
Routing Aware Switch Hardware Customization for
Networks on Chips

Paolo Meloni§, Srinivasan Murali�, Salvatore Carta¶, Massimo Camplani§, Luigi Raffo§, Giovanni De Micheli†
§DIEE/University of Cagliari, Cagliari, Italy, {paolo.meloni@diee.unica.it, luigi@diee.unica.it}

�CSL/Stanford University, Stanford, USA, smurali@stanford.edu
¶DMI/University of Cagliari, Cagliari, Italy, salvatore@unica.it
† LSI/EPFL, Lausanne, Switzerland, giovanni.demicheli@epfl.ch

Abstract— Networks on Chip (NoC) has been proposed as
a scalable and reusable solution for interconnecting the ever-
growing number of processor/memory cores on a single silicon
die. As the hardware complexity of a NoC is significant, methods
for designing a NoC with low hardware overhead, matching the
application requirements are essential. In this work, we present
a method for reducing the hardware complexity of the NoC by
automatically configuring the architecture of the NoC switches to
suit the application traffic characteristics. The crossbar matrix
and the arbiters of each switch in the NoC design are customized
to support the traffic flows utilizing that switch. This application-
specific switch customization is integrated with an existing design
flow, which automates NoC topology synthesis, mapping, RTL
code and physical layout generation. Several experimental studies
on NoC benchmark designs are carried out, which show that the
proposed switch customization technique leads to large reduction
in the NoC switch area (28% on average) and power consumption
(21% on average). Moreover, the critical paths of the switches
reduce significantly, thereby leading to a significant speed-up of
the NoC design.

I. INTRODUCTION

To interconnect the ever-growing number of processors,
memories and hardware devices that are integrated onto the
chip, scalable Networks on Chips are required [1]- [3]. Today’s
communication architectures are based on single or multiple
layers of buses and cannot sustain the increasing communica-
tion requirements of such complex Systems on Chips (SoCs).
The use of a NoC results in a scalable, modular and efficient
interconnection architecture for the SoC.

The SoCs are usually application-specific, with the ap-
plication tasks statically mapped onto the various proces-
sor/hardware cores in the design. Hence the communication
traffic characteristics of the SoC can be obtained statically
and the interconnect can be tailor-made to suit the application
traffic pattern. This is true from SoC designs that are small
to the state-of-the art SoCs, such as the Philips Nexperia
platform [4], ST Nomadik [5]. For NoCs to be feasible in
today’s SoC designs, a NoC architecture with low hardware
overhead is required. The NoC architecture typically has a
large area overhead when compared to the current bus-based
systems. Designing methods that reduce the NoC hardware
overhead, while satisfying the application characteristics of
SoCs comprise an important research area in the NoC domain.

A typical NoC switch consists of input ports, arbiters, cross-
bar matrix, output ports and buffers (present at the input/output
ports). In existing NoC designs, the internal architecture of
all the switches in the NoC are uniform, with all the input
ports of a switch connected to all its output ports, through the
crossbar matrix and arbiters. Such an architecture is needed
when the packet routes cannot be determined at design time,
so that during run-time, data from any input port can be sent to
any output port of the switch. However, in most NoC designs
deterministic routing is employed, where the routes for the
packets of the various traffic flows are obtained at design time
and the route selection is usually performed during the NoC
topology synthesis phase [20]. Thus, the general architecture
leads to an over-design of the NoC switches, resulting in large
area-power overhead for the NoC.

In this work, we present a method for reducing the hard-
ware complexity of the NoC by automatically configuring
the architecture of the NoC switches to match the designed
routes and the given application traffic pattern. While there
are several research works that have addressed several aspects
of the application-specific NoC design process (refer Section
II for details), to the best of our knowledge this is the first
work that presents a method for automatically customizing
the architecture of the switches in the NoC design.

In the proposed customization method, we tune the crossbar
matrix and arbiters of each switch in the NoC. That is, based
on the designed routes, our method automatically prunes the
set of input-to-output connections in the crossbar matrix and
arbiters that are not utilized in each switch of the NoC.
We integrate the proposed routing-aware switch architecture
customization method with an existing design flow, which
automates NoC topology synthesis, mapping, RTL code and
physical layout generation.

Several experimental studies on SoC benchmark designs are
carried out, which show that the proposed switch customiza-
tion technique leads to large reduction in NoC switch area
(28% on average) and power consumption (21% on average).

II. PREVIOUS WORK

Several different architectures and tool flows have been
presented for designing NoCs [6]- [13]. The design of the
switch architecture has been investigated in [14]- [18]. An
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analysis of power consumption of different switch fabrics in
network routers has been presented in [19]. However, a method
to customize the different switches is not presented in the
work.

The problem of application-specific NoC topology and route
generation has received considerable attention [20]- [26]. In
[20]- [23], mapping applications onto regular NoC topologies
have been presented. In [24]- [26], methods for designing ir-
regular (customized) application-specific NoC topologies have
been presented. An approach for application-specific long
range link insertion has been presented in [27] and a stochastic
approach for sizing the switch buffers has been presented in
[28].

However, none of these earlier works have addressed the
issue of switch crossbar matrix and arbiter customization
for NoCs. Our approach is complementary to most of these
existing works on topology design, link insertion and buffer
sizing and can be used in conjunction with them.

III. REFERENCE DESIGN FLOW

The customization method proposed in this work is in-
tegrated with an existing NoC design flow (shown in Fig-
ure 1) that guides the SoC designer to achieve the most
power/performance efficient NoC architecture, starting from
the application characteristics. More in detail, the flow is com-
posed of three major design steps: NoC topology synthesis,
NoC instantiation and back-end implementation.

• Step 1: Topology synthesis:
In the first step, SUNFLOOR [29], a custom CAD tool is
used to synthesize the most power/performance efficient
NoC topology that satisfies the application requirements.
The application traffic characteristics, size of the cores,
and the area and power models for the network com-
ponents are obtained as inputs to the synthesis engine.
The tool generates different NoC switches and maps the
cores onto the switches. During the synthesis process, it
determines deadlock-free routes for the different traffic
flows of the application. The tool also produces the 2D
floorplan of the synthesized NoC topology. The output
produced by the tool is a text file that defines the
synthesized topology, which is fed to the next step.

• Step 2: Topology instantiation:
In the second step, another custom tool ×pipesCompiler
[30], reads the topology definition file generated by
SUNFLOOR and instantiates the RTL description of
the NoC components using ×pipes [9], a pre-designed
SystemC RTL component library. The modules in the
component library support a large number of instantiation
parameters, such as different input/output ports, buffer
sizes, etc. The tool also interconnects the RTL description
of the processor/memory cores of the SoC (which are pre-
designed components, taken as user inputs) with the RTL
code of the network components. The output of this step
is the RTL design of the entire NoC that can be simulated
and synthesized.

• Step 3: Back-end implementation:
This step includes the utilization of a commercial tool-
chain to implement the designed topology at the layout
level. The RTL description of the interconnect from the
previous step is synthesized and the placement&routing
of the design is performed using the commercial tool,
Cadence SoC Encounter [31]. The post-layout design is
then verified for functional correctness and is used for
obtaining accurate performance estimations of the design.
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Fig. 1. Design flow overview

IV. ROUTING AWARE HARDWARE OPTIMIZATION

The objective of the proposed switch customization method
is to automatically remove those resources that are not utilized
in the NoC from the interconnect hardware, based on the
designed topology and the paths that are selected for routing
the different traffic flows. The base-line switch architecture of
the ×pipes library, before applying the switch customization,
is composed of four main blocks:

• Input ports: At each input port, the incoming flit and
control signals are latched onto registers, so that the
critical path of the switch is reduced.

• Crossbar: The switch crossbar includes several fully
connected sets of multiplexers, one per output port, which
connect all the input ports to each output port. The
control signals that are required for data selection for
each multiplexer are generated by the arbiters of the
corresponding output port.

• Arbiters: Each output port of the switch has an arbiter
that grants access to one of the input ports requesting
the corresponding output port, based on some arbitration
policy.

• Output ports: In the ×pipes architecture, output buffer-
ing is employed, where the flit buffers are present at
the output ports of the switch. The output ports also
accommodate the combinational logic needed to handle
the flow-control operations.

We use a procedure that analyzes the designed topology
and routing paths, and evaluates what input ports actually



communicate packets to the different output ports of each
switch in the design. Then, we remove those set of input-
to-output connections from the crossbar matrix and arbiters
that are not used by the chosen routing paths.

TABLE I

SWITCH ROUTING TABLE EXAMPLE

input 0 input 1 input 2 input 3
output port 0 x
output port 1 x
output port 2 x x
output port 3 x x x

Example 1: As an example, let us consider the set of input-
to-output connections that are required at a particular switch
(a 4× 4 switch) of a NoC (refer Table I), which are obtained
from the routing paths established by the topology synthesis
procedure. In the table, the presence of a cross signifies that
the input-to-output connection is utilized by the routing paths.
In Figure 2(a), we present a traditional architecture for this
switch, where all the input ports are connected to all the
output ports of the switch. In Figure 2(b), we present the
switch architecture obtained by the proposed method, where
the crossbar matrix and arbiters are customized to match the
required input-to-output connections of the designed routes.
The switch customization for this example, leads to 56.25%
reduction in the input-to-output connections of the switch.

To achieve this switch customization, we operated at two
points of the design flow, i.e. at the component library
level (hardware level) and at the RTL code generation level
(software level). These levels are explained in detail in the
following sub-sections:

A. Hardware-Level Customization Support

We added a layer to the configuration of the switch building
blocks in the ×pipes SystemC RTL macros, specifying a set of
parameters for each instance of the multiplexer and the arbiter.
More in detail, before the enhancement, the multiplexers were
configured automatically, connecting all the input ports to
each output port. After the customization enhancement, each
multiplexer module is also configured in terms of the number
of input ports that need to be connected to each output port.
In the same way, each arbiter is configured for the number of
ports for which it has to arbitrate for. While the individual
multiplexer and arbiter modules are parameterized in this
fashion, a tool chain is needed to instantiate the different
modules for the designed NoC and to interconnect the sub-
blocks with the switch top module. To achieve this, we extend
the ×pipesCompiler tool at the software level to customize,
instantiate and interconnect the different modules together.

B. Software-Level Customization Support

We defined a software layer that is integrated with the
×pipesCompiler tool in the design flow, that analyzes the
routing paths and finds the unneeded hardware in the switches.
The software thus:
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Fig. 2. Switch architecture before and after the routing aware customization

• parses the topology definition file from SUNFLOOR,
extracting the information about every single routing
path,

• for each arbiter and multiplexer, defines a set of param-
eters that summarize how many and which input ports
require access to the related output port,

• for all the switches, generates a top module that in-
stantiates all the sub-blocks and defines the connectivity
between them according to the routing needs.

The output of this switch customization enhanced NoC
instantiation tool is the RTL description of the customized
NoC design that can be simulated and synthesized

V. EXPERIMENTAL RESULTS

We apply our switch customization method on the NoCs
designed for several SoC applications: Multimedia design
(MULT-30 cores), IMage Processing design 1 (IMP1-25
cores), IMage Processing design-2 (IMP2-21 cores), FFT
based SoC (FFT-29 cores), Data Processing SoC (DP-15
cores) and SoC implementing a DES encryption system (DES-
19 cores). We explain the details of one of the applications
(MULT, the largest of the benchmarks) and the customization
impact on the different designs in the next sub-sections.
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Fig. 3. Mesh and application-specific custom topologies for the MULT benchmark. The P0-P9 are the processors, T0-T4 are the hardware cores, M0-M9
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TABLE II

TOTAL SWITCH AREA OF THE DESIGNS

Topology Total area Total area Area # I-to-O links
base-line customized reduction reduction
(mm2) (mm2) (%) (%)

5×3 Mesh 0.73 0.51 30.14 69.63
Custom 0.45 0.31 31.11 66.38

TABLE III

COMBINATIONAL AREA OF THE SWITCHES FOR THE DESIGNS

Topology Comb. area Comb. area Comb. area
base-line customized reduction
(mm2) (mm2) (%)

5 × 3 Mesh 0.32 0.158 50.63
Custom 0.22 0.09 59.09

A. Experiments on the Multimedia benchmark

In this subsection, we present the designs obtained by our
approach for two different topologies (a regular and a custom
NoC topology) that are used to interconnect the cores of the
MULT SoC benchmark. We use such different topologies to
show the generality of the proposed customization method.
The MULT SoC consists of fifteen processor/hardware cores,
ten private memories for the different processors and five
shared slave devices. The regular topology is a 5 × 3 mesh,
which is hand-designed to suit the application characteristics
of the benchmark (presented in Figure 3(a)) [9]. The second
topology is an application-specific custom topology obtained
from the SUNFLOOR tool (presented in Figure 3(b)). To
achieve the optimum network throughput, 3 flit buffers are uti-
lized at each output port [9]. The total area and the area of the
combinational blocks of the switches for the two topologies,
for the base-line design and for the design where the proposed
switch customization technique is applied are shown in Tables
II and III. The area numbers are obtained from synthesizing
the RTL code of the different switches in the design. As seen
from the table, the use of the switch customization technique
leads to a large reduction (an average of 30.63%) in the total
switch area of the design. As the proposed procedure optimizes
the switch crossbar and multiplexers, which are predominantly

TABLE IV

SWITCH POWER CONSUMPTION FOR THE DESIGNS

Topology Power Power Power
base-line customized reduction

(mW) (mW) (%)
5×3 Mesh 66.2 29.4 55.6

Custom 36.3 28.6 21.2

combinational blocks, a large savings in the combinational
area of the switches is obtained, which leads to the significant
total switch area savings.

The power consumption of the different architectures are
shown in Table IV. The power numbers are based on the
switching activities of the components, which are obtained
from functional simulations. For the power consumption es-
timations, we also consider the accurate switching resistance
and capacitance values of the components that are obtained
from the post-synthesis net-lists of the NoC designs. The
synthesis experiments were performed using Synopsys Design
Compiler [32], with 0.13µ technology library, an operating
frequency of 500 MHz and an operating voltage of 1.2 V.
We also utilize clock-gating in the architectures, so that the
elements that are not heavily utilized have a lower power
consumption value. The proposed customization technique
also leads to a large reduction in the power consumption of
the switches (an average of 38.4%) for both the topologies.

B. Experiments on SoC benchmarks

We synthesized the best topologies for the different SoC
designs using SUNFLOOR. The area, power and input-to-
output connection savings for the different designs for the
customized architecture, when compared to the base-line ar-
chitecture are shown in Figure 4. For all the designs, the switch
customization technique leads to significant reduction in the
switch area (28% on average) and power consumption (21%
on average) values.

Finally, as the proposed customization technique leads to a
reduction in the crossbar and arbiter complexity, the critical
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path of the switches also reduces significantly. This is because,
the critical path of the switch in the ×pipes architecture is the
path from the input ports to the output ports, that traverses
the arbiters and the crossbar multiplexers. As an example,
for a 4 × 4 base-line switch architecture, the critical path is
around 1 ns, while for the customized 4×4 switch architecture,
on average, the critical path is around 0.57 ns. These timing
values are obtained from RTL synthesis of the switches. Thus,
the customization technique also leads to a significant speed-
up (of 75%) of the NoC.

VI. CONCLUSIONS

Networks on Chips (NoC) based interconnects are required
to meet the large communication complexity of current and
future Systems on Chips (SoCs). For NoCs to be feasible in
today’s SoC designs, a NoC architecture with low hardware
overhead is required. In this paper, we have proposed a method
for reducing the NoC hardware overhead by automatically
customizing the architecture of the switches of the NoC to
match the designed topology and routing paths. The cus-
tomization process is integrated with an existing tool chain,
thereby automating NoC topology synthesis, customization,
RTL code generation and physical design processes. The
customization process leads to large reduction in network area
and power consumption. Moreover, the critical paths of the
switches reduce significantly, thereby leading to a significant
speed-up of the NoC design. In future, we plan to extend
the customization method for sizing the buffers of the NoC
switches as well.
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