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Abstract— We define a self-limiting epidemic service as a
dissemination service for ad-hoc environments that is broadcast
in nature, but is limited to a local scope around each source.
Example applications are chatting or bulletin boards in a
traffic jam, in an instant crowd in a campus or, in contrast,
along a desert highway. Our goal is to support such a service
across a wide range of conditions (dense or sparse). The main
problems are to adaptively control scoping and traffic rates
to avoid congestion. We propose a system design with the
following elements: (1) manipulation of TTL by adaptive aging
mechanisms; (2) control of forwarding factor by self-inhibition
and inter-inhibition and (3) control of rate of injection by
sources. We validate the design by an implementation in Java
and analyze it using both simulation and ordinary differential
equations. We show how it can be tuned to achieve an
appropriate balance between limitation of scope and rate of
information. Our design is entirely self-organized, and is free
of any form of clustering or leader election.

I. INTRODUCTION
A. Self Limiting Epidemic Service

We define the self-limiting epidemic service as a broadcast
dissemination service for short messages in ad-hoc environ-
ments that is limited to a local scope around each source. A
typical application is chatting or a bulletin board among users
in a traffic jam, in a railway hall, on a campus, or, in contrast,
along a desert highway. In all these cases, the application is
broadcast; if there would be no limits in network capacity,
node storage or node processing, then an epidemic or flood-
ing mechanism would be thinkable. However it may not be
desirable, both from user and capacity viewpoints, to reach
all users that can be reached by epidemic forwarding (on a
busy hour this may be users spanning hundreds of kilometers
along highways). Our goal is to support a self-limiting service
across a wide range of conditions (dense or sparse). The
scope limit should adapt to the density of node and number
of active of users. In a dense environment with 100% active
users (users chatting in traffic jam, crowd on campus), the
information generated by one user would remain in close
vicinity, perhaps reaching order of 100 nodes. In a similar
environment but with only a small fraction of active users

(i.e. few uses generate fresh information, but many relay),
the spread could be much larger in kilometers. Note that
in these dense cases, the problem is less a possible lack of
connectivity than congestion and information overflow. At the
other end of the spectrum, in a sparse environment (desert
highway, or area with very small penetration of the system)
the service should have a much wider spread. Last, transitions
from a dense to a sparse environment may occur without
user control, so we would like the service to smoothly
adapt to such changes. A key difference with community
networking proposals [3], [15] is that we deliberately accept
non transitivity 1 as a feature of the service: a user has access
to a local bulletin board of messages generated on the fly
by those users who happen to be close. We would like the
service to evolve smoothly in space, having no clusters, zones
or boundaries.
B. Adaptive Use of TTL and Control of Forwarding by
Inhibition

There are several proposals for flooding or epidemic
services (seeSection V). On top of such services, the two
main issues we need to solve are: control of scope and of
traffic rate. This needs to be done such as to obtain the
appropriate balance between spread, absence of congestion,
and probability of delivery. A simple approach to control
the scope is to use the TTL (“time to live”2) field in
IPv4 packets. However, a plain use of this is not adaptive
enough to support the various cases mentioned above, as the
desired spread in hops depends on user activity (if few users
generate traffic, the maximum hop count should be large).
This is why we propose to manipulate the TTL field using a
combination of three mechanisms, which we collectively call
aging (Section II-C). The first mechanism (“adaptive age”)
decreases the TTL such that the death rate of packets is
roughly proportional to the rate of injection of new packets
by the neighborhood (a fixed decrement takes place at every

1It may be that A can reach B, B can reach C but A cannot reach C,
being too far away.

2We use the IPv4 denomination “TTL” even though it is classically used
as a hop count.
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packet reception). The second mechanism is the classical
hop count, and is motivated as usual as a safety mechanism
to avoid uncontrolled proliferation. Unlike classical hop
count as in [16], it is decreased at every transmission if
a packet is transmitted repeatedly by the same node. The
third mechanism is the true time to live (“real time age”),
introduced as an additional safety mechanism to account for
cases of sporadic connectivity where packets can become
very old in real time and become irrelevant before exhausting
their hop count. In areas with many competing sources, the
TTL decreases quickly by adaptive aging, which limits the
spread well before either hop count or true time to live expire.
Note that adaptive aging contributes both to limiting the
spread and to congestion control. We show in Section III and
Section IV that this combination is indeed adequate. Further,
we show in Section III that even an adaptive mechanism for
TTL adaptation is not sufficient. An example is the boundary
between a dense, congested area (users chatting in a traffic
jam) and a non congested area (users in a lane opposite to
the traffic jam). An adaptive mechanism for TTL would tend
to give short lifetimes to packets in the former area, in order
to maintain useful rates to all users in the traffic jam; thus,
a packet that manages to escape the traffic jam area and
join the opposite lane would have a short lifetime; this is
not desirable as such an escaping packets might have all
chances of traveling far away on the opposite lane, assumed
to be non congested. It would be better to have a mechanism
that limits the spread of packets inside the congested area,
while at the same time allowing escaping packets to travel
far away. The complement of the age of a packet is carried
in the TTL field of IPv4 headers, as explained in Section II-
C. For controlling the traffic rate, we need to control both
packet reproduction (i.e. the forwarding factor) and injection
of fresh packets by sources. For the forwarding factor, we
use a self-organized mechanism of inhibition inspired by [4].
Every packet at a node is associated with a “virtual rate”,
which decreases exponentially with the number of trans-
missions (“self-inhibition”) or receptions (“inter-inhibition”).
Self-inhibition avoids wasting transmission resources, while
inter-inhibition acts as a global feedback, where a node
interprets the reception of a duplicate as some form of
acknowledgement. Injection of fresh packets by sources is
controlled by a combination of the inhibition scheme, a
scheduler and buffer management. Positive feedback to the
source is obtained by reception of a packet duplicate, while
negative feedback is provided by the inhibition mechanism,
which is also applied to sources.
C. Self-Limiting Epidemic Forwarding

In the rest of this paper we present and analyze our
proposed system design, called Self-Limiting Epidemic For-
warding (SLEF). The system is for implementation in ad-hoc

nodes and does not require support from an infrastructure.
The design is self organized, i.e. without central nodes,
boundaries or clusters. The goal is to provide some limited
spread of packets such that, with high probability, all nodes
close to a source do receive all packets generated by this
source, while allocating a minimum amount of transmission
opportunities per user. The actual spread should depend on
many factors, such as the capacity of the network; in order
to quantify our design target, we use the spread factor Ms,
defined as the total number of transmission events anywhere
in the network, caused by a single original packet, in an
hypothetical symmetric network with all users active (if a
packet reaches order of 100 nodes, and is transmitted in
average 3 times per node, then Ms ≈ 300). Ms defines
the load on the ad-hoc network that we accept per original
packet. The goal is to maximize the number of nodes that
receive a copy of an arbitrary packet, subject to the constraint
that the spread factor is upper bounded by Ms.

We assume that packets are atomic application layer
entities and that global ordering across sources is either
unnecessary or maintained by methods outside the scope of
this paper. We assume that nodes are mobile and contact
times may be short, so we use a dissemination approach
that does not require negotiation of contents. However, the
concepts of aging and inhibition that we introduce could
easily be extended later to dissemination methods that, like
in [16], use explicit negotiations to control packet exchanges.

Our design is described in Section II. Its main features are
the combination inhibition (to control the forwarding factor)
and limitation of spread by aging. Our assumptions about
the MAC layer (unreliable broadcast service) are explained
in Section II-E. In Section III we analyze the system by a
method of ordinary differential equation classically used for
population dynamics models or particle systems (ODEs). We
use analysis to tune the parameters, in order to achieve an
appropriate balance between limitation of scope and rate of
information. We implemented SLEF in Java; in Section IV
we use the implementation over the Jist-Swans network
simulator to assess the performance. Section V compares to
existing work. The main contributions of the paper are :

1) the introduction of a new service semantics
2) a system design based on self-limiting epidemics

mechanism (self-inhibition, inter-inhibition, competi-
tion based aging); it is self organized, all nodes need
only local information, no server, clustering or zoning
is required

3) implementation and validation by simulation and by a
method of ordinary differential equation.

II. SYSTEM DESIGN

We first give an overview of SLEF and explain how these
goals are achieved; then we describe the main components
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one by one. We propose values for all design parameters by a
simple analysis, except for the inhibition constants a, b (Sec-
tion II-B) and the adaptive aging constant K1 (Section II-C),
which requires a more in-depth analysis, given in Section IV.

A. Design Overview

Every node maintains one epidemic buffer, used to store
received and fresh packets, with the following attributes:

• sendCount : how many times this packet was sent by
this node.

• rcvCount : how many times this packet or a duplicate
was received by this node.

• vRate (“virtual rate”): this attribute is derived from
sendCount and rcvCount , using the method de-
scribed in Section II-B. It is the rate at which this packet
would be transmitted if it were alone in the epidemic
buffer.

• age : combines hop count, real time age (true time
to live) and adaptive age, which reflects the amount of
competition this packet and its ancestors have encoun-
tered so far.

• earliestSendTime and
pendingSendConfirmation : see Section II-E
and Section II-F.

We call clone the set made of an original packet and its
duplicates; all packets in the same clone have the same value
for source address and SLEF identification field (Section II-
H). When a packet is received, it is inserted into the epidemic
buffer. If this is the first time a packet of this clone is seen by
this node, a new entry is created, else if the existing entry is
still present, it is overwritten (thus there is always at most one
packet per clone in the epidemic buffer). The attributes are
updated as explained in Algorithm 1. Creation of a new entry
may require deletion of existing packets from the epidemic
buffer (Section II-H).

The functions achieved by SLEF can be classified as (1)
management of the spread of packets , (2) control of the rate
of reproduction (forwarding factor), and (3) control of the
rate of injection of new information by sources. Function 1
is achieved by the aging mechanism, described in Section II-
C. Fresh packets created by the source at this node are also
inserted into the epidemic buffer (Section II-G). These and
other packets compete for transmission, with a fitness equal
to their vRate (Section II-F). The vRate of a packet is,
roughly speaking, the rate at which this packet would be
transmitted or retransmitted if it were alone. It decreases
exponentially for every transmission (self-inhibition) and ev-
ery reception of a packet of the same clone (inter-inhibition)
(Section II-B). This aims at avoiding unnecessary transmis-
sions (Function 2). Congestion control is implemented by a

combination of the decrease rules for vRate (Section II-B),
of the rules governing the adaptive age and of the mechanism
for limiting the generation of fresh packets described in
Section II-G (Function 3).
B. Rate Adaptation

The vRate of a packet is set according to

vRate ← R0a
rcvCount bsendCount

where R0 is the nominal rate in packets per second of the
MAC layer interface, a (inter-inhibition constant), b(self-
inhibition constant) are positive less than 1, and rcvCount ,
sendCount are computed as in Algorithms 1 and2. The
vRate thus decreases exponentially as more copies of the
clone are received or sent. The values of a and b are tuned
in Section IV, where we also show that both are necessary.
The scheduler uses the inverse of vRate as a minimum time
interval between transmissions (Section II-F).
C. Aging

The age attribute is inherited when a packet is received
for the first time (Algorithm 1), and is equal to 0 for a
newly created clone. The age stored in the epidemic buffer
is a floating point number. It increases depending on events
affecting the packet and the state of the epidemic buffer.
There are three decreasing processes:

• (hop count): age is incremented by a constant amount
K0 = 20 whenever either this packet’s sendCount or
rcvCount is incremented. The value of K0 is such that
a packet can be transmitted in the very worst case at
most ca. 25 times.

• (real time age) age increases at a constant rate γ =
32h−1. We assume that nodes have free running clocks;
there is no need for time synchronization. The constant
γ is such that a packet lives at most 8 hours.

• (adaptive age) The age of all packets stored in the
epidemic buffer increases by an amount K1 every time
a packet (of an existing or new clone) is received. The
adaptive aging constant K1 is a (possibly non integer)
constant less than K0; its value is determined by the
analysis in Section IV.

When transmitting a packet, the complement to
maxTTL(=255) of age , rounded to an integer, is written in
the IPv4 TTL field [resp.IPv6 hop count].

A packet is killed whenever its age is too large to be sent,
i.e. when age ≥ maxTTLL+1 (the +1 is due to rounding).
It can also be killed due to lack of space in the epidemic
buffer (Section II-H).

When a packet is received for a clone that is present in
the epidemic buffer, the increase by K0 is applied to the
age of the packet already present in the epidemic buffer.
This avoids that a packet gets killed by spurious receptions
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of “old” packets. Note that there is no risk of uncontrolled
proliferation, as the age is incremented for every packet
transmission.
D. Packet Receiving and Sending

Algorithm 1 and Algorithm 2 show the functions imple-
mented when receiving and sending a packet. For brevity,
error case handling is not shown. At line 7 of Algorithm 1,
packet.TTL is the value read in the TTL field of the IP
header in the received packet. In line 2 of Algorithm 2,
bage c is the largest integer≤ age . The resulting TTL value
is necessarily ≤maxTTL, as a packet is killed when its age
reaches maxTTL+1 (Section II-C).

Algorithm 1 Receiving a Packet
1: if clone was seen before but is not in epidemic buffer then
2: discard packet
3: leave
4: else if clone seen for first time then
5: pass packet to application
6: rcvCount ← 0 . initializations
7: age ← maxTTL− packet.TTL
8: else if this packet belongs to a clone present in epidemic buffer then

. check if send confirmation is pending
. (Section II-E)

9: if pendingSendConfirmation ==true then
10: confirmSending(this packet)
11: end if
12: end if
13: rcvCount ← rcvCount + 1
14: age ← age + K0

15: update age of all packets (real time age, Section II-C)
16: if age ≥ maxTTL+ 1 then discard packet
17: else
18: update vRate (Section II-B)
19: earliestSendTime ← now+ 1

vRate
20: end if
21: function CONFIRMSENDING(packet p)

. called when we receive a copy of previously
. sent packet for which it was dubious whether

. anyone received it (Section II-E)
22: sendCount ← sendCount + 1
23: age ← age + K0

24: update vRate (Section II-B)
25: earliestSendTime ← now+ 1

vRate
26: pendingSendConfirmation ←false
27: end function

E. MAC Layer Issues

We assume that nodes have a MAC layer capable of
receiving and sending packets in broadcast mode, at a rate
that depends on the network conditions (and is likely to be
much less than the peak transmission rate R0 used above). In
practice, if we use the IEEE 802.11 MAC broadcast, there is a
performance issue, as it does not use the RTS/CTS exchange
and collisions during transmission go undetected. To avoid
this issue, we use the pseudo-broadcast mode proposed in
[10], by which a packet is sent to the MAC address of a
neighbor (withRTS/CTS), but can be promiscuously copied

Algorithm 2 Sending a Packet
1: when scheduler decides to send this packet
2: set packet’s TTL field in IP header to maxTTL−bage c
3: submit packet to MAC layer and wait for return code from MAC layer
4: if return code==“packet was sent in pseudo-broadcast mode, or in

broadcast with presence indicator” (Section II-E) then
5: sendCount ← sendCount + 1
6: age ← age + K0

7: update vRate (Section II-B)
8: pendingSendConfirmation ←false
9: else if return code==“packet was sent in broadcast mode without

presence indicator” then
10: pendingSendConfirmation ←true
11: end if
12: earliestSendTime ← now+ 1

vRate
13: update age of all packets (real time age Section II-C)

by all systems within range. This effectively solves much
of the performance issue, but may not always be applicable
to our case, since we do not want nodes to spend time
discovering their neighbors’ MAC addresses.

Therefore, we use the following method. The MAC layer
has a node global MAC state information that says whether
the next packet will be sent in pseudo-broadcast, and if so, to
which MAC address, or in broadcast mode. The destination
MAC address in the pseudo-broadcast mode is the source
MAC address of the last received packet.

As soon as the node receives one packet, the MAC state
is set to pseudo-broadcast. The next packet is thus sent with
an RTS. If no CTS is received in response, the MAC layer
backs off for a random time (this is the standard operation of
802.11). If during the back-off time a packet is received, the
packet is retransmitted (after expiration of the back-off timer)
in pseudo-broadcast mode to the MAC address of the newly
received packet. Else the MAC state moves to broadcast, and
the packet is re-transmitted in broadcast mode.

There remains an issue, however, as a node does not know
if a sent packet was received; this might become a problem in
the desert highway scenario, where a node would repeatedly
send a packet in the vacuum, until it ages out.

To avoid this, we use two heuristics when sending in
broadcast mode: (1) indication of neighbor presence, and
(2) implicit acknowledgment by reception of duplicate. (1)
consists in building a function around the MAC layer that
says whether, shortly before or after a packet transmis-
sion in broadcast mode, the carrier is sensed busy (line
4 of Algorithm 2) or not (line 9). If a packet is sent
in the former case, or in pseudo-broadcast mode (some
neighbors are around) then sendCount is incremented and
pendingSendConfirmation is set to false. Of course,
there is no guarantee that a packets sent in these circum-
stances is actually received by any one, but the rules for
rate adaptation will make it likely for this packet to be
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retransmitted soon if no duplicate is received (in such a
case vRate remains large). If in contrast a packet is sent in
the latter case (presumably because there is no one around)
the flag pendingSendConfirmation is set to true for this
packet, and the packet is rescheduled at a later date with the
same vRate . If a packet of the same clone is received while
pendingSendConfirmation is true, the pending transmis-
sion is considered successful (lines 9 and 21 of Algorithm 1).
The condition pendingSendConfirmation == true can
be terminated either by reception of a duplicate or by a
subsequent transmission that returns an indication of presence
or is in pseudo-broadcast mode.
F. Scheduling of Packet Transmission

The packet scheduler decides which packet in the epidemic
buffer is selected for transmission, i.e. for being passed to the
MAC layer.

In order to ensure some level of fairness, the scheduler
serves packets per source IP address, using a processor shar-
ing approach. Furthermore, every packet should be served
at a rate not exceeding its vRate (the vRate of a packet
should be the rate at which it would be transmitted if it were
the only one in the epidemic buffer –this is to avoid flooding
the network at high rate if little new information is available).
Note that the vRate of a packet may change with time. Last,
the source at this node (the “self” source) should receive
some minimum rate. Thus the scheduler should be similar
to a practical implementation of weighted fair queuing , but
with special requirements. We use the following method.

Packets with the same source IP address are linked in
one FIFO per source. Each of these FIFOs has an attribute
sourceClaim , which keeps track of how much this source
can claim to be scheduled. It is initially 0 and is decremented
by 1 when this source is selected for transmission by the
scheduler. It is incremented by the scheduler as explained
below.

Every packet in the epidemic buffer has a derived at-
tribute earliestSendTime , equal to the last time at which
the vRate of this packet was modified, plus 1

vRate . At
any time t, a packet is said to be “eligible” if it has
earliestSendTime ≤ t. The scheduler works as shown
in Algorithm 3.

Algorithm 3 Scheduler Algorithm
1: when scheduler is ready to select a packet

. send(packet) function to MAC has returned
2: for all FIFO j do
3: sourceClaim (j)← sourceClaim (j) + 1

N

. N : number of FIFOs
4: end for
5: select the first FIFO j0 by decreasing order of sourceClaim that

has an eligible packet
6: decrement sourceClaim (j0) by 1

The scheduler issues a blocking send function to the MAC
layer that returns whenever the packet is accepted by the
MAC layer.

It can be seen that this algorithm allocates the transmission
opportunities according to a water-filling algorithm, thus, it
approximates an ideal fluid scheduler that would allocate
rates to sources in a max-min fair way, subject to the
constraint that the rate of a source does not exceed the sum
of the vRates of the packets of this source.
G. Control of Injection of Fresh Packets

The packets generated by the node are injected in the
epidemic buffer using a credit system that we now describe.
The goal is to adapt the application rate to the traffic rate that
the scheduler is able to allocate to self packets (Section II-F),
while guaranteeing space for σ self packets in the epidemic
buffer.

The self source has a credit counter CR initially equal to σ.
A self packet from the application is accepted in the epidemic
buffer if CR > 0. CR is decremented by 1 for every self
packet injected in the epidemic buffer, and incremented by 1
when a self packet is removed from the epidemic buffer.

When the application has a packet to insert and CR == 0,
we test if a self packet can be killed. A self packet can be
killed if rcvCount ≥ 1. If at least one self packet can
be killed, the packet with the largest age is chosen and
removed from the epidemic buffer. Thus, the application is
allowed to inject a fresh packet for every old packet for
which a duplicate is received (we treat this as an implicit
acknowledgement).

It may happen that the application is allowed to issue a
fresh packet by this rule, but the epidemic buffer is full (due
to non-self packets). In such cases, the non self-packet with
the largest age is removed from the epidemic buffer.
H. Miscellaneous Issues

Space for new packets in the epidemic buffer is freed by
the aging mechanism (Section II-C) and possibly by insertion
of self packets (Section II-G). For nodes with very limited
buffer size, this may not be sufficient. If an arriving packets
requires space to be freed, the non-self packet with the largest
age is deleted.

The source address used to identify a clone is the IP
source; SLEF packets are sent to an IP multicast address
reserved for SLEF. We assume that SLEF packets also
contain an identification field, incremented by a source for
every fresh packet it generates. The field should be large
enough to avoid that two different clones have the same
identification.

The epidemic buffer needs to keep track of clones that
were seen before but may not be present anymore. In the
current implementation we simply keep a record of all clone
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identifiers (IP address + packet identifier) for a duration equal
to the maximum packet lifetime (i.e. maxTTL+1

γ
). A more

efficient implementation would be a Bloom filter.

III. DESIGN ANALYSIS

In this section we analyze the design of SLEF by an
ordinary differential equation method. The goal is to obtain a
first, approximate sizing of system parameters. As mentioned
in the introduction, a detailed evaluation is done using an
implementation in Java and simulations.
A. Derivation of an ODE model

ODE models are often used to study epidemic systems.
They are usually derived from a simple inspection of the
system. In our case, there are many state variables (the state
of the counters associated with the messages at all nodes)
and the inspection method seems difficult. We use instead a
formal method, which consists in deriving the set of ODEs
from a microscopic description of the system, expressed as
a continuous time Markov process.

The starting point is the following well known result.
Theorem 1 (Forward Equation [18]): Consider a continu-

ous time Markov Chain S(t) defined over a finite state space
S . For any function f(s) of the state:

∂
� ˘

f(S(t))
¯

∂t
=

� ˘X
r

hr(S(t)) (f(S(t) + ∆r)− f(S(t)))
¯

where the summation is over all possible state transitions r,
hr(s) is the rate of transition r when the state vector is s;
s + ∆r is a symbolic notation for the state after transition r
has occurred.
The term

∑

r hr(S(t))(f(S(t) + ∆r) − f(S(t))) is called
the drift of function f . When applied to f() = the indicator
function of the singleton set {s0}, the forward equation gives
the well known equation for the time dependent probability of
being in state s0, which is often called the “master equation”.

The ODE is then obtained by applying the forward equa-
tion to appropriate functions f() of the state, and making the
approximation that the right hand-side can be approximated
by

X

r

� ˘
hr(S(t))

¯ ` � ˘
f(S(t) + ∆r)

¯

−
� ˘

f(S(t))
¯´

(1)

We model a network of N node i ∈ {1, . . . , N} and M
messages k ∈ {1, . . . , M} as a continuous time Markov
chain with state vector s given by the collection for i, k
of sik = (Xik, Nik, Mik, Aik). Here Xik is a boolean equal
to 1 if message k is present at node i, Nik is the variable
recvCount, i.e. the number of time a copy of the message
k has been received by node i; Mik is the sendCount for
message k at node i; Aik is the age of the message (assumed
to be quantized in a finite set).

We are in this subsection interested in the transient be-
haviour (see Section III-C for a stationary behaviour), and
assume that all messages to be transmitted are initially
present at their source nodes. The source of message k is
set to node i by letting (Xik(0) = 1, Mik(0) = 0, Nik(0) =
0, Aik(0) = 0.

We apply the forward equation to the collection of cases
where f() is a coordinate of the state (such as f(s) = Nik

for example) and obtain the following set of equations. We
use the notation X̄ik = �

{

Xik

}

, N̄ik = �
{

Nik

}

, M̄ik =
�

{

Mik

}

, Āik = �
{

Aik

}

(note that X̄ik(t) = �
{

Xik(t)
}

is
simply the probability that message k is present at node k at
time t):

∂X̄ik(t)

∂t
= (1− X̄ik(t))

X

j∈Ni(t)

R
i
jk(t)(1− D̄jk(t))X̄jk(t) (2)

∂N̄ik(t)

∂t
=

X

j∈Ni(t)

R
i
jk(t)(1− D̄jk(t))X̄jk(t) (3)

∂M̄ik(t)

∂t
= Rik(t)(1− D̄ik(t))X̄ik(t) (4)

∂Āik(t)

∂t
= (1− X̄ik(t))

X

j∈Ni(t)

R
i
jk(t)(Ājk(t) + K0)+

X̄ik(t)

0

@K1

M
X

k=1

X

j∈Ni(t)

R
i
jk(t)X̄jk(t)(1− D̄jk(t))D̄ik(t)

1

A (5)

In the equations we used the notation D̄ik =
�

{ �
{

Aik≥maxTTL+1
}

}

(probabilities that message i was
received is dead at node k). We also used the variables Rik(t)
(rate of emission of message k by node i) and Rj

ik(t) (rate
at which message i is transmitted by node k and received
by node j). These rates depend on specific MAC layer
assumptions and are explained in detail in Section III-B.
Also, we ignore the real time age constant γ as it its impact
and dimensioning can be simple reasoning about maximum
lifetime. The constants K0 and K1 are aging coefficients as
defined in Section II; Ni(t) is the neighbourhood of node i,
defined by the transmission and interference ranges (assumed
in this analysis section to be identical).

For the variables D̄ik we use the approximation
D̄ik(t) = � ˘

Āik≥maxTTL+1
¯ (6)

We solve the system of ODEs using the Runge-Kutta method
implemented in matlab.
B. Rate Function

The rate of transmission of message k by node i (Rk
i )

results from three effects : the virtual rate vRate
k
i , the

scheduling mechanism implemented in the node and the
MAC layer used. The virtual rate is defined as vRate

k
i (t) =

R0a
Nk

jk(t)bMk
j (t). The scheduler effect can be captured by the

tentative sending rate Rk∗
i (t) of message k at node i:
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R
k∗
i (t) = min

 

vRate
k
i , R0

vRate
k
i

P

l∈Mi
vRate

l
i

!

where Mi is the set of messages in node i that are still
alive. The transmission and reception rates are related to the
overall transmission rate in the neighborhood of the receiver
by :

R
k
i (t) = R

k∗
i (t)g1

0

@

X

i′∈Ni(t), l∈Mi′

R
l∗
i′

1

A

R
k
ij(t) = R

k
i g2

0

@

X

j′∈Nj(t), l∈Mj′

R
l∗
j′

1

A

where the precise forms of the decreasing functions g1() and
g2() depend on the MAC layer used. As we are assuming here
an IEEE 802.11 MAC layer, we could use the approximation
the broadcast mode of IEEE 802.11 protocol as a p-persistent
CSMA mechanism proposed in [2].

The difference between the IEEE 802.11 protocol and the
p-persistent resides in the selection of the back-off interval
after a collision. Instead of binary exponential back-off as in
IEEE 802.11, the p-persistent approach samples its back-off
interval size from a geometric distribution with parameter
p. Probability p depends on the mean size of contention
window. In [2] a formula for ρ, the capacity of an IEEE
802.11 network, as a function of p (persistence probability),
the number of nodes M in the environment and message size
is derived (formula 8 in [2]). This formula is validated with
simulations and shown to be a good approximation of the real
behavior of IEEE 802.11. Moreover a procedure is presented
in the same reference to derive the value of the p parameter as
a function of the number of sources and a formula is provided
for the probability of collision � rob

{

coll
}

(in lemma 3) as
a function of M and p(M). Using these results we take for
g1 and g2 :

g1(x) =
g2(x)

1− � rob
˘

coll
¯ , g2(x) = min{1,

ρ(p, M)

x
}

C. Steady state analysis

So far we can compute the transient behaviour of epidemic
forwarding, using (2) to (5). In this subsection we extend the
method to account for stationary behaviour, with sources that
emit packets according to Poisson processes each of rate λ.

It is difficult to do an exact model, as we need to keep track
of all packets previously transmitted by all sources. Therefore
we use the following heuristic. We represent any source of
rate λ as a collection of H virtual, parallel mini-sources,
each with rate λ

H
. We then consider the virtual system such

that, when any of the H mini-sources emits a packet, all
previous packets of this mini-source are instantly discarded
from all nodes in the network. This is clearly an ideal system;
however, if the original system is stable and H is large, the

virtual system should be close to the real one, since packets
have a finite lifetime. A criterion for determining if H is
large enough is when increasing H does not modify the
performance.

In this model, the message index k now takes the form
k = (i′, h) where i′ the index of the source node and 1 ≤
h ≤ H the index of the mini-source at i′ that generated this
message. The ODEs are obtained in the same way as before,
with an additional term that accounts for transitions resulting
from message generation. We obtain, for k = (i′, h), i′ 6= i:

∂X̄ik(t)

∂t
=

(1− X̄ik(t))
X

j∈Ni(t)

R
i
jk(t)(1− D̄jk(t))X̄jk(t)−

λ

H
X̄ik(t)

∂N̄ik(t)

∂t
=

X

j∈Ni(t)

R
i
jk(t)(1− D̄jk(t))X̄jk(t)−

λ

H
N̄ik(t)

∂M̄ik(t)

∂t
= Rik(t)(1− D̄ik(t))X̄ik(t)−

λ

H
M̄ik(t)

∂Āik(t)

∂t
= (1− X̄ik(t))

X

j∈Ni(t)

R
i
jk(t)(Ājk(t) + K0)+

X̄ik(t)

0

@K1

M
X

k=1

X

j∈Ni(t)

R
i
jk(t)X̄jk(t)(1− D̄jk(t))D̄ik(t)

1

A

−
λ

H
Āik(t)

For i′ = i the equations are the same except the first which
is replaced by X̄ik(t) = 1 for all t. We are interested in
the steady state, which we conjecture must exist because
we have made the system stable (by the heuristic of mini-
sources, the counters are reset at a rate λ

H
). Thus we equate

the left-handside to 0 and obtain a system of equations (not
shown here due to lack of space) for quantities such as
X̄∗

i,(i′,h) = limt→∞ X̄i,(i′,h)(t) . We solve this system numer-
ically (by iteration, it is a fixed point problem) and increase
H until the aggregate variables

∑H
h=1 X̄∗

i,(i′,h) (number of
messages emitted by source i′ present at node i) do not
vary significantly. Note that all variables such as X̄∗

i,(i′,h) are
independent of h (this is true in steady state, not otherwise),
so the complexity of the numerical solution is independent
of H .

IV. SIMULATION AND VALIDATION

We present in this section two scenarios to evaluate SLEF:
A campus scenario and a vehicular scenario. Both scenarios
are based on a Bulletin Board Network (BBN) application.
Through these scenarios, we deal with different network
conditions: Dense, sparse, congested and not congested. The
evaluation is done through two methods: ODE analysis and
an implementation of SLEF in JIST/SWANS [1] simulator.
ODEs are solved in Matlab using the Runge-Kutta method.
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By comparing the results of the two methods we also validate
the ODE approach.
A. Campus Scenario

We assume that a set of 50 non-mobile users are uniformly
distributed over a 100×100 m2 campus. With an IEEE802.11
reception range of 50 m (indoor reception range of WIFI),
this makes each node connected in average to 25 other nodes.

1) Transient Analysis: We assume that only 10 messages
are sent by different users and they should be received by
as many users as possible. In this context we could use
the ODEs approach to predict the transient behavior of this
system. After solving the set of 50 × 10 × 5 differential
equations (Eqs. (2)-(5)), we show in Fig. 1 the transient
behavior of 20 arbitrary nodes out of the 50 nodes. This figure
shows the delay of information spread as well as the lifetime
of a packet. By changing the value of a and b and solving the
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Fig. 1. Transient behavior of the campus scenario for 20 arbitrary nodes
out of the 50 nodes. 10 nodes are sending a single message and a = b =
0.15, K1 = 0.1, K0 = 20, γ = 32 hour−1

corresponding system of ODEs, one can obtain the transient
and observe that the reception delay decreases with larger
value of a and b as the transmission rate are increasing but
this is achieved at the cost of larger number of sent clones. To
have a broader perspective, for the same scenario (50 users
in a campus) we have fixed the value of K1 and K0, and we
have done a scan over the a and b values space. We compare
in Fig. 2 the results obtained after the simulation of SLEF
during 60 sec in the JIST/SWANS environment with what
has been predicted by ODE. We first see for most values
of a and b, a good adequacy of the ODE prediction with
the results obtained from simulation. The main differences
occurs for small and large values of a and b. The difference
for small values of a and b could be explained by the fact
that the ODE analysis is based on the assumption that a large
number of events occurs in the network. Thus, when a and
b are small the number of events occurring in the network
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Fig. 2. Results of the browse of the a and b value space while fixing
K1 = 0.1, K0 = 20. The left column contains results evaluated over
JIST/SWANS simulation of SLEF. The right column contains results
predicted by the ODE approach.

results in an imprecision of the ODE assumption. For large
values of a and b, the amount of injected packet into the
network goes higher and congestion builds up. For these
values, our approximation of the IEEE802.11 behavior by
the p-persistent is not tight and results in an overestimation
of the congestion effect. First of all, it could be seen that for
large enough values of a and b the mean number of nodes
receiving a message is almost insensitive to the values of a
and b. Increasing the values of a and b results in an increase
of the number of sent copies within the same clone as we can
see in the second row of Fig. 2. This means that increasing
a and b will increase the number of sent clone copies (the
number of received copies that is not shown here increases
accordingly) and decrease the reception delay of messages
without increasing the range of the diffusion.

Two points are of specific interest in this curve. First, the
point a = b = 1 describes a system that is not using the
inhibition mechanism and control the spread only through
the killing mechanism. This point results in a large number
of sendCount and a higher congestion without increasing
the transmission range.

Another point of interest is the point b = 0. This point
defines a system where any received packet is just forwarded
at most one time. In such conditions the message reach the
maximal range at a relatively low cost in term of sent packets.
However, we need b to be strictly positive to support mobility;
a node might move to another place where a packet is not sent
before and thus it forwards it again. The curves also suggest
a design heuristic for the SLEF system. The choice of a and
b is made by choosing a value of sendCount. This results
in a set of values a and b that achieves this sendCount.
Now, a and b are set to the values maximizing the range of
reception. Applying this heuristic, a good operating point is
a = b = 0.15, which leads to Ms = 27 (meaning 27 copies of
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Fig. 3. Effect of K1 and λ on the spread of messages in steady state for
a 50 nodes scenario with 10 sources. The inhibition parameters used are
a = b = 0.15

any clone are generated in the network). In the forthcoming,
unless otherwise stated, we set a and b to these values and
study the steady state behavior of the system.

2) Steady State Analysis: Now we assume that 10 nodes
out of the 50 nodes inject with a rate λ a continuous flow of
packets into the network. We will describe the steady state of
this system and analyze the effect of K1 coefficient as well
as λ on the transmission range and on the number of sent
clones. Intuitively, we expect that increasing λ will results
in a larger amount of traffic in the network and in higher
congestion and through the killing mechanism, the spread of
the message will be reduced and less nodes would receive
the messages. In the same direction, when we increase K1

we expect that the sensitivity of the killing mechanism to
packet density will increase and more packet will be killed,
resulting in a decrease of the spread of packets.

Fig. 3 shows these effects. The first row contains the
predicted range obtained through ODE analysis and compares
it with that obtained by JIST/SWANS simulations (with a
value of K1 = 0.1 and λ = 0.15 pkts/sec). It is noteworthy
that for all the obtained curves a value of h = 10 was used to
implement the heuristic developed to extend the transient be-
havior to the steady state. We see that JIST/SWANS predicts
a larger range than the ODE analysis. This is because the
SLEF implementation contains also a injection rate control
mechanism that is not modeled by the ODEs. The second row
in Fig. 3 shows the predicted results for the spread factor Ms.
The spread factor describes the mean number of sent packets
resulting from the transmission of each single new packet by
any of the sources. The comparison of the ODE prediction
with the value observed through implementation shows also a
difference. This could be mainly explained through the same
arguments as above. As the spread of clones is larger in the
real implementation, the amount of sent packet whithin the
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Fig. 4. Vehicular BBN scenario: Cars are on a highway with 2 lanes in
each direction. a = b = 0.15, K0 = 20, K1 = 0.1 and σ = 2

same clone will also be larger. Nevertheless, we could see in
the left column of graphs for large value of λ the slope of
decrease of the range as well as the spread factor are captured
well by the ODE analysis even if the predicted value are not
completely accurate. This means that, qualitatively, the ODE
analysis is correct.
B. Vehicular BBN

As a last scenario, we now illustrate the performance
of SLEF in a BBN application running over a vehicular
network. We consider that cars are in a two ways on a 4
lanes highway with different car densities. Cars are mobile
and their speed is related to the car density according to
the ”speed-density model” by Green shield, which is largely
used in transportation engineering [6]. Cars are equipped
with WIFI transceivers to communicate with each other.
The transmission range is set to 250 m (outdoor WIFI
transmission range). We consider that users are greedy, i.e.
they have always fresh packets to send. We let SLEF to
control the injection of information in the networks. For
this scenario, we have set the value of SLEF parameters to
a = b = 0.15, K0 = 20, K1 = 0.1 and σ = 2. We show two
sets of results: When all the cars are sources and when only
10 of them are sources and others are acting as SLEF relays.

Fig. 4 shows the results of this scenario. The spread
factor shows the efficiency of the killing mechanism; for
the situation where all cars are sources, the spread factor
is constant even when the density of transmitting node is
multiplied by 3. This is confirmed when we observe the
mean coverage of messages that show the mean distance
where a message is received by all cars. It could be seen that
increasing the density results in a lower coverage. This means
that the scheme is able to self-adapt its spread to the density
of nodes, i.e. to reduce its spread in high density situations as
in a traffic jam and to increase its spread up to the hop count
limit defined through K0 and the lifetime limit in sparse
situation as when one is driving through the Death valley.
This last point is also confirmed by observing the throughput
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measured in term of (bits × meter)/sec. The well-known
results for the capacity of Ad-hoc networks obtained in [7]
states that the capacity in (bits × meter)/sec of a wireless
network with arbitrary sources and destinations decreases as
1/sqrt(D) where D is the density of nodes. Here we see
that SLEF scheme attains a capacity that is constant. This
comes from the fact that, contrary to the capacity results
in [7], with increasing density SLEF reduces the spread of
packets to closer destinations. Therefore, one could expect
SLEF to be a scalable solution. Another curve of interest
is the mean buffer occupancy that is plotted in the lower
left part. Interestingly, it shows that even for the very high
density scenario there is no more than 70 different packets
in the epidemic buffer (around 100 Kbytes) and, with this
low number of packets in the buffer, coverage around 1 km
is achieved.

V. STATE OF THE ART

Epidemic forwarding has been an active area of research
during recent years. Most of the researchers in this area
have identified the fact that limiting the spread and /or
minimizing the redundancy are major challenges. Different
solutions to deal with these problems have been proposed.
In [16] the authors present a basic epidemic forwarding
scheme that uses a fixed and predetermined value of TTL
to limit the spread of diffusion. This scheme uses also
content negotiation prior to information diffusion to ensure
that redundant information is not sent. In comparison, SLEF
proposes an adaptive spread control by combining TTL with
the aging mechanism. Thus, the spread is adapted with the
node density, mobility model and traffic load. Furthermore,
SLEF avoids negotiation, which adds overhead and makes
communication point-to-point. SLEF makes the most of the
broadcast nature of the channel while maintaining a very
low level of redundancy. In [14] the forwarding factor is
reduced through defining localized dominating sets, which
will ensure that messages are broadcast only when the list of
neighbor that might need the message is not empty. However,
this scheme assumes that any node has knowledge of the
position of its neighboring nodes. In contrast, SLEF does
not need about any topology or position knowledge. In [8]
a probabilistic forwarding scheme named “Gossip-based” is
presented. This scheme forwards a received packet with a
fixed probability. In contrast, SLEF maintains an adaptive
forwarding factor control based on the vRate. In [17] a
broadcast mechanism is presented that use two neighborhood
coverage conditions to decide if a node should forward a
message. The neighborhood coverage conditions are based
on k-hop connectivity information that is hard to gather
in a mobile environment where SLEF would live. In [13],
“spray” based routing methods are proposed. During the
“spray” phase, L copies are forwarded to L distinct nodes

in a binary fashion. This mechanism is similar to a fixed
TTL with maxTTL = log2(L). “Spray” uses negotiation and
forwards packets in a point-to-point way. Also, it includes a
learning phase to adapt L to the network size but it does
not take into account the traffic load as we do through
aging. In [12], the authors propose an inhibition mechanism
that prevents a packet from being forwarded if a fixed
number of copy of this same packet have been received.
In [11] an epidemiological model is applied to the study
of a simple information diffusion mechanism. The approach
followed in [11] is close to ours. However, we present a more
methodological derivation of the ODEs that could be easily
extended to other scenarios, where the approach followed in
[11] is a direct fitting of an epidemiological model to a simple
single source problem. In [19], an ODE based model was
proposed for already existing epidemic forwarding methods.
Although the basis of this model is similar to ours, our
work is different in that (1) we propose a new complete
epidemic method that includes new essential components
such as spread control, and (2) these new components make
our model more general.

VI. CONCLUSION

We presented a Self Limiting Epidemic Forwarding
scheme, based on an inhibition mechanism to minimize
redundancy, an aging mechanism to control the spread by
adapting the number of copies of packets in the network
and a injection-control mechanism to ensure that a source
will not flood the network. We presented an analytical
description of the proposed scheme using an ODE approach.
The presented approach could be easily extended to other
forwarding schemes and seems to be a promising modeling
approach. Thereafter, we evaluated SLEF in two different
scenarios and we show that SLEF could achieve its goals
in both contexts. The obtained results validate SLEF as a
good proposal for wide range of network settings (e.g. sparse,
dense and different traffic loads). Globally this work opens
a lot of perspective that might open new interesting research
questions. In particular integration of mechanism such as
content negotiation could improve the performance of SLEF.
These points are also left to future study.

REFERENCES

[1] Java in simulation time / scalable wireless ad hoc network simulator
, jist/swans, http://jist.ece.cornell.edu/.

[2] F. Cali, M. Conti, and E. Gregori. Dynamic tuning of the ieee 802.11
protocol to achieve a theoretical throughput limit. IEEE/ACM Trans.
Netw., 8(6):785–799, 2000.

[3] C. Diot, J. Scott, E. Upton, and M. Liberatore. The Haggle architec-
ture. Technical Report IRC-TR-04-016, Intel Research Cambridge,
2004.

[4] M. Durvy and P. Thiran. Reaction-Diffusion Based Transmission
Patterns for Ad Hoc Networks. In Infocom, 2005.

[5] A. ElFawal, J. Leboudec, and S. K. A self limiting epidemic
forwarding. Technical Report LCA-REPORT-2006-126, EPFL, 2006.

10



[6] B. Greenshield. A study of traffic capacity. Highway Research Board
Proceedings, 14:448–477, 1935.

[7] P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE
Transactions on Information Theory, IT-46, March 2000.

[8] Z. J. Haas, J. Y. Halpern, and L. Li. Gossip-based ad hoc routing.
In IEEE Infocom, June 2002.

[9] P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft, and C. Diot.
Pocket Switched Networks and the Consequence of Human Mobility
in Conference Environments. In Proceedings of the SIGCOMM 2005
Workshop on Delay Tolerant Networking, 2005.

[10] S. Katti, D. Katabi, W. Hu, H. Rahul, and M. Medard. The
importance of being opportunistic: Practical network coding for
wireless environments. In Allerton conference, 2005.

[11] A. Khelil, C. Becker, J. Tian, and K. Rothermel. An epidemic model
for information diffusion in manets. In ACM, editor, Proceedings
of the 5th ACM international workshop on Modeling analysis and
simulation of wireless and mobile systems, pages 54–60, 2002.

[12] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu. The broadcast
storm problem in a mobile ad hoc network. In Mobicom, Seattle,
Washington, United States, August 15 - 19, 1999, pages 151–162.

[13] T. Spyropoulos, K. Psounis, and C. Raghavendra. Spray and wait:
An efficient routing scheme for intermittently connected mobile net-
works. In ACM SIGCOMM workshop on Delay Tolerant Networking
(WDTN-05).

[14] I. Stojmenovic, M. Seddigh, and J. Zunic. Dominating sets and neigh-
bor elimination-based broadcasting algorithms in wireless networks.
IEEE Transactions on Parallel and Distributed Systems, Jan. 2002.

[15] P. Tennent, M. Hall, B. Brown, M. Chalmers, and S. Sherwood. Three
applications for mobile epidemic algorithms. In MobileHCI ’05.

[16] A. Vahdat and D. Becker. Epidemic routing for partially connected
ad hoc networks. Technical report, Duke University, April 2000.

[17] J. Wu and F. Dai. Broadcasting in ad hoc networks based on self-
pruning. In IEEE Infocom, June 2003.
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