scheduled collective communication may be several times lower
than the maximal potential throughput of the network due to congestions between simultaneous
transfers sharing a common communication resource.

We present a method for scheduling the transfers of a traffic so as to attain the liquid
throughput of the network. This method, called liquid scheduling, relies on the knowledge of the
underlying network topology and ensures an optimal utilization of all bottleneck links of the
network. The liquid scheduling algorithm properly schedules the transmissions within a time as
short as the utilization time of a bottleneck link. This guarantees that the liquid throughput is
attained.

To construct a liquid schedule, we must choose time frames utilizing all bottleneck links,
and perform as many transfers as possible within each timeframe. We therefore partition the
traffic into time frames comprising mutually non-congesting transfers, keeping all bottleneck
links busy during all time frames. The saturated subsets of non-congesting transfers using all

 82

bottleneck links are called full teams. An efficient construction of liquid schedules relies on the
fast retrieval of full teams. We obtained a significant speed up in the construction algorithm by
carrying out optimizations both in the retrieval of full teams and in their assembly into a
schedule.

Measurements on the traffic carried out on various sub-topologies of the Swiss-T1 cluster
supercomputer have shown that for most sub-topologies, we are able to increase the overall
communication throughput by a factor of between 1.5 and 2.

The liquid schedules can be found in a fraction of a second for traffic patterns consisting
of several thousand transfers across networks of up to a hundred nodes.

Liquid scheduling can be applied to High Performance Computing (HPC) networks. It can
also be applied to optical networks, for example in Optical Burst Switching (OBS) where the
edge IP routers perform liquid scheduling in order to ensure an efficient utilization of the
capacities of the interconnecting optical cloud.

Capillary routing

We presented a method for achieving fault-tolerance for real-time packetized
communications. This method relies on using parallel paths and erasure resilient codes.

In real-time streaming, the extremely short playback buffering time makes erasure
resilient codes inefficient for protecting a single path communication against long link failures.
A combination of erasure resilient codes with path diversity makes Forward Error Correction
(FEC) codes a very efficient method for protection of real-time communications.

Applicability of FEC when streaming only through dual path routes was already studied.
We show that additional path diversity can significantly reduce the overall effort of the sender
even if the number of links in the communication footprint and therefore also the overall failure
rate increases.

We introduced a layer by layer strategy for building multi-path capillary routing patterns.
The first layer provides a simple multi-path solution. As the layer number increases, thanks to
the developed underlying routing patterns, the streaming communication traverses the network
more securely. By using all parallel capacities available in the network, the damage caused to
the media stream by single link failures is minimized. Unlike max-flow or shortest path
solutions, for a given source and destination, by construction there exists only one solution of
capillary routing.

We introduced a scalar coefficient for rating a multi-path routing topology of any
complexity in respect to the overall FEC effort of the sending node. It is called Redundancy
Overall Requirement (ROR) and is proportional to the total number of adaptive FEC packets
required for protecting communications from link failures arbitrarily occurring in the network.
With the capillary routing algorithm, we built thousands of multi-path routing patterns. By

 83

computing their ROR coefficients, we showed that the overall requirement in FEC codes is
reduced when increasing the path diversity according to a new capillary routing algorithm.
Overall requirement in FEC codes is reduced despite the fact that the increased path diversity
results in an increase of the overall failure rate of underlying links.

Capillary routing can be applied to multi-hop mobile wireless networks, to corporate IP
networks or to the networks of ISPs. It can also be applicable to the public Internet, assuming an
overlay network. The demand for streaming applications is growing rapidly. A typical
residential Internet user is connected to the network with a last kilometer link. Although the last
kilometer link offers no possibility for path diversity, it is connected to the router, which is
under the control of the user (or at least the immediate ISP of the user) and the streaming media
can be protected at the QoS level. Therefore no congestion-provoked failures can occur on the
last kilometer link. The congestions and failures arbitrarily occurring in the lossy Internet can be
solved thanks to end to end erasure resilient coding and path diversity relying on an overlay
network.

Further work

With respect to liquid scheduling, we may in the future study dynamic models where the
edge nodes of an optical cloud continuously receive communication flows which evolve over
time. There is a need for investigating queuing strategies of the edge nodes for optimal
application of liquid scheduling.

With respect to capillary routing, we may extend the equations of ROR to also consider
simultaneous link failures. For simple network samples, we should compare the theoretically
optimal multi-path routing patterns according to the ROR metric [060509] with the patterns
obtained by our capillary routing algorithm in order to further evaluate its efficiency.
Furthermore, the current study does not take into account the overall network utilization.
Strategies permitting the simultaneous optimization of the overall network utilization and
minimization of the ROR coefficient should also be considered.

We may also extend the method to consider coding inside the network, and not only at the
edge nodes. We should investigate applying the extended method in wireless Mobile Ad-hoc
Networks, aiming not only at fault-tolerance but also at saving energy [Lun06], [Pakzad05],
[Tuninetti05], [060724].

 84

http://switzernet.com/people/emin-gabrielyan/060509-least-FEC-routing/
http://www.mit.edu/~medard/papersnew/netcod2006.pdf
http://arxiv.org/PS_cache/cs/pdf/0508/0508124.pdf
http://ieeexplore.ieee.org/iel5/10215/32581/01523506.pdf?arnumber=1523506
http://switzernet.com/people/emin-gabrielyan/060724-netcod-flooding/

Appendix A. SFIO function calls

This appendix presents the API functions of the SFIO library. The SFIO interface consists
of file management, data access and error management operations.

Section A.1. File management operations
File management operations are mopen, mclose, mchsize, mdelete and mcreate.

MFILE* mopen(char *name, int stripeUnitSz);
void mclose(MFILE *f);
void mchsize(MFILE *f, long size);
void mdelete(char *name);
void mcreate(char *name);

All the presented file management operations are collective. Operation mopen returns to
the compute node a pointer to the logical striped file descriptor. The striped file name required
for the mopen, mdelete and mcreate commands is a string containing the specification of the I/O
nodes together with the paths of subfiles representing the global striped file. The global file
name format is a simple semi-colon separated concatenation of local subfile names (including
their hostnames) in the right order. The format is as follows:

 "<host>/<path>;<host>/<path>..."

For example:

"tonep0/tmp/a.dat;tonep1/tmp/a.dat;"

The mchsize operation changes the size of the logical file. If the specified size is smaller
than the current, the operation truncates the logical file to the new size.

Section A.2. Data access operations
There are single block and multi-block data access requests.

void mread(MFILE *f, long offset,
 char *buffer, unsigned size);
void mwrite(MFILE *f, long offset,
 char *buffer, unsigned size);
void mreadc(MFILE *f, long offset,
 char *buffer, unsigned size);
void mwritec(MFILE *f, long offset,
 char *buffer, unsigned size);
void mreadb(MFILE *f,
 unsigned numberOfBlocks,
 long offsets[],
 char *buffers[],
 unsigned sizes[]);
void mwriteb(MFILE *f,

 85

 unsigned numberOfBlocks,
 long offsets[],
 char *buffers[],
 unsigned sizes[]);

The data access requests are blocking and non-collective. The functions mreadc and
mwritec are the optimized versions of the mread and mwrite functions. The multiple block data
access operations mreadb and mwriteb are optimized. The numberOfBlocks argument in the
mreadb and mwriteb operations specifies the number of blocks to be accessed by the operation
in the logical file. The information about each block must be provided by three arrays offsets,
buffers, and sizes, each having a number of elements given by the variable numberOfBlocks. The
offsets array contains the positions of each block in the logical file. The buffers array contains
the addresses of each block in the user memory, and the sizes array provides the size of each
memory block in bytes.

Section A.3. Error management operations
Error management is provided by the merror and its collective counterpart merrora

functions.

void merrora(unsigned long *ioerr);
void merror(unsigned long *ioerr);
void prioerrora();

Functions merror and merrora return an array of error statistics accumulated on all I/O
nodes. At the same time, they reset the error counters at the I/O nodes. Statistics are
accumulated for operating system I/O calls and listed according to the open, close, creat, unlink,
ftruncate, lseek, write, and read functions of the local OS. The function prioerrora is a
collective operation which prints the error statistics to the standard output of the application.

 86

Appendix B. Congestion graph coloring heuristic
approach

The search for a liquid schedule requires the partitioning of the traffic into sets of
mutually non-congesting transfers. This problem can also be represented as a conflict graph
coloring problem [Beauquier97]. Vertices of the conflict (or congestion) graph represent the
transfers. Edges between vertices represent congestions between the transfers.

Figure 62 shows a congestion graph that corresponds to the all-to-all traffic pattern across
the network of Figure 28, which consists of 25 transfers. These transfers are shown in Figure 29
as pictograms and in Figure 30 as sets of communication links. The vertices of the congestion
graph are labeled with two indexes . Vertex represents the transfer from the sending
node i to the receiving node j. Vertex , for example, represents the transfer from node to
node , denoted as in Figure 29 and as { in Figure 30.

),(ji),(ji
)1,4(4t

1r },, 14 rt ll bal

An edge between two vertices is present if one or more links are shared between the two
corresponding transfers. Therefore each edge of the congestion graph can be labeled by the

(1,3)
(1,2) (1,4)

(1,1) (1,5)

(2,3)
(2,2) (2,4)

(2,1) (2,5)

(3,3)
(3,2) (3,4)

(3,1) (3,5)

(4,3)
(4,2) (4,4)

(4,1) (4,5)

(5,3)
(5,2) (5,4)

(5,1) (5,5)

Figure 62. Congestion graph corresponding to the traffic pattern of
Figure 29 across the network of Figure 28; the vertices of the
graph represent the 25 transfers; the edges represent
congestions between the transfers

 87

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Beauquier97.pdf

link(s

 o the graph
colori

ously
witho

(see Figure 63). For
examp

) causing the congestion. In Figure 62 we marked in bold the edges which occurred due to
the bottleneck links abl and bal (see the network diagram in Figure 28). The 15 bold edges

between any two of the following vertices (1,4), (1,5), (2,4), (2,5), (3,4), (3,5) represent the
congestions due to th ottleneck link abl . The other 15 bold edges between the vertices (4,1),
(4,2), (4,3), (5,1), (5,2), (5,3) represent the congestions due to the bottleneck link bal .

According to the graph coloring problem, the vertices of the graph must be colored such
that no two vertices have the same color if they are connected. The objective f

e b

ng problem is to properly color the graph using the minimum number of colors. The graph
coloring problem has a complexity of NP-complete, but various heuristic algorithms exist.

Once the graph is properly colored, vertices having the same color can represent a time
frame of the liquid schedule, since the corresponding transfers can be carried out simultane

ut congestions. Whenever a liquid schedule exists, an optimal solution of the graph
coloring problem corresponds to a liquid schedule and the chromatic number of the graph’s
optimal coloring is therefore the length of the liquid schedule. A heuristic graph coloring
algorithm, however, may find solutions requiring more colors than the optimal solution,
therefore reducing therefore the throughput of the corresponding schedule.

The congestion graphs corresponding to the traffic patterns across the network of the
Swiss-T1 cluster supercomputer have a relatively low density of edges

le, an all-to-all data exchange on the Swiss T1 cluster with 32 transmitting and 32
receiving processors results in a graph with 10243232 =× vertices and 48704 edges (the
corresponding complete graph 1024K has 523776 edges that is eleven times denser).

10%

13%

16%

19%

22%

25%

28%

31%

34%

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

50
1

55
1

60
1

65
1

70
1

75
1

Number of vertices of the congestion graph (i.e. number of
transfers)

D
en

si
ty

 o
f e

dg
es

 a
s

a
fr

ac
tio

n
of

 e
dg

es
 in

 th
e

co
m

pl
et

e
gr

ap
h

Figure 63. Number of edges in the 362 congestion graphs corresponding
to the traffic patterns of Figure 40 and Figure 41

 88

We compared our method of finding a liquid schedule with the results obtained by
applying the heuristic fast graph coloring algorithm DSatur [Brelaz79], [Culberson97],
[Rolland-Balzon02], [Trick94], which carries out the steps shown in Table 3.

Table 3. DSatur graph coloring heuristic algorithm

1. Arrange the vertices by decreasing order of
degrees.

2. Color a vertex of maximal degree with color
1.

3. Choose a vertex with a maximal saturation
degree (defined as the number of different
colors to which it is adjacent). If there is
an equality, priority is given to the vertex
having the maximal degree in the uncolored
sub-graph.

4. Color the chosen vertex with the least
possible (lowest numbered) color.

5. If all the vertices are colored, stop.
Otherwise, return to step 3.

Although the heuristic algorithm is fast, it often induces additional colors. For 26% of all
test traffic patterns (shown in Figure 40 and Figure 41) across the network of the Swiss-T1
cluster supercomputer (Figure 39 and Table 2), the heuristic graph coloring algorithm induces a
loss in the overall communication throughput. For the 94 traffic patterns (out of 362) affected by
the heuristic algorithm, Figure 64 shows the reduction in throughput. The losses occur due to the
additional, unnecessary colors introduced by the heuristic graph coloring algorithm.

0 %

2 %

4 %

6 %

8 %

10 %

12 %

14 %

16 %

18 %

36
 (6

)
81

 (9
)

10
0

(1
0)

14
4

(1
2)

16
9

(1
3)

19
6

(1
4)

19
6

(1
4)

22
5

(1
5)

25
6

(1
6)

25
6

(1
6)

28
9

(1
7)

28
9

(1
7)

28
9

(1
7)

32
4

(1
8)

32
4

(1
8)

36
1

(1
9)

36
1

(1
9)

40
0

(2
0)

40
0

(2
0)

44
1

(2
1)

44
1

(2
1)

44
1

(2
1)

48
4

(2
2)

48
4

(2
2)

52
9

(2
3)

57
6

(2
4)

57
6

(2
4)

62
5

(2
5)

67
6

(2
6)

78
4

(2
8)

84
1

(2
9)

10
24

 (3
2)

Number of transfers (and number of nodes) of 94 different traffic patterns

Lo
ss

 in
 o

ve
ra

ll
th

ro
ug

hp
ut

 d
ue

to
 th

e
he

ur
ist

ic
 g

ra
ph

 c
ol

or
in

g

nodes:
transfers:

Figure 64. Loss in throughput induced by schedules computed with the
DSatur heuristic algorithm

 89

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Brelaz79.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Culberson97.mht
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Rolland-Balzon02.mht
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Trick94.mht

For 66% of the considered topologies (or traffic patterns), the performance loss is
between 2% and 9%. For the remaining 34% of topologies, the loss of performance is between
9% and 19%.

The computation time of the heuristic algorithm is polynomial and is therefore faster than
the algorithm searching for the liquid schedule. However, for massive data exchanges, the cost
of the liquid scheduling algorithm, which usually does not exceed 1/10 of a second (see
Appendix C), is negligible compared with the gain in communication time attained by liquid
schedules.

The liquid scheduling algorithm can efficiently color a congestion graph if additional
information about the routes of transfers (represented by a vertex in the congestion graph) is also
provided. The algorithm does not rely only on information about the conflicts between all
possible pairs of transfers. The liquid scheduling relies also on the fact that the transfers are sets
consisting of communication links.

For example, the fast algorithm for retrieving the full teams of a traffic first retrieves all
full teams of the traffic’s skeleton (see Subsection 3.6.2). The traffic skeleton, in turn, comprises
the transfers using the bottleneck links of the network. It is an example in which the algorithm
uses not only information on the conflicts between the transfers (i.e. the congestion graph), but
also information on the content of the transfers.

Therefore, in the case of the liquid scheduling algorithm, the transfers cannot be
abstracted into vertices of a graph. A graph provides only information about the presence or the
absence of a conflict between any given pair of vertices. By limiting the input of the problem to
only a conflict graph, the liquid scheduling algorithm would not receive information about the
bottleneck links and therefore could not operate. Therefore the liquid scheduling is not a general
graph coloring algorithm.

 90

Appendix C. Comparison of the liquid scheduling
algorithm with Mixed Integer Linear
Programming

The problem of liquid scheduling can be formulated and solved with Mixed Integer
Linear Programming (MILP); see [CPLEX02], [Fourer03]. The problem of minimizing the
number of timeframes (and/or wavelengths) can be represented as an MILP objective.

We represent the network as a directed graph))(),(((GEGVG = . The routing is
represented by a parameter , indexed above by the source and destination nodes
(,) and below by the network link

ds
eR ,

)(GVs∈)(GVd ∈)(GEe∈ . This parameter indicates

whether the transmission (flit stream flow for wormhole switching or lightpaths for optical
networks) from the source s to the destination d traverses the link e. It is set to 1 if the
transmission uses link e and to 0 otherwise.),(ds

{ }1,0, ∈ds
eR (30)

Also given is the traffic pattern X comprising pairs of communication nodes . The
transmissions of the traffic pattern are allocated to timeframes

),(ds
Xds ∈),(}1{ Tt K∈

according to the variable . The variable is 1 if the transmission ds
tA , ds

tA , Xds ∈),(is

allocated to the timeframe t and is 0 otherwise.

{ }1,0, ∈ds
tA (31)

The objective is to allocate the transfers such that the number T is minimized. We may
formulate this as follows:

Minimize: T

subject to:

{ }TtGEeRA
Xds

ds
e

ds
t K1),(10

),(

,, ∈∀∈∀≤⋅≤ ∑
∈

 (32)

and

∑
=

∈∀=
T

t

ds
t XdsA

1

,),(1

(33)

Relation (32) represents the simultaneity constraint: number of the transfers in a
timeframe t using a given network link e can be either 0 or 1 (for all links and
timeframes). Equation (33) represents the partitioning constraint. The traffic X is
partitioned into time frames of a schedule, therefore each transfer of the traffic must be

assigned to one and only one time slot.

)(GEe∈
}1{ Tt K∈

),(ds

The present problem is hard to solve with MILP. For the 362 test bed topologies
introduced in Subsection 3.8.1 (see Figure 40 and Figure 41), we compared the Mixed Integer

 91

Linear Programming (MILP) method with the liquid scheduling algorithm. The computation
speed of MILP is far below that of our liquid scheduling algorithm (Figure 65). Our algorithm is
on average about 4000 times faster than MILP.

0.001

0.01

0.1

1

10

100

1000

10000

100000

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

30
1

32
1

34
1

36
1

362 sample topologies

C
PU

 ti
m

e
in

 se
co

nd
s -

MILP Cplex method Liquid schedule construction algorithm

Figure 65. Running times for computing liquid schedules with the
MILP Cplex method and with the liquid schedule
construction algorithm

 92

Appendix D. Assembling a liquid schedule:
Considering teams of the reduced traffic
instead of the teams of the original
traffic

The basic algorithm for constructing liquid schedules (see Subsection 3.7.2) assumes that
a liquid schedule can be assembled by considering various combinations of teams of the original
traffic. For example if a certain combination of teams of X is already selected (from the set

 of all teams of X) and there still remains a subtraffic of not yet carried out

(scheduled) transfers, then, according to the basic algorithm, the teams of the original traffic

)(Xℑ′ subX

})({ subXAXA ⊂ℑ′∈ must be considered in the choice of the next timeframe (Subsection

3.7.2, equation (11) and Figure 38).

The following two theorems prove that we can restrict our choice of possibilities when
selecting successive time frames without affecting the solvability, meaning that if the solution
space is not empty then at least one solution will be found.

Theorem 1 shows that by removing a time frame (i.e. a team) from a liquid schedule, we
form a new liquid schedule on the remaining traffic. The remaining traffic may have additional
bottlenecks. For example, in Figure 35, from time frame 3 on, links and appear as
additional bottlenecks and from time frame 5 on, the links and also appear as additional

bottlenecks (making the total number of bottlenecks equal to 6).

t3l r3l

t4l r5l

Newly emerged bottlenecks allow us to limit our choice from a large set of teams of the
original traffic to a smaller set of teams of the reduced traffic. According to theorem 2, this does
not affect the solvability. The statement appears logically clear (in terms of the remaining
transmissions to be carried out). The exercise of giving a formal proof is provided for the sake of
keeping the mathematical model complete.

THEOREM 1. Let α be a liquid schedule on X and A be a time frame of α . Then }{A−α

is a liquid schedule on AX − .

PROOF. By definition, a schedule is liquid if its length is equal to the duration of the traffic
(equation (9) of Subsection 3.7.1). Clearly A is a team of X. Remove the team A from X so as to
form a new traffic AX − . The duration of the new traffic AX − is the load of the bottlenecks
in AX − .

The load of bottlenecks of X in X is the highest and therefore is more than the load of all
other links by at least 1. By removing a team of X the load of all bottleneck links is reduced by
1. Therefore, a link which is a bottleneck in X is still a bottleneck in AX − . Thus the
bottlenecks of AX − include the bottlenecks of X.

The load of a bottleneck of X is decreased by one in the new traffic AX − and therefore
the duration of AX − is the duration of X decreased by one, i.e. 1)()(−Λ=−Λ XAX . The

 93

schedule α without the element A is a schedule for AX − by the definition of a schedule given
in Subsection 3.7.1 (a schedule is a collection of simultaneities partitioning the traffic).
Obviously 1)(#}){(# −=− αα A . Therefore the new schedule }{A−α has as many time
frames as the duration of the new traffic AX − is. Hence }{A−α is a liquid schedule on

AX − . ■

In other words, if the traffic has a liquid schedule, then a schedule reduced by one team is
a liquid schedule on the reduced traffic. The repeated application of Theorem 1 implies that any
non-empty subset of a liquid schedule is a liquid schedule on the correspondingly reduced
traffic.

THEOREM 2. If, by traversing each team A of a traffic X none of the sub-traffics AX −
has a liquid schedule, then the traffic X does not have a liquid schedule either.

PROOF. Let us prove the theorem by contradiction and suppose that X has a liquid
schedule α . Then, a time frame A of α shall be a team of X. Furthermore, according to
Theorem 1, the schedule }{A−α shall be a liquid schedule for AX − . Therefore, for at least

one team A of X, the sub-traffic AX − has a liquid schedule. This proves the theorem. ■

Theorem 2 implies that if X has a liquid schedule, at least one team A of X will be found
such that the sub-traffic AX − has a liquid schedule β . Obviously }{A∪β will be a liquid

schedule for X.

Instead of considering for the set of possible time frames all teams of the original traffic
included in the current sub-traffic , i.e. subX })({ subXAXA ⊂ℑ′∈ , we propose to consider for

the set of possible time frames (at the current node of the construction tree) all teams of the
current sub-traffic, i.e. .)(subXℑ′

By induction, theorem 2 implies that if a solution for X (i.e. a liquid schedule on X) exists,
then this algorithm will necessarily find it.

Since the teams of the current sub-traffic together with the bottlenecks of the
original traffic X must also use the additional bottlenecks of , the number of teams of the
current subtraffic is smaller or equal to the number of teams of the original traffic

whose transfers belong to the current subtraffic:

subX

subX
)(subXℑ′

}))(({#))((# subsub XAXAX ⊂ℑ′∈≤ℑ′ (34)

Therefore fewer possible teams need to be considered when building the schedule. The
solution space is not affected, since theorem 2 is valid at any level of the search tree.

The construction algorithm traverses the tree in depth-wise order (Figure 38). A solution
is found when the current node (sub-traffic) forms a single team. The path from the root to that
leaf node forms the set of teams yielding the liquid schedule. The example of a liquid schedule
of Figure 35 shows that each timeframe incorporates additionally also the bottlenecks (marked
in bold) of the remaining reduced traffic. Therefore each timeframe is also a team of the reduced

 94

traffic. A node in the construction tree is a dead end if the corresponding sub-traffic does not
have a team (see Figure 36 and Figure 37 for example). In that case the algorithm backtracks
and evaluates other choices. Evaluation of all choices ultimately leads to a solution if it exists.

 95

Appendix E. Assembling a liquid schedule:
Considering full teams of the reduced
traffic instead of all its teams

Assuming the liquid schedule construction algorithm of Subsection 3.7.3, we can build a
liquid schedule by further limiting the choice of teams of the reduced subtraffic to its full teams.

Let us modify a given liquid schedule so as to convert one of its teams into a full team.
Let a traffic X have a liquid schedule α . Let A be a time frame of α . If A is not a full team of
X, then by moving the necessary transfers from other time frames of α , we can convert the
team A into a full team. Clearly, by doing so, the properties of liquidity (partitioning,
simultaneousness and length) of α are not affected. Therefore if X has a solution then it has
also a solution for which any one of its selected time frames is full.

Therefore, if it is possible to built a liquid schedule, then it can be built by a choice of a
full team A of the current reduced traffic . Thus, the choice of the teams in the construction

tree of Figure 38 may be narrowed from the set of all teams to the set of full teams only, i.e.
. This yields the optimization of Subsection 3.7.4 (equations (13), (14) and

(15)). An efficient algorithm for retrieving the set of all full teams is presented in

Table 1.

subX

)()(subsub XX ℑ=ℵ
)(subXℑ

Figure 35 shows a liquid schedule constructed with full teams. It can be easily verified
that, for any given timeframe, all transfers of the following timeframes congest with at least one
transfer of that timeframe.

 97

Appendix F. Overall overview of all liquid schedule
construction optimizations

Liquid scheduling permits optimum partitioning of a traffic into subsets of non-congesting
transfers. Its construction relies on the fast retrieval of full teams (saturated collection of non-
congesting transfers using all bottleneck links of the network) presented in Section 3.6, and on
their assembly into a schedule as presented in Section 3.7. The overall liquid schedule
construction algorithm is briefly outlined in Table 4.

Table 4. Overall overview of liquid schedule construction algorithm
and its all relevant optimizations

1. Full teams are enumerated by recursively
partitioning the solution space using
inclusion and exclusion constraints:

1.1. The blank optimization identifies empty
partitions at early stages of the search
tree;

1.2. The idle optimization identifies partitions
containing no full teams at early stages of
the search tree;

1.3. The skeleton optimization speeds up the
retrieval of full teams, first by
considering only the transfers necessary to
keep all bottleneck links busy and then by
adding up other non-congesting transfers.

2. We construct liquid schedules by
partitioning the traffic into teams:

2.1. The construction of the liquid schedule is
accelerated by limiting the choice at each
time frame to the teams, which must
incorporate in addition also the newly
emerging bottleneck links (i.e. teams of the
reduced traffic);

2.2. By additionally limiting the choice to only
full teams of the reduced traffic we further
speed up the construction of the liquid
schedule.

Measurements on real traffic carried out on 362 different network configurations of the
Swiss-T1 cluster supercomputer (Section 3.8) have shown that by applying the liquid scheduling
algorithm of Table 4, we are able to increase the overall communication throughput by a factor
between 1.5 and 2 (see Figure 66).

 99

200
400
600
800

1000
1200
1400
1600
1800

1
 (0

1)
64

 (
08

)
10

0
 (1

0)
12

1
 (1

1)
14

4
 (1

2)
16

9
 (1

3)
19

6
 (1

4)
22

5
 (1

5)
22

5
 (1

5)
25

6
 (1

6)
28

9
 (1

7)
32

4
 (1

8)
36

1
 (1

9)
40

0
 (2

0)
44

1
 (2

1)
48

4
 (2

2)
57

6
 (2

4)
67

6
 (2

6)
96

1
 (3

1)

O
ve

ra
ll

tth
ro

ug
hp

ut
 (M

B/
s)

theoretical liquid throughput
measured throughput of a topology-unaware schedule
measured throughput of a liquid schedule

nodes:

transfers:

Figure 66. The overall measured throughputs of hundreds of different
traffic patterns carried out according to both a liquid
schedule and a topology unaware schedule

 100

Appendix G. Probability of simultaneous link failures
in multi-path routing patterns

When introducing in Subsection 4.3.1 equation (23) for the Redundancy Overall
Requirement (ROR), we rely on the assumption of a single link failure. Only if this assumption
holds, ROR is the proportionality coefficient for the number of redundant packets that the sender
needs to transmit during a given communication time, in order to protect the communication
against randomly occurring link failures.

In this appendix, we delimit the conditions under which the single link failure assumption
holds. We also analyze how our theory should be extended in order to consider also the
probability of multiple simultaneous link failures.

Section G.1. Limitations of the single link failure
assumption

The probability that the single link failure assumption does not hold depends on the
failure rate of one single link, the duration of a single failure and the number of links in the
network (which is proportionally increasing the overall failure rate in the network). We assume
that all links have an equal failure probability and duration.

We will consider a Poisson process for evaluating the probability of overlapping failures
of two different links. This is the probability that our assumption of a single link failure does not
hold.

The events in the Poisson process occur randomly in time.

Let X be the interarrival time between two events.

Let G denote the right-tail distribution function of X:

 0)()(≥>= ttXPtG (35)

where is the probability that
the interarrival time

)(tXP >
X between two

failures is longer than t

It is known [Wiki-Poisson06], [Siegrist01] that the right-tail distribution function G of
equation (35) is an exponential function and is expressed as follows:

0)()(≥=>= ⋅− tetXPtG tr
where r is the rate parameter

(36)

In our model r is the overall rate of link failures in the network.
Let denote the probability that the interarrival time is below or equal to t. Then

according to equation (36):

)(tF

01)(1)()(≥−=−=≤= ⋅− tetGtXPtF tr (37)

 101

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Wiki-Poisson06.mht
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Siegrist01.pdf

Let for the sake of simplicity assume that all link failures last a fixed period of time equal
to t. Let N be the number of links in the network. Let d be the average time between two link
failures (e.g. between the two points at which begin the two respective faulty states each lasting
a duration t). The overall mean rate r of network link failures is then computed as follows:

d
Nr 1
⋅=

(38)

Two consecutive link failures will overlap if the interarrival time between these two
failures is smaller than the failure duration t. The probability of this is . Therefore,

according to equations (37) and (38):

)(tF

d
tN

etF
⋅−

−=1)(
(39)

The chart of Figure 67 shows F as a function of t, i.e. the probability that the interarrival
time between two consecutive failures is less than t. If t is considered as a failure duration, then
the chart represents the probability of overlapping of two consecutive link failures as a function
of the failure duration. In this example the average time between failures of one single link is
one hour and there are 50 links in the network. For example if the duration of a single link
failure is 1 second, then the probability of overlapping of two consecutive failures is 2.74%.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

duration of a single link failure in seconds

th
e

pr
ob

ab
ili

ty
 th

at
 th

e
in

te
ra

rri
va

l
tim

e
be

tw
ee

n
th

e
fa

ilu
re

s i
s l

es
s

th
an

 th
e

fa
ilu

re
 d

ur
at

io
n

P(X<=t)

Figure 67. The probability that the interarrival time between two
consecutive failures in a Poisson process is less than a given
time, , 3600/1=r 50=N

Let the Failures Overlapping Probability (FOP) be the acceptable probability that two
consecutive link failures overlap in time. We then say that if the probability of overlapping of
two consecutive failures is below FOP, then our assumption of single link failure (Subsection
4.3.1) holds and our theory of Chapter 4 is valid. Let us compute the maximal number of links in
the network ensuring that the probability of overlapping of two successive failures does not

 102

exceed the acceptable FOP. For a given average time d between two failures of the same link,
and for a given failure time t of a single link failure, according to equation (39), we have:

d
tN

eFOP
⋅−

−=1
(40)

FOPe
N

d
t

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
1

(41)

⎟
⎠
⎞

⎜
⎝
⎛−

−
=

d
t
FOPN)1ln(

(42)

and therefore:

()FOP
t
dN −⋅−= 1ln

(43)

With equation (43) one can verify that if the acceptable FOP is 5%, and that in average
each network link fails once a day for a period of 5 seconds, the communication flow can follow
a routing footprint consisting of nearly 900 links and the probability of even partial overlapping
of failures will stay below the acceptable upper limit. Or in other words with 900 underlying
network links the probability of partial or full overlapping of two consecutive link failures does
not exceed 5%.

Section G.2. Extension of ROR for considering also the
overlapping failures

For frequent and long failures the equation (23) of ROR based on the assumption of a
single link failure at a time may not be valid anymore (see Subsection 4.3.1). In this case the
equation of ROR must be extended.

Assuming that the probability of overlapping of three simultaneous failures is essentially
zero, let us denote by the sum of fractions of time during which only single link failures
occur and by the sum of fractions of time during which two links are in a faulty state. The
coefficients and are fractions relative to the total failure time (i.e. the total sum of times

during which at least one link is in a faulty state). Therefore:

1k

2k

1k 2k

121 =+ kk (44)

The ROR coefficient, which considers also the possibility of overlapping of two faulty
states, must be therefore computed according the following equation:

2211 RORkRORkROR ⋅+⋅= (45)

In equation (45) is an ROR metric assuming only non-overlapping failures.
Therefore can be computed according to equation (23) as follows:

1ROR

1ROR

 103

∑
<≤∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

1)(|

)(
1 1

lrtLl t

lr

FEC
FEC

ROR

(46)

Do not confront t and r with the temporary notations used in Section G.1. In equation (46)
and in the further equations (as introduced in Section 4.3), t represents the tolerable limit of
packet losses (the constant tolerance of the streaming media) and r represents the routing
function, i.e. the fraction of flow traversing through the given link under the given routing.

2R in equation (45) is an ROR metric assuming exclusively overlapping failures of two

links, i.e. all states during which two link failures are taking place simultaneously. The
coefficients and are the two respective weights. 1k 2k

Assume now that two links and are in a faulty state at the same time. According to

the routing function r, when all network links were operational, the first link carried out the
 portion of the traffic and the second link the portion respectively. Clearly:

1l 2l

)(1lr)(2lr

1)(0 1 ≤≤ lr (47)

1)(0 2 ≤≤ lr (48)

If the links are completely parallel and independent, meaning that no part of flow passing
through link passes after also through link and vice versa, then the loss rate observed at the

receiver during the time of the simultaneous failure of these two links will be the sum of the two
fractions:

1l 2l

)()(21 lrlrloss += (49)

If the links are completely sequential, meaning that the flow of one link completely passes
through the other link then:

())(),(max 21 lrlrloss = (50)

The loss rate as a function of two links and , observed at the receiver

during the time of simultaneous failures of these two links respects therefore the following
relations:

),(21 llloss 1l 2l

())()(),()(),(max 212121 lrlrlllosslrlr +≤≤ (51)

The coefficient is the sum of the transmission rate increment factors across all
possible pairs of simultaneously failing network links . The transmission rate increment
factor (TRIF) for a simultaneous failure of a single pair of two links and is expressed as

follows:

2ROR
),(21 ll

1l 2l

1),()2,1(
21 −=

t

llloss

FEC

FEC
llTRIF

(52)

 104

The coefficient therefore can be written as follows, as a sum across all possible
pairs of :

2ROR
),(21 ll

∑ ∑
<≤∈

<≤
≠∈

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⋅=

1)1(|1
1)2(
21|2

)2,1(
2 1

2
1

lrtLl
lrt

llLl t

llloss

FEC

FEC
ROR

(53)

Because the nested sums of equation (53) counting each pair twice, we include a
compensating coefficient 1/2.

Then, finally the global ROR coefficient which considers also simultaneous failures of
two links can, according to equations (46) and (53), be rewritten as follows:

∑ ∑∑
<≤∈

<≤
≠∈<≤∈

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⋅+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⋅=

1)1(|1
1)2(
21|2

)2,1(2

1)(|

)(
12 1

2
1

lrtLl
lrt

llLl t

llloss

lrtLl t

lr

FEC

FECk
FEC

FEC
kROR

(54)

In the future, we intend to search for an analytical expression for the coefficients and
 (equations (44) and (45)). We also need a method for computing the function

(equation (51)).

1k

2k),(21 llloss

 105

Bibliography

[Abawajy03] J.H. Abawajy, “Performance analysis of parallel I/O scheduling approaches
on cluster computing systems”, 3rd IEEE/ACM International Symposium on
Cluster Computing and the Grid, CCGrid’03, 12-15 May 2003, pp. 724-729

[Ali05] Nawab Ali, Mario Lauria, “SEMPLAR: high-performance remote parallel
I/O over SRB Cluster Computing and the Grid”, International Symposium on
CCGrid, 9-12 May 2005, vol. 1, pp. 366-373

[Altman01] Eitan Altman, Chadi Barakat, Victor M. Ramos, “Queueing analysis of
simple FEC schemes for IP telephony”, INFOCOM 2001, Ap 22-26, vol. 2,
pp. 796-804

[Ayad97] N.M.A. Ayad, F.A. Mohamed, “Performance analysis of a cut-through vs.
packet-switching techniques”, 2nd IEEE Symposium on Computers and
Communications, 1-3 July 1997, pp. 230-234

[Baer04] Troy Baer, Pete Wyckoff, “A parallel I/O mechanism for distributed
systems”, International Conference on Cluster Computing, 20-23 Sept 2004,
pp. 63-69

[Bancroft00] Martha Bancroft, Nick Bear, Jim Finlayson, Robert Hill, Richard Isicoff,
Hoot Thompson, “Functionality and Performance Evaluation of File Systems
for Storage Area Networks (SAN)”, 17-th IEEE Symposium on Mass storage
systems, March 2000, http://esdis-
it.gsfc.nasa.gov/msst/conf2000/PAPERS/A05PA.PDF

[Baran02] Paul Baran, “The beginnings of packet switching: some underlying
concepts”, IEEE Communications Magazine, July 2002, pp 42-48 Vol. 40
Issue 7

[Baran64] Paul Baran, “On Distributed Communications: I. Introduction to Distributed
Communications Networks”, Memorandum of the RAND corporation
prepared for United States Air Force, August 1964

[Baran65] Paul Baran, “On Survivability of Networks”, IEEE Transactions on
Communications, Sep 1965, pp. 379-380 Vol. 13 Issue 3

[Baylor96] S. J. Baylor, C. E. Wu, “Parallel I/O workload characteristics using Vesta”,
IPPS’95 Workshop on Input/Output in Parallel and Distributed Systems,
Apr. 1995, pp. 16-29

[Beauquier97] B. Beauquier, J.C. Bermond, L. Gargano, P. Hell, S. Pérennes, U. Vaccaro,
“Graph Problems Arising from Wavelength-Routing in All-Optical
Networks”, IPPS’97: WOCS’97 - 2nd IEEE Workshop on Optics and
Computer Science, April 1997

[Bermond96] J.-C. Bermond, L. Gargano, S. Perennes, A. A. Rescigno, and U. Vaccaro,
“Efficient collective communication in optical networks”, ICALP’96 -
Lecture Notes in Computer Science 1099, Springer Verlag, Berlin 1996, pp.
574-585

[Bermudez06] Aurelio Bermúdez, Rafael Casado, Francisco J. Quiles, José Duato, “Fast
routing computation on InfiniBand networks”, IEEE Transactions on Parallel
and Distributed Systems, March 2006, vol. 17, issue 3, pp. 215-226

 107

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Abawajy03.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Ali05.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Altman01.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Ayad97.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Baer04.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Bancroft00.pdf
http://esdis-it.gsfc.nasa.gov/msst/conf2000/PAPERS/A05PA.PDF
http://esdis-it.gsfc.nasa.gov/msst/conf2000/PAPERS/A05PA.PDF
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Baran02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Baran64.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Baran65.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Beauquier97.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Bermond96.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Bermudez06.pdf

[Boden95] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz, J.N.
Seizovic, Wen-King Su, “Myrinet: a gigabit per second local area network,”
IEEE Micro, February 1995, vol. 15, issue 1, pp. 29-36

[Boehm64] Sharla P. Boehm, Paul Baran, “On Distributed Communications: II. Digital
Simulation of Hot-Potato Routing in a Broadband Distributed
Communications Network”, Memorandum of the RAND corporation
prepared for United States Air Force, August 1964

[Bradley00] Daryl Bradley, Cesar Ortega-Sanchez, Andy Tyrrell,
“Embryonics+immunotronics: a bio-inspired approach to fault tolerance”,
The Second NASA/DoD Workshop on Evolvable Hardware, 13-15 July
2000, pp. 215-223

[Brauss99A] Stephan Brauss, Martin Frey, Martin Heimlicher, Andreas Huber, Martin
Lienhard, Patrick Muller, Martin Naf, Josef Nemecek, Roland Paul, Anton
Gunzinger, “An Efficient Communication Architecture for Commodity
Supercomputers”, ACM/IEEE Supercomputing Conference, 13-18 Nov.
1999, pp. 19-35

[Brauss99B] Stephan Brauss, “Communication Libraries for the Swiss-Tx Machines”,
EPFL Supercomputing Review, Nov 1999, pp. 12-15,
http://sawww.epfl.ch/SIC/SA/publications/SCR99/scr11-page12.html

[Brelaz79] Daniel Brelaz, “New Methods to Color the Vertices of a Graph”,
Communication of the ACM, April 1979, Vol. 22, Issue 4, pp. 251-256

[Byers99] John W. Byers, Michael Luby, Michale Mitzenmacher, “Accessing multiple
mirror sites in parallel: using Tornado codes to speed up downloads”,
INFOCOM 1999, Vol. 1, Mar 21-25, pp. 275-283

[Byun00] Chansup Byun, Christopher Duncan, “A Comparison of Job Management
Systems in Supporting HPC ClusterTools”, SUPerG, Vancouver, Fall 2000,
http://www.indiana.edu/~uits/rac/mgmt.pdf

[Caragiannis02] I. Caragiannis, Ch. Kaklamanis, P. Persiano, “Wavelength Routing in All-
Optical Tree Networks: A Survey”, Bulletin of the European Association for
Theoretical Computer Science, 2002, Vol. 76, pp. 104-112

[CERN04] Large Hadron Collider, Computer Grid project, CERN, 2004,
http://lcg.web.cern.ch/LCG/

[Chan01] S.-H.Gary Chan, “Operation and cost optimization of a distributed server
architecture for on-demand video services”, IEEE Communications Letters,
September 2001, Vol. 5, Issue 9, pp. 384-386

[Chandramohan97] Chandramohan A. Thekkath, Timothy Mann, Edward K. Lee,
“Frangipani: A Scalable Distributed File System”, 16th ACM Symposium on
Operating Systems Principles, October 1997, pp. 224-237

[Chiu89] Dah-Ming Chiu, Raj Jain, “Analysis of the increase and decrease algorithms
for congestion avoidance in computer networks”, Computer Networks and
ISDN Systems, 1989, Vol. 17, pp. 1-14

[Choi06] Jeong-Yong Choi, Jitae Shin, “A Novel Design and Analysis of Cross-Layer
Error-Control for H.264 Video over Wireless LAN”, Springer-Verlag LNCS
(WWIC’06), May 2006

 108

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Boden95.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Boehm64.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Bradley00.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Brauss99A.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Brauss99B.pdf
http://sawww.epfl.ch/SIC/SA/publications/SCR99/scr11-page12.html
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Brelaz79.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Byers99.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Byun00.pdf
http://www.indiana.edu/~uits/rac/mgmt.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Caragiannis02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/CERN04.mht
http://lcg.web.cern.ch/LCG/
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Chan01.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Chandramohan97.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Chiu89.pdf

[Colajanni99] M. Colajanni, B. Ciciani, F. Quaglia, “Performance Analysis of Wormhole
Switching with Adaptive Routing in a Two-Dimensional Torus”, Euro-
Par’99, Toulose, France, Spinger-Verlang, August – September, 1999

[Coloma04] Kenin Coloma, Alok Choudhary, Wei-keng Liao, L. Ward, E. Russell, N.
Pundit, “Scalable high-level caching for parallel I/O”, 18th International
Symposium on Parallel and Distributed Processing, 26-30 April 2004, pp.
96-105

[CPLEX02] ILOG CPLEX 8.0, User's Manual, ILOG SA, Gentilly, France, 2002

[Crandall95] Phyllis E. Crandall, Ruth A. Aydt, Andrew A. Chien, Daniel A. Reed “Input-
Output Characteristics of Scalable Parallel Applications”,
Supercomputing’95. ACM Press, December 1995

[Culberson97] Joseph Culberson, “Graph Coloring Programs Manual”, University of
Alberta, Canada, 1997,
http://www.cs.ualberta.ca/~joe/Coloring/Colorsrc/manual.html

[Davies72] Donald Davies, “The Control of Congestion in Packet-Switching Networks”,
IEEE Transactions on Communications, Jun 1972, pp. 546-550 Vol. 20 Issue
3 Part 2

[Duato99] J. Duato, A. Robles, F. Silla, R. Beivide, “A comparison of router
architectures for virtual cut-through and wormhole switching in a NOW
environment”, SPDP’99 - IEEE Symposium on Parallel and Distributed
Processing, 12-16 April 1999, pp. 240-247

[Dvorak05] Vaclav Dvorak, “Scheduling Collective Communications on Wormhole Fat
Cubes”, 17th International Symposium on Computer Architecture and High
Performance Computing, 24-27 Oct 2005, pp. 27-34

[EWSD04] Siemens Carrier Networks, EWSD Digital Switching System, April 2004,
http://www.icn.siemens.com/carrier/products/switching/ewsdsw.html

[Fourer03] Robert Fourer, David M. Gay, Brian W. Kernighan, “AMPL: A Modeling
Language for Mathematical Programming”, 2nd edition, Thomson Learning
Brooks/Cole, 2003

[Fujita03] Naoyuki Fujita, Hirofumi Ookawa, “Storage devices, local file system and
crossbar network file system characteristics, and 1 terabyte file I/O
benchmark on the Numerical Simulator III”, MSST’03 - 20th IEEE/11th
NASA Goddard Conference on Mass Storage Systems and Technologies, 7-
10 April 2003, pp. 72-76,
http://storageconference.org/2003/papers/10_Fujita-Storage.pdf

[Gabrielyan00] Emin Gabrielyan, “Parallel I/O for SwissTx”, Swiss-Tx Progress Meeting,
EPFL, Lausanne, Switzerland, February 21, 2000

[Gabrielyan01] Emin Gabrielyan, “Isolated MPI-I/O for any MPI-1”, 5th Workshop on
Distributed Supercomputing: Scalable Cluster Software, Sheraton Hyannis,
Cape Cod, Hyannis Massachusetts, USA, 23-24 May 2001

[Gabrielyan03] Emin Gabrielyan, Roger D. Hersch, “Network Topology Aware Scheduling
of Collective Communications”, ICT’03 - 10th International Conference on
Telecommunications, 2003, pp. 1051-1058

 109

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Colajanni99.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Coloma04.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Crandall95.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Culberson97.mht
http://www.cs.ualberta.ca/~joe/Coloring/Colorsrc/manual.html
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Davies72.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Duato99.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Dvorak05.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/EWSD04.mht
http://www.icn.siemens.com/carrier/products/switching/ewsdsw.html
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Fujita03.pdf
http://storageconference.org/2003/papers/10_Fujita-Storage.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gabrielyan00.pdf
http://www.switzernet.com/people/emin-gabrielyan/000221-for21feb-SwissTx-progr/
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gabrielyan01.pdf
http://switzernet.com/people/emin-gabrielyan/010520-for23may-5thSuperComp/
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gabrielyan03.pdf

[Gabrielyan04A] Emin Gabrielyan, Roger D. Hersch, “Liquid Schedule Searching Strategies
for the Optimization of Collective Network Communications”, 18th
International Multi-Conference in Computer Science & Computer
Engineering: PCC’04 - Pervasive Computing and Communications, Las
Vegas, USA, 21-24 June 2004, CSREA Press, vol. 2, pp. 834-848

[Gennart99] Benoit A. Gennart, Emin Gabrielyan, Roger D. Hersch, “Parallel File
Striping on the Swiss-Tx Architecture”, EPFL Supercomputing Review,
Nov. 99, pp. 15-22, http://sawww.epfl.ch/SIC/SA/publications/SCR99/scr11-
page15.html

[Gorbett96] Peter F. Gorbett and Dror G. Feitelson, “The Vesta parallel file system”,
ACM Transactions on Computer Systems – TOCS’96, August 1996, Vol. 14
Issue 3 pp. 225-264,
http://www.cs.umd.edu/class/fall2002/cmsc818s/Readings/vesta-tocs96.pdf

[Gregory35] William K. Gregory, “Reduplication in Evolution”, Quarterly Review of
Biology, 1935, pp. 272-290 Vol. 10

[Gropp98] William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk,
Bill Nitzberg, William Saphir, Marc Snir, MPI - The Complete Reference,
Volume 2, The MPI Extensions, MIT Press, pages 185-274, 1998

[Gropp99] William Gropp, Ewing Lusk, Rajeev Thakur, “Using MPI-2 Advanced
Features of the Message-Passing Interface”, MIT Press, pages 51-118, 1999

[Gruber01] Ralf Gruber, Pieter Volgers, Alessandro De Vita, Massimiliano Stengel,
“Commodity computing results from the Swiss-Tx project”, Electronic Notes
in Future Generation Computer Systems, 2001, Vol. 1

[Gruber02] Ralf Gruber, Alessandro de Vita, Massimiliano Stengel, Trach-Minh Tran,
“Application Dedicated Clustering”, EPFL Supercomputing Review, May
2002, pp. 37-40,
http://sawww.epfl.ch/SIC/SA/SPIP/Publications/IMG/pdf/scr13_page37.pdf

[Gruber05] Ralf Gruber, “High Performance Computing Methods”, Swiss-Tx and Swiss
Grid, 2005, http://pleiades.epfl.ch/~rgruber/cours/C5_6part1.0.ppt

[Guven04] Tuna Guven, Chris Kommareddy, Richard J. La, Mark A. Shayman, Bobby
Bhattacharjee “Measurement based optimal multi-path routing”, INFOCOM
2004, Vol. 1, Mar 7-11, pp. 187-196

[H323] H.323 Standards, http://www.openh323.org/standards.html

[Halmos74] Paul R. Halmos, Naive Set Theory, Springer-Verlag New York Inc, 1974,
pp. 26-29

[Hassaine02] Omar Hassaine, “HPC Administration Tips and Techniques”, CPR
Engineering-HPC, Sun BluePrints OnLine, October 2002,
http://www.sun.com/blueprints/1002/817-0079-10.pdf

[Hoang06] Vinh Dien Hoang, Zhenhai Shao, Masayuki Fujise, “Efficient Load
balancing in MANETs to Improve Network Performance”, 6th International
Conference on ITS Telecommunications - ITST'06, 21-23 June 2006, pp.
753-756

 110

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gabrielyan04A.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gennart99.pdf
http://sawww.epfl.ch/SIC/SA/publications/SCR99/scr11-page15.html
http://sawww.epfl.ch/SIC/SA/publications/SCR99/scr11-page15.html
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gorbett96.pdf
http://www.cs.umd.edu/class/fall2002/cmsc818s/Readings/vesta-tocs96.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gregory35.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gruber01.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gruber02.pdf
http://sawww.epfl.ch/SIC/SA/SPIP/Publications/IMG/pdf/scr13_page37.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gruber05.ppt
http://pleiades.epfl.ch/~rgruber/cours/C5_6part1.0.ppt
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Guven04.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/H323.mht
http://www.openh323.org/standards.html
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Hassaine02.pdf
http://www.sun.com/blueprints/1002/817-0079-10.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Hoang06.pdf

[Hollywood03] Mark Fritz, “Digital Dailies Flow Freely from Fountain”, April 1, 2003,
http://www.emedialive.com/Articles/ReadArticle.aspx?CategoryID=45&Arti
cleID=5077

[Honda04] Loring Wirbel, “Deal pushes algorithms into digital radio”, April 13, 2004,
http://www.commsdesign.com/showArticle.jhtml?articleID=18901216

[Horst95] Robert W. Horst, “TNet: A Reliable System Area Network”, IEEE Micro,
February 1995, Vol. 15, Issue 1, pp. 37-45

[Huang05] Yicheng Huang, Jari Korhonen, Ye Wang, “Optimization of Source and
Channel Coding for Voice Over IP”, ICME’05, Jul 06, pp. 173-176

[Huber95] Jay V. Huber, Christopher L. Elford, Daniel A. Reed, Andrew A. Chien,
David S. Blumenthal, “PPFS: A High Performance Portable Parallel File
System”, 9th ACM International Conference on Supercomputing - ACM
Press, July 1995, pp. 385-394

[InfiniBand] InfiniBand Trade Association, http://www.infinibandta.org/

[ITU-D-VOIP03] “The Essential Report on IP Telephony”, by the Group of Experts on IP
Telephony / ITU-D, 2003, http://www.itu.int/ITU-D/e-strategy/publications-
articles/pdf/IP-tel_report.pdf

[Jagannathan02] S. Jagannathan, A. Tohmaz, A Chronopoulos, H.G. Cheung, “Adaptive
admission control of multimedia traffic in high-speed networks”, IEEE
International Symposium on Intelligent Control, 27-30 Oct 2002, pp. 728-
733

[Johansson02] Ingemar Johansson, Tomas Frankkila, Per Synnergren, “Bandwidth efficient
AMR operation for VoIP”, Speech Coding 2002, Oct 6-9, pp. 150-152

[Kallahalla02] Mahesh Kallahalla, Peter J. Varman, “PC-OPT: optimal offline prefetching
and caching for parallel I/O systems”, IEEE Transactions on Computers,
Nov. 2002, pp. 1333-1344 Vol. 51 Issue 11

[Kang05] Seong-ryong Kang, Dmitri Loguinov, “Impact of FEC overhead on scalable
video streaming”, NOSSDAV’05, Jun 12-14, pp. 123-128

[Kartalopoulos00] Stamatios V. Kartalopoulos, “What is WDM technology”, Technology and
Trends for International Optical Engineering Community, November 2000,
http://www.spie.org/web/oer/november/nov00/wdm.html

[Kim06] Dong-hyun Kim, Rhan Ha, Hojung Cha, “Traffic Load and Lifetime
Deviation Based Power-Aware Routing Protocol for Wireless Ad Hoc
Networks”, 4th International Conference on Wired/Wireless Internet
Communications – WWIC’06, 10-12 May 2006, pp. 325-336

[Kotz96] Nils Nieuwejaar, David Kotz, Apratim Purakayastha, Carla Schlatter Ellis,
Michael Best, “File-Access Characteristics of Parallel Scientific Workloads”,
IEEE Transactions on Parallel and Distributed Systems, October 1996, Vol.
7 Issue 10 pp. 1075-1089

[Kotz97] David Kotz, “Disk-directed I/O for MIMD Multiprocessors”, ACM
Transactions on Computer Systems – TOCS’97, February 1997, Vol. 15
Issue 1 pp. 41-74

 111

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/hollywood03.pdf
http://www.emedialive.com/Articles/ReadArticle.aspx?CategoryID=45&ArticleID=5077
http://www.emedialive.com/Articles/ReadArticle.aspx?CategoryID=45&ArticleID=5077
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/honda04.pdf
http://www.commsdesign.com/showArticle.jhtml?articleID=18901216
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Horst95.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Huang05.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Huber95.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/InfiniBand.mht
http://www.infinibandta.org/
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/ITU-D-VOIP03.pdf
http://www.itu.int/ITU-D/e-strategy/publications-articles/pdf/IP-tel_report.pdf
http://www.itu.int/ITU-D/e-strategy/publications-articles/pdf/IP-tel_report.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Jagannathan02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Johansson02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Kallahalla02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Kang05.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Kartalopoulos00.mht
http://www.spie.org/web/oer/november/nov00/wdm.html
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Kotz96.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Kotz97.pdf

[Kuonen99A] Pierre Kuonen, Ralf Gruber, “Parallel computer architectures for commodity
computing and the Swiss-T1 machine”, EPFL Supercomputing Review, Nov
1999, pp. 3-11, http://sawww.epfl.ch/SIC/SA/publications/SCR99/scr11-
page3.html

[Kuonen99B] Pierre Kuonen, “The K-Ring: a versatile model for the design of MIMD
computer topology”, HPC’99 - High-Performance Computing Conference,
San Diego, USA, April 1999, pp. 381-385

[Lee95] Edward K. Lee, “Highly-Available, Scalable Network Storage”, 40th IEEE
Computer Society International Conference – COMPCON’95, March 1995,
pp. 397-402

[Lee96] Edward K. Lee and Chandramohan A. Thekkath, “Petal: Distributed Virtual
Disks”, Seventh International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS-VII, October
1996, pp. 84-92, ftp://ftp.digital.com/pub/DEC/SRC/publications/eklee/petal-
paper.pdf

[Lee98] Edward K. Lee, Chandramohan A. Thekkath, Chris Whitaker, Jim Hogg, “A
Comparison of Two Distributed Disk Systems”, Research Report, 30 April
1998, http://gatekeeper.dec.com/pub/DEC/SRC/research-
reports/abstracts/src-rr-155.html

[Liu01] Pangfeng Liu, Jan-Jan Wu, Yi-Fang Lin, Shih-Hsien Yeh, “A simple
incremental network topology for wormhole switch-based networks”, 15th
International Parallel and Distributed Processing Symposium, 23-27 April
2001, pp. 6-12

[Liu03] Pangfeng Liu, Da-Wei Wang, Jan-Jan Wu, “Efficient parallel I/O scheduling
in the presence of data duplication”, International Conference on Parallel
Processing, 2003, pp. 231-238

[Loh96] P.K.K. Loh, Wen Jing Hsu, Cai Wentong, N. Sriskanthan, “How network
topology affects dynamic loading balancing”, Parallel & Distributed
Technology: Systems & Applications, Fall 1996, Vol. 4, Issue 3, pp. 25-35

[Luby02] Michael Luby, “LT codes”, FOCS’02, November 16-19, pp. 271-280

[Lun06] D. S. Lun, P. Pakzad, C. Fragouli, M. Medard, R. Koetter, An Analysis of
Finite-Memory Random Linear Coding on Packet Streams, 2nd Network
Coding Workshop, 2006,
http://www.mit.edu/~medard/papersnew/netcod2006.pdf

[Luo06] Jun Luo, “Mobility in Wireless Networks: Friend or Foe, Network design
and Control in the Age of mobile Computing”, Thesis 3456 at EPFL, 7 April
2006

[Ma03A] Rui Ma, Jacek Ilow, “Reliable multipath routing with fixed delays in
MANET using regenerating nodes”, LCN’03, Oct 20-24, pp. 719-725

[Ma03B] Xiaosong Ma, Xiangmin Jiao, M. Campbell, M. Winslett, “Flexible and
efficient parallel I/O for large-scale multi-component simulations”, Parallel
and Distributed Processing Symposium, 22-26 April 2003, pp. 10-19

[Ma04] Rui Ma, Jacek Ilow, “Regenerating nodes for real-time transmissions in
multi-hop wireless networks”, LCN’04, Nov 16-18, pp. 378-384

 112

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Kuonen99A.pdf
http://sawww.epfl.ch/SIC/SA/publications/SCR99/scr11-page3.html
http://sawww.epfl.ch/SIC/SA/publications/SCR99/scr11-page3.html
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Kuonen99B.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Lee95.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Lee96.pdf
ftp://ftp.digital.com/pub/DEC/SRC/publications/eklee/petal-paper.pdf
ftp://ftp.digital.com/pub/DEC/SRC/publications/eklee/petal-paper.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Lee98.pdf
http://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-155.html
http://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-155.html
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Liu01.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Liu03.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Loh96.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Luby02.pdf
http://www.mit.edu/~medard/papersnew/netcod2006.pdf
http://www.mit.edu/~medard/papersnew/netcod2006.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Luo06.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Ma03A.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Ma03B.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Ma04.pdf

[Maach04] Abdelilah Maach, Gregor v. Bochmann, Hussein Mouftah, “Contention
avoidance in optical burst switching”, ICN’04 - International Conference on
Networking, 2004, pp. 1-7

[MacKay05] David J. C. MacKay, “Fountain codes”, IEE Communications, Vol. 152
Issue 6, Dec 2005, pp. 1062-1068

[MacKay96] D.J.C. MacKay and R.M. Neal, “Near Shannon limit performance of low
density parity check codes”, Electronics Letters 1996, Vol. 32, Issue 18, Aug
29, pp. 1645-1646

[Mandjes02] M. Mandjes, D. Mitra, W. Scheinhardt, “Simple models of network access,
with applications to the design of joint rate and admission control”,
INFOCOM’02, 23-27 June 2002, Vol. 1, pp. 3-12

[McCulloch43] W. S. McCulloch, W. Pitts, “A Logical Calculus of the Ideas Immanent in
Nervous Activity”, Bulletin of Mathematical Biophysics, 1943, vol. 5, pp.
115-133

[McEneaney02] John E. McEneaney, “What’s in the brain that ink may character?”, National
Reading Conference, December 7, 2002

[Melamed00] Benjamin Melamed, Khosrow Sohraby, Yorai Wardi, “Measurement-Based
Hybrid Fluid-Flow Models for Fast Multi-Scale Simulation”, DARPA/NMS
Project, Sep 2000, http://204.194.72.101/pub/nms2000sep/UMissouri-
KC.pdf

[Messerli99] V. Messerli, O. Figueiredo, B. Gennart, R.D. Hersch, “Parallelizing I/O
intensive Image Access and Processing Applications”, IEEE Concurrency,
Vol. 7, No. 2, April-June 1999, pp. 28-37

[More97] Sachin More, Alok Choudhary, Ian Foster, Ming Q. Xu, “MTIO a multi-
threaded parallel I/O system”, 11th International Parallel Processing
Symposium – IPPS’97, pp. 368-373,
http://www.ece.northwestern.edu/~choudhar/publications/pdf/MorCho97A.p
df

[MPI2-97A] Message Passing Interface Forum, MPI-2: Extensions to the Message-
Passing Interface, July 1997, http://www.mpiforum.org/

[MPI2-97B] Message Passing Interface Forum, MPI-2 Extensions to the Message-Passing
Interface, University of Tennessee, 1997, pp. 209-300

[Naghshineh93] M. Naghshineh, R. Guerin, “Fixed versus variable packet sizes in fast
packet-switched networks”, INFOCOM’93, March 28 - April 1, 1993, vol. 1,
pp. 217-226

[Nguyen02] Thinh Nguyen, Avideh Zakhor, “Protocols for distributed video streaming”,
Image Processing 2002, Vol. 3, Jun 24-28, pp. 185-188

[Nguyen03] Thinh Nguyen, P. Mehra, Avideh Zakhor, “Path diversity and bandwidth
allocation for multimedia streaming”, ICME’03 Vol. 1, Jul 6-9, pp. 663-672

[Oldfield98] Ron Oldfield, David Kotz, “The Armada Parallel File System”, Scientific
Report - Dartmouth College - Compute Science Department, 22 November
1998, http://www.cs.dartmouth.edu/~dfk/armada/

[Pacheco97] Peter S. Pacheco, Parallel Programming with MPI, by Morgan Kaufmann
Publishers 1997, pp. 137-178

 113

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Maach04.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/MacKay05.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/MacKay96.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Mandjes02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/McEneaney02.ppt
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Melamed00.pdf
http://204.194.72.101/pub/nms2000sep/UMissouri-KC.pdf
http://204.194.72.101/pub/nms2000sep/UMissouri-KC.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Messerli99.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/More97.pdf
http://www.ece.northwestern.edu/~choudhar/publications/pdf/MorCho97A.pdf
http://www.ece.northwestern.edu/~choudhar/publications/pdf/MorCho97A.pdf
http://www.mpiforum.org/
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Naghshineh93.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Nguyen02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Nguyen03.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Oldfield98.pdf
http://www.cs.dartmouth.edu/~dfk/armada/

[Padhye00] Chinmay Padhye, Kenneth J. Christensen, Wilfrido Moreno, “A new
adaptive FEC loss control algorithm for voice over IP applications”,
IPCCC’00, Feb 20-22, pp. 307-313

[Pakzad05] P. Pakzad, C. Fragouli, A. Shokrollahi, Coding Schemes for Line Networks,
ISIT 2005, http://arxiv.org/PS_cache/cs/pdf/0508/0508124.pdf

[Petrini01] Fabrizio Petrini, Adolfy Hoisie, Wu-chun Fengy, Richard Grahamy,
“Performance Evaluation of the Quadrics Interconnection Network”, 15th
International Parallel and Distributed Processing Symposium, 23-27 April
2001, pp. 1698-1706

[Petrini03] Fabrizio Petrini, Adolfy Hoisie, Wu-chun Fengy, Richard Grahamy,
Salvador Coll , Eitan Frachtenberg, “Performance Evaluation of the Quadrics
Interconnection Network”, Cluster Computing 6, 2003, pp. 125-142

[Ping06] Yuan Ping, Bai Yu, Wang Hao, “A Multipath Energy-Efficient Routing
Protocol for Ad hoc Networks”, International Conference on
Communications, Circuits and Systems - ICCCAS'06, 25-29 June 2006, pp.
14662-1466 Vol. 3

[Pitts47] W. Pitts, W. S. McCulloch, “How We Know Universals: The Perception of
Auditory and Visual Forms”, Bulletin of Mathematical Biophysics, 1947,
vol. 9, pp. 127-147

[Qiao99] Chunming Qiao, Myungsik Yoo, “Optical burst switching (OBS) - A New
Paradigm for an Optical Internet”, Journal of High Speed Networks, 1999,
vol. 8, no. 1, pp. 69-84

[Qu04] Qi Qu, Ivan V. Bajic, Xusheng Tian, James W. Modestino, “On the effects of
path correlation in multi-path video communications using FEC over lossy
packet networks”, IEEE GLOBECOM’04 Vol. 2, Nov 29 - Dec 3, pp. 977-
981

[Quadrics] www.quadrics.com

[Ramaswami97] R. Ramaswami, G. Sasaki, “Multiwavelength optical networks with limited
wavelength conversion”, INFOCOM’97, 7-11 April 1997, vol. 2, pp. 489-
498

[Reinemo06] Sven-Arne Reinemo, Tor Skeie, Thomas Sødring, and Olav Lysne, Ola
Tørudbakken, “An overview of QoS capabilities in infiniband, advanced
switching interconnect, and ethernet”, IEEE Communications Magazine, July
2006, vol. 44, issue 7, pp. 32-38

[Rexford96] Jennifer Rexford, Kang G. Shin, “Analytical Modeling of Routing
Algorithms in Virtual Cut-Through Networks”, University of Michigan,
1996

[Richardson01] Thomas J. Richardson and Rüdiger L Urbanke, Efficient Encoding of Low-
Density Parity Check Codes, IEEE Transactions on Information Theory, Vol.
47, No. 2, February 2001, pp. 638-656

[Rolland-Balzon02] Philippe Rolland-Balzon, “Color by DSATUR (Brelaz, 1979) a Dimacs
graph”, April 2002, http://prolland.free.fr/works/research/dsatphp/dsat.html

 114

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Padhye00.pdf
http://arxiv.org/PS_cache/cs/pdf/0508/0508124.pdf
http://arxiv.org/PS_cache/cs/pdf/0508/0508124.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Petrini01.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Petrini03.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Ping06.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Qiao99.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Qu04.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Quadrics.mht
http://www.quadrics.com/
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Ramaswami97.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Reinemo06.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Rexford96.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Richardson01.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Rolland-Balzon02.mht
http://prolland.free.fr/works/research/dsatphp/dsat.html

[Schwarz02] Thomas S. J. Schwarz, Generalized Reed Solomon codes for erasure
correction in SDDS, In Workshop on Distributed Data and Structures,
WDAS 2002, Paris, Mar 2002

[Seroussi86] Gadiel Seroussi, Ron M. Roth, On MDS extensions of generalized Reed-
Solomon codes, IEEE Transactions on Information Theory, Vol. 32, Issue 3,
May 1986, pp. 349-354

[Shin96] K.G. Shin, S.W. Daniel, “Analysis and implementation of hybrid switching”,
IEEE Transactions on Computers, June 1996, Vol. 45, Issue 6, pp. 684-692

[Shokrollahi04] Amin Shokrollahi, “Raptor codes”, ISIT’04, June 27 – July 2, page 36

[Siegrist01] Kyle Siegrist et al, “The Poisson Process”, Virtual Laboratories in
Probability and Statistics, 2001, http://www.ds.unifi.it/VL/VL_EN/poisson/

[SIP] SIP Forum, http://www.sipforum.org/

[Sitaram00] Dinkar Sitaram, Asit Dan, “Multimedia Servers”, Morgan Kaufmann
Publishers, San Francisco California, 2000, pp. 69-73

[Smirni96] Evgenia Smirni, Ruth A. Aydt, Andrew A. Chien, Daniel A. Reed, “I/O
Requirements of Scientific Applications: An Evolutionary View”, Fifth IEEE
International Symposium on High Performance Distributed Computing,
1996, pp. 49-59

[Snir96] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, Jack
Dongarra, MPI - The Complete Reference, Volume 1, The MPI Core, MIT
Press, pages 123-189, 1996

[Steen05] Aad J. van der Steen, Jack J. Dongarra, “Infiniband” from the “Overview of
Recent Supercomputers”,
http://www.phys.uu.nl/~steen/web05a/infiniband.html

[Stern99] Thomas E. Stern, Krishna Bala, “Multiwavelength Optical Networks: A
Layered Approach”, Addison-Wesley, May 1999

[SwissTx01] Swiss-Tx Project Report, June 2001,
http://hefrweb01.eif.ch/~kuonen/grip/html/ficheSWISS.html

[Tawan04] Tawan Thongpook, “Load balancing of adaptive zone routing in ad hoc
networks”, TENCON 2004, Vol. B, Nov 21-24, pp. 672-675

[Thakur96A] Rajeev Thakur, William Gropp, Ewing Lusk, “An Experimental Evaluation
of the Parallel I/O Systems of the IBM SP and Intel Paragon Using a
Production Application”, 3rd International Conference of the Austrian Center
for Parallel Computation (ACPC) with Special Emphasis on Parallel
Databases and Parallel I/O, Lecture Notes in Computer Science - Springer-
Verlag, September 1996, pp. 24-35

[Thakur96B] R. Thakur, W. Gropp, and E. Lusk, “An Abstract-Device Interface for
Implementing Portable Parallel-I/O Interfaces,” in Proc. of the 6th
Symposium on the Frontiers of Massively Parallel Computation, October
1996, pp. 180-187

[Thakur98] Rajeev Thakur, William Gropp, Ewing Lusk “A Case for Using MPI’s
Derived Datatypes to Improve I/O Performance”, Conference on High
Performance Networking and Computing, 1998, pp. 1-10, http://www-
unix.mcs.anl.gov/~thakur/dtype/

 115

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Schwarz02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Seroussi86.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Shin96.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Shokrollahi04.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Siegrist01.pdf
http://www.ds.unifi.it/VL/VL_EN/poisson/
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/SIP.mht
http://www.sipforum.org/
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Smirni96.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Snir96.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Steen05.mht
http://www.phys.uu.nl/~steen/web05a/infiniband.html
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/SwissTx01.pdf
http://hefrweb01.eif.ch/~kuonen/grip/html/ficheSWISS.html
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Tawan04.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Thakur96A.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Thakur96B.pdf
http://www-unix.mcs.anl.gov/~thakur/dtype/
http://www-unix.mcs.anl.gov/~thakur/dtype/

[Thakur99A] Rajeev Thakur, William Gropp, Ewing Lusk, “On implementing MPI-IO
Portably and with High Performance”, 6th Workshop on I/O in Parallel and
Distributed Systems, 5 May 1999, pp. 23-32.

[Thakur99B] Thakur, R.; Gropp, W.; Lusk, E., “Data sieving and collective I/O in
ROMIO”, The Seventh Symposium on the Frontiers of Massively Parallel
Computation, Frontiers’99, 21-25 Feb 1999, pp. 182-189

[Trick94] Michael Trick, “Network Resources for Coloring a Graph”, October 26,
1994, http://mat.gsia.cmu.edu/COLOR/color.html

[Tuninetti05] D. Tuninetti, C. Fragouli, On the Throughput Improvement due to Limited
Complexity Processing at Relay Nodes, ISIT 2005,
http://ieeexplore.ieee.org/iel5/10215/32581/01523506.pdf?arnumber=152350
6

[Turner02] Jonathan Turner, “Terabit Burst Switching Progress Report”, Washington
University in St. Louis, 14 May 2002

[Turner99] Jonathan Turner, “Terabit Burst Switching”, Journal of High Speed
Networks, 1999, vol. 8, no. 1, pp. 3-16

[Wiki-Poisson06] Poisson distribution, http://en.wikipedia.org/wiki/Poisson_distribution

[Worster97] Tom Worster, Avri Doria, “Levels of aggregation in flow switching
networks”, Electronics Industries Forum of New England, 6-8 May 1997, pp.
51-59

[Wu05A] Jan-Jan Wu, Yih-Fang Lin, Pangfeng Liu, “Efficient distributed algorithms
for parallel I/O scheduling”, 11th International Conference on Parallel and
Distributed Systems, 20-22 July 2005, pp. 460-466 Vol. 1

[Wu05B] Jan-Jan Wu, Pangfeng Liu, “Distributed Scheduling of Parallel I/O in the
Presence of Data Replication”, 19th IEEE International Symposium on
Parallel and Distributed, 04-08 April 2005, pp. 49b - 49b

[Xu00] Youshi Xu, Tingting Zhang, “An adaptive redundancy technique for wireless
indoor multicasting”, ISCC 2000, Jul 3-6, pp. 607-614

[Yocum97] K.G. Yocum, J.S. Chase, A.J. Gallatin, A.R. Lebeck, “Cut-through delivery
in Trapeze: An Exercise in Low-Latency Messaging”, 6th International
Symposium on High Performance Distributed Computing, 5-8 August 1997,
pp. 243-252

 116

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Thakur99A.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Thakur99B.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Trick94.mht
http://mat.gsia.cmu.edu/COLOR/color.html
http://ieeexplore.ieee.org/iel5/10215/32581/01523506.pdf?arnumber=1523506
http://ieeexplore.ieee.org/iel5/10215/32581/01523506.pdf?arnumber=1523506
http://ieeexplore.ieee.org/iel5/10215/32581/01523506.pdf?arnumber=1523506
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Turner02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Turner99.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Wiki-Poisson06.mht
http://en.wikipedia.org/wiki/Poisson_distribution
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Worster97.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Wu05A.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Wu05B.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Xu00.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Yocum97.pdf

Biography

Emin Gabrielyan was born in 2 January 1972 in Yerevan, Armenia.

In 1993 he received his diploma in physics from Yerevan State University (YSU). During
his studies, he worked at the Yerevan Physics Institute (YerPhI) on the interconnection of DEC
VAX/VMS computer cluster and PC clusters with equipments (CAMAC and FASTBUS at that
time) of particle experiments running on the electron accelerator facility. He also participated in
installing the satellite link with CERN, thereby establishing the first Internet link in Armenia.

In 1994 he joined Infocom, the national data network carrier operating international X.25
satellite links and providing nationwide X.25, X.28 and X.400 services. He participated in the
development and management of a telegraphy message switching center, fax-over-data services
and voice message exchange services.

In 1996, he convinced the company of the necessity to provide Internet at the national
scale. He organized the installation of international satellite IP links and established an Internet
department. He headed the department until 1998. Simultaneously, he founded his own
company, with about 20 employees. He started providing Internet services by operating his own
international circuits. He carried out negotiations with telecommunication authorities so as to
adapt the local regulations according to the ITU recommendations. The VOIP domain was
liberated from the telephony monopoly. His company became the first one to provide large scale
VOIP terminations and originations in Armenia.

Later, he founded companies in Switzerland and in USA and extended the business to
international wholesale telephony. Business in Armenia was soon abandoned, since under the
pressure of the monopoly of the phone company, the VOIP domain did not remain free. By
establishing parallel redundant communications with different wholesale voice termination
markets, high quality telephony services were provided to major phone carriers, relying
exclusively on the at that time unreliable packetized VOIP technology.

In 1999 he joined the Peripheral Systems Laboratory at EPFL to start his PhD project. He
contributed to the Swiss-Tx project, carried out by the leading Swiss technology institutions and
by Compaq Computer Corporation, in cooperation with the Sandia National Laboratory (SNL)
and the Oak Ridge National Laboratory (ORNL). The goal of the project was the development
of a teraflop supercomputer. Emin Gabrielyan was in charge of the design of a parallel I/O
library for the Swiss-Tx cluster supercomputer.

Encountering frequent network congestions occurring during collective I/O transmissions,
he started working on optimal scheduling of parallel network transmissions for the Swiss-Tx
interconnection network. He then started a research on parallel transmissions for achieving fault-
tolerant packetized communications.

 i

From 2005 on, his Swiss company started providing to residential and business customers
subscriptions with standalone VOIP phones. The US company now provides long distance and
international phone services for permanent line subscribers.

Emin Gabrielyan is married and has 3 children.

 ii

Personal Bibliography

Publications related to parallel I/O

[Gennart99] Benoit A. Gennart, Emin Gabrielyan, Roger D. Hersch, “Parallel File
Striping on the Swiss-Tx Architecture”, EPFL Supercomputing Review 11,
November 1999, pp. 15-22

[Gabrielyan00G] Emin Gabrielyan, “SFIO, Parallel File Striping for MPI-I/O”, EPFL
Supercomputing Review 12, November 2000, pp. 17-21

[Gabrielyan01B] Emin Gabrielyan, Roger D. Hersch, “SFIO a striped file I/O library for
MPI”, Large Scale Storage in the Web, 18th IEEE Symposium on Mass
Storage Systems and Technologies, 17-20 April 2001, pp. 135-144

[Gabrielyan01C] Emin Gabrielyan, “Isolated MPI-I/O for any MPI-1”, 5th Workshop on
Distributed Supercomputing: Scalable Cluster Software, Sheraton Hyannis,
Cape Cod, Hyannis Massachusetts, USA, 23-24 May 2001

Papers related to parallel I/O are available at:
http://switzernet.com/people/emin-gabrielyan/060524-SFIO-papers-workshops/

Conference papers on liquid scheduling problem

[Gabrielyan03] Emin Gabrielyan, Roger D. Hersch, “Network Topology Aware Scheduling
of Collective Communications”, ICT’03 - 10th International Conference on
Telecommunications, Tahiti, French Polynesia, 23 February - 1 March 2003,
pp. 1051-1058

[Gabrielyan04A] Emin Gabrielyan, Roger D. Hersch, “Liquid Schedule Searching Strategies
for the Optimization of Collective Network Communications”, 18th
International Multi-Conference in Computer Science & Computer
Engineering, Las Vegas, USA, 21-24 June 2004, CSREA Press, vol. 2, pp.
834-848

[Gabrielyan04B] Emin Gabrielyan, Roger D. Hersch, “Efficient Liquid Schedule Search
Strategies for Collective Communications”, ICON’04 - 12th IEEE
International Conference on Networks, Hilton, Singapore, 16-19 November
2004, vol. 2, pp 760-766

Presentations and papers on liquid scheduling problem are available at:
http://switzernet.com/people/emin-gabrielyan/060729-papers-liquid-sched/

 iii

http://ditwww.epfl.ch/SIC/SA/publications/SCR99/scr-99.pdf
http://ditwww.epfl.ch/SIC/SA/publications/SCR00/scr-00.pdf
http://ditwww.epfl.ch/SIC/SA/publications/SCR00/scr-00.pdf
http://storageconference.org/2001/
http://www.csm.ornl.gov/meetings/CapeCod/
http://www.csm.ornl.gov/meetings/CapeCod/
http://switzernet.com/people/emin-gabrielyan/060524-SFIO-papers-workshops/
http://conf.uha.fr/ICT2003.html
http://conf.uha.fr/ICT2003.html
http://www.world-academy-of-science.org/IMCSE2004/ws/index_html
http://www.world-academy-of-science.org/IMCSE2004/ws/index_html
http://www.world-academy-of-science.org/IMCSE2004/ws/index_html
http://www.sp.edu.sg/icon2004/
http://www.sp.edu.sg/icon2004/
http://switzernet.com/people/emin-gabrielyan/060729-papers-liquid-sched/

Papers related to capillary routing

[Gabrielyan06A] Emin Gabrielyan, “Fault-tolerant multi-path routing for real-time streaming
with erasure resilient codes”, ICWN’06 - International Conference on
Wireless Networks, Monte Carlo Resort, Las Vegas, Nevada, USA, 26-29
June 2006, pp. 341-346

[Gabrielyan06B] Emin Gabrielyan, Roger D. Hersch, “Rating of Routing by Redundancy
Overall Need”, ITST’06 - 6th International Conference on
Telecommunications, June 21-23, 2006, Chengdu, China, pp. 786-789

[Gabrielyan06C] Emin Gabrielyan, “Fault-Tolerant Streaming with FEC through Capillary
Multi-Path Routing”, ICCCAS’06 - International Conference on
Communications, Circuits and Systems, Guilin, China, 25-28 June 2006, vol.
3, pp. 1497-1501

[Gabrielyan06D] Emin Gabrielyan, Roger D. Hersch, “Reducing the Requirement in FEC
Codes via Capillary Routing”, ICIS-COMSAR’06 - 5th IEEE/ACIS
International Conference on Computer and Information Science, 10-12 July
2006, pp. 75-82

Notes, drafts, reports, talks and papers on capillary routing and ROR are available at:
http://switzernet.com/people/emin-gabrielyan/060129-capillary-documentation/

 iv

http://switzernet.com/people/emin-gabrielyan/060129-capillary-documentation/

Glossary

3G 3rd Generation mobile communication
3GPP 3rd Generation Partnership Project
ADIO Abstract Device Interface for Portable Parallel I/O
ADSL Asynchronous Digital Subscriber Line
AMPL A Mathematical Programming Language
AMR Adaptive Multi-Rate voice codec 4.75 - 12.2 kbps
ANL Argonne National Laboratory, http://www.anl.gov/
AODV Ad-hoc On-demand Distance Vector routing
API Application Program Interface
ARPANET Advanced Research Projects Agency Network
ARQ Automatic Repeat request
ATM Asynchronous Transfer Mode, a telecommunication protocol
BDT Bureau de Développement des Télécommunications, currently ITU-D
BER Bit Error Rate
CAMAC Computer Automated Measurement And Control, is a modular data handling

system used at almost every nuclear physics research laboratory and many
industrial sites all over the world

CCITT Comité Consultatif International Téléphonique et Télégraphique, International
Telegraph and Telephone Consultative Committee, based in Geneva, Switzerland,
after 1992 is called ITU

CERN Conseil Européen pour la Recherche Nucléaire, European Organization for Nuclear
Research

CODINE / GRD Computing in Distributed Networked Environment / Global Resource
Director

CPLEX A high-performance linear programming solver
CPU Central Processing Unit
CTI Swiss Commission for Technology and Innovation
DCE Data Communications Equipment or Data Circuit-terminating Equipment, a device

that establishes, maintains and terminates a session on a network; it is typically the
modem, contrast with DTE

DCL Digital Command Language, for Open VMS operating system
DEC Digital Equipment Corporation, purchased by Compaq, which in turn was

purchased by Hewlett-Packard
DER Decoding Error Rate
DMA Direct Memory Access
DoD The U.S. Department of Defense
DoS Deny of Service
DSatur Saturation Degree, a graph coloring algorithm by D. Brelaz

 v

http://www.anl.gov/

DSL Digital Subscriber Line
DTE Data Terminating Equipment, a communications device that is the source or

destination of signals on a network; it is typically a terminal or computer, contrast
with DCE

DWDM Dense Wavelength Division Multiplexing
E/O Electro/Optical conversion
E/S Entrées/Sorties
EIGRP Enhanced Interior Gateway Routing Protocol
EPFL École Polytechnique Fédérale de Lausanne, Swiss Federal Institute of Technology

Lausanne, http://www.epfl.ch/
ETHZ Eldgenössische Technische Hochschule Zürich, Swiss Federal Institute of

Technology Zurich
FASTBUS IEEE 960 standard for a Modular High-Speed Data Acquisition and Control

System
FCI Fast Communication Interface
FEC Forward Error Correction
FedEx Federal Express
FIFO First In, First Out
flit Flow unit, in wormhole and cut-through switching
g723r53 High complexity voice codec G.723.1 5300 bps
g723r63 High complexity voice codec G.723.1 6300 bps
g729r8 Low complexity voice codec G.729 8000 bps
GPS Global Positioning System
gsmfr High complexity voice codec GSMFR 13200 bps
HCA Host Channel Adapter, in InfiniBand Architecture
HPC High Performance Computing
HTTP HyperText Transfer Protocol
I/O Input-Output
IBA InfiniBand Architecture
IBTA InfiniBand Trade Association
IEEE Institute of Electrical and Electronics Engineers, http://ieee.org/
IFF If and only if
ILOG Developer and distributor of linear programming solutions, http://www.ilog.com
IMP Interface Message Processor
IOS Internet Operating System
IP Internet Protocol
ISO International Organization for Standardization, http://www.iso.org/
ISP Internet Service Provider
ITSP Internet Telephony Service Provider
ITU International Telecommunication Union, prior to 1992, it was known as CCITT

 vi

http://www.epfl.ch/
http://ieee.org/
http://www.ilog.com/
http://www.iso.org/

ITU-D ITU-D, Telecom Development, is responsible for creating policies, regulation and
providing training programs and financial strategies in developing countries. It was
created in 1992 from the Bureau de Développement des Télécommunications
(BDT)

ITU-T International Telecommunication Union-Telecommunication Standardization
Sector

LAN Local Area Network
LDPC Low-Density Parity-Check code
LP Linear Programming
LSF Load Sharing Facility, a scheduling system in HPC
LSP Laboratoire de Systèmes Périphériques, Peripheral Systems Laboratory of EPFL,

http://lsp.epfl.ch
LT Luby Transform Code
MANET Mobile Ad-hoc Network
MBMS Multimedia Broadcast/Multicast Service
MDS Maximum Distance Separable
MEMS Micro-Electro-Mechanical Systems
MILP Mixed Integer Linear Programming
MPEG Moving Picture Experts Group
MPI Message Passing Interface
MPICH “CH” in MPICH stands for “Chameleon”, symbol of adaptability to one’s

environment and thus of portability
MYRINET is a high-speed local area networking system designed by Myricom to be used as an

interconnect between multiple machines to form computer clusters
NAT Network Address Translation
NP-complete Non-deterministic Polynomial time
NYSE New York Stock Exchange, http://www.nyse.com/
O/E Optical/Electrical conversion
O/E/O Optical/Electrical/Optical conversion
OADM Optical Add/Drop Multiplexer
OBS Optical Burst Switching
OLT Optical Line Terminal
ORNL Oak Ridge National Laboratory, http://www.ornl.gov/
OS Operating System
OSI Open System Interconnection Protocols, is an ITU-T standard, comprises numerous

standard protocols that are based on the OSI reference model
OSPF Open Shortest Path First
OXC Optical Cross-Connect
PAD Packet Assembler/Disassembler, a communications device that formats outgoing

data into packets of the required length for transmission in an X.25 packet
switching network; it also strips the data out of incoming packets

 vii

http://lsp.epfl.ch/
http://www.nyse.com/
http://www.ornl.gov/

PBS Portable Batch System, a scheduling system in HPC
QoS Quality of Service
ROR Redundancy Overall Requirement
RS Reed-Solomon
RTP Real-time Transport Protocol
RTT Round Trip Time
SAN Storage Area Networks
SCS Supercomputing Systems
SFIO Striped File I/O
SIP Service Initiating Protocol
SNL Sandia National Laboratories, http://www.sandia.gov/
SONET Synchronous Optical Network
Sprint Intl Sprint International (NYSE:S), a leading US based telecommunication carrier,

http://www.sprintlabs.com/
SRI Stanford Research Institute
TCA Target Channel Adapter, in InfiniBand Architecture
TCP Transmission Control Protocol
TDM Time-Division Multiplexing, a technology in circuit-switched digital telephony
Teleglobe a leading US/Canadian telecommunication carrier acquired by VSNL in 2005,

http://www.vsnlinternational.com/
TNET High-performance switch-based communication network aiming at low-latency and

high-bandwidth
UA User Agent
UCLA University of California, Los Angeles
UDP User Datagram Protocol
UNIX Uniplexed Information and Computing System (it was originally spelled “Unics”)
VAX Virtual Address Extension, a computing architecture that supports an orthogonal

instruction set (machine language) and virtual addressing developed by DEC
VCT Virtual Cut-Through
VMS Virtual Memory System or Open VMS, is the name of a high-end computer server

operating system that runs on the VAX and Alpha family of computers developed
by Digital Equipment Corporation, and more recently on Hewlett-Packard systems
built around Intel Itanium CPU

VOIP Voice Over IP
VPN Virtual Private Network
VSNL Videsh Sanchar Nigam Limited (NYSE:VSL), India’s leading international

telecommunications service provider, http://www.vsnl.in/
WAN Wide Area Network
WAP Wavelength Assignment Problem
WDM Wavelength Division Multiplexing
WIXC Wavelength-Interchanging Cross-Connect

 viii

http://www.sandia.gov/
http://www.sprintlabs.com/
http://www.vsnlinternational.com/
http://www.vsnl.in/

WSXC Wavelength-Selective Cross-Connect
X.25 an ITU-T protocol standard for WAN communications that defines how

connections between user devices and network devices are established and
maintained

X.28 An ITU standard (1977) for exchange of information between a DTE and a PAD;
commonly known as PAD commands

X.400 an OSI standard developed by the ITU-T (at the time the CCITT) in cooperation
with ISO for the exchange of messages

XOR Exclusive OR
YerPhI Yerevan Physics Institute
YSU Yerevan State University

 ix

List of Figures

Figure 1. Loading the transatlantic cable into the ‘Great Eastern’ in 1865.....................................1
Figure 2. Diagrams from the 51-page report of Paul Baran to the U.S. Air Force, 1964................2
Figure 3. Kidney blood filtering in the human organism..3
Figure 4. Pulmonary circuit of the human organism...4
Figure 5. One of the first Interface Message Processor (IMP) of ARPANET connecting

UCLA with SRI in August 1969 ...5
Figure 6. Packet switching network: packets are entirely stored at each intermediate switch

and only then forwarded to the next switch ...5
Figure 7. Wormhole or cut-through routing network: a packet is “copied” through the

communication path from the source directly to the destination without being
stored in any intermediate switch ..6

Figure 8. Swiss-Tx supercomputer in June 2001 ..13
Figure 9. File Striping ...14
Figure 10. SFIO integration into MPI-I/O ..16
Figure 11. Distribution of a striped file across subfiles ..18
Figure 12. Disk access optimization ...19
Figure 13. Comparison of the optimized write access with a non-optimized write access as a

function of the file striping granularity (3 I/O nodes, 1 compute node, global file
size is 660 Mbytes) ..20

Figure 14. Comparison of the optimized multi-block write access with corresponding
separate non-optimized single block accesses (Fast Ethernet, stripe unit size is
1005 bytes, 7 I/O nodes)..20

Figure 15. SFIO functional architecture..21
Figure 16. Aggregate throughput of Fast Ethernet as a function of the number of

contributing nodes ...24
Figure 17. SFIO architecture on Swiss-T1..24
Figure 18. SFIO/MPICH all-to-all I/O performance for a 200 byte stripe size, Fast Ethernet25
Figure 19. Aggregate throughput of TNET as a function of the number of the contributing

nodes..25
Figure 20. The Swiss-T1 network interconnection topology ..26
Figure 21. SFIO all-to-all I/O performance on TNET ..27
Figure 22. The use of derived datatypes in MPI-I/O interface..29
Figure 23. The recursive construction of derived datatypes in MPI (“Contiguous” is a

derived datatype obtained by repeatedly joining another datatype which in turn
can be fragmented) ..29

Figure 24. The MPI-I/O implementation requires a method for retrieving the fragmentation
patterns of opaque MPI derived datatypes...30

 xi

Figure 25. A reverse engineering method for discovery the fragmentation pattern of an
opaque datatype built by the user ..31

Figure 26. Isolated implementation of a portable MPI-I/O interface functional on any MPI-
1 implementation...32

Figure 27. Wavelength routing in the optical layer ..40
Figure 28. Example of a simple network..42
Figure 29. The pictograms representing the 25 transfers from all sending nodes to all

receiving nodes of the network of Figure 28...43
Figure 30. Example of a traffic comprising 25 transfers of Figure 29 (over the network of

Figure 28) each represented as set of links..45
Figure 31. An initial category before fission, where symbol Ξ , represents any transfer that

is in congestion with x and symbol Θ represents any transfer which is
simultaneous with x ...48

Figure 32. Fission of the category of Figure 31 into its positive and negative sub categories.48
Figure 33. Fraction of transfers within a skeleton of a traffic, compared with the total

number of transfers in the traffic ...50
Figure 34. Search space reduction obtained by idle+skeleton+blank optimization steps...............52
Figure 35. Time frames of a liquid schedule of the collective traffic shown in Figure 3053
Figure 36. A traffic of three transmissions (shown in Figure 37) across this network has no

team and therefore no liquid schedule...54
Figure 37. A traffic consisting of three transmissions to be carried across the network

shown in Figure 36..54

Figure 38. Liquid schedule construction tree: denotes a reduced subtraffic at the

layer of the tree and denotes a candidate for the time frame

; the operator ℵ applied to a subtraffic yields the set of all possible
candidates for a time frame ...55

niiiX L21

1+n
121 +nniiiiA L

1+n subX

Figure 39. Architecture of the Swiss-T1 cluster supercomputer interconnected by a high
performance wormhole switch fabric..58

Figure 40. For a given number of contributing nodes, all possible allocations of nodes
yielding different liquid throughputs...60

Figure 41. The 362 topologies of Figure 40 yielding different liquid throughput values
placed along one axis, sorted first by the number of contributing nodes and then
by their liquid throughputs ..60

Figure 42. Theoretical liquid throughput and measured round-robin schedule throughput for
362 network sub topologies...61

Figure 43. Predicted liquid throughput and measured throughput according to the computed
liquid schedule...62

Figure 44. In the first layer the flow is equally split across two paths. Two of their links,
marked by thick dashes, are the bottlenecks..68

Figure 45. The second layer minimizes to 1/3 the maximal load of the remaining seven
links and identifies three bottlenecks. ...68

 xii

Figure 46. The third layer minimizes to 1/4 the maximal load of the remaining four links
and identifies two bottlenecks. ..68

Figure 47. Routing pattern of layer 10 built by the capillary routing algorithm on a network
sample with 180 nodes...68

Figure 48. Initial problem with one source and one sink node ...69
Figure 49. Maximize the flow, fix the new flow-out coefficients at the nodes and find the

bottleneck links (layer 1, 21 =F)..69
Figure 50. Remove the bottleneck links from the network and adjust the flow-out

coefficients at the adjacent nodes ..69
Figure 51. Maximize the flow in the new sub-problem, fix the new flow-out coefficients at

the nodes and find the new bottlenecks (layer 2,)..70 5.12 =F

Figure 52. Again remove the bottleneck links from the network and adjust correspondingly
the flow-out coefficients at the adjacent nodes..70

Figure 53. Maximize the flow in the obtained new problem, fixing the new resulting flow-
out coefficients at the nodes and find the new bottlenecks (layer 3,)...........70 3/43 =F

Figure 54. An example of a bounded multi-source/multi-sink problem (obtained during
construction of the capillary routing from a network with one source and one
destination node)..71

Figure 55. A max-flow solution with the flow increase factor of 4/3, containing four
maximally loaded candidate links {a, b, d, e} ...71

Figure 56. The cost reduction applied to the four fully loaded links of Figure 55 reduces the
load of suspected link d, and the bottleneck candidate list is now {a, b, e}.72

Figure 57. The cost reduction applied to the three fully loaded links of Figure 56 reduces
the load of another suspected link a. The true bottleneck links are {b, e}.72

Figure 58. Decrease in the number of suspected links during the bottleneck hunting loop at
each of the 10 capillary routing layers...72

Figure 59. Transmission rate increase factor as a function of the packet loss rate
()...76 510−=DER

Figure 60. Average ROR metric as a function of the capillary routing layer78
Figure 61. Average ROR metric computed assuming real-time streaming (the group of

curves above) and off-line streaming (the group below) ...78
Figure 62. Congestion graph corresponding to the traffic pattern of Figure 29 across the

network of Figure 28; the vertices of the graph represent the 25 transfers; the
edges represent congestions between the transfers ..87

Figure 63. Number of edges in the 362 congestion graphs corresponding to the traffic
patterns of Figure 40 and Figure 41...88

Figure 64. Loss in throughput induced by schedules computed with the DSatur heuristic
algorithm..89

Figure 65. Running times for computing liquid schedules with the MILP Cplex method and
with the liquid schedule construction algorithm..92

Figure 66. The overall measured throughputs of hundreds of different traffic patterns
carried out according to both a liquid schedule and a topology unaware schedule100

 xiii

Figure 67. The probability that the interarrival time between two consecutive failures in a
Poisson process is less than a given time, 3600/1=r , 50=N102

 xiv

List of Tables

Table 1. Optimized algorithm for retrieving all full teams of a traffic ..51
Table 2. The routing table of the Swiss-Tx supercomputer shown in Figure 3959
Table 3. DSatur graph coloring heuristic algorithm ..89
Table 4. Overall overview of liquid schedule construction algorithm and its all relevant

optimizations ...99

 xv

Links

[060921] The document for the private defense, http://switzernet.com/people/emin-
gabrielyan/060921-thesis-for-experts, http://4z.com/people/emin-
gabrielyan/public/060921-thesis-for-experts

[051003] Capillary routing releases, source codes and downloads,
http://switzernet.com/people/emin-gabrielyan/051003-capillary-releases/,
http://4z.com/people/emin-gabrielyan/public/051003-capillary-releases/

[060509] Least FEC routing, multi-path patterns for small scale networks,
http://switzernet.com/people/emin-gabrielyan/060509-least-FEC-routing/,
http://4z.com/people/emin-gabrielyan/public/060509-least-FEC-routing/

[060724] Energy saving in a wireless network using network coding,
http://switzernet.com/people/emin-gabrielyan/060724-netcod-flooding/,
http://4z.com/people/emin-gabrielyan/public/060724-netcod-flooding/

 xvii

http://switzernet.com/people/emin-gabrielyan/060921-thesis-for-experts
http://switzernet.com/people/emin-gabrielyan/060921-thesis-for-experts
http://switzernet.com/people/emin-gabrielyan/060921-thesis-for-experts
http://4z.com/people/emin-gabrielyan/public/060921-thesis-for-experts
http://4z.com/people/emin-gabrielyan/public/060921-thesis-for-experts
http://switzernet.com/people/emin-gabrielyan/051003-capillary-releases/
http://switzernet.com/people/emin-gabrielyan/051003-capillary-releases/
http://4z.com/people/emin-gabrielyan/public/051003-capillary-releases/
http://switzernet.com/people/emin-gabrielyan/060509-least-FEC-routing/
http://switzernet.com/people/emin-gabrielyan/060509-least-FEC-routing/
http://4z.com/people/emin-gabrielyan/public/060509-least-FEC-routing/
http://switzernet.com/people/emin-gabrielyan/060724-netcod-flooding/
http://switzernet.com/people/emin-gabrielyan/060724-netcod-flooding/
http://4z.com/people/emin-gabrielyan/public/060724-netcod-flooding/

