
A General Characterization of Indulgence

R. Guerraoui1,2 N. Lynch2

(1) School of Computer and Communication Sciences, EPFL
(2) Computer Science and Artificial Intelligence Laboratory, MIT

Abstract. An indulgent algorithm is a distributed algorithm that, be-
sides tolerating process failures, also tolerates arbitrarily long periods of
instability, with an unbounded number of timing and scheduling failures.
In particular, no process can take any irrevocable action based on the op-
erational status, correct or failed, of other processes. This paper presents
an intuitive and general characterization of indulgence. The characteri-
zation can be viewed as a simple application of Murphy’s law to partial
runs of a distributed algorithm, in a computing model that encompasses
various communication and resilience schemes. We use our characteriza-
tion to establish several results about the inherent power and limitations
of indulgent algorithms.

1 Introduction

Indulgence

The idea of indulgence is motivated by the difficulty for any process in a dis-
tributed system to accurately figure out, at any point of its computation, any
information about which, and in what order, processes will take steps after that
point. For instance, a process can usually not know if other processes have failed
and stopped operating or are simply slow to signal their activity and will in-
deed perform further computational steps. More generally, a process can hardly
exclude any future interleaving of the processes.

This uncertainty is at the heart of many impossibilities and lower bounds
in distributed computing, e.g., [9], and it has been expressed in various forms
and assuming specific computation models,e.g., [7, 4, 19]. The goal of this work
is to capture this uncertainty in an abstract and general way, independently of
specific distributed computing and communication models, be they time-based,
round-based, message passing or shared memory.

In short, an indulgent algorithm is an algorithm that tolerates this uncer-
tainly. In a sense, the algorithm is indulgent towards its environment, i.e., the
operating system and the network. These can thus be unstable and congested
for an arbitrarily long period of time, during which an unbounded number of
timing and scheduling failures can occur.

An obvious class of indulgent algorithms are asynchronous ones [9]. These do
not make any assumption on communication delays and relative process speeds.
As a consequence, no process can for instance ever distinguish a failed process

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147919981?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


from a slow one. However, indulgent algorithms do not need to be asynchronous.
In particular, an algorithm that eventually becomes synchronous, after an un-
known period of time [7], is also indulgent. Similarly, algorithms that rely on an
eventual leader election abstraction, such as Paxos [19], or an eventually accu-
rate failure detector, such as the rotating coordinator algorithm of [4], are also
indulgent. Other examples of indulgent algorithms include those that assume a
time after which processes execute steps in a certain order [21], or an eventual
bound on the ratio between the delay of the fastest and the slowest messages [8],
as well as algorithms that tolerate an unbounded number of timing failures [23].
All these non-asynchronous indulgent algorithms have the nice flavor that the
assumptions they make about the interleaving of processes can only be used for
liveness. Safety is preserved even if these assumptions do not hold.

All these algorithms are devised in specific models that refer directly to
specific failure detector machinery or specific synchrony assumptions, typically
assuming a message passing model [10, 6, 24, 13, 22].

Murphy’s law

The goal of this work is to characterize the notion of indulgence in a general
manner, encompassing various distributed computing models, be they round-
based or time-based, as well as various communication schemes, be they shared
memory or message passing. By doing so, the goal is to determine the inherent
power and limitation of indulgent algorithms, independently of specific models.

To seek for a general characterization of indulgence, it is tempting to consider
an abstract approach that looks at runs of an algorithm as sequences of events
that occur at the interface between the processes executing the algorithm and
the services 1 used in the algorithm; each event representing a step of a process
consisting of a process id, a service id, together with the operation invoked by
the process on the service with its input and output parameters.

This is in contrast to an approach where we would look into the internals of
the individual services involved in the computation and the automata executed
on the processes. While appealing for its generality, the abstract approach is not
straightforward as we explain in the paper. In particular, it is not immediate
how to devise an abstract characterization without precluding algorithms that
assume a threshold of correct (non-faulty) processes. This would be unfortu-
nate for indulgent algorithms typically assume for instance a majority of correct
processes [7, 19, 4].

The main contribution of this paper is to characterize indulgence by applying
Murphy’s law to partial runs of an indulgent algorithm. Basically, we characterize
indulgence through the following property: if the interleaving I (sequence of
process ids) of a partial run R (sequence of steps) of an algorithm A could be
extended with steps of certain processes and not others, while still be tolerated by
the algorithm, then the partial run R can itself be extended in A with such steps.

1 Shared memory object, broadcast primitive, message passing channel, failure detec-
tor, clock, etc.



More specifically, we say that an algorithm A is indulgent if, given any partial
run R of A and the corresponding interleaving I of processes, if A tolerates an
extension I ′ of I where some subset of processes stop taking steps (resp. take
steps) after I, then A does also have an extension of R with interleaving I ′. In
a sense, partial run R does not provide the processes with enough information
to predict the extension of the interleaving I: if some extension of I is tolerated
by the algorithm, then this extension can also be associated with an extension
of R.

Power and limitation of indulgence

We first show in the paper that our characterization of indulgence is robust in
the sense that it does not depend on the number of failures tolerated by an
algorithm. In short, if an algorithm A that tolerates k failures is indulgent, then
the restriction of A to runs with k − 1 failures is also indulgent.

We then highlight the safety aspect of indulgent algorithms. Basically, even
if an indulgent algorithm relies on some information about the interleaving of
processes to solve some problem, the algorithm can only rely on this informa-
tion to ensure the liveness part of the problem. Safety is preserved even if the
information is never accurate.

We then proceed to show that an indulgent algorithm A is inherently uni-
form: if A ensures the correct-restriction of a safety property P , then A ensures
the actual property P . A corollary of this, for instance, is that an indulgent algo-
rithm cannot solve the correct-restriction of consensus, also called non-uniform
consensus (where a process can decide a different value from a value decided
by a failed process) without solving consensus (where no two processes should
ever decide different value - uniform agreement). This is not the case with non-
indulgent algorithms.

We use our uniformity property to show that certain problems are impossible
with indulgent algorithms. In particular, we show that no indulgent algorithm
can solve a failure sensitive problem, even if only one process can fail and it can
do so only initially. In short, a failure sensitive problem is one the specification
of which depends on the fact that certain processes takes steps or not after
a decision is taken. Failure sensitive problems include some classical ones like
non-blocking atomic commit, terminating reliable broadcast, (also known as the
Byzantine Generals problem) as well as interactive consistency. There are known
algorithms that solve these problems but these are not indulgent.

Our reduction from uniformity to the impossibility of solving failure sensi-
tive problems is, we believe, interesting in its own right. By showing that our
impossibility applies only to initial failures, and holds even if the algorithm uses
powerful underlying services like consensus itself, we emphasize the fact that
this impossibility is fundamentally different from the classical impossibility of
consensus in an asynchronous system if a process can fail during the computa-
tion [9].

Finally, we prove that, given n the number of processes in the system and as-
suming n−bn/xc processes can fail (x ≤ n) , no indulgent algorithm can ensure a



x−divergent property using only timeless services. In short, a x−divergent prop-
erty is one that can hold for partial runs involving disjoint subset of processes
but not in the composition of these runs, whereas a timeless service is one that
does not provide any real-time guarantee. We capture here, in a general way, the
traditional partitioning argument that is frequently used in distributed comput-
ing. Corollaries of our result include the impossibility for an indulgent algorithm
using message passing or sequentially consistent objects [18] to (a) implement a
safe register [18] if half of the processes can fail, as well as (b) implement k-set
agreement if n− bn/kc processes can fail.

To conclude the paper, we discuss how, using our notion of indulgence, we
indirectly derive the first precise definition of the notion of unreliable failure
detection [4]. Whereas this notion is now folklore in the distributed computing
literature, it has never been precisely defined in a general model of distributed
computation.

2 Model

Processes and services

We consider a set Π of processes each representing a Turing machine. The total
number of processes is denoted by n and we assume at least 2 processes in the
system, i.e., n > 1. Every process has a unique identity. Processes communi-
cate through shared abstractions, called distributed services or simply services.
These might include sequentially consistent or atomic objects [18, 15], as well
as message passing channels and broadcast primitives [14]. The processes can
also consult oracles such as failure detectors [4] about the operational status
of other processes, or random devices that provide them with arbitrary values
from a random set. Each service exports a set of operations through which it is
accessed. For instance [20]:

– A message passing channel exports a send and a receive operations. The
send takes an input parameter, i.e., a message, and returns simply an ok
indication that the message was sent. On the other hand, a receive does not
take any input parameter and returns a message, possibly nil (empty mes-
sage) if there is no message to be received. Message passing channels differ
according to the guarantees on message delivery. Some might ensure that
a message that is sent is eventually received by every correct process (the
notion of correct is recalled more precisely below). Others ensure simply that
the message is received if both the sender and the receiver are correct.

– An atomic queue exports a enqueue and a dequeue operations. The enqueue
takes an input parameter (an element to enqueue) and returns an ok indica-
tion. On the other hand, a dequeue does not take any input parameter and
returns an element in the queue (the oldest), if there is any, or simply nil if
there is no element in the queue.



– A failure detector exports one query operation that does not take any input
parameter and returns a set of processes that are suspected to have failed
and stopped their execution. In a sense, a failure detector provides infor-
mation about the future interleaving of the processes. More generally, one
could also imagine oracles that inform a process that certain processes will
be scheduled before others.

Steps and schedules

Each process is associated with a set of possible states, some of which are initial
states. A set of n states, each associated with one process of the system, is called
a configuration. A configuration composed of initial states is called an initial
configuration. A process is also associated with an automata that regulates the
execution of the process according to a given algorithm.

The system starts from an initial configuration, among a set of possible initial
configurations, and evolves to new configurations by having processes execute
steps. A step is an atomic unit of computation that takes the system from a
configuration to a new configuration.

Every step is associated with exactly one process. In every step, the associated
process accesses exactly one shared service by invoking one of the operations of
the service and getting back the operation’s reply. (We do not assume here any
determinism.) Based on this reply, the process modifies its local state before
moving to the next step. 2 The automaton of the process determines, given a
state of a process and a reply from the invocation of an operation, the new state
of the process and the operation to invoke in the next step of the process.

The visible part of a step, at the interface between a process and a service, is
sometimes called an event. It is modeled by a process id, a service id, the id of an
operation, as well as input and output parameters of the operation’s invocation.
By language abuse, we also call this a step when there is no ambiguity between
the event and the corresponding step.

An infinite sequence of steps S is called a schedule and the corresponding
sequence of process ids is called the interleaving of the schedule S and is denoted
by I(S). If the sequence is finite, we talk about a partial schedule and a partial
interleaving. Sometimes we even simply say a schedule and an interleaving if
there is no ambiguity. If a process p has its id in an interleaving I then we say
that p appears in I.

We say that a (partial) schedule S2 (resp. an interleaving I2) is an extension
of a partial schedule S1 (resp. partial interleaving I1) if S1 (resp. I1) is a prefix
of S2 (resp. I2). We write S2 ∈ E(S1) (resp. I2 = E(I1)).

2 Executing a local computation, with no access to a shared service in a given step, is
simply modeled by an access to an immutable service.



Runs and algorithms

A run (resp. a partial) R is a pair (S,C) composed of a schedule (resp. a partial
schedule) S and a configuration C, called the initial configuration of the run R.
The interleaving of the schedule S, I(S), is also called the interleaving of the
run R, and is also denoted by I(R). We say that a (partial) run R2 = (S2, C)
is an extension of a partial run R1 = (S1, C) (we write R2 ∈ E(R1)) if S2 is an
extension of S1. In this case, I(R2) is also an extension of I(R1). We denote by
R/p = (S/p,C) the restriction of R = (S,C) to the steps involving only process
p.

A process p is correct in a run R if p appears infinitely often in the interleaving
I(R) of that run R, i.e., p performs an infinite number of steps in R. A process
p is said to be faulty in a run R if p is not correct in R. We say that a process p
initially fails in a run R if p does not appear in I(R). We denote the set of faulty
processes in a run R (resp. interleaving I) by faulty(R) (resp. faulty(I)), and the
set of processes that do not take any step in R by faulty?(R) (resp. faulty?(I)).

We model an algorithm as a set of runs. If Ri is a partial run of a run R ∈ A,
we write Ri ∈? A. The interleavings of the runs of an algorithm A are said to
be tolerated by A and the set of these interleavings is denoted by I(A).3

For instance, in wait-free computing [15], an algorithm tolerates all possible
interleavings: it has at least one run for every possible interleaving.

It is also common to study algorithms that tolerate a threshold of failures,
as we precisely define below.

– We say that A is a k-resilient algorithm if I ∈ A if and only if faulty(I) <
n − k. That is, I(A) contains exactly all interleavings where at least n − k
processes appear infinitely often.

– We say that A is a k?-resilient algorithm if I ∈ A if and only if faulty?(I) =
faulty(I) < n − k. Every process that appears once in any interleaving I of
A appears infinitely often in I. (We capture here the assumption of initial
failures.)

We assume that the algorithms are well behaved in the following senses. (1)
Every partial interleaving tolerated by an algorithm A has a failure-free extension
also tolerated by A. (2) Let A be any algorithm and R = (C, S) any run of A.
If C ′ is an initial configuration similar to C, except for the initial states of the
processes in faulty?(R), then R′ = (C ′, S) is also a run of A.

3 This conveys the idea that the interleaving is chosen by the operating system and
not by the algorithm. In some sense, the operating system acts as an adversary that
the algorithm needs to face and it is common to talk about the interleaving of the
adversary.



3 Indulgence

Overview

Informally, an algorithm is indulgent if no process, and any point of its compu-
tation, can make any accurate prediction about the future interleaving of the
processes. For instance, no process can ever declare another process as being
faulty or correct.

As we discuss below, it is not trivial to capture this intuition without pre-
cluding algorithms that tolerate certain interleavings and not others. Example
of these algorithms are t-(or t?-) resilient algorithms. In such algorithms, certain
interleavings are known to be impossible in advance, i.e., before the processes
start any computation. As we will explain, a naive definition of indulgence would
preclude such algorithms.

– Consider a first glance approach (characterization 1) that would declare an
algorithm A indulgent if, for any partial run R of A, for any process q, A has
an extension of R with an infinite number of steps by q. This clearly captures
the idea that no process can, at any point of its computation (say after any
partial run R) declare that some other process q is faulty, for q could still
take an infinite number of steps (after R) and thus be correct. Although
intuitive, this characterization is fundamentally flawed, as we discuss below.

– With characterization 1, we might consider as indulgent an algorithm that
relies on the ability of a process to accurately learn that at least one out
of two processes have failed, or learn that certain processes will perform
steps in a round-robin manner, provided they perform future steps. Indeed,
characterization 1 above simply says that any process q can still take steps
in some extension of the partial run R. For some pair of processes q1 and
q2, there might be no extension of R with both q1 and q2 taking an infinite
number of steps in any arbitrary order.
In particular, we would like indulgence to express the very fact that any
subset of processes can still take steps after any point of the computation,
i.e., after any partial run R, and in any possible order. In fact, there is an
easy fix to characterization 1 that deals with this issue. It is enough to re-
quire (characterization 2) that, for any partial run R of A, for any subset
of processes Πi, A has an extension of R with an infinite number of steps
by all processes of Πi, in every order. As we discuss below however, this
characterization raises other issues.

– Characterization 2 might unfortunately lead us to consider as indulgent an
algorithm that relies on the ability for the processes to learn that some
specific process will take steps in the future. A naive way to prevent this
possibility is to also require (characterization 3) that, for any partial run R of
an indulgent algorithm A, for any subset of processes Πi, A has an extension
of R where no process in Πi takes any step after R. Characterization 3



however excludes algorithms that assume a threshold of correct processes.
As we pointed out earlier, many indulgent algorithms [3, 7, 19] assume a
correct threshold: in particular, they assume that every partial run has an
extension where a majority of processes take an infinite number of steps.

Characterization

Very intuitively, we cope with the issues above by proposing a definition of in-
dulgence inspired by Murphy’s law, which we apply to partial runs. Basically,
we declare an algorithm A indulgent if, whenever the interleaving I(R) of any
partial run R of A could be extended with a certain interleaving, then R also
would. In other words, if the interleaving I(R) of a partial run R has an ex-
tension I ′ ∈ I(A), then A also has an extension R′ of R with the interleaving
I(R′) = I ′.

Definition (indulgence). An algorithm A is indulgent if, ∀I1, I2 ∈ I(A) s.t.
I2 ∈ E(I1), ∀R1 ∈ A s.t. I(R1) = I1, ∃R2 ∈ A s.t. I(R2) = I1 and I2 ∈ E(I1).

In other words, for any pair of interleavings I1 and I2 tolerated by A such that
I2 extends I1, any partial run R1 of A, such that I(R1) = I1, has an extension
R2 in A such that I(R2) = I2.

Basically, our definition says that no partial run R1 can preclude any exten-
sion R2 with interleaving I2, provided I2 is tolerated by A. The definition does
not preclude t-resilient algorithms from being indulgent. This would not have
been the case for instance with a definition that would only consider as indulgent
an algorithm A such that, for any partial run R of A, for any subset of processes
Πi ⊂ Π, A has an extension R1 of R where all processes of Πi are correct, and
an extension R2 of R where no process in Πi takes any step after R.

Examples

Clearly, an algorithm that makes use of a perfect failure detector [4] is not in-
dulgent. If a process is detected to have failed in some partial run R, then R
cannot be extended with an interleaving including steps of p. In fact, even an al-
gorithm relying on an anonymously perfect failure detector is not indulgent [12].
Such a failure detector might signal that some process has failed, without indi-
cating which one. When it does so in some partial run R, this indicates that it
is impossible to extend R with a run where all processes are correct. Similarly,
an algorithm that uses an oracle which declares some process correct, say from
the start [11], would not be indulgent if the algorithm tolerates at least one
interleaving where that process crashes.

An obvious class of indulgent algorithms are t-resilient asynchronous ones [9].
Such algorithms do not have any partial run providing meaningful information
about the future interleaving of the processes. However, and as we explained
in the introduction, indulgent algorithms do not need to be asynchronous. Al-
gorithms that rely (only) on eventual properties (i.e., that hold only after an



unknown periods of time) about the interleavings of the processes are indulgent.
These include eventually synchronous algorithms [7], eventual leader-based al-
gorithms [19], rotating coordinator-based algorithms [4], as well as algorithms
that tolerate an unbounded number of timing failures [23], or assume eventual
interleaving properties [21], or an eventual bound on the ratio between the delay
of the fastest and the slowest communication [8].

In the following, we prove three properties of indulgent algorithms: robust-
ness, safety, and uniformity. Later, we will also prove some inherent limitations
of indulgent algorithms.

4 Robustness

In short, the robustness aspect (of our definition) of indulgence conveys the fact
that if an algorithm A that tolerates t failures is indulgent, then the restriction
of A to runs with t− 1 failures is also indulgent. Before stating and proving this
property, we define notions of extensions of an algorithm.

Let A and A′ be any two algorithms.

– A′ is an extension of A if A ⊂ A′. (Every run of A is a run of A′.) We also
say in this case that A is a restriction of A′.

– A′ is a strict extension of A if (a) A ⊂ A′ and (b) ∀R ∈ A′ s.t. I(R) ∈ I(A),
R ∈ A. (Every run of A′ with an interleaving tolerated by A is also a run of
A.) We also say in this case that A is a strict restriction of A′.

Proposition 1. Every strict restriction of an indulgent algorithm is also indul-
gent.

Proof. (Sketch) Consider an algorithm A that is a strict restriction of A′. We
proceed by contradiction and assume that A′ is indulgent whereas A is not.

The fact that A is not indulgent means that (a) there are two interleavings
I1 and I2 ∈ I(A) such that I2 ∈ E(I1), (b) a partial run R ∈ A such that
I(R) = I1, and (c) (*) A has no extension of R, R′, such that I(R′) = I2.

The fact that I1 and I2 ∈ i(A) means that there are two runs R1 and R2 ∈ A
such that I(R1) = I1 and I(R2) = I2.

Since A′ is an extension of A, and R, R1 and R2 are (partial) runs of A, then
R, R1 and R2 are also partial runs of A′.

Since A′ is indulgent, then A has an extension R′ of R such that I(R′) = I2.
Finally, since A′ is a strict extension of A, then R′ ∈ A: a contradiction with

(*).

Consider an algorithm A that is t-resilient. Remember than this means that
A tolerates all interleavings where at least n− t processes are correct, i.e., n− t
processes take an infinite number of steps. The subset of all runs of A where
at least n − t − 1 processes take an infinite number of steps is a t − 1-resilient



algorithm A′ that is a strict restriction of A. The proposition above says that if A
is indulgent then so is A′. The same reasoning applies to t?-resilient algorithms.
(Note that robustness does not hold for the naive characterization 3 of indulgence
discussed earlier in Section 3.)

5 Safety

The safety aspect of indulgence means, roughly speaking, that, even if an indul-
gent algorithm relies on some information about the interleaving of processes to
solve some problem, the algorithm can only rely on this information to ensure
the liveness part of the problem, and not its safety. We first recall these notions.

Safety and liveness

The specifications of distributed computing problems are typically expressed in
terms of predicates over runs, also called properties of runs. An algorithm solves
a problem if those predicates hold over all runs of the algorithm.

Informally, a safety property states that nothing bad should happen, whereas
a liveness property states that something good should eventually happen [17, 1] .

Consider a predicate P over runs and a specific run R. We say that P holds
in R if P (R) = true; P does not hold in R if P (R) = false.

A safety property P is a predicate that satisfies the two following conditions:
any run for which P does not hold has a partial run for which P does not hold;
and P does not hold in every extension of a partial run where P does not hold.
A liveness property P , on the other hand, is one such that any partial run has
an extension for which P holds.

It was shown in [17, 1] that any property can be expressed as the intersection
of a safety and a liveness properties. Given a property P , possibly a set of
properties (i.e., a problem), we denote by S(P ) the safety part of P and L(P )
the liveness part of P .

We capture in the following the safety aspect of indulgence through the
notions of stretched extension and unconscious algorithms, which we introduce
below. Let A and A′ be any two algorithms.

– A′ is a stretched extension of A if (a) A′ is an extension of A and (b) ∀R ∈? A′,
R ∈? A. (Every partial run of A′ is a partial run of A.)

Notice that the notions of strict and stretched extensions are orthogonal. Al-
gorithm A′ might be a strict (resp. stretched) extension of A but not a stretched
(resp. strict) extension of A.

Safety and unconsciousness

By the very definition of safety, we immediately get the following:



Proposition 2. If the stretched extension A′ of an algorithm A solves a problem
P then A′ ensures S(P ).

Proof. (Sketch) Assume by contradiction that A′ does not ensure S(P ). By
definition of safety, there is a partial run R ∈? A′, such that S(P ) does not
hold in R, nor in any extension of R. Because A′ is a stretched extension of A,
R ∈? A, which implies that A does not solve P .

This property is interesting because it helps expresses the fact that, if an in-
dulgent algorithm A solves some problem P , while relying on some information
about the interleaving of the processes, then A preserves the safety part of P
even if the information turns out not to be accurate. The stretched extension
of A precisely captures the situation where this information is not accurate. We
say that the algorithm resulting from this situation is unconscious.

Definition (unconsciousness). Algorithm A is unconscious if every run R is
such that R ∈ A if every partial run Ri of R is such that Ri ∈? A.

Indulgent algorithms like in [7, 19, 4, 23, 21, 8] are conscious because they rely
on eventual information about at least one interleaving I. Any such algorithm
A tolerates an interleaving I with a run R 6∈ A such that I(R) = I and all par-
tial runs of R are in A. For instance, shared memory asynchronous algorithms
are both indulgent and unconscious. Eventually synchronous algorithms are, on
the other hand, indulgent but conscious. Indeed, consider a run R where every
process pi takes steps in rounds i, i2, i3, etc. Every partial run of R is eventually
synchronous. However, R is not. Interestingly, by the definitions of the notions
of stretched extensions and unconscious algorithm, we immediately get:

Proposition 3. The stretched extension of any algorithm is an unconscious
algorithm.

For instance, the stretched extension of an eventually synchronous algorithm
is asynchronous.

Proposition 2 and Proposition 3 say that if A solves some problem P while
relying on some information about the interleaving of the processes (e.g., A
assumes eventual synchrony), then A preserves the safety part of P even if the
information turns out not to be accurate (e.g., even if the system ends up being
asynchronous).

6 Uniformity

In the following, we show that indulgent algorithms are inherently uniform, in
the intuitive sense that they are not sensitive to safety properties that restrict
only the behavior of correct processes (which we call correct-restrictions). We
will illustrate the idea of uniformity through the consensus problem and point



out the fact that uniformity does not hold for algorithms that are not indulgent.
Later, we will use the notion of uniformity to prove that certain problems do
not have indulgent solutions. We first introduce below the notion of a correct-
restriction of a property.

Correct restriction of a property

Informally, the correct-restriction of P , denoted C(P ), is the restriction of P to
correct processes.

Definition (Correct-restriction). Let P be any property, we define the correct-
restriction of P , denoted C[P ], as follows. For any run R, C[P ](R) = true if and
only if ∃R′ such that ∀p ∈ correct(R), R/p = R′/p and P (R′) = true.

Proposition 4. Let P be any safety property and A any indulgent algorithm.
If A satisfies C[P ] then A satisfies P .

Proof. (Sketch) Let P be any safety property and A any indulgent algorithm
that satisfies C[P ].

Assume by contradiction that A does not satisfy P . This implies that there
is a run of A, say R, such that P (R) is false. Because P is a safety property,
there is a partial run of R, R′, such that P (R′) is false.

By the indulgence of A, and our assumption that any interleaving has a
failure-free extension, A has an extension of R′, say R′′, where all processes are
correct.

Because P is a safety property and P (R′) is false, P (R′′) is also false. Hence,
C[P ](R′′) is false because all processes are correct in R′′ and C[P ](R′′) = P (R′′).
A contradiction with the fact that A satisfies C[P ].

Example: consensus

An immediate corollary of Proposition 4 concerns for instance the consensus [9]
and uniform consensus problems (resp. total order broadcast and uniform total
order broadcast) [14]. Before stating our corollary, we recall below the consensus
problem.

We assume here a set of values V . For every value v ∈ V and every process
p ∈ Π, there is an initial state ep of p associated with v and ep is no associated
with any other value v′ 6= v; v is called the initial value of p (in state ep).
Hence, each vector of n values (not necessarily different ones) correspond to an
initial configuration of the system. We also assume that, among other distributed
services used by the processes, a specific one models the act of deciding on a value.
The service, called the output service, has an operation output(); when a process
p invokes that operation with an input parameter v, we say that p decides v.

An algorithm A solves the consensus problem if, in any run R = (C,S), the
three following properties are satisfied.



– Validity: the value decided by any process pi in R is the initial value of some
process pj in C.

– Agreement: no two processes decide different values in R;
– Termination: every correct process in R eventually decides in R.

Clearly, agreement and validity are safety properties whereas termination is
a liveness property. Two weaker, yet orthogonal, variants of consensus have been
studied in the literature. One, called non-uniform consensus, only requires that
no two correct processes decide different values. (May be counter intuitively, this
is a liveness property.) Another variant, called k-agreement [5], requires that the
number of different values decided by all processes (in any run) is at most k.

The following is a corollary of Proposition 4.

Corollary 1. Any indulgent algorithm that solves consensus also solves uniform
consensus.

This is not the case with non-indulgent algorithms as we explain below.
Consider a system of 2 processes {p1, p2} using two services: an atomic shared
register and a perfect failure detector. The latter service ensures that any process
is eventually informed about the failure of the other process and only if the
other process has indeed failed. The idea of a non-indulgent algorithm solving
non-uniform consensus is the following: process p1 decides its initial value and
then writes it in the shared register; process p2 keeps periodically consulting its
failure detector and reading the register until either (a) p1 is declared faulty by
the failure detector or (b) p2 reads p1’s value. In the first case (a) p2 decides its
own value and in the second (b) p2 decides the value read in the register. If both
processes are correct, they both decide the value of p1. If p1 fails after deciding,
p2 might decide a different value.

7 Failure sensitivity

In the following, we show that no indulgent algorithm can solve certain problems
if at least one process can fail, even if this process can do so only initially, i.e., if
the algorithm is 1?-resilient. To simplify, we call a 1?-resilient indulgent algorithm
simply a 1?-indulgent algorithm.

The problems we show impossible are those we call failure sensitive. In short,
these are problems that resemble consensus with the particularity that the deci-
sion value might be considered valid depending on whether certain processes have
failed. These problems include several classical problems in distributed comput-
ing like terminating reliable broadcast, interactive consistency and non-blocking
atomic commit [14].

To prove our impossibility, we proceed as follows, we first define a simple
failure sensitive problem, which we call failure signal, and which we show is im-
possible with a 1?-indulgent algorithm. Then we show that any solution to termi-
nating reliable broadcast, interactive consistency or non-blocking atomic commit
solves failure signal: in this sense, failure signal is weaker than all those problems
which are thus impossible with a 1?-indulgent algorithm.



The failure signal problem

In failure signal, just like in consensus, the goal is for processes to decide on a
value based on some initial value. As we explain however, unlike consensus, no
agreement is required and a process can decide different values.

More specifically, in failure signal, a specific designated process p has an initial
binary value, 0 or 1, as part of p’s initial state. The two following properties need
to be satisfied: (1) every correct process eventually decides and (2) no process
(a) decides 1 if p proposes 0, nor (b) decides 0 if p proposes 1 and p is correct.

Interestingly, we prove the impossibility of failure signal by reduction to our
uniformity result (Proposition 4). We prove by contradiction that, if there is
a 1?-indulgent algorithm that solves failure signal, then there is an algorithm
that ensures the corrected-restriction of a safety property, without ensuring the
actual property.

Proposition 5. There is no solution to failure signal using a 1?-indulgent al-
gorithm.

Proof. (Sketch) Assume by contradiction that there is a 1?-indulgent algorithm
that solves failure signal. Consider the designated process p and some other
process q. (Remember that we assume a system of at least two processes).

Define property P such that P (R) is false in every run R where p proposes 1
and q decides 0 and true in all other runs. By definition of a correct-restriction,
C[P ] is false in runs where p proposes 1, q decides 0 and all processes are correct,
and true in all other runs.

We now show that if there is a 1?-indulgent algorithm that solves failure
signal, then A ensures C[P ] but not P .

It is easy to show that A ensures C[P ]. Indeed, because A solves failure signal,
in any run R where p proposes 1 and all processes are correct, all processes decide
1.

We now show that A does not ensure P . Remember that A is a 1?-resilient
algorithm: A tolerates at least one initial failure. Consider a run R where p
proposes 0 and does not take any step whereas all other processes are correct (p
initially fails). Any 1?-resilient algorithm that solves the failure signal problem
has such a run R. In this run, every process that decides decides 0.

Consider now a run R′ with the same schedule as R, except that p initially
proposes 1 (and fails before taking any step). Such a run R is also a run of A
and, because no process else that p, which fails initially, can distinguish R from
R′, all processes but p decide 0. This run R′ is thus a run of A and P (R′) is
false. This contradicts the uniformity of A.

Example 1: terminating reliable broadcast

In terminating reliable broadcast, also called Byzantine generals, a specific des-
ignated process is supposed to broadcast one message m 6= ⊥ that is a priori
unknown to the other processes. (In our model, the process invokes a specific
service with m as a parameter.) In a run R where the sender p does not fail, all



correct processes are supposed to eventually receive m. If the sender fails, then
the processes might or not receive m. If they do not, then they receive a specific
message ⊥ indicating that the sender has failed. More specifically, the following
properties need to be satisfied. (1) Every correct process eventually receive one
message; (2) No process receives more than one message; (3) No process receives
a message different from ⊥ or the message broadcast by the sender; (4) No two
processes receive different messages; and (5) No process receives ⊥ if the sender
is correct.

The following is a corollary of Proposition 5.

Corollary 2. No 1?-resilient algorithm solves terminating reliable broadcast.

Proof. (Sketch) We simply show how any solution to terminating reliable broad-
cast can be used to solve failure signal. Assume there is an algorithm A that
solves terminating reliable broadcast. Whenever the designated process p (in
failure signal) proposes a value, 0 or 1, p broadcasts a message with that value
to all, using terminating reliable broadcast. Any process that receives the mes-
sage delivers the value in the message (0 or 1). A process that delivers ⊥ decides
0.

Example 2: non-blocking atomic commit

In non-blocking atomic commit, processes do all start with initial values 0 or 1,
and are supposed to eventually decide one of these values. The following proper-
ties need to be satisfied. (1) Every correct process eventually decides one value
(0 or 1); (2) no process decides two values; (3) No two processes decide different
values; (4) No process decides 1 if some process proposes 0 and no process de-
cides 0 if all processes propose 1 and no process fails.

The following is a corollary of Proposition 5.

Corollary 3. No 1?-resilient algorithm solves non-blocking atomic commit.

Proof. (Sketch) Assume there is a solution to non-blocking atomic commit. We
show how to obtain a solution to failure signal. All processes but p propose
1. Process p proposes exactly its initial value (of failure signal) to non-blocking
atomic commit. The processes decide the output of non-blocking atomic commit.
Because all processes but p propose 1, the decision can be 1 only if p proposes
1, and can be 0 only if p fails or proposes 0.

Example 3: interactive consistency

In interactive, processes do all start with initial values, and are supposed to
eventually decide a n-vector of values. The following properties need to be sat-
isfied. (1) Every correct process eventually decides one vector; (2) No process
decides two vectors; (3) No two processes decide different vectors; (4) If a process



decides a vector v, then v[i] should contain the initial value of pi if pi is correct.
Otherwise, if pi is faulty, v[i] can be the initial value of pi or ⊥.

The following is a corollary of Proposition 5.

Corollary 4. No 1?-indulgent algorithm solves interactive consistency.

Proof. (Sketch) Assume there is a solution to interactive consistency. Assume p
is pi. We show how to obtain a solution to failure signal. All processes propose
to interactive consistency their identity, except p which proposes its initial value
of failure signal. If a process q outputs a vector v such that v[i] 6= ⊥, then q
decides v[i]. Else, q decides 0.

8 Divergence

We now capture, in a general way, the traditional partitioning argument that
is frequently used in distributed computing, e.g., [2]. This argument was tra-
ditionally used for message passing asynchronous algorithms where half of the
processes can fail. In this case, the system can partition into two disjoint subsets
that progress concurrently. We precisely state it here in the context of indulgent
algorithms using timeless services which, as we pointed out, is a wider class than
the class of asynchronous ones using message passing, and for systems with sev-
eral possible partitions (the case with two partitions is just one particular case).

Definition (divergent property). We call a k−divergent property P a prop-
erty such that for any k disjoint non-empty subsets of processes Π1, Π2,..Πk,
there is a configuration C such that every k runs R1, R2,..Rk of A, such that
Ri involves only processes from Πi, have respective partial runs R′1, R′2,..,R

′
k for

which S(P (R′1.R
′
2...R

′
k)) is false.

Remember that S(P ) denotes the safety part of P . We call configuration
C the critical configuration for Π1, Π2,..Πk with respect to P . Note that, by
construction, any property that is k−divergent is also k + 1−divergent.

To intuitively illustrate the idea of a 2−divergent property, consider the spec-
ification of consensus in a system of 2 processes p1 and p2. Consider the initial
configuration where p1 has initial value 1 and p2 has initial value 2. Starting
from C, every run R1 involving only p1 eventually decides 1 and every run R2

involving only p2 eventually decides 2. Consider the partial run R′1 of R1 com-
posed of all steps of R1 until the decision of p1 (1) is made, and the partial run
R′2 of R2 until the decision of p2 (2) is made. Clearly, the safety of consensus (in
particular agreement) is violated in R′1.R

′
2.

Definition (timeless service). We say that an algorithm A uses timeless ser-
vices if for any two partial runs R1 and R2 of A starting from the same initial
configurations C and involving disjoint subsets of processes, if A has an extension
of R1, R1.R

′
1 such that I(R′1) = I(R2), then R1.R2 is also a run of A.



Examples of timeless services include sequentially consistent shared objects [18]
as well as reliable message passing or broadcast primitives [14]. To illustrate the
underlying idea, consider an algorithm A in a system of 2 processes p1 and p2

using a message passing primitive which ensures that any message sent from
process p1 to process p2 is eventually received by p2, provided p2 is correct. As-
sume that A has a partial run R1 where p1 executes steps alone and a partial
run R2 where p2 executes steps alone. (Clearly, p2 cannot have received any
message from p1 in R2.) Provided that A does not preclude the possibility of p2

to execute steps alone after R1, and because there is no guarantee on the time
after which the message of p1 arrives at p2, then R1.R2, the composition of both
partial runs, is also a possible run of A. This captures the intuition that the
message of p1 can be arbitrarily delayed.

Proposition 6. No (n−bn/xc)-indulgent algorithm ensures a x−divergent prop-
erty using x−timeless services.

Proof. (Sketch) Assume by contradiction that there is a (n − bn/xc)-resilient
indulgent algorithm A that ensures a x−divergent property P using timeless
services.

Divide the set of processes Π of the system into k subsets Π1, Π2,..Πx of
size at least bn/xc such that all the subsets are disjoint and their union is Π.
Consider the critical configuration C for Π1, Π2,..Πx with respect to P .

Because the algorithm A is (n − bn/xc)-resilient, and each Pii is of size at
least bn/xc, then A has x runs R1, R2,..Rx such that each such Ri involves only
processes in Πi, i.e., only processes of Pi take steps in Ri and every such Ri

start from C.
Because P is x−divergent, these runs have respective partial runs R′1, R′2,..,R

′
k

such that S(P (R′1.R
′
2...R

′
k)) is false. We need to show that R′1.R

′
2...R

′
k is also a

partial run of A. Because S(P (R′1.R
′
2...R

′
k)) is false, this would contradict the

very fact that A ensures P .
We first show that R′1.R

′
2 is a partial run of A. By the assumption that A is

(n−bn/xc)-resilient, there is a partial run R0 of A such that I(R0) = I(R′1.R
′
2).

(Remember that a x-resilient algorithm is one that tolerates all interleavings
where at least n− x processes appear infinitely often).

By the indulgence of A, there is a partial run R′′2 such that R′1.R
′′
2 is a partial

run of A and I(R′1.R
′′
2 ) = I(R′1.R

′
2). By the assumption that A uses timeless

services, R′1.R
′
2 is also a partial run of A. By a simple induction, R′1.R

′
2...R

′
k is

also a run of A.
Because S(P (R′1.R

′
2...R

′
k)) is false, P is false in every extension of R′1.R

′
2...R

′
k:

contradiction.

The following is a corollary of Proposition 6.

Corollary 5. No (n− bn/2c)-indulgent algorithm using message passing or se-
quentially consistent objects can implement a safe register.

There are non-indulgent algorithms that implement a safe register with any
number of failures and using only message passing. For instance, an algorithm



assuming a perfect failure detector. The idea is to make sure every value written
is stored at all processes that are not detected to have crashed and the value
read can then simply be a local value. On the other hand, Corollary 5 means
that an algorithm using eventually perfect failure detectors, and possibly also
sequentially consistent registers or message passing, cannot implement a safe
register if two disjoint subsets of processes can fail. This clearly also applies to
problems like consensus.

The following is also a corollary of Proposition 6.

Corollary 6. No (n−bn/kc)-indulgent algorithm using message passing or se-
quentially consistent objects can solve k-set agreement [5].

9 Concluding remarks

This paper presents a general characterization of indulgence. The characteri-
zation does not require any failure detector machinery [4], or timing assump-
tions [7]. It is furthermore not restricted to a specific communication scheme.
Instead, we consider a general model of distributed computation where processes
might be communicating using any kind of services, including shared objects, be
they simple read-write registers [18], or more sophisticated objects like compare-
and-swap or consensus [15], as well as message passing channels and broadcast
primitives [14].

May be interestingly, our characterization of indulgence abstracts the essence
of the notion of unreliable failure detection. This notion, informally introduced
in [4], captures the idea that failure detectors do not need to be accurate to be
useful in solving interesting problems. This notion has however never been pre-
cisely defined.4 Using our characterization, we can precisely define it by simply
stating that a failure detector is unreliable if any algorithm that uses that failure
detector is indulgent.

Generalizing the notion of a failure detector, one could also consider oracles
that inform a process that certain processes will be scheduled before others. (Say
an oracle that declares a run as being eventually synchronous.) Our character-
ization of indulgence also helps captures what it means for such oracles to be
unreliable.

To conclude, it is important to notice that we focused in this paper on
the computability of indulgent algorithms and did not discuss their complexity.
There are many interesting open problems in measuring the inherent overhead of
indulgence. This goes first through defining appropriate frameworks to measure
the complexity of indulgent algorithms, e.g., [6, 16, 25].

References

1. Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing
Letters, 21(4):181–185, October 1985.

4 Except in [10] in the specific message passing context.



2. Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in
message passing systems. Journal of the ACM, 42(2):124–142, January 1995.

3. Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure
detector for solving consensus. Journal of the ACM, 43(4):685–722, July 1996.

4. Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43(2):225–267, March 1996.

5. Soma Chauduri. More choices allow more faults: Set consensus problems in totally
asynchronous systems. Information and Computation, 105(1):132–158, 1993.

6. Partha Dutta and Rachid Guerraoui. The inherent price of indulgence. In PODC
’02: Proceedings of the annual ACM symposium on Principles of distributed com-
puting, pages 88–97, 2002.

7. Cynthia Dwork, Nancy A. Lynch, and Larry Stockmeyer. Consensus in the presence
of partial synchrony. Journal of the ACM, 35(2):288–323, April 1988.

8. Christof Fetzer, Ulrich Schmid, and Martin Susskraut. On the possibility of con-
sensus in asynchronous systems with finite average response times. In International
Conference on Distributed Computing Systems, pages 271–280. ieee, 2005.

9. Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM, 32(2):374–
382, April 1985.

10. Rachid Guerraoui. Indulgent algorithms. In Proceedings of the Nineteenth Annual
ACM Symposium on Principles of Distributed Computing, Portland, Oregon, USA,
pages 289–297. ACM, July 2000.

11. Rachid Guerraoui. On the hardness of failure sensitive agreement problems. In-
formation Processing Letters, 79, 2001.

12. Rachid Guerraoui. Non-blocking atomic commit in asynchronous distributed sys-
tems with failure detectors. Distributed Computing, 15(1):17–25, 2002.

13. Rachid Guerraoui and Michel Raynal. The information structure of indulgent
consensus. IEEE Trans. Computers, 53(4):453–466, 2004.

14. Vassos Hadzilacos and Sam Toueg. Fault-tolerant broadcasts and related prob-
lems. In Sape J. Mullender, editor, Distributed Systems, chapter 5, pages 97–145.
Addison-Wesley, 1993.

15. Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming
Languages and Systems, 13(1):123–149, January 1991.

16. Idit Keidar and Alex Shraer. Timeliness, failure detectors and consensus pefor-
mance. In PODC ’06: Proceedings of the annual ACM symposium on Principles
of distributed computing, New York, NY, USA, 2006. ACM Press.

17. Leslie Lamport. Proving the correctness of multiprocessor programs. Transactions
on software engineering, 3(2):125–143, March 1977.

18. Leslie Lamport. How to make a multiprocessor computer that correct executes
multiprocess programs. IEEE Transactions on Computers, C-28(9):690–691, Sep-
tember 1979.

19. Leslie Lamport. The Part-Time parliament. ACM Transactions on Computer
Systems, 16(2):133–169, May 1998.

20. Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
21. Achour Moustefaoui, Michel Raynal, and Corentin Travers. Crash-resilient time-

free eventual leadership. In Proceedings of the International Symposium on Reliable
Distributed Systems, pages 208–217. IEEE, 2004.

22. Livia Sampaio and Francisco Brasileiro. Adaptive indulgent consensus. In Proceed-
ings of the International Conference on Dependable Systems and Networks (DSN),
pages 422–431, 2005.



23. Gadi Taubenfeld. Computing in the presence of timing failures. In Proceedings of
theInternational Conference on Distributed Computing Systems (DCS), 2007.

24. Pedro Vicente and Luis Rodrigues. An indulgent uniform total order broadcast
algorithm with optimistic delivery. In Proceedings of the International Symposium
on Reliable Distributed Systems (SRDS), pages 92–80, 2002.

25. Piotr Zielinski. Optimistically terminating consensus. In Proceedings of the Sym-
posium on Parallel and Distributed Computing, 2006.


