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Abstract
Various approaches have been proposed to quan-
tify the similarity between concepts in an ontology.
We present a novel approach that allows similari-
ties to be asymmetric while still using only infor-
mation contained in the structure of the ontology.
We show through experiments on the WordNet and
GeneOntology that the new approach achieves bet-
ter accuracy than existing techniques.

1 Introduction
With the emergence of the semantic web and the growing
number of heterogenous data sources, the benefits of ontolo-
gies are becoming widely accepted. The domain of appli-
cation is widening every day, ranging from word sense dis-
ambiguation to search of biological macromolecules such as
DNA and proteins.

Initially, ontologies were used in an attempt to define all
the concepts within a specific domain and their relationships.
An example of a popular ontology is WordNet [Miller et al.,
1993], which models the lexical knowledge of a native En-
glish speaker. Information in WordNet is organized around
lexical groupings called synsets and semantic pointers. Infor-
mally, a synset represents a set of synonym words, while a
semantic pointer models the semantic relationships between
two synsets. E-commerce sites such as Amazon.com or Ya-
hoo also use simple taxonomies to classify their products.
More recently, biologists and computer scientists have devel-
oped an ontology named GeneOntology [GO, 2000], which
models biological processes, molecular functions and cellu-
lar components of genes.

Nowadays, the usage of ontologies goes far beyond do-
main specification. A very promising direction for ontologies
is semantic search [Guha, 2003], where ontologies can suc-
cessfully be used to find documents [Davies, 2002], pictures
[Janecek, 2005], and jobs [Bradley et al., 2000]. Semantic
search is in fact an information retrieval application, where
semantic knowledge captured by an ontology is used to enrich
the available vocabulary. In comparison, traditional informa-
tion retrieval applications use the Vector Space Model (VSM,
[Frakes, 1992]) to represent the set of possible items and in-
put query into a common vector space in order to compute
the similarity between them. Unfortunately, if no document

contains any of the input keywords, the VSM approach fails
to find any relevant documents. To overcome this problem,
semantic search uses domain ontologies to explore concepts
similar to the stated keywords in order to build smarter search
engines.

As highlighted by the previously stated examples, evalu-
ating semantic similarity between concepts is a fundamental
task. Most authors have focused their research on hierarchi-
cal ontologies (HO), which is not surprising as most ontolo-
gies are made of is-a relationships (' 82% of all the relations
in WordNet 2.0 are is-a relationships, while GeneOntology
has ' 87%). Furthermore, [Maguitman, 2005] has shown
that a similarity metric defined on a hierarchical ontology can
be generalized to any kind of ontology by using a weighted
combination of the is-a metrics. Thus, the problem of evalu-
ating the semantic similarity between concepts in any kind of
ontology can be simplified to hierarchical ontologies. To this
day, there exist two main approaches for estimating similarity
between concepts in a hierarchical ontology: the edge based
and the node based approaches. Unfortunately, existing ap-
proaches fail to achieve high correlation with human ratings,
while experiments on the GeneOntology have shown that no
technique is best everywhere.

In this paper, we define a novel similarity measure for hier-
archical ontologies called Ontology Structure based Similar-
ity (OSS). OSS computes the similarity between two concepts
a and b in three basic steps. First, we start by inferring the
score of the concept b from a. From this inferred score, we
compute how much has been transferred between these two
concepts. Finally, we apply a distance function that trans-
forms the transfer of score into a distance value.

The remainder of the paper is organized as follows. First
we review the most popular similarity metrics in Section 2,
while our OSS approach is defined in Section 3. Then, in
Section 4, we present experimental results of OSS on the
WordNet and GeneOntology. Finally, Section 5 concludes
this paper.

2 Existing Measures of Similarity
Many techniques have been proposed for evaluating the se-
mantic similarity between two concepts in a HO. They can
be classified into two categories: edge based and node based
approaches. At the same time, authors have looked at this
problem from either a distance or similarity point of view.
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These approaches are duals, as the similarity can be defined
as 1− distance when values are normalized to [0..1].

The edge based approach is the traditional, most intuitive,
and simplest similarity measure. It computes the distance be-
tween two concepts based on the number of edges found on
the path between them. [Resnik, 1995] introduced a variant
of the edge-counting method, converting it from a distance
to a similarity metric by subtracting the path length from the
maximum possible path length:

simEDGE(a, b) = (2×D)− len(a, b) (1)

where a and b are concepts in HO, D is the maximum depth
of the HO, and len(a, b) is the shortest path between concepts
a and b. Another popular variant of the edge based approach
is the metric proposed by [Leacock, 1997], which scales the
shortest path by twice the maximum depth of the HO.

simLEACOCK(a, b) = −log

„
len(a, b)

2×D

«
(2)

The node based approach was proposed by [Resnik,
1995] to overcome the drawbacks of the edge-counting ap-
proach, which considers the distance uniform on all edges.
Resnik defined the similarity between two concepts as
the information content of the lowest common ancestors,
LCA(a, b). The information content (IC) of a concept c
is defined as the negative log likelihood of the probability
of encountering an instance of the concept, i.e. IC(c) =
−logP (c). The intuition behind the use of the negative like-
lihood is that the more probable a concept is of appearing,
then the less information it conveys. Formally, the similarity
is defined as follows.

simRESNIK(a, b) = max
c∈LCA(a,b)

IC(c) (3)

While Resnik defined the similarity based on the shared
information, [Lin, 1998] defined the similarity between two
concepts as the ratio between the amount of information
needed to state the commonality between these two concepts
and the information needed to fully describe them.

simLIN (a, b) =
2× IC(LCA(a, b))

IC(a) + IC(b)
(4)

Hybrid approaches combine both approaches defined
above. [Jiang and Conrath, 1997] proposed a combined
model that is derived from the edge based notion by adding
the information content as a decision factor. They defined
the link strength between two concepts as the difference of
information content between them. Following this, Jiang’s
distance metric is defined as follows:

distJIANG(a, b) = IC(a) + IC(b)− 2× IC(LCA(a, b)) (5)

3 The OSS Approach
In this section, we define a novel similarity measure for hier-
archical ontologies called Ontology Structure based Similar-
ity (OSS).

As shown in Figure 1, OSS computes the similarity be-
tween two concepts a and b in three basic steps. First, we
start by inferring the score of the concept b from a, S(b|a).
It is based on assigning concepts in the ontology an a-priori
score (APS), and computing the relations between the scores
assigned to different concepts. From this inferred score, we
compute how much has been transferred between these two
concepts, T (a, b). Finally, we transform the transfer of score
into a distance value D(a, b).

(a, b)

APS

S(b|a) T(a,b) D(a,b)

Figure 1: The OSS approach
3.1 Definitions and Assumptions
In this work, an ontology λ is defined as a directed acyclic
graph, (DAG), where a node represents a primitive concept,
while an edge models the binary specialization relation (is−
a) between two concepts. Thus, the ontology establishes a
hierarchy where each concept can have a set of sub-concepts
known as the descendants.

Furthermore, a concept represents instances (i.e.:a group of
objects) with the same features, but not all instances of a con-
cept must belong to a sub-concept. Consequently, instances
of different sub-concepts are distinguished by differences in
certain features. However, these are usually not made explicit
in the ontology. Concretely, we see a feature as a restriction
on a property or a combination of properties that differenti-
ates a concept from its parent. For example, the subclasses
of red and white wines are distinguished by a combination of
features that include color and also certain aspects of taste.

We believe that the primary objective of a similarity mea-
sure is to simulate a user’s behavior and closely correlate with
it. In particular, a quantitative measure of similarity should
express the ratio of numerical scores that may be assigned to
each concept. The score could reflect how much an item is
preferred, or how friendly it is to the environment. For this
purpose, we assume that the score S of a concept is a real-
valued function normalized to [0..1] that satisfies the follow-
ing assumptions:
• A1: the score depends on features of the concept.
• A2: each feature contributes independently to the score.
• A3: unknown and disliked features make no contribu-

tion to the score, i.e. the score of a concept is a lower
bound on the possible score of its instances.

Assumption A1 is very intuitive and reflects the fact that a
concept is modeled by a set of features. Thus, the score will
only be influenced by the features making up the concept.
It is also the basis of multi-attribute decision theory (MAUT
- [Keeney and Raiffa, 1993]), where the utility of an item
depends on the preference value of the attributes making that
item. Thus, all instances of the same concept will have the
same score as they share the same features.

The second assumption eliminates the inter-dependence
between the features and allows the score to be modeled as
the sum of the scores assigned to each feature. In MAUT, an
even stronger assumption (the mutual preferential indepen-
dence) is used to build an additive value function for an item.
Independence is a strong assumption, but it is still more ac-
curate that the assumption that all the features correlate posi-
tively to the score.

The third assumption may appear counterintuitive, but it
reflects the observation that users are risk averse. For exam-
ple, if the score models the price that a user is willing to pay
for an item, it is rational for users to adopt this pessimistic
view, since one would not normally be willing to pay for fea-
tures that have not been explicitly provided. Thus, the score



attached to a concept can be seen as a lower bound on the
score that items belonging to that concept might have.

3.2 Computing an A-priori Score
An ontology is usually designed in such a way that its topol-
ogy and structure reflects the information contained within
and between the concepts. A major ingredient of OSS is the
computation of the a-priori score of a concept c, APS(c),
which captures this information. The APS models the ex-
pected score of each concept for an average user, but without
using any user information. It is not used as a prediction of
actual scores, but only to estimate constants (α and β) that
determine how actual users scores propagate through the on-
tology.

As we have no information about the user, we assume that
all concepts have a score that is uniformly distributed be-
tween 0 and 1. This is often a reasonable assumption as each
concept exists to satisfy the desire of some group of people.
Thus, the probability that the score of a concept c is superior
to the threshold x, (S(c) > x), is equal to 1 − x. How-
ever, this probability ignores the fact that concepts can have
descendants. Furthermore, our model is by definition pes-
simistic (A3), which means that the score should be a lower
bound of the score of its instances and the score of its descen-
dants. Therefore, the probability that the score of any concept
c is superior to a threshold x is equal to (1− x)n+1, where n
is the number of descendants of c. Note that we count all de-
scendants, not just the leaves, to account for the fact that each
concept has instances that do not belong to any sub-concept.

Following this, the probability distribution of the score for
a concept c is P (S(c) ≤ x) = 1 − (1 − x)n+1, while the
expected score can be obtained by integration of the density
function of c. Formally, E(S) is defined as follows.

E(S) = (n + 1)

Z 1

0

x(1− x)ndx

= (n + 1)

2
6664

˛̨
˛̨−x(1− x)n+1

n + 1

˛̨
˛̨
1

0| {z }
0

+

Z 1

0

(1− x)n+1

n + 1| {z }
1/((n+1)(n+2))

3
7775

=
1

n + 2

(6)

Equation 6 tells us that the expected score of a concept c
will be inversely proportional to the number of its descen-
dants + 2. Following this, we define the a-priori score of a
concept c with n descendants as:

APS(c) =
1

n + 2
(7)

The a-priori score defined in Equation 7 implies that the
leaves of the ontology will have an APS equal to 1/2, which
is equal to the mean of a uniform distribution between 0 and
1. Conversely, the lowest values will be found at the root.
This means that when we travel up the ontology, the concept
becomes more generalized, and therefore the APS decreases.
Another important aspect of this APS is the fact that the dif-
ference in score between concepts decreases when we travel
up the ontology, due to the increasing number of descendants.

Resnik also uses the topology to compute the information
content of a concept. The APS share some similarities with
information content. For example, the difference in both APS
and IC decreases when we travel up the ontology. However,
some profound differences exist. First, the APS is a bottom-
up approach that considers the differences between the con-
cepts, while Resnik’s is a top-down approach that considers
the commonalities between two concepts. Second, we use the
1/x function to compute our score, while Resnik uses the log-
arithm to base 2. In the validation section, we show that this
brings better results than the information content approach.

To illustrate the computation of the a-priori score, consider
the simple ontology λ shown in Figure 2(a). First, the number
of descendants of each concept nc is computed. Then, we
apply equation (7) to compute the APS of each concept in λ.
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Figure 2: (a) a simple ontology λ and its APSs (b)

3.3 Inferring the Score
Re-consider the ontology λ shown in Figure 2(a), and imag-
ine a situation where we want to compute the similarity be-
tween the concepts x and z. To propagate the score between
these concepts, a link between them must be found. Thus, the
first task in the propagation is to identify the chain that con-
tains both concepts. To minimize the propagation, we con-
struct the chain through the lowest common ancestor, LCA.

In a tree graph, a lowest common ancestor is defined as the
closest upward reachable node shared by x and z [Knappe et
al., 2003]. Note that in a DAG, there can be several LCA
nodes; in fact, the number of LCA nodes can grow exponen-
tially with the size of the graph. Fortunately, this number
tends to be small in reality, as most concepts have only a few
parents. For example, a concept in the WordNet ontology has
on average 1.03 parents.

We use the following heuristic method to select which LCA
to use to propagate the score. For each possible LCA node y,
we compute the following values:
• its depth d(y), given as the distance of the longest path

between the root and y, and
• its reinforcement r(y), given as the number of different

paths leading to y from x and z.
We pick the LCA as the node with the highest value of

r(y) ∗ 2d(y). The idea behind this heuristic is to consider the
fact that a concept found higher in the ontology (low d(y))
can still be more meaningful to the user if it has many paths
leading to it (high r(y)).

Upward Inference ↗
The first situation that arises is when there is a path going
from concept x to its kth parent y. From the construction



of the ontology, both concepts have d features in common
but the concept x has an extra k features that differentiate it
from its ancestor. By definition of the model, we know that
the score of a concept depends on the features defining that
concept (A1). Informally, it means that the score of y can be
estimated knowing the score of x, S(y|x), by looking at the
ratio of features they have in common. We define S(y|x) as:

S(y|x) = α(x, y)S(x) (8)

where α(x, y) is a coefficient of generalization. For every
pair of concept x and ancestor y in the ontology, we estimate
α using their ratio of a-priori score.

α̂(x, y) = APS(y)/APS(x) (9)

Downward Inference ↘
Inversely, we have the case where z is the lthdescendant of
y. Following Equation 8, it is very tempting to assume that
S(z|y) = βS(y), where β is a coefficient of specialization
that contains the ratio of features in common. However, this
reasoning is not compatible with our second assumption –
features contribute to the score independently. To understand
this assumption, imagine that the score of the object is equal
to the maximum price a user is willing to pay. Consider two
concepts a and b, where a has one more feature than b. Now
consider two users A and B such that A values b more than
B does. This does not automatically mean that A will also
attach a higher value to the extra feature that distinguishes a
from b. Notice also that when we were traveling upwards, we
were considering super concepts. This means that we were
removing known features whose contribution to the score is
likely to be proportional to it. However, when traveling down-
wards, we are adding new (unknown) features to the concept.
Therefore, we need to consider the score of each new fea-
ture independently. Formally, it means that S(z|y) should be
defined as follows.

S(z|y) = S(y) + β(z, y) (10)
where β is a coefficient of specialization that we estimate

using the a-priori score:
β̂(z, y) = APS(z)−APS(y) (11)

3.4 Transfer of Score
Our intuition is that the distance between two concepts a and
b is correlated to the amount of score being transferred be-
tween them.

Formally, a distance measure is a real valued function that
we would like to satisfy the following axioms:
• identity: D(a, b) = 0 ⇔ a = b
• normalization: 0 ≤ D(a, b) ≤ 1
• triangle inequality: D(a, c) ≤ D(a, b) + D(b, c)

It is otherwise customary to also include a symmetry axiom;
however, one innovation of our proposal is that distance can
be asymmetric so we do not include it.

Similarity and distance between two concepts must further-
more be independent of any particular amount of score that is
being assigned to the concept. In particular, it must be ap-
plicable to any score in the admissible range [0..1]. Thus,
distance can be related to the transfer of score only in a mul-
tiplicative, but not in an additive way. Following this, we
define the transfer of score from a concept a to b, T (a, b), as
the amount of score being transferred from a to b, i.e.:

S(b|a) = S(a)× T (a, b) ⇒ T (a, b) =
S(b|a)

S(a)
(12)

Following our example, and using Equation (8) and (10),
T (a, b) can be decomposed as follows.

T (x, y) = α(x, y) ↗
T (y, z) = 1 + β(z,y)

S(x)
↘ (13)

In our context, S(x) is unknown, which renders the above
computation for downwards transfer impossible. However,
under the assumption that the score of any concept is uni-
formly distributed between 0 and 1 (Section 3.2), the ex-
pected score of a concepts is in fact equal to 1/2. Thus, we
approximate T (y, z) as 1 + 2β(z, y).

When judging the distance of two concepts a and b, the
transfer of score from a to b should not attempt to predict
the expected value of the score assigned to b, but a lower
bound on it in order to model the fact that unknown features
do not contribute. For upward propagation, the factor α de-
rived from the a-priori scores reflects this correctly, as the
APS of an ancestor is constructed as a lower bound on scores
of its descendants.

On the other hand, for downward propagation, the term β
derived from the a-priori score reflects that translation from
the lower bound to the expected value at the descendants.
Thus, in order to produce a lower bound, the relation has to
be inverted.

Consequently, the transfer T (a, b) becomes as follows.
T̂ (x, y) = α̂(x, y) ↗
T̂ (y, z) = 1

1+2β̂(z,y)
↘ (14)

3.5 Similarity Metric
We define the Ontology Structure based Similarity similarity
simOSS(a, b) of two concepts a and b as 1−D(a, b), where
D(a, b) is a distance measure between the concepts.

To guarantee that D(a, b) ≥ 0, and in order to sat-
isfy the identity relation, we transform the transfer of score
into a distance by taking its negative logarithm: D(x, z) =
− log T (x, z). However, this distance would not be normal-
ized to fall in the interval [0..1]. We thus normalize to obtain:

D(a, b) = − log(T (a, b))

maxD
(15)

where maxD is longest distance between any two concepts in
the ontology. Thus, the distance measure satisfies the normal-
ization. Such a logarithmic measure has also been used else-
where for distance and similarity measure [Jiang and Conrath,
1997][Lin, 1998][Resnik, 1995].

To verify that the distance measure satisfies the triangle in-
equality, we consider the transfer from concept x to z (Figure
2(a)), and the additional concepts s and t. Assume that the
ontology is tree-structured, so that there is a unique path from
x to z with LCA y. Note that D(x, z) = D(x, y) + D(y, z).

Assume first that s is a node on the path from x to y.
Then if s is part of the upward path from x to y, equation
(9) implies that T (x, s) = APS(s)/APS(x) and T (s, y) =
APS(y)/APS(s). Furthermore, and because T (x, y) =
APS(y)/APS(x), we can show that

− log(T (x, y)) = − log(T (x, s)× T (s, y))

= − log(T (x, s))− log(T (s, y))
(16)

As a consequence, D(x, y) = D(x, s)+D(s, y) and thus the
triangle inequality holds as D(x, z) = D(x, s) + D(s, y) +
D(y, z). If t is part of the downward path from y to z, then
we get that T (y, t) = 1/(1 + 2β(t, y)) and T (t, z) = 1/(1 +



2β(z, t)). By definition, T (y, z) is equal to 1/(1+2β(z, y)),
and Equation (11) implies that β(z, y) = β(z, t) + β(t, y).
Thus, we get the following equation:

−log(T (y, z)) = − log

„
1

1 + 2β(z, y)

«

≤ − log

„
1

1 + 2β(z, y) + 4β(z, t)β(t, y)

«

= − log

„
1

1 + 2β(z, t)
× 1

1 + 2β(t, y)

«

= − log(T (y, t))− log(T (t, z))

(17)

which shows that the triangle inequality also holds when t is
on the downwards path connecting y and z.

Now consider the case where s is not on the path from x to
z. Due to the tree structure, the paths from x to s and from s
to z will both contain a common part between a node s and a
node d that is on the path from x to z. Since all transfers are
≤ 1, this part can only increase the combined distance, so the
triangle inequality will still hold.

Using Equations (14) and (15), we thus defined the dis-
tance between any two concepts in the ontology x and z,
given the LCA y as follows.

D(x, z) =
log(1 + 2β̂(z, y))− log(α̂(x, y))

maxD
(18)

Table 1 illustrates the distance computation between the
concepts x and z of the example in Figure 2(a).

Concepts Direction Transfer Distance D(x, y)

xy z x ↗ y α̂ = 1
7
/ 1

2
− log( 2

7
) ' 2.58

maxDy ↘ z 1 + 2β̂ = 24
14

log
`

24
14

´

Table 1: Distance between concepts x and z in ontology λ

4 Experiments
4.1 Experiment I - WordNet
When Resnik introduced the node-based approach, he also
established an evaluation procedure that has become widely
used ever since. He evaluated his similarity metric by com-
puting the similarity of word pairs using the WordNet on-
tology, and then considered how well it correlated with real
human ratings of the same pairs. These word pairs were se-
lected in such a way that they covered high, intermediate, and
low levels of similarity.

WordNet is the most widely used and one of the biggest
ontologies in the world ('80000 concepts), which makes ex-
periments credible. As many authors in the field do, we repro-
duced Resnik’s experiment with the WordNet 2.0 on the orig-
inal 30 word pairs. The correlations between various metrics
and human ratings are displayed in Table 2.

Edge Leacock Resnik Lin Jiang OSS
0.603 0.823 0.793 0.823 0.859 0.911

Table 2: Correlation with various similarity metrics
Our approach using the a-priori score achieves over 91% cor-
relation with real user ratings, and clearly demonstrates sig-
nificant benefit over earlier approaches (t-obs ' 3.28 and p-
value < 0.02).

As expected, the hybrid approach performed better than ex-
isting techniques, but the improvement over the information

based approach was not statistically significant (t-obs = 1.46
and p-value ' 0.08). The edge based approach is the worst
performing metric as it supposes that the edges represent uni-
form distances, which is obviously not true in WordNet.

↗ α α 1 + 2β 1 + 2β
↘ 1 + 2β α α 1 + 2β

Corr. 0.911 0.882 0.693 0.785

Table 3: Different combinations of the coefficients in OSS

We tried different combinations of the coefficients α and β
in order to test the upward and downward propagation. As
expected, Table 3 shows that the best correlation is obtained
when using α going up and 1+2β going down. As mentioned
earlier, these coefficients renders the metric asymmetric. In
fact, experiments showed that the upwards distance is up to
15 times greater the the downwards distance when concepts
are very dissimilar.

In section 3.4, we estimated the downward transfer be-
tween two concepts by using the expected score of a concept,
i.e.: S(x) = 1/2. To verify this assumption, we tested our
metric with various scores ranging from the minimum APS
in the ontology to 1.

1 + β 1 + 4
3β 1 + 2β 1 + 4β 1 + 1

minAPS β
0.910 0.910 0.911 0.910 0.814

Table 4: Different value for S(x) in OSS
Table (4) shows that the optimum value does in fact occur
when S(x) = 1/2, and any value around it will not greatly
influence the correlation. However, big underestimations of
the initial score tend to influence the correlation by over 10%
as it will overestimate the coefficient β.

4.2 Experiment II - GeneOntology
To show the generality of the results, we performed another
experiment on a much bigger scale using the GeneOntology
(GO). GO was chosen over others as it is one of the most
important ontology within the bioinfomatics community, and
with over 20000 concepts, it is also one of the biggest.

As the name suggested, GeneOntology is an ontology de-
scribing gene products. Formally, the ontology is a DAG,
where a concept represents a gene, and where an edge mod-
els is-a or part-of relationships. By definition, a gene product
might be associated with or located in one or more cellular
components; it is active in one or more biological processes,
during which it performs one or more molecular functions.
Thus, the DAG is further decomposed into three orthogonal
sub-ontologies: molecular function (MF), biological process
(BP), and cellular component (CC).

As for most real life applications, there is no human
data of similarity over which we could benchmark our
metric. Instead, [Lord et al., 2003] proposed to use the
Basic Local Alignment Search Tool (BLAST - [Altschul,
1990]) as it shows some correlations with concept similar-
ity. BLAST compares nucleotide or protein sequences to se-
quence databases and calculates the statistical significance of
matches. In another word, BLAST finds regions of local sim-
ilarity between sequences.



Formally, the experiment was conducted a follows. First,
we downloaded the February 2006 releases of the SWISS-
PROT protein database1 (SPD), GO2, and BLAST3. Then,
we went through all the concepts in GO, and selected each
concepts that was also present in SPD. To reduce the noise
and errors, we also removed all the proteins that were not an-
notated by a traceable authors (evidence code = TAS). For
all remaining concepts, we performed a BLAST search4 in
order to get a list of similar proteins. From this list, three
proteins were randomly selected; respectively one at the be-
ginning, the middle and one at the end. The idea behind this
selection is to cover high, intermediate, and low levels of con-
cept similarity. During a search, BLAST associates a score
to each result that measures the similarity with the input pro-
tein. Therefore, it is this score (after normalization) that has
been used as benchmark measure.

After the BLAST searches, we measured the similarity be-
tween the concepts representing the input proteins and the
result ones using all of the metrics mentioned in this paper.
Finally, we measured the deviation between the normalized
BLAST score and the similarity values of all the concepts us-
ing the mean absolute error measure (MAE - [Herlocker et
al., 2004]). For each of GO’s sub-ontologies, Table 5 shows
the deviation values (MAE) for all the similarity metrics.

Edge Leacok Resnik Lin Jiang OSS
MF 0.450 0.234 0.224 0.223 0.200 0.185
BP 0.392 0.275 0.314 0.312 0.269 0.259
CC 0.351 0.303 0.286 0.292 0.343 0.260

Table 5: MAE of various similarity metrics on GO
The results are very interesting in two points. First, it

shows that none of the existing techniques dominates another
one. For example, Jiang’s metric has a lower deviation on the
MF ontology than Resnik’s metric, but it is not true for the
CC ontology. These results can be explained by the fact that
the topology of the sub-ontologies differ widely. For exam-
ple, BP has 10796 concepts and 85.3% of is-a relations, MF
has 7923 concepts and 99.9% of is-a relations, while CC has
only 1181 concepts and 59.8% of is-a relations.

Finally, we can see that the OSS approach has the lowest
deviation, whatever the sub-ontology. This suggests that our
approach is more robust than existing techniques, and that it
is also more accurate.

5 Conclusion
This paper makes two major contributions. First, we showed
that a-priori scores can be used to exploit the implicit knowl-
edge captured by the ontology. Second, we introduced a new
technique called Ontology Structure Similarity to derive a
similarity metric based on these a-priori scores. The simi-
larity metric exploits the implicit knowledge of the person
who wrote the ontology and gave it a certain structure. A ma-
jor novelty is that similarities and distances are asymmetric.
Experimental evaluation has shown that OSS outperforms ex-
isting techniques on WordNet and GeneOntology.

1ftp://ftp.ebi.ac.uk/pub/databases/
2http://www.geneontology.org/GO.downloads.shtml#ont
3http://ncbi.nih.gov/BLAST/download.shtml
4blastall -p blastp -d swissprot -i in.txt -o out.txt -e 1000 -v 1000

References
[Altschul, 1990] Gish-W. Miller W. Myers E.W. Lipman D.J.

Altschul, S.F. Basic local alignment search tool. In Jour.
of molecular biology, volume 215, pages 403–410, 1990.

[Bradley et al., 2000] K. Bradley, R. Rafter, and B. Smyth.
Case-Based User Profiling for Content Personalization
(AH2000), pages 133–143. Springer-Verlag, 2000.

[Davies, 2002] Weeks-R. Krohn U. Davies, J. Quizrdf:
Seach technology of the semantic web. In Proceedings
of the Int. Workshop on Real Word RDF WWW’02, 2002.

[Frakes, 1992] Baeza-Yates R. Frakes, W. Information Re-
trieval: Data Structures & Algorithms. 1992.

[GO, 2000] The Gene Ontology Consortium GO. Gene on-
tology: tool for the unification of biology. In Nature Amer-
ica, editor, Nature Genetic, volume 25, pages 25–29, 2000.

[Guha, 2003] McCool R. Miller E. Guha, R. Semantic
search. In 12th Int. Conf. on WWW, pages 700 – 709, 2003.

[Herlocker et al., 2004] J. L. Herlocker, J. A. Konstan, L. G.
Terven, and J. T. Riedl. Evaluating Collaborative Filtering
Recommender Systems. In ACM Transactions on Infor-
mation Systems, volume 22, pages 5 – 53, 2004.

[Janecek, 2005] Schickel-Zuber V. Pu P. Janecek, P. Concept
Expansion Using Semantic Fisheye Views, volume LNCS
3815, pages 273–282. Springer-Verlag, 2005.

[Jiang and Conrath, 1997] J. Jiang and D.W Conrath. Se-
mantic Similarity based on corpus and lexical taxonomy.
In Proc. of 10th Int. Conf. COLING, 1997.

[Keeney and Raiffa, 1993] R. Keeney and H. Raiffa. De-
cisions with Multiple Objectives: Preference and Value
Tradeoffs. Cambridge University Press., 1993.

[Knappe et al., 2003] R. Knappe, H. Bulskov, and T. An-
dreasen. Similarity graphs. In Proceedings of ISMIS’03,
volume LNAI 2871, pages 668 – 672. Springer, 2003.

[Leacock, 1997] Chodorow-M. Leacock, C. Combining lo-
cal context and WordNet similarity for word sense identi-
fication. In Fellbaum, pages 265 – 283, 1997.

[Lin, 1998] D. Lin. An information-theoretic definition of
similarity. In Proceedings of the 15th Int. Conf. on Ma-
chine Learning, 1998.

[Lord et al., 2003] P.W. Lord, R.D. Stevens, A. Brass, and
C.A Goble. Semantic Similarity Measures as Tools For
Exploring The Gene Ontology. In Pacific Symposium on
Biocomputing, volume 8, pages 601 – 612, 2003.

[Maguitman, 2005] Menczer-F. Roinestad H. Vespignani A.
Maguitman, A. Algorithmic Detection of Semantic Simi-
larity. In Proceedings of the Int. World Wide Web, 2005.

[Miller et al., 1993] G.A. Miller, R. Beckwith, C. Fellbaum,
D. Gross, and K. Miller. Introduction to WordNet: An On-
line Lexical Database. Technical report, Cognitive Science
Laboratory, Princeton University, 1993.

[Resnik, 1995] P. Resnik. Using information content to eval-
uate semantic similarity. In Proceedings of the IJCAI05,
pages 448 – 453, 1995.


