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Introduction
he beginning of this millennium has been marked
by some remarkable scientific events, notably the
completion of the first objective of the Human
Genome Project [1], i.e., the decoding of 3 billion bases
that compose the human genome. This success has been
made possible by the advancement of bio-engineering,
data processing and the collaboration of scientists from

academic institutions and private companies in many
countries. The availability of biological information
through web-accessible open databases has stirred fur-
ther research and enthusiasm. More interestingly, this
has changed the way in which molecular biology is
approached today since the newly available large amount
of data require close interaction between information
technology and life science in a way not appreciated
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before. Still much has to be accomplished to realize the
potential impact of using the knowledge that we have
acquired. Several great challenges are still open, such as
diagnosing and treatment of a number of diseases, under-
standing details of the complex mechanisms that regulate
life, predicting and controlling the evolution of several
biological processes. Nevertheless, there is now
unprecendented room to reach these objectives, because
the underlying technologies that we master have been
exploited only to a limited extent.

High-throughput biological data acquisition and pro-
cessing technologies have shifted the focus of biological
research from the realm of traditional experimental sci-
ence (wet biology) to that of information science (in sili-
co biology). Powerful computation and communication
means can be applied to a very large amount of appar-
ently incoherent data coming from biomedical research.
The technical challenges that lie ahead include the inter-
facing between the information in biological samples and
information, and its abstraction in terms of mathematical
models and binary data that computer engineers are
used to handle. For example, how can we automate cost-
ly, repetitive and time consuming processes for the
analysis of data that must cover the information con-
tained in a whole organism genome? How can we design
a drug that triggers a specific answer? Anyone wearing
the hat of a Circuit and System engineer would immedi-
ately realize that one important issue is the interfacing of
the biological to the electrical world, which is often real-
ized by microscopic probes, able to capture and manip-
ulate bio-materials at the molecular level. A portion of
costly and time consuming experiments and tests that
we used to do in vitro and/or in vivo, can now be done in
silico. The concept of Laboratory (Lab) on Chip (LoC) is
the natural evolution of System on Chip (SoC) by using an
array of heterogeneous technologies. Whether LoCs will
be realized on a monolithic chip, or as a combination of
modules, is just a technicality. The revolution brought by
Labs on Chips is related to the rationalization of bio-
analysis, the drastic reduction of sample quantities, and
its portability to various environments.

We have witnessed the widespread distribution of com-
plex electronic systems due to their low manufacturing
costs. Also in this case, LoC costs will be key to their
acceptance. But it is easy to foresee that LoCs may be mass
produced, with post-silicon manufacturing technologies,
where large production volumes correlate to competitive
costs. At the same time, the reduction of size, weight and
human intervention will limit operating costs and make
LoCs competitive. Labs on Chips at medical points of care
will fulfill the desire of fast and more accurate diagnosis.
Moreover, diagnosis at home and/or at mass transit facili-
ties (e.g., airports) can have a significant impact on the
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overall population health. LoCs for processing environ-
mental data (e.g., pollution) may be coupled with wireless
sensor networks to better monitor the planet.

The use of the information produced by the Human
Genome Project (marking the beginning of the Genomic
Era) and its further refinement and understanding (post-
Genomic Era), as well as the consequences related to
moral and legal implication for the betterment of society
has just started.

In fact, the decoding of the Human Genome paved the
way to a different approach to molecular biology, in that
it is now possible to observe the interrelations among
whole bodies of molecules such as genes, proteins, tran-
scripts, metabolites in parallel (the so called omic data
like genomes, proteomes, transcriptomes, metabolomes,
etc.), rather than observe and characterize a single chain
of a cascade of events (i.e. perform genomic vs genetic
analyses). In other words, molecular biology underwent
an important shift in the paradigm of research, from a
reductionist to a more systemic approach (systems biology)
for which models developed in engineering will be of pri-
mary importance.

Background
Before discussing in more details in the hardware and
software tools made available for the monitoring of the
molecular activity of living cells, a brief presentation of
the modality by which information is processed in living
systems is mandatory.

While the DNA molecule embeds almost all the infor-
mation a cell can manage and produce, only a portion of
it is actually used in any given cell under specific condi-
tions, depending on the role and environment in which
the cell lives (i.e., temperature, radiations, ongoing dis-
ease processes, etc.). This differentiation is managed in a
complex process that results in the controlled transcrip-
tion of targeted strands of DNA (genes) into mRNA (a par-
ticular type of RNA). DNA and RNA are nucleic acids
made of basic units, nucleotides, of only 4 different types.
mRNA is then translated into proteins, the real actuator of
molecular processes, by means of a coding that allows to
match every triplet of mRNA nucleotides (codon) with the
corresponding amminoacid, the basic building unit of
proteins. Translation, along with other processes, leads
to the synthesis of a protein, unless other mechanisms
such as the recently discovered RNA interference mecha-
nism, interferes by blocking the mRNA translation. The
whole process can be disrupted or strongly altered by
mutations in the DNA original sequence due to the dupli-
cation or deletions of entire sequences, or to punctual
mutations (Single Nucleotide Polymorphisms, SNPs).

The variety of information processed by living cells is
nowadays mirrored in the plurality of devices designed to
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monitor the quantities and qualities of molecules
involved at any given stage of the information flow. It is in
this diverse landscape that information technology is cru-
cial to exploit the new bodies of data and to make it use-
ful to society namely for i) the generation of efficient omic
platform sensors, ii) the implementation of dedicated
algorithms for mining the resulting data and iii) the defi-
nition of adapted approaches to integrate information
from different platforms.

In the sequel, we will review first hardware supports
and technologies that allow the studies of the whole bod-
ies of molecules through the different steps of the biolog-
ical information flow as depicted in Figure 1 (see also [2]),
and then some of the algorithms and softwares for data
processing and integration. We conclude with a perspec-
tive on where this field is projected toward the future.

Hardware
DNA sequencing is the process of finding the exact
sequence of bases in a DNA sample. Sequencing has been
the main technique to enable the achievement of the

Human Genome Project. With sequencing it has been pos-
sible to determine the gene structure of homo sapiens and
other species. Unfortunately, sequencing is a time con-
suming and complex operation. Up to now, there is no
sequencer that can take a full DNA sample and analyze it.
Hence, the DNA is typically first split into smaller pieces
that are analyzed separately and then the information is
combined together. Even though sequencing is today
highly automated, it is still a time consuming and expen-
sive task. Nevertheless, there is an open challenge to con-
struct means for low-cost affordable sequencing [3].
Whereas the sequencing produced by the Human Genome
Project aims at determining the exact sequence in a DNA
sample of healthy individuals, it is often the case that it is
important to determine the genomic alterations at differ-
ent levels of the information transmission pipeline.

Most of the omic platforms are based on the proper-
ties of complementarity of molecular molecules. In fact, it
is a distinctive feature of nucleic acids (DNA and RNA)
that they are able to link (hybridize) to dual fragments.
This ability is used in nature for self-replication and self-
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repair of DNA molecules, and in sensing approaches it
can be used for recognition. Similarly, the natural ability
of antibodies to specifically link to selected proteins can
be used for proteins’ recognition. High-throughput
devices take advantage of complementarity properties by
generating arrays of reference molecules to which a mix-
ture of appropriate but unknown molecules can attach
themselves in proportion to their abundance, and thus
they can be recognized and quantified.

Depending on the chemistry of the reference molecule,
arrays can be used to capture DNA strands and quantify
duplications or deletions (Comparative Genomic
Hybridization -CGH- arrays) or evaluate punctual muta-
tions (Single Nucleotide Polymorphysm —-SNP- arrays).

Using mRNA information it is possible to measure the
relative expression of the genes activated in the cells in a
tissue, by either labeled or unlabeled techniques for
sensing. Labeled techniques take their name from the
fact that DNA samples are labeled with a fluorescent
material, and the presence of a sample at a site is detect-
ed by optical scanning. Non-labeled techniques imple-
ment a direct reading of the binding to the probe, and are
described later.

Among the labeled techniques, the first widespread
technology is the cDNA microarray technology devel-
oped at Stanford by P. Brown and co-workers [4]. Probes

are fabricated by depositing complementary DNA (cDNA)
or synthetic oligonucleotides. These probes are
processed to keep them unfolded. Conversely, on in situ
built arrays [5], probes are synthesized directly on the
substrate using, for example, light-directed chemical syn-
thesis realized by photolithographic micro-fabrication
techniques typical of the semiconductor industry as in
the Affymetrix arrays (See Figure 2.1).

Recently, there have been several attempts to develop
non-labeled techniques, with the objective of simplifying
the readout process (by eliminating the laser scanning),
reducing the noise, and possibly by combining intelligent
processing on the same substrate, thus achieving a
device that can carry out analysis on the filed (e.g., at a
point of care). Some of these techniques are based on
measuring the variation of capacitance between the
probe base and the electrolyte [6], [7] (see Figure 2.2).
This capacitance varies according to the fact that the
probes are hybridized to the samples or not. Other
approaches are based on ISFET technology [8], by fabri-
cating transistors arrays whose gates host the probes.
Thus, hybridization modulates the gain of the transistors,
and an electrical readout circuit can provide a direct
measure of gene expression levels. Finally, other tech-
niques are based on ultraviolet light absorbance by the
probes: the absorbance varies with hybridization and
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Figure 2. Shows examples of labeled and non-labeled techniques for gene expression analyses. Figure 2.1: In the Affymetrix tech-
nology, probes are synthesized in parallel by adding a nucleotide, (A, C, T or G), on top of the previously constructed chains. To
define which oligonucleotide chain will receive a nucleotide, photolithographic masks with 20 square micron windows are placed
over the coated wafer. When ultraviolet light is shone over the mask in a fabrication step, the exposed linkers become available
for nucleotide coupling. These steps are iterated until the probes reach their full length, usually 25 nucleotides. Figure 2.2:
schematic representation of the interface with funzionalization. (a) Transformation of the interface during oligonucleotides
immobilization. (b) Corresponding electrical model: the capacitance and thus the overall impedance varies with hybridization.
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that can be measured by the residual radiation impinging
on sensors below the probes.

Independently from the technology adopted, microar-
rays for gene expression are limited to the evaluation of
the expression of known genes that represent the target
on the array. To overcome this limitation another high
throughput technique has been devised: Serial Analysis
of Gene Expression (SAGE, [9]). This approach does not
require a reference slide, and in a nutshell, it collects from
every molecule of mRNA extracted from a tissue a tag,
made of 14 bases that only identify the corresponding
mRNA. These tags are then glued together in concatemers
that are multiplied through Polymerase Chain Reaction
(PCR), a technique to amplify DNA subsequences), in
order to obtain a large quantity of high-quality molecules
that are then used to perform its sequencing. Finally, once
the sequencing is performed, a computational analysis
will evaluate the number of replicas of any given tag of
which the concatemer is made, generating a frequency
distribution. This technique is expensive, but does not
require any previous knowledge of the mRNAs, and yields
a precise quantitative measure of the mRNAs.

For the study of proteomes, several complex issues
need to be addressed. In fact, the variety of proteins,
(each one of the ~20,000 human genes can code for more
than one protein), and of their techniques of interactions,
is mirrored in the difficulty of reproducing systems that
can mimic some complementarity strategy to capture the
targets [10]. Proteins, in fact, can interact in natural
processes among them to form bigger complexes, or with
specific antibodies (protein produced by the immune sys-
tem’s cell), or with DNA fragments, moreover, the rela-
tionship among these molecules is the result of a complex
balance between mechanical and chemical interactions,
difficult to preserve in the arraying processes. The earli-
est device designed for the study of proteomes is based
on the reaction antigene-antibody, a strategy commonly
used by the immune system that is able to synthetize pro-
teins, (antibody), able to capture and then lead to elimi-
nation of a given specific protein, (antigen), that has
triggered the whole process. Several limitations arise,
notably in the fact that the relation antibody-antigen is a
very complex one and that antibodies need to be known
for every specific protein. Moreover, despite this specifici-
ty there is evidence of the phenomenon of cross-reactivity
that indicate the possibility of a protein to react with
more than one molecule. For this reasons sandwich
arrays have been designed to link each protein with two
antibodies to increase specificity and sensitivity. To avoid
the limitations due to the antibody design, efforts are now
undertaken to the generate proteins directly from
libraries of expressed sequences (nucleic acids
sequences coding for proteins). Taking into account the
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importance of proteins interaction in such fields as drug
design, this research area requires further improvements.

A more complex approach aims at taking care of the
interaction between proteins and DNA, a complex rela-
tion in which a protein or a complex of interacting pro-
teins enables the transcription of a gene that is, in turn,
translated into a protein that can interact with the same
complex, or with other proteins, or other DNA binding
sites, in a very complex network interaction. To observe
a part of these interaction with high parallelism, other
types of devices have been designed [11]. Namely, the
DNA regions where a protein (promoter) binds to activate
(promote) a given gene transcription, can be identified by
first capturing the protein with the corresponding anti-
gene and then performing an experiment (chromatin
immunoprecipitation, ChIP) that allows to isolate a com-
plex of the promoter and the DNA binding site. The DNA
binding site can be processed and then arrayed on a chip,
(thus the name of Chip-chip arrays for this technique),
and a comparison can be performed in the sequence of
the binding site in healthy versus pathologic samples.

Finally, recent applications [12] have been devised to
study processes ongoing in every single cell, rather than
in the specific type of molecules extracted from a sup-
posedly uniform tissue. This new approach is based on
two biochemical mechanisms: RNA interference (RNAIi)
and transfection.

The first mechanism is a complex process discovered
in 1998 in c.elegans that triggers the suppression of a gene
expression, after the transcription process and before its
translation into protein. This mechanism can be used to
force the suppression of a gene expression after its tran-
scription, by designing appropriate RNA molecules
(siRNA) that through several steps lead to the silencing of
the mRNA, impeding its encoding in amminoacid
sequence. The second mechanism indicates a natural
process that is the integration of foreign DNA or RNA into
cells (in culture). Parallel transfection of hundreds of
nucleic acids strands can be carried out in a microarray
format, by preparing vectors containing appropriate
siRNA. This array slide is enriched with molecules able to
induce transfection, so that when the slide is covered
with a lawn of adherent cells, these cells growing on top
of the spots can be transfected, suppressing expression
of specific proteins in spatially distinct groups of cells.
Using both mechanisms, the study of the effect of the sup-
pression of specific genes can be performed at cellular
level with high parallelism [13].

Most of these approaches share in common the desire
to perform—on a large scale—experiments that used to
be performed with negligible or absent parallelism. From
this perspective, engineering approaches are not only
useful in the improvement of the single experiment
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automatic setup, its reproducibility, but also in all the
issues that descend from the optimization required
when moving from custom to standardized, high-
throughput processes.

Finally, in the post-
genomic era, engineer-
ing principles are not
only useful for high par-
allelization, but also for
an efficient serialization.
Laboratory on chips can
now mix sensing meth-
ods with transport and
other manipulations of
DNA material. For exam-
ple, polymerase chain
reaction (PCR) is a well
known technique to amplify DNA sub-sequences. PCR
can be readily realized in hardware by creating micro-
chambers with accurate temperature control. STMicro-
electronics In-Check platform is an experimental product
that combines DNA amplification with sensing.

Several transport techniques have been applied with
micro-fluidic technologies. Such technologies aim at pro-
viding a versatile transport and separation means for
small amounts of samples. Techniques ranging from elec-
trophoresis [14] to magnetic droplet manipulation and
transport have been successfully used [15], (Figure 3).

Figure 3. Two immobilized
droplets after the passage of
a droplet carrying magnetic
particles through both of
them.

Software

Array-based bio-sensors are becoming an ubiquitous
technology to be applied in the medical practice and in
experimental biology, as well as in environment and food
contamination control. For this reason, not only their
construction and use, but also their interpretation are
subject to continuous improvement. In particular we can
identify three main levels of data mining approaches in
which platforms for omic data are being used.

At the first level there are algorithms for data mining on
the output of high-throughput platforms. This approach is
used to characterize the interactions among sets of mole-
cules of the same type (e.g., transcripts in micro-arrays for
gene expression). A second level concerns the joint min-
ing of the array outputs with other types of information,
such as demographic or clinical ones. Finally, the last and
more recent level of data mining aims at extracting infor-
mation from multiple omic platforms and data sources.
These approaches are used to obtain the most complete,
integrated level of information, and often also to predict
unknown features. In the following we describe these
three levels of complexity in more detail (see Figure 4).

Arrays used for the evaluation of omic data produce
the tables containing the measure of a given type of mol-
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ecule abundance in different conditions. In general, the
outcome of an experiment with these arrays is a matrix
of real numbers, where rows correspond to molecules,
columns to different arrays obtained under different con-
ditions (e.g., different tissue samples or different
patients), and entries to the abundance of the molecule,
for the given condition (e.g., for gene expression arrays,
its presence, possibly relative to some reference level).
Then these matrices need to be preprocessed for nor-
malization. Data analysis consists mainly in detecting
common and consistent trends across conditions, and
across molecules, or both. A typical approach in
microarrays for gene expression (the more mature of
these high throughput approaches) is to perform data
clustering, that is determining the subset of genes and
conditions expressing a common trend. Data clustering
is a difficult problem and, in general, it is computationally
intractable. Various heuristic algorithms have been pro-
posed. The simplest category of clustering algorithm
(hierarchical cluster, Self Organizing Maps SOM), solves
the problem by grouping data based on a distance met-
ric or variance reduction (Principal Component Analysis
PCA), and produces a set of non-overlapping clusters
which identify non-overlapping groups of genes [16].
Conversely, bi-clustering [17] is a set of techniques that
cluster both genes and conditions, producing possibly
overlapping clusters which are identified by proximity in
a bi-dimensional metric (see Figure 5.1). In other words,
a bi-cluster is a subset of the rows and the columns of the
data matrix, such that for each row/column pair the dis-
tance (aj — ag) — (a; — ap) is smaller than a given
threshold. It has been argued that biclusters can reveal
more biological information than other types of clusters.
Indeed, they are compatible with our understanding of
the cellular processes: we expect a subset of genes to be
co-regulated and co-expressed under certain experimen-
tal conditions. In gene expression analysis, biclustering
is more suitable for cases where genes have multiple
functions.

Among the various approaches to bi-clustering, Yoon
and others [18] developed an efficient algorithm that can
compute all bi-clusters in a data set. Moreover, these clus-
ters display coherence as compared to bi-clusters com-
puted with other methods. Coherence is a statistical
property that can be measured in terms of mean squared
residues (see Figure 5.2).

Clustering can be applied to data in different forms,
and in particular to genetic measurements of sequences
of experiments done at different time points. In this case,
the time-series of genetic expression value can shed light
on the gene regulatory mechanisms.

As long as data mining algorithms are applied to the
bare array values, techniques for genomic clustering are
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called unsupervised. However, it is often useful to intro-
duce a second layer of complexity, given by other types
of information, such as clinical ones, to integrate and pos-
sibly complete the analysis (supervised analysis of
microarray). The so called Clinical-Genomics is a new yet
promising field of practical application of this approach
and takes advantage of the information gathered by the
long practical experience coded into clinical traits and
the new, robust and detailed genomic ones. Early
attempts were based on statistical correlation methods,
such as using Spearman’s coefficient. For instance, recent
work has focused on establishing correlation between
human genomic data and radiological traits [19]. In these
studies, a set of clinical traits was manually extracted
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from medical images and then correlated to the data
extracted from micro-arrays.

In this context various types of algorithms have been
devised, such as Significance Analysis of Microarray (SAM,
[20]D) and Gene Expression Enrichment Analysis (GSEA,
[21]). These algorithms extract a ranked set of genes can-
didate to be significantly related to a given external clini-
cal trait. This ranking is based on the evaluation of
various statistics (such as a modified t-test and Signal-to-
Noise Ratio). Along this line of research an interesting
approach called co-clustering has been defined by Yoon
et al. [22]. This method is based on the following idea.
First, a correlation matrix is constructed from the genetic
and clinical data in matrix form using the statistic defined
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in SAM. Next, bi-clusters are searched for in this correla-
tion matrix. This method was tested on data from Acute
Myelogenous Leukemia (AML), with 6239 genes, 119 sam-
ples and 15 clinical parameters. The method found 43
clusters. Some of these have strong biological signifi-
cance, for example by showing that the trait “survival” is
correlated with genes that play a central role in the con-
trol of growth, differentiation and morphogenesis of nor-
mal and malignant cells.

Finally, a third layer of complexity is represented by
the integration of diverse sources of omic data. These
approaches take advantage of the diverse nature of the
data available on publicly accessible databases and
mostly of all possible interconnections that can be
inferred for a given item of interest from several sources
of knowledge. A very complex and challenging issue is
given by the modeling of the numerous complex interac-
tions that regulate genes behavior. In this context several
efforts have been made to get more insight into the com-
plex networks of interaction, a goal which is probably the
most exciting and complex challenge of the post-genomic
era. As an example, an interesting approach was devised
by Segal et al. [23] who defined the module network pro-
cedure. This approach is based on probabilistic graphical
models and uses information gathered from microarray
for gene expression experiments, from databases collect-
ing protein information, as well as from extended litera-
ture searches. These diverse sources of information are
used to infer regulatory modules, that are a trinome made
of a set of regulatory genes (regulatory program), that
specify the behavior of coregulated genes (regulated mod-
ule) under given conditions (context). Briefly, this method
is based on the generation and iterative optimization of a
regression tree, where nodes are represented by regula-
tors (genes) whose over/under or unchanged expression
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decides the path to be followed in walking the tree fur-
ther. The leaf of the tree are represented by a set of genes
whose expression is coherent and influenced by all the
regulators/nodes along the path. This approach allows to
infer from expression experiments, that give a global but
static image of the processes ongoing in the cell, infor-
mation about reciprocal influences, offering a systemic
and more dynamic picture of the ongoing events.

Another promising area of research for the efficient
use of integrated information in in silico biology is
research in multigenic hereditary diseases. The under-
standing of such diseases and possibly their control and
treatment requires the individuation of all the genes that
are disregulated or mutated. Traditionally the identifica-
tion of genes candidate to be involved in such diseases
necessitates tracing the genomes of several individuals
from the same family, to highlight the area of the genome
that is passed from generation to generation and thus is
likely to encode the genes responsible for the disease.
This process is extremely costly and time consuming, and
inherently limiting the study of rare diseases since the
number of individuals affected is very small. Conversely,
public databases can be advantageously used to filter
from the whole genome lists of candidate genes sharing
features likely to cause multigenic diseases. Such charac-
teristics are of very diverse nature. They range from the
length of the protein encoded to the position of the gene
on the genome and to the conditions and tissues in which
the gene is expressed, and more (see [24] for a recent
example of application tool).

As data mining gains momentum in extracting new
information for the rapidly growing mass of omic data,
the definition, construction and maintenance of con-
trolled vocabularies for the systematization of knowl-
edge, based on terms broadly accepted in the scientific
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community is becoming an area of increasing interest.
Several efforts are ongoing in this direction for the defini-
tion of ontologies, and controlled vocabularies based on
a graphical structure that allows not only the classifica-
tion of items of a given type, but also the quantitative
evaluation of their semantic proximity. Two widely known
examples of such vocabularies are Gene Ontology (GO,
[25] and Figure 6) for the definition of genomic terms, and
the Medical Subject Heading (MeSH, [26]) used for mining
PubMed [27], the largest repository of medical and life sci-
ence journals abstracts (MeSH is a part of a broader effort
for a Unified Medical Language System, UML, [28]). These
over-structures on the data allow not only a more effi-
cient exchange of information among scientists, but also
provide a remarkable contribution to the distillation of
new knowledge. In fact, particularly for GO, a variety of
tools have been designed to infer through statistical
approaches the classification (annotation) of uncharac-
terized items in terms of known ones, based on some
shared similarity. For example, genes that happen to be in
a given set after a clustering process, are likely to act syn-
ergistically in a given cellular function. GO can then be
used i) for validation purposes, to observe if the genes
share in fact in large majority the same function, or ii) for
discovery purposes, to extend the annotation of the most
significant molecular role present in the cluster to the few
un-annotated genes [29].

Perspectives
High-throughput biology is an experimental branch of
biology that relies on specific circuits and systems for
data acquisition and processing. Special hardware
includes arrays that are functionalized to detect/capture
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different types of biological molecules as well as trans-
port means on chip. These arrays exploit semiconductor
and similar technologies, and benefit from integration
because it is possible to combine probing with in situ
computational engines, i.e., with processors that per-
form local data analysis. These processors can run pro-
grams implementing the data analysis algorithms.
Micro-fluidic circuits play also an important role, as they
provide us with the communication fabric to transport
samples on chip. Moreover, several engineering
approaches are required to improve the ability to cap-
ture different types of molecules, preserving their chem-
ical and structural characteristics, while allowing high
parallelism.

Overall Lab on Chips can be seen as the combination
of sensing, transport and processing for performing bio-
chemical analysis of small quantities. While LoCs are still
expensive today, we believe that cost of operating them
is much smaller than standard lab analysis and the unit
cost will drop as mass production will develop. More-
over, portability is a major advantage of Lab on Chips.
While this article has described only LoCs for biological
analysis, LoCs can be used to synthesize small amounts
of organic and/or inorganic samples by combining trans-
port means for reagents to and from reaction micro-
chambers.

While considering the entire bio-medical field, high-
throughput analysis is ubiquitously present in research
while its use in the day-by-day clinical practice is lag-
ging. This is due to several factors such as the incom-
pleteness of the omic information, the variety of
techniques that evolution has implemented to preserve
the continuity of the process of life, the intrinsic noise of
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the high-throughput devices and the consequent vari-
ability of the results. For this precise reason, new circuit
and probe architectures, as well as new devices, are
needed to improve the certainty of the results and help
to complete the characterization of the numerous
processes that regulate cell life.

On the other hand new and improved algorithms,
mathematical models and statistical approaches for the
correct description of the body of data are required.
Research in these fields may leverage the wealth of
results in Circuit and System design and in data analysis
algorithms. We are just at the beginning of a revolution
that is bringing some aspects of biology and medicine
closer to information science. The continuous and con-
stant integration of medical and molecular knowledge
with engineering approaches is a dynamic, incremental
and crucial process leading to the efficient use, solution-
oriented and possibly the improvement of tools and tech-
niques used in engineering for both biological discoveries
and medical treatment.
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