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Abstract
This thesis is a study of the spatial evolution of the sound field.

We first present an analysis of the sound field along different geometries.
In the case of the sound field studied along a line in a room, we describe a
two-dimensional function characterizing the sound field along space and time.
Calculating the Fourier transform of this function leads to a spectrum having
a butterfly shape. The spectrum is shown to be almost bandlimited along
the spatial frequency dimension, which allows the interpolation of the sound
field at any position along the line when a sufficient number of microphones
is present. Using this Fourier representation of the sound field, we develop
a spatial sampling theorem trading off quality of reconstruction with spatial
sampling frequency. The study is generalized for planes of microphones and
microphones located in three dimensions. The presented theory is compared
to simulations and real measurements of room impulse responses.

We describe a similar theory for circular arrays of microphones or loud-
speakers. Application of this theory is presented for the study of the angular
sampling of head-related transfer functions (HRTFs). As a result, we show that
to reconstruct HRTFs at any possible angle in the horizontal plane, an angular
spacing of 5 degrees is necessary for HRTFs sampled at 44.1 kHz. Because
recording that many HRTFs is not easy, we develop interpolation techniques
to achieve acceptable results for databases containing two or four times fewer
HRTFs. The technique is based on the decomposition of the HRTFs in their
carrier and complex envelopes.

With the Fourier representation of the sound field, it is then shown how
one can correctly obtain all room impulse responses measured along a trajec-
tory when using a moving loudspeaker or microphone. The presented method
permits the reconstruction of the room impulse responses at any position along
the trajectory, provided that the speed satisfies a given relation. The maximal
speed is shown to be dependent on the maximal frequency emitted and the
radius of the circle. This method takes into account the Doppler effect present
when one element is moving in the scenario. It is then shown that the mea-
surement of HRTFs in the horizontal plane can be achieved in less than one
second.

In the last part, we model spatio-temporal channel impulse responses be-
tween a fixed source and a moving receiver. The trajectory followed by the mov-
ing element is modeled as a continuous autoregressive process. The presented
model is simple and versatile. It allows the generation of random trajectories
with a controlled smoothness. Application of this study can be found in the
modeling of acoustic channels for acoustic echo cancellation or of time-varying
multipath electromagnetic channels used in mobile wireless communications.

Keywords: Plenacoustic function, plenoptic function, room impulse re-
sponses, spatial sound field sampling.
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Résumé

Cette thèse est une étude de l’évolution spatiale du champ sonore. Nous présentons
d’abord l’analyse du champs sonore le long de différentes géométries. Dans le cas de
l’étude du champ sonore le long d’une ligne dans une chambre, nous décrivons une
fonction bidimentionnelle caractérisant le champ sonore dans le temps et l’espace.
Calculer la transformée de Fourier de cette fonction mène à un spectre en forme de
papillon. Le spectre apparait tre bandlimité le long de la dimension de la fréquence
spatiale. Ceci permet l’interpolation du champ sonore à toute position le long de
la ligne lorsqu’un nombre suffisant de microphones est présent. Utilisant toujours la
représentation de Fourier du champ sonore, nous développons un théoreme d’échantil-
lonnage spatial présentant la qualité de reconstruction en fonction de la fréquence
d’échantillonnage spatial. L’étude estgénéralisée pour des microphones disposes suiv-
ant des plans ou en trois dimensions. La théorie présentée est comparée à des simu-
lations et mesures réelles de réponses impulsionnelles de chambre.

Nous décrivons une théorie semblable pour des microphones ou haut-parleurs
disposés en cercles. Une application de cette théorie est présentée pour l’étude
de l’échantillonnage angulaire des ”Head-Related Transfer Functions” (HRTFs). A
titre de résultat nous montrons qu’afin de reconstruire les HRTFs pour tout angle
du planhorizontal, un espace angulaire de 5 degrés est necessaire pour des HRTFs
échantillonnés à 44.1 kHz. Parce qu’enregistrer autant de HRTFs n’est pas une
tche aisée, nous développons des techniques d’interpolation en vue d’obtenir des
résultatsacceptables pour des bases de données contenant deux à quatre fois moins de
HRTFs. La technique est basée sur la décomposition des HRTFsdans leurs porteuses
et enveloppes complexes.

On montre alors qu’avec la représentation de Fourier du champ sonore, on peut
obtenir correctement toutes les réponses impulsionnelles de la chambre mesurées le
long d’une trajectoire lorsqu’on utilise un microphone ou haut-parleur mobile. La
méthode présentée permet la reconstruction des réponses impulsionnelles de la cham-
bre a n’importe quelle position le long de la trajectoire pourvu que la vitesse satisfasse
à une relation donnée. La vitesse maximale admissible dépend de la fréquence max-
imale du signal émis ainsi que du rayon du cercle considéré. Cette méthode prend
en compte l’effet Doppler présent lorsqu’un élément se meut dans le scénario. Il est
alors montré que la mesure des HRTFs dans le plan horizontal peut être accompli en
moins d’une seconde.

Dans la dernière partie de la thèse, nous modélisons des réponses impulsion-
nelles spatio-temporelles de canaux entre une source fixe et un receveur mobile. La
trajectoire est modélisée comme un processus autorégressif continu. Le modèle est
simple et versatile. Il permet de générer une trajectoire aléatoire avec une cour-
bure contrlée. L’application de cette étude peut tre trouvée dans la modélisation
de canaux acoustiques pour la suppression d’écho acoustique ou pour des canaux
électromagnétiquesvariant dans le temps utilisés dans les systèmes de communica-
tions sans fil mobiles.

Mots-clés: Fonction plenacoustique, fonction plenoptique, réponses impulsion-

nelles de chambre, échantillonnage spatial du champs sonore.
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Frequently Used Terms,

Abbreviations, and Notation

Terms and abbreviations

2D: two-dimensional;

2D-FT: two-dimensional Fourier transform;

3D: three-dimensional;

AR-N process: autoregressive process of order N ;

CIR: channel impulse response;

FT: Fourier transform;

FFT: fast implementation of the Fourier transform, denoted fast Fourier trans-

form (FFT).

Free-field: An open space with no physical objects from which sound is re-

flected.

HRIR: head-related impulse response, modeling transduction of sound from

a source to left and right ear entrances in free-field;

HRTF: head-related transfer function, Fourier transform of the HRIR;

ICC: inter-channel coherence;

ICLD: inter-channel level difference;

ICTD: inter-channel time difference;

MSE: mean squared error;

PAF: plenacoustic function;
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PSD: power spectral density;

RIR: room impulse response;

SNR: signal-to-noise ratio;

SPAF: stochastic plenacoustic function;

WFS: wave field synthesis;

Notation and variables

To study decay of functions, the following notations are used:

• f(x) ∼ g(x) means that lim
x→∞

f(x)

g(x)
= 1.

• f(x) ∈ O(g(x)) means that there exist positive constants c and k, such

that |f(x)| ≤ cg(x), ∀x ≥ k.

‖ · ‖ Euclidean norm;

b size of the subband when subband decomposition is used;

c speed of wave propagation. For acoustics, c ≈ 340 [m/s] and

in electromagnetism, c ≈ 3 · 108 [m/s];

f temporal frequency [Hz];

h(x, t) room impulse response along space (x-axis) and time;

h(θ, t) room impulse response or HRTF along angular (θ-axis) and time;

h(θ) time of arrival of the sound from the source to the receiver;

p(x, t) sound field along space (x-axis) and time;

q(x, t) windowed sound field along space (x-axis) and time;

t time [s];

v speed [m/s];

w(x, t) window function;

∆x distance between two consecutive samples (here in the x direction);

δ(t) Dirac delta function;

δk(t) Kronecker symbol;

φ spatial frequency [rad/m];

φS spatial sampling frequency [rad/m];

Ω elevation angle [degrees];

ω temporal frequency [rad/s];

θ azimuthal angle [degrees];
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lθ angular frequency or wave number in the θ direction;

lθS
angular sampling frequency or wave number in the θ direction;

τ time related to the spatial trajectory [s];

γ temporal frequency related to the spatial trajectory [rad/s];

Γ random trajectory;

ν relative speed;

σ standard deviation of a process;

Ei Exponential integral function;

Fx Fourier transform along the x direction;

H
(1,2)
i ith order Hankel function of the first or second kind;

I(t) input stochastic process; function of the time;

Ji Bessel function of order i;

Ki modified Bessel function of the second kind of order i;

O(τ, t) Output stochastic process; function of the τ and t;

RO(∆τ, ∆t) autocorrelation of the process O;

SO(γ, ω) power spectral density of the process O;

Fourier Transforms

Fourier transform (FT) The (continuous time) Fourier transform is defined

for continuous signals f(t) as

p̂(ω) =

∫ ∞

−∞
p(t)e−jωtdt.

Its inverse is called the inverse Fourier transform (IFT), and can be written as

p(t) =
1

2π

∫ ∞

−∞
p̂(ω)ejωtdω.

Fourier series (FS) The (continuous time) Fourier series is defined for peri-

odic, continuous signals p(t) with period T as

p̂(k) =
1

T

∫ T

0

p(t)e−j2πkt/T , k = −∞, ...,∞.

Its inverse is called the inverse Fourier series (IFS):

p(t) =
∞
∑

k=−∞
p̂(k)ej2πkt/T .

In this thesis, Fourier transforms are taken along different dimensions. It

is possible to define three different Fourier transforms of p(x, t). A scheme is
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shown to present the different possible Fourier transforms in Fig. 1(a).

p̃(x, ω) = Ft{p(x, t)}
p̆(φ, t) = Fx{p(x, t)}
p̂(φ, ω) = Fx{p̃(x, ω)} = Ft{p̆(φ, t)} = Fx,t{p(x, t)}.

Similarly, different Fourier transforms for the autocorrelation function RO(∆τ, ∆t)

can be defined as shown in Fig. 1(b).

R̃O(∆τ, ω) = F∆t{RO(∆τ, ∆t)}
R̆O(γ, ∆t) = F∆τ{RO(∆τ, ∆t)}

SO(γ, ω) = F∆τ{R̃O(∆τ, ω)} = F∆t{R̆O(γ, ∆t)} = F∆τ,∆t{RO(∆τ, ∆t)}.

p(x, t) p̂(φ, ω)

p̃(x, ω)

p̆(φ, t)

Fx Ft

Fx,t

Ft Fx

(a)

RO(∆τ, ∆t) SO(γ, ω)

R̃O(∆τ, ω)

R̆O(γ,∆t)

F∆t

F∆τ

F∆τ,∆t

F∆t

F∆τ

(b)

Figure 1: Different Fourier transforms for (a) the two-dimensional signal p(x, t);
(b) the two-dimensional autocorrelation of the stochastic process O(τ, t).



Chapter 1

Introduction

1.1 Thesis Motivation

With the emergence of increasingly powerful computers and high-capacity chan-

nels, the processing of multiple audio channels has become more and more

accessible. The simultaneous recording of hundreds of channels is becoming

nowadays possible using a simple laptop and a multichannel sound card. These

technological advances have created a large amount of new possible techniques

in such fields as communications, speech processing, source separation and lo-

calization.

Edison and his tinfoil phonograph were the first to record voice in 1877,

while stereo recording was patented in 1931 by Blumlein. Since then many

new techniques involving stereo have been developed for the recording or play-

back of audio, but the emergence of multichannel recording and reproduction

techniques is quite recent. Dolby introduced its 5.1 system in 1992 and since

then new techniques involving more and more channels have been explored. In

2004, the largest microphone array was built at MIT using 1020 microphones.

This increase in the number of channels in new audio systems represents a great

news for signal processors but also new challenges due to the quantity of data

to process and the demand for ever increasing performance systems.

Two of the most basic questions that one can ask when using a large number

of microphones in a room are the following: “Assume you are in a concert hall,

and you want to faithfully describe the sound pressure field at any location

in the hall. If you record the acoustic event with an array of microphones,

how many do you need to be able to reproduce the sound pressure field at

any point?” or “Conversely, assume a virtual acoustical environment, where

sources are moving, while the sound pressure is measured in a particular spot.

How finely do you need to simulate the acoustic impulse responses to be able

1



2 Chapter 1.

to place the source at any location?”

These questions are at the basis of the work undertaken in this thesis and

their answers, as well as related ones, are developed in the course of the different

chapters of this work. All the elements necessary to answer these questions lie in

the spatio-temporal acoustic pressure field and its properties. We have decided

to call this field the plenacoustic function in reference to the plenoptic function

introduced by Adelson and Bergen [4]. In the rest of this introduction chapter,

we present in more detail the plenacoustic function (PAF) and compare it with

the plenoptic function. Further, an outline of the thesis is given along with the

contributions of each chapter.

1.2 The Plenacoustic Function

The name “plenacoustic function” has been mentioned for the first time in [71].

The first analysis of the function has been presented in [9,11,10]. This name has

been given by reference to the plenoptic function. Remark that the choice of

the names “plenacoustic” and “plenoptic” functions present mixing Greek and

Latin roots. The Latin expressions would be the “plenaudio” and “plenvideo”

functions while the Greek expressions would be the “panacoustic” and panop-

tic” functions. Since the name of the “plenoptic” function was already chosen

by Adelson and Bergen [4], we followed with a similar etymological barbarism.

As a first step to define the PAF, let us introduce the plenoptic function. It

is a seven dimensional function, f(x, y, z, θ, α, λ, t) which describes the intensity

of the light field seen at location (x, y, z) when looking in direction (θ, α), at

wavelength λ and time t as described in Fig. 1.1(a). Remark that in this case,

one can define a very precise direction (θ, α) of arrival of a light ray. This is

due to the very small wavelength of light (on the order of 100 nm). Therefore,

it is possible to build devices measuring a good approximation of the plenoptic

function. In the acoustical case, the wavelengths are 106 time larger. This

makes it unfeasible in practice to construct a device that would measure the

sound pressure at any arbitrary position and the component of its gradient due

to a source originating from a very precise direction.

Both the plenoptic function and the PAF are related to the wave equation.

In the case of light, a camera is sensitive to the intensity of the radiation

while the phase information is lost. On the other hand, a camera can be very

directional since a lens is focalizing the image on the sensor. This explains the

choice of the definition of the plenoptic function. Remark that the plenoptic

function does not correspond to the complete solution of the wave equation but

simply to what can be sensed by the eye or a camera. In the case of acoustic

waves, the solution of the wave equation is the pressure in every point of the
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Figure 1.1: Schemes for the (a) plenoptic function; (b) plenacoustic function.

space. Since the human ear, and microphones are sensitive to this quantity,

we present the acoustic analogy of the plenoptic function, i.e. the PAF, as the

sound pressure field.

Taking into account these physical differences existing between the optical

and the acoustical case, we define the PAF as follows.

Definition 1.2.1. The plenacoustic function denoted as p(x, y, z, t) is the sound

pressure recorded at location (x, y, z) and time t given one or multiple acoustic

events.

This definition is illustrated in Fig. 1.1(b). Note that from the knowledge

of the sound pressure in every point of the three dimensions, one can calculate

variations of pressure in all directions and obtain the particle velocity vector

for every point using Euler’s equation [85]

ρ0
∂vn(x, y, z, t)

∂t
= −∂p(x, y, z, t)

∂n
, (1.1)

where vn stands for the particle velocity in the direction n and ρ0 for the

medium density. Therefore, from this information, one can transform the om-

nidirectional PAF into a directional PAF. This is achievable since the PAF

represents the complete solution of the wave equation. Remark that the veloc-

ity particle can only be derived along all directions when the PAF is known in

the three spatial dimensions. In a practical case, one would measure the PAF

along a line. The knowledge of the particle velocity as well as the directionality

would then only be partial.

As defined previously, the PAF is the solution of the scalar acoustic wave
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equation given by:

∇2p(x, y, z, t) − 1

c2

∂2p(x, y, z, t)

∂t2
= s(x, y, z, t), (1.2)

where c represents the speed of sound propagation and s(x, y, z, t) represents

a distribution of sources located in space. The wave equation and its solution

will be discussed in detail in Section 2.2. Often, one is concerned with the case

of a single point source. Namely, for a given source s, we denote the room

impulse response (RIR) at location (x, y, z) by h(x, y, z, t), and if the source

generates a signal s(t), the PAF is

p(x, y, z, t) =

∫ ∞

−∞
s(τ)h(x, y, z, t − τ)dτ. (1.3)

When the emitted sound is a Dirac pulse, the PAF becomes simply the spatio-

temporal RIR. The PAF is then called the Green’s function [85] as will be

described in Section 2.2. Assuming that our system is linear and time invariant,

we consider the presence of multiple sources as the superposition of single

sources. The sound pressure field can then be regarded as the sum of all point

sources convolved with their spatio-temporal RIR.

From the point of view of the physicist, the PAF is simply the solution of

the wave equation with appropriate boundary conditions, and a given driving

function. From the point of view of the numerical analyst, the system would be

very complex for any reasonable room, even for very simple cases. For the signal

processor, acoustic RIRs have been studied, measured and simulated for many

scenarios, and it is thus natural to study the PAF globally. A natural question

for a signal processor is of course the sampling question: is there a discrete

set of points in time and space from which the full PAF can be reconstructed?

The equivalent question for the plenoptic function was posed and solved by

Chai et al. [30] with further results from Zhang et al. [115, 116]. For the time

dimension, bandlimited sources are assumed to allow sampling in time. The

more interesting question is of course sampling in space, which directly relates

to the number of microphones necessary to acquire the PAF. This question, as

well as related ones, are discussed in the different chapters of this thesis.

1.3 Thesis Outline and Contributions

In this thesis, we present the plenacoustic function as a means for studying

and developing different aspects related to the sampling of the sound field.

Effort was made to always keep a balance between the theoretical parts of the

work and the more experimental side of the research. As a result, next to the
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development of sampling theorems and the derivation of difficult integrals, we

also present experimental measurements to validate each theoretical result.

Chapter 2 describes some works related to the general topic of this thesis.

Therefore, as the plenacoustic function is nothing else than the solution of the

wave equation, this equation is presented and discussed. Its solution is studied

and the Green’s function for the wave equation in two and three dimensions is

explored. As the solution of the wave equation is only achievable analytically

in very few cases, models are presented for its solution in different contexts.

First, room impulse responses are discussed and modeled according to differ-

ent methods. Further, head-related transfer functions are described in detail.

These are filters describing the effect of the shape of the head, torso and pin-

nae on the sound arriving at the entrance of the ear. They are widely used in

headphone playback systems to achieve more realism. Then, electromagnetic

channel impulse responses, satisfying the same wave equation (only with a dif-

ferent propagation speed), are discussed and different models are presented.

Finally, as an application of array processing, wave field synthesis is presented.

This technique aims at reproducing the sound field as accurately as possible us-

ing loudspeaker arrays. Even if this method is not directly used further in this

thesis, different concepts described in its study are mentioned in the different

chapters of the thesis.

Chapter 3 studies the plenacoustic function along different geometries such

as a line, a plane and the three dimensional space filled with microphones.

These plenacoustic functions are represented using their multi-dimensional

Fourier spectrum. This representation is very suitable to observe and describe

aliasing components appearing when sampling the sound field. A contribution

of this chapter is to show that the support of the spatio-temporal spectrum

of the plenacoustic function along a line has a butterfly shape and that the

energy decays exponentially outside of this essential support. Using this result,

we present a spatial sampling theorem describing the quality of reconstruc-

tion of the sound field as a function of the spatial sampling frequency. This

is obtained without making any far field assumptions as usually done in the

literature. Interpolation of the sound field is then discussed and simulation re-

sults are presented together with experimental measurements of room impulse

responses in the acoustic and electromagnetic case.

In Chapter 4, the plenacoustic function and its sampling are studied for

circular arrays of microphones. A first contribution is to present an angular

sampling theorem describing the quality of reconstruction of the sound field

in function of the angular sampling frequency. Further, the dual problem

considering one microphone and different loudspeakers located on a circle is

explored. This arrangement corresponds to the typical head-related transfer
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function (HRTF) measurement setup. As application of the presented angular

sampling theorem, sampling and interpolation of HRTFs is discussed. As the

number of HRTFs required by the angular sampling theorem is often large,

another interpolation technique is developed to achieve good results when the

angular spacing is undersampled by a factor of two or four. The contribution

of this second part of Chapter 4 is to present a new technique of HRTFs in-

terpolation achieving better results than previous existing methods in a mean

squared sense.

An interesting application of Chapters 3 and 4 is described in Chapter 5.

There, using a continuously moving receiver or source, a novel technique is

described that reconstructs the room impulse responses at any position along

the followed trajectory. The method has been implemented on a real system

using a motorized microphone holder and the results confirm the presented the-

ory. This technique appears to be very useful for the measurement of HRTFs.

All HRTFs in the horizontal plane can be measured in less than one second.

This fast method makes the use of individualized HRTFs for headphone play-

back easier to achieve since measurement of our own HRTFs becomes less time

consuming.

The plenacoustic function is described in Chapter 6 for smooth stochastic

trajectories. A contribution of the chapter is to develop a versatile model al-

lowing the creation of trajectories with controlled smoothness. This is achieved

by using continuous autoregressive processes. The control on the smoothness

allows the generation of a large variety of realistic trajectories such as mov-

ing persons or driving cars. The stochastic plenacoustic function describes

the sound field at each of the positions along the generated trajectories. The

autocorrelation function and the power spectral density of the stochastic ple-

nacoustic function are studied and closed form solutions are given for specific

cases. As the main contribution of the chapter, we show that the power spec-

tral density of the stochastic plenacoustic function has a butterfly shape and

that the opening of the butterfly shape is modified by varying the smoothness

of the followed trajectory. Experimental measurements are used to confirm the

theoretical results.

Finally, Chapter 7 concludes this thesis and discusses some ideas for future

work.



Chapter 2

Background and Related

Work

2.1 Introduction

This background chapter aims at introducing different concepts discussed in

the course of this thesis. Some tools that will be frequently used in this work

are presented in detail in this background chapter.

The main topic of this thesis is the study of the sound propagation in space.

The equation governing the evolution of the sound waves over space and time is

known as the wave equation. The two and three dimensional (2D and 3D) wave

equations are presented in Section 2.2. For each case, the solution is explored

in detail.

This background chapter presents some basic tools that will be further

used in the next chapters. One of the main contribution of this thesis is the

description of the interpolation of room impulse responses, electromagnetic

channel impulse responses and head-related transfer functions. Therefore, these

different functions are introduced and models to describe them are presented

in Section 2.3.

Across the different chapters of the thesis, the reader will be presented dif-

ferent schemes for interpolation of the sound field along different geometries

such as linear arrays and circular arrays. A very interesting application of this

kind of array processing can be found in wave field synthesis (WFS). This tech-

nique aims at reproducing a sound field by using loudspeaker arrays. Although

this technique is not directly the topic of this thesis, a short introduction of the

method is presented in Section 2.4 since related work of interest for the present

thesis has been discussed in the context of WFS.

7
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2.2 Wave equation

In this section, the wave equation is described in two and three dimensions. For

each case, the Green’s function is defined and derived. The Green’s function

is a basic block of the work of the next chapters, therefore its derivation is

described in detail.

2.2.1 Spherical source

Considering a spherical source emitting a Dirac pulse at position s = (xs, ys, zs)

at instant ts, the sound field generated by this source is given by the following

equation:

∇2p(x, y, z, t) − 1

c2

∂2p(x, y, z, t)

∂t2
= −δ(x − xs)δ(y − ys)δ(z − zs)δ(t − ts), (2.1)

with c the speed of the wave propagation. The previous expression (2.1) can

be rewritten as

∇2p(r, t) − 1

c2

∂2p(r, t)

∂t2
= −δ(r)δ(t), (2.2)

where for simplicity the source emits its pulse at ts = 0 from position s =

(0, 0, 0). Note that r = (x, y, z). Taking the Fourier transform with respect to

time in (2.2) leads to

∇2p̃(r, ω) +
(ω

c

)2

p̃(r, ω) = −δ(r). (2.3)

Since free space is assumed, p̃(r, ω) only depends on r = ‖r‖ due to symmetry.

Using the spherical coordinates, (2.3) can be rewritten as

1

r2

d

dr

(

r2 dp̃(r, ω)

dr

)

+
(ω

c

)2

p̃(r, ω) = − δ(r)

4πr2
. (2.4)

Since the right-hand side in (2.4) is zero except for the origin, multiplying both

sides by r and considering r > 0 leads to

d2

dr2
[rp̃(r, ω)] +

(ω

c

)2

[rp̃(r, ω)] = 0. (2.5)

Note that (2.5) corresponds to the one dimensional Helmholtz equation whose

solution is known as the d’Alembert solution [85]

p̃(r, ω) = a
e−j ω

c
r

r
+ b

ej ω
c

r

r
, (2.6)
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with a and b being arbitrary constants. In our case, due to the presence of a

source at the origin, only the wave traveling towards +r is assumed, therefore

the second term in (2.6) is canceled. To obtain the value of a, we substitute

(2.6) into (2.2), and then integrate (2.2) within a small sphere V of radius r

including the origin. The first term in (2.2) is then processed as follows using

Green’s theorem [85]

∫

V

∇2p̃(r, ω)dV =

∮

S

∇p̃(r, ω) · dS = 4πr2∇p̃(r, ω) · r̄, (2.7)

where r̄ stands for the unit vector pointing in the outward radial direction,

normal to the surface of the sphere S. Therefore,

∇p̃(r, ω) · r̄ = a
∂

∂r

(

e−j ω
c

r

r

)

. (2.8)

Replacing (2.8) in (2.7) leads to

∫

V

∇2p̃(r, ω)dV = −4πr2a

(

e−j ω
c

r

r2
+ j

ω

c

e−j ω
c

r

r

)

. (2.9)

The integral of the second term in (2.2) leads to

∫

V

(ω

c

)2

p̃(r, ω)dV =
(ω

c

)2
∫ r

r=0

p̃(r, ω)4πr2dr (2.10)

= 4πa
(ω

c

)2
∫ r

r=0

re−j ω
c

rdr (2.11)

= 4πa
(ω

c

)2
(

−re−j ω
c

r

j ω
c

+
( c

ω

)2
(

e−j ω
c

r − 1
)

)

, (2.12)

where the last equality is obtained after integration by parts. The integral of

the third term is simply unitary since the volume contains the Dirac source.

Taking the limit for r → 0, we obtain that

a =
1

4π
. (2.13)

Therefore, (2.6) is now

p̃(r, ω) =
e−j ω

c
r

4πr
. (2.14)

Replacing now r by the distance between the source and the receiver denoted

as ‖r‖, the solution of (2.2) is

p̃(r, ω) =
e−j ω

c
‖r‖

4π‖r‖ . (2.15)
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If the source is not located at the origin but at position s, consider the change

of variable r = ‖r − s‖ in (2.14), which leads to

p̃(r, ω) =
e−j ω

c
‖r−s‖

4π‖r− s‖ . (2.16)

Calculating the inverse Fourier transform of (2.16) gives

p(x, y, z, t) =

δ

(

t −
√

(x−xs)2+(y−ys)2+(z−zs)2

c

)

4π
√

(x − xs)2 + (y − ys)2 + (z − zs)2
. (2.17)

2.2.2 Circular source

To obtain the Green’s function for the 2D wave equation, two derivations are

possible. The first version considers the wave equation in 2D and solves it

for an excitation in the plane [51]. The other derivation followed by most of

the textbooks [85, 112] makes use of the 3D Green’s function to derive the

2D version as a special case. For simplicity, we choose to present the second

version.

Consider the circular source to be in the plane formed by the axes x and

y. The direction z is perpendicular to the plane of interest. We consider a 3D

setup where the excitation is not a unique spherical source but an infinite line

of spherical sources along the z direction. The wave field due to this infinite

line of sources is described as

p̃2D(x, y, ω) =

∫ ∞

−∞

e−j ω
c

√
(x−xs)2+(y−ys)2+z2

4π
√

(x − xs)2 + (y − ys)2 + z2
dz. (2.18)

To solve this integral, we introduce the integral definition of the Hankel function

[53]:

H
(2)
0 (

ω

c
ξ) =

j

π

∫ ∞

−∞

e−j ω
c

√
ξ2+z2

√

ξ2 + z2
dz, (2.19)

where H
(2)
0 stands for the order zero Hankel function of the second kind. There-

fore, (2.18) is rewritten as

p̃2D(x, y, ω) =
−j

4
H

(2)
0

(ω

c

√

(x − xs)2 + (y − ys)2
)

. (2.20)

This last equation corresponds to the Green’s function for the 2D wave equa-

tion.



2.3. Impulse Responses Modeling 11

2.3 Impulse Responses Modeling

This section describes different techniques used for the modeling of impulse

responses. In Section 2.3.1, RIRs models are presented. A lot of attention

is devoted to the image source model [13] widely used in Chapter 3. A short

introduction of different models for EM channel impulse responses is given

in Section 2.3.2 and further used in Chapter 6. Interpolation of head-related

transfer function is described in Chapter 4. Therefore, a introduction to these

functions is presented in Section 2.3.3.

2.3.1 Room impulse responses

In this section, we present a brief overview of different techniques existing for

the modeling and simulation of RIRs. The sound propagation is described

by means of the wave equation as presented in Section 2.2. An impulse re-

sponse from a source to a listener can be obtained by solving this equation.

Unfortunately, an analytical solution can only be found for very simple ge-

ometries. In most of the cases, the solution needs to be approximated and

different approaches exist for the computational modeling of room acoustics.

Many techniques have been presented; we have chosen three of them that we

describe in more detail in the following sections:

• Image source model

• Ray-tracing methods

• Wave-based methods.

Image source model

The image source is described in this section for the simple case of a rectangular

box-shaped room. The idea of the technique is to model the effect of the walls

as new virtual sources located on the far side of these walls. To model the

reverberation in a room, one considers a large number of free field virtual

sources (theoretically an infinite number) and by adding their effects, the RIR

is modeled.

Consider the dimensions of the room to be (Lx, Ly, Lz). The source s1

is located at (xs1 , ys1 , zs1). The receiver r has coordinates (xr , yr, zr). The

norm of the vector m1 corresponds to the distance between the source and the

receiver with

m1 = (xs1 − xr, ys1 − yr, zs1 − zr) . (2.21)
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As discussed in Section 2.2, the impulse response in free field due to the source

s1 is given by

p(s1, r, t) =
δ
(

t − ‖m1‖
c

)

4π‖m1‖
. (2.22)

In the presence of one wall along the x direction as described in Fig. 2.1(a), a

reflection will arrive at the receiver after the free field sound. This reflection

can be modeled as one virtual source on the far side of the wall. This new

virtual source is denoted as s2 and its distance to the receiver is ‖m2‖. The

RIR is described as

p(s1, r, t) =
δ
(

t − ‖m1‖
c

)

4π‖m1‖
+

δ
(

t − ‖m2‖
c

)

4π‖m2‖
. (2.23)

Considering two perpendicular walls in the directions x and y, three additional

virtual sources are created next to the original source as shown in Fig. 2.1(b).

In the case of three perpendicular walls along the three directions x, y and

z shown in Fig. 2.1(c), seven virtual sources are present next to the original

source in the RIR whose expression becomes

p(s1, r, t) =

8
∑

i=1

δ
(

t − ‖mi‖
c

)

4π‖mi‖
, (2.24)

with ‖mi‖ the distance between source si and r. Note that for the eight

considered sources, mi corresponds to

mi = (xs1 ± xr, ys1 ± yr, zs1 ± zr) . (2.25)

In a rectangular room, parallel to each wall, a second wall is present at some

finite distance. Similarly to the effect of a person looking at himself between

two mirrors, an infinite number of images are created. Each of the first eight

sources are repeated with a period of 2Lx, 2Ly and 2Lz along the x, y and

z directions respectively. The general formula for RIRs in a rectangular room

with perfectly reflecting walls is given by

p(s1, r, t) =
8
∑

i=1

∞
∑

v=−∞

δ
(

t − ‖mi+mv‖
c

)

4π‖mi + mv‖
, (2.26)

with mv = (2lLx, 2nLy, 2oLz) and (l, n, o) an integer vector triplet. Note

that the first sum shows that in a 3D case, seven virtual sources are created

in addition to the original source due to the first reflections on three walls.
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Figure 2.1: Schemes for the image source model considering (a) one wall; (b)
two walls; (c) three walls.

The second sum shows that sound between two parallel rigid walls is infinitely

reverberated. This construction is shown in the 2D case in Fig. 2.2. In case

the walls are not totally reflective, a modified version of (2.26) is given in [13],

where the reflection factors of each wall are considered.

A generalization of this technique can be found for more complex geometries

[22]. The basic idea is very similar, but an additional step needs to be performed

to check the visibility between the virtual source and the receiver. Some virtual

sources need indeed not be considered due to occlusions. Note that the image
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s1

r

Lx

Ly

Figure 2.2: Image source model for a 2D case.

source model is computationally very intensive. The number of virtual sources

increases exponentially with the duration of the impulse response. Therefore,

this technique is mostly used for the simulation of early reflections while the late

reverberation is modeled using other less computationally intensive techniques

described in the sequel.

Ray-based methods

Ray-based methods are based on geometrical room acoustics where sound is

considered to act like rays [75]. This assumption is valid when the wavelength

of sound is small compared to the surfaces in the room. Phenomena taking

into account the wave nature of the sound field propagation such as diffraction

and interferences [85] are therefore ignored in this method.

The most commonly used ray-based method is the ray-tracing method [74].

In the basic algorithm, the sound source emits sound rays which are reflected

at the different surfaces in the room according to specular reflections which

assumes that the incident angle of an incoming ray is the same as the incident

angle of the outgoing ray. More advanced rules can include more complex

reflections or diffusions phenomena [88]. Each emitted ray is followed until some

termination criteria are met (such as minimum energy of the ray or maximum

propagation time).

Although this method is general and relatively easy to implement, some

drawbacks exist. When considering rays emitted by the source, an angular

sampling needs to be performed in order to limit the number of possible rays
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and the computational time of the algorithm. This sampling can lead to aliasing

artifacts on the RIR and the loss of important paths. Another problem is

occurring because of the modeling of the receiver and the sources as volumes

of space. This is necessary to admit intersection with infinitely thin rays but

can lead to false hits and paths counted multiple times.

The advantage of this method over the image source model is that it can

easily take into account obstacles and listeners. These are usually modeled as

volumetric objects in the room.

More advanced techniques such as beam-tracing [48] are used nowadays for

increased performance. Instead of individual rays, they consider beams of rays

through 3D polyhedral environments. The beams of rays have the advantage of

covering every possible angle and therefore finding all possible paths up to the

termination criteria. This technique can also integrate models of diffraction

or scattering and are used nowadays for their real-time capabilities. They

furthermore scale to support larger architectural environments.

Wave-based methods

Numerical wave-based methods are introduced when the wave equation can-

not be solved analytically. These methods include the finite element method

(FEM), the boundary element method (BEM) and the finite-difference time-

domain method (FDTD) [24]. These methods find an approximate solution

to the wave equation by solving the system of equations resulting from the

discretization of the considered environment. In the FEM, the complete space

is discretized while in BEM only the boundaries are discretized. The major

drawback with these methods is that the discretization must be fine enough

to capture irregularities and discontinuities of the sound field which becomes

very time consuming. Therefore, these methods are suitable only for the low

temporal frequency reproduction of the RIRs [70].

Methods such as TDFD also consider the wave equation but simplify the

derivatives in finite differences. This simplifies greatly the problem and tech-

niques using this principle such as digital waveguide meshes are widely used.

The benefit of FDTD techniques is that one can create a denser mesh struc-

ture where required (e.g. near corners or challenging locations). The digital

waveguide technique has received a lot of attention in the literature due to

its simplicity and versatility [99, 98, 100, 118]. This technique is general and

applications can be found in other domains such as musical instruments mod-

eling [102].
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2.3.2 Electromagnetic channel impulse responses

While most of the work in this thesis focuses on the acoustic wave propagation,

similar results can also be derived in the study of the electromagnetic (EM)

wave propagation. The wave equation is indeed the same, only the speed of

propagation differs. The speed of wave propagation in the EM case is indeed

the speed of light propagation and is of about 3 · 108 m/s.

Most of the research on modeling in the acoustic case focuses on room im-

pulse responses. In the EM case, where the propagation happens over much

larger distances than in the case of sound, the setups to be modeled are very

different. In most of the EM models, receiving and emitting antennas are

considered to be located outside of buildings. These buildings are creating

multipath reflections. While rooms are most easily modeled with simple ge-

ometries, urban designs such as cities or neighborhoods are far more complex

geometries [114]. This difficulty to model precisely the environment leads of-

ten to the use of statistical models. Furthermore, this environment is usually

varying over time, which leads to the introduction of models for time-varying

channels.

Modeling of channels has a long history. A lot of early activity in the

1960’s is still relevant today. The characterization of time-varying channel for

mobile communications has been studied by Bello [16], Clarke [35], Gans [49]

and Kennedy [67]. More recent advances in the topic can be found in [52]

and [107].

A lot of models have been proposed to describe spatio-temporal Channel

impulse responses (CIRs) [46]. The goal is to model the channel in the most

accurate way to be able to predict it. With the emergence of antenna arrays, it

is possible to reduce the fading [52] observed by receivers using spatial diversity

techniques [62]. A few existing models for the description of those channels are

now presented. Among those, one directly can separate between deterministic

and statistical models. For the deterministic models, the knowledge of the

environment must be known in order to estimate the trajectories followed by the

electromagnetic wave. For this purpose image source models [101] can be used

as well as ray-tracing based algorithms. The second method is more versatile

since it can take into account different effects such as reflection, diffraction

and scattering as described in [109]. A large literature exists on the study of

statistical models for CIRs. Early models consider angle of arrivals for the

scatterers present in the channel as uniformly distributed. In Lee’s model [80],

scatterers are evenly spaced around the mobile. Under this assumption, Jakes

derived theoretical results on the correlation between two receivers [62]. Based

on experimental measurements, other models [97] have been presented taking
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into account clustering effects observed in real data. In the present work, the

purpose is not to present a new model of multipath propagation but to use

simple existing models for the study of the spatial evolution of the CIRs. We

are observing how the channels are varying when the source or the receiver are

moving from one position to the next. In this context we are studying how

fast the channel is modified depending on its temporal frequency content. This

study is described in Chapter 6.

2.3.3 Head-related transfer functions

The direction-dependent transfer characteristics from a sound source to the

ear is called head-related impulse response (HRIR) in the time-domain repre-

sentation and head-related transfer function (HRTF) in the frequency-domain

representation. They describe the acoustic filtering of a sound wave propa-

gating in free field due to the presence of a listener. The HRTF is defined

by [84]

Definition 2.3.1.

ĥl,r(ω) =
FT of sound pressure at entrance of ear canal (l,r)

FT of sound pressure in the middle of the head with listener absent
,

where FT stands for the Fourier transform.

HRTFs are therefore filters quantifying the effect of the shape of the head,

body and pinnae on the sound arriving at the entrance of the ear canal. These

filters are very important in 3D audio playback over headphones. A typical

situation is described in Fig. 2.3. The source in free field emits the sound s(t)

that is recorded at the two ears. The HRIRs describing the filters between

the source and the left ear or the right ear are denoted as hl(t) and hr(t)

respectively. The sound recorded at the left ear, el(t), and the right ear, er(t),

are therefore given by the following expressions

el(t) = s(t) ∗ hl(t)

er(t) = s(t) ∗ hr(t).
(2.27)

Spatial hearing

Theoretically, by providing the signals el(t) and er(t) at the two ears of a subject

using headphones1, the person should perceive the exact same impression as if

the original sound had been played by the source. This phenomenon is known

1Consider here that the headphone has a perfectly flat response.
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s(t)

hr(t)hl(t)

Figure 2.3: One source emitting sound s(t) with the HRTFs corresponding to the
left and right ears.

as externalization. We are able to deliver to the subject the impression that

the sound is coming from outside of the head [44]. As is known from the

literature of stereophony and stereophonic audio playback [20], without use

of HRTFs the subject only can get the impression that the sound is coming

from inside the head. It is then possible to modify different characteristics of

the two-channels system to vary the origin and the width of the sound image.

These parameters are Inter-channel time difference (ICTDs), inter-channel level

differences (ICLD) and inter-channel coherence (ICC) [47].

To recreate as accurately as possible an impression of externalization, one

should use individualized HRTFs. It means that each and everyone should

possess his own HRTF dataset. Playback would be using the individualized

HRTF set for optimal compatibility. For practical reasons, one often uses stan-

dard HRTFs measured on artificial heads [50]. When using non-individualized

HRTFs, two main problems occur. Externalization is slightly less well per-

ceived and front/back confusions are more often present. These confusions are

related to the fact that some source positions that should appear in front are

perceived in the back. In [27, 44], it is mentioned that better externalization

can be achieved by adding some room models to the playback system as can

be found in Section 2.3.1. There have been attempts to create model of human

heads, such as the Valdemar model, which should correspond to humans in a

generic way, so that HRTF recordings from these artificial heads would allow

good localization results [34].

HRTFs are measured in anechoic chambers for every possible azimuthal and
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elevation angle. The effect of the distance from the source is often neglected.

The reason for this is that in real 3D audio systems the distance cue is not

provided by HRTFs but by the room model used. Hartmann has discussed the

role of the first room reflections on the perception of space and distance [55,56].

Nevertheless some publications can be found about the influence of the distance

of the source on HRTFs [43,42]. In most of the HRTFs databases, the distance

is of approximatively 1 to 1.5 m as is the case in three databases accessible

online [50, 1, 12].

HRTF measurement

A few techniques exist to measure HRTFs. The simplest and most common

technique consists in putting a microphone at the entrance of the ear canal

and recording the sound emitted by a source located at a certain azimuth and

elevation angle. By comparing the recorded signal and the emitted one, it is

possible to extract the influence of the listener. This procedure needs to be

repeated for every desired direction as shown in Fig. 2.4. Different stimuli can

be used for the purpose of measuring HRTFs. White Gaussian noises, maxi-

mum lengths sequences (MLS) [23] or Golay codes are often used. Comparison

of these signals can be found in [33].

r

Figure 2.4: Setup for the recording of HRTFs.

A very interesting method has been presented by Zotkin et al. [120]. By

putting a loudspeaker emitting sound near the ear entrance, the sound field is

recorded with receivers located on a circular or on a spherical array of micro-

phones. Like this, all HRTFs can be measured simultaneously.
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A third technique is described in this thesis in Chapter 5 where either a

setup with a moving source and a fixed person or with a fixed source and a

moving person is considered. As a result of the proposed algorithm, it can be

shown that the measurement of all possible HRTFs along the horizontal plane

can be achieved in less than one second [8].

HRTF modeling and interpolation

When an HRTF dataset is measured, all possible positions for the source can-

not be considered. An angular sampling needs to be performed. A major

question arises then about what should this angular sampling be and what

should be the method to interpolate the HRTFs between the considered sam-

pling positions. In this thesis we answer these two questions in Chapter 4. In

the present chapter, we present some existing techniques for HRTF modeling

and interpolation.

One of the most simple and straightforward methods applies linear inter-

polation using the nearest neighbor HRTFs for obtaining HRTFs at any angle

in between those [15].

A model for HRTFs has been proposed by Kulkarny et al. [73] which de-

composes HRTFs as a minimum phase and an all-pass function. This model

is based on previous studies [69] showing that HRTFs can be approximated by

a minimum phase function up to 10 kHz. Minaar et al. [83] interpolated the

minimum-phase components of HRTFs linearly in the time domain and claim

to be able to predict the needed resolution of measurements without causing

audible artifacts. Since the minimum phase components have a minimum phase

lag, phase delay, and group delay for a given magnitude, they are optimally

aligned in time.

This idea of alignment in time has been used by other authors to improve

the quality of interpolation. It has indeed been shown that the performance of

interpolation in the time or frequency domain can be improved by compensating

the HRTFs prior to interpolation according to the time of arrival of sound

[81]. That is, the HRTFs are time aligned and interpolation is carried out

on the time-aligned HRTFs. Additionally, the time of arrival is interpolated

separately. In [81], linear, spline and sinc interpolation are considered and

the best results are obtained using linear interpolation and time alignment of

the HRTFs. Hartung et al. [57] have compared other methods such as the

inverse distance weighting method and the spherical splines method [95, 28].

As a result of psychoacoustics tests, they found out that the second method

performed slightly better.

Other methods used for HRTF modeling are their representation using a
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limited number of basis functions with corresponding weighting factors depend-

ing on azimuthal and elevation angles. The basis functions can for example be

obtained by principal components analysis [69], independent component analy-

sis [77] or spatial feature extraction and regularization [32]. Obviously, the more

basis functions are used the better the modeling results are. Using measured

HRTFs at known positions, the corresponding weighting factors are calculated.

Interpolation of these weighting factors leads to the newly interpolated HRTFs.

Infinite impulse responses have also been considered by [21, 72] to model

HRTFs. Two main models have been considered, the all-pole model and the

pole-zero model. In [96], linear interpolation of the poles and zeros using a

gradient search algorithm has been studied.

A very original and novel technique was described by [43]. There HRTFs

are obtained as solution of a scattering problem [85]. The obtained solution

is expanded using multipole expansion [54]. Using this representation, regu-

larized fitting of measured HRTFs is applied and from there the parameters

in the expansion can be found to describe the precise set of HRTFs. Then

interpolation and range extrapolation can be achieved.

2.4 Wave Field Synthesis and Extrapolation

The typical audio reproduction systems such as stereo or 5.1 [47] are limited

to reconstructing the sound field in one point, the sweet spot. These systems

can only accurately render the sound field in one point. Therefore, only one

listener located in the sweet spot listens to the sound as it was intended to be.

At other positions, the sound field is not directly controlled. Often, however, It

is desirable to reproduce the sound field such that it is reproduced accurately

over a larger area.

The wave field synthesis technique achieves this by approximating the sound

field not only in a single point, as has been done previously, but by aiming at

reconstructing the sound field over a relatively large area. The price to pay to

achieve this better spatial reconstruction of the sound field is the use of a much

larger number of loudspeakers.

2.4.1 Huygens’ principle

In 1690, Huygens proposed that a primary source can be replaced by an infinite

number of secondary sources located along its wave front. This is illustrated

in Figure 2.5. More generally, the secondary sources can be placed on a fixed

surface S, e.g. on a plane, while still reproducing the sound field of the primary

source. This is achieved by weighting and delaying the source signals as will



22 Chapter 2.

be described in the sequel.

Figure 2.5: Huygens’ principle: Any wave front can be modeled by an infinite
number of point sources placed on the wave front.

The quantitative formulation of Huygens’ principle is given by the Kirchhoff-

Helmholtz integral,

p̃(r, ω) =
1

4π

∮

S

[

p̃(rS , ω)
∂

∂n

(

e−j ω
c
‖r-rS‖

‖r-rS‖

)

− ∂p̃(rS , ω)

∂n

e−j ω
c
‖r-rS‖

‖r-rS‖

]

dS,(2.28)

which can be derived from the wave equation (2.2) using Green’s integral the-

orem [18,17,110]. Figure 2.6 2 illustrates the different variables used in (2.28).

S represents the surface of a source free volume V , ‖r-rS‖ is the distance from

the surface point rS to a point r within the volume V , n is the vector normal

to the surface and p̃(rS , ω) is the Fourier transform of the sound pressure field

on S.

Consider a source free volume V delimited by a surface S. From (2.28), it

can be observed that the sound pressure p̃(r, ω) inside of the volume V , can

be obtained by measuring the pressure on the surface p̃(rS , ω) as well as its

particle velocity being proportional to ∂p̃(rS ,ω)
∂n

.

2.4.2 The Rayleigh I integral

Simplification of the Kirchhoff-Helmholtz integral can be obtained when con-

sidering all primary sources in one half space. The surface S is degenerated

2This figure is a slight modification of Fig. 2 in [105].
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Figure 2.6: Definition of the parameters used for the Kirchhoff-Helmholtz integral.

to a plane between the primary sources and the listening area as illustrated

in Figure 2.7(a). The Rayleigh I integral [18, 17, 110] corresponds to a special

case of the Kirchhoff-Helmholtz where only the particle velocity needs to be

measured on the surface S. The details of its derivation can be found in [110]

where the first term in (2.28) is canceled by a careful choice of the pressure

field. The Rayleigh I Integral is given by

p̃(r, ω) = ρ0c
jω

2πc

∫ [

ṽn(rS , ω)
e−j ω

c
‖r-rS‖

‖r-rS‖

]

dS , (2.29)

where ρ0 is the density of air, c is the speed of sound and ṽn(rS , ω) denotes

the particle velocity perpendicular to the surface S. From (2.29) and more

generally from (2.28), two interesting applications can be considered, the wave

field extrapolation and WFS. The first one considers the measurement of the

particle velocity along the surface S and by processing it, the sound field can

be extrapolated inside the volume using the Rayleigh integral [60]. A second

approach is to measure the field on the surface S and to reproduce the same

field inside of the volume by means of drivable sources located on the surface.

At each position rS , a monopole is driven with a signal proportional to the

particle velocity perpendicular to the surface S,

d̃(rS , ω) = ρ0c
jω

2πc
ṽn(rS , ω) , (2.30)

to reconstruct a sound field equivalent to the original sound field as illustrated

in Figure 2.7(b).
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S

Primary sources

S

Sound field

(a) (b)

d̃(rS , ω)ṽ(rS , ω)

p̃(r, ω) p̃(r, ω)
Sound field

Figure 2.7: (a) The sound field in the source free area to the right of S is
completely specified by the particle velocity ṽn(rS , ω) orthogonal to S. (b) The
sound field is reconstructed using monopole sources on S driven by the signals
d̃(rS , ω).

2.4.3 Wave field synthesis

The presented theory has shown that it is theoretically possible to reproduce

the sound field generated by sound sources located in one half space, into the

other half space. The condition is to place an infinite number of sources in the

infinite plane separating the two half spaces and to drive these sources with

the correct signal as described in Section 2.4.2. From this theoretical scheme,

many simplifications have been applied to develop a more realistic setup. We

present here a very brief overview of the different steps performed to allow a

realizable reproduction system using WFS.

The main drawback of the presented technique is the necessity to use an

infinite number of loudspeakers along two dimensions. An important work done

by Berkhout et al. [17] was to study an equivalent form of the Rayleigh I integral

for the case where only one line of loudspeakers was used. The idea is to place

the loudspeaker line at the same height as the ears of listeners and to reproduce

the sound field correctly in the largest possible area. It was unfortunately

shown that the sound field is then correctly reproduced only along one line

parallel to the loudspeaker array and at the same height [110]. By varying

some parameters in the driving signals, the distance of the reproduction line

can be modified. By an appropriate choice of this distance of reproduction, a

large listening area will have a sound field close to the original field.



2.5. Conclusion 25

A second important step in the simplification of the problem is to discretize

and limit the aperture of the loudspeaker line. These two factors are fundamen-

tal in the design of the WFS system. A too large distance between consecutive

loudspeakers limits the correct reproduction for high frequencies. This topic of

the spatial sampling of the loudspeakers in WFS systems has been described

in [18] and more recently by [104]. The length of the array also plays an impor-

tant role in the correct reproduction of the sound field over a large area [17].

WFS systems suffer from the fact that reverberation cannot be totally re-

produced. Reverberation as modeled by the image sources, shows that some

new sources are created on the half space that should be source free. These

sources can therefore not be reproduced in the listening area. To counteract this

problem, one usually uses artificial reverberation to mimick their effect [110,61]

but this remains a drawback of this technique.

2.5 Conclusion

This chapter has presented general concepts that are recurrent in this thesis.

The plenacoustic function describes the sound field at any position in space.

Therefore, the wave equation has been given and its solution explored in dif-

ferent cases. The wave equation can be solved in simple cases but as soon

as the geometry of the problem become slightly complex, models have to be

introduced to study the sound field in rooms. Therefore, impulse response mod-

els have been described for rooms, electromagnetic channels and head-related

transfer functions. As an application of spatio-temporal processing, wave field

synthesis has been discussed. This technique reproduces the sound field gen-

erated by primary sources using loudspeaker arrays driven by the appropriate

signals.
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Chapter 3

Sound Field Analysis and

Interpolation Along a Line

and Multidimensional Spatial

Positions

3.1 Introduction

This chapter analyzes the sound field along a line and multidimensional spatial

positions such as planes and spaces filled with microphones. The main dis-

cussion presented in this work relates to the following question: “How many

microphones are needed in space in order to recreate as accurately as possible

the sound field at all positions?” Beyond the fundamental interest of character-

izing precisely the sound field and its sampling, the results are useful in spatial

audio applications. For example, it indicates to what extent a microphone ar-

ray can be used to interpolate any spatial location. Or conversely, how many

spatial positions of a source are needed to synthesize arbitrary positions for a

virtual source.

For the time dimension, bandlimited sources are assumed to allow sampling

in time. The more interesting question is of course sampling in space, which

directly relates to the number of microphones necessary to acquire the PAF.

When considering far field assumptions, it can be shown [63] that the support

of the spatio-temporal PAF is bandlimited to a spatial frequency φ which is

27
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related to the temporal frequency ω in a linear manner1

φ =
ω

c
. (3.1)

Thus, if the time domain signal is bandlimited to ω0, the spatial frequency is

limited to ω0

c , and the far field PAF can be sampled with any spatial distance

∆x satisfying

∆x >
cπ

ω0
. (3.2)

Without the far field assumption, the PAF is not perfectly bandlimited anymore

and contains energy in the region φ ≥ ω0

c . In this chapter, the PAF is studied

without the far field assumption and its spectral characteristics are derived

both in the case of free field and in reverberating rooms. From this analysis, we

derive a precise quantitative sampling theorem which trades off spatial sampling

density for signal reconstruction quality. The developed theory is compared

with simulations and experimental results.

3.1.1 Related work

As mentioned earlier, previous literature exists on the bandlimitedness of the

spatial sound pressure field. In [87,63,117] using microphone arrays, the sound

pressure field is studied both along the temporal and the spatial dimensions.

The spectrum of the spatio-temporal wave equation is studied under the far

field assumption which simplifies the obtained sampling results [87, 63, 117].

Recently, and in parallel to our work, Coleman [37, 36] has investigated the

wide-band electromagnetic impulse response in far field, deriving sampling re-

sults under this assumption for linear arrays and planar arrays of sensors.

In [18], Berkhout studies in detail the extrapolation of waves in the field of

seismic wave theory. Results on the sampling and the extrapolation of wave

fields are obtained using the representation of the wave field by its spatio-

temporal spectrum. Also practical aspects such as the aperture size of the

array are discussed. Recent techniques have shown interesting extrapolation

results using a one-dimensional (1D) microphone arrays (mostly circular arrays)

but limitations occur when trying to extrapolate real three-dimensional (3D)

RIRs [60]. Similarly to the extrapolation of the sound field, a technique called

wave field synthesis (WFS) [39] has been described in detail in Chapter 2. It

is explained there that from the knowledge of the sound field in a region of

1In acoustics as well as in some array signal processing books the spatial and temporal
frequencies are expressed as wave numbers. Then, ω

c
is usually denoted as k and the spatial

frequency φ as kx.
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space, the WFS reproduces the sound field in other regions of space. The

WFS is based on the Huygens’ principle stating that the propagation of a wave

through a medium can be described by adding the contributions of all secondary

sources positioned along a wave front. Measuring the sound field on an infinite

plane of microphones would allow its accurate reproduction at any point of

the source-free half space. Dual to the WFS is wave field analysis [19] where

the ray parameter versus intercept time domain representation is used. This

representation is shown to be equivalent to taking the linear Radon transform

of the spatio-temporal RIRs. The method gives an improved insight in the

structure of complex sound pressure fields by being able to separate the different

contributions of the sound pressure field (direct path and each reflection on the

walls).

3.1.2 Contributions

This chapters presents the following contributions:

• A detailed study of the decay of the PAF spectrum along the spatial and

temporal frequency axes, both in free field and in rooms with reverbera-

tion, for the case of the PAF studied along a line.

• A detailed study of the spatial decay of the PAF spectrum for the PAF

studied along a plane and in three dimensions.

• A sampling theorem describing the trade-off existing between spatial sam-

pling frequency and quality of reconstruction of the sound field when

sampled along aline.

• Simulations and experimental results for the acoustic and electromagnetic

cases verifying the presented theory.

3.1.3 Outline

The outline of the chapter is the following. In Section 3.2, the PAF and its

construction is presented. Section 3.2.1 reviews RIRs and how they can be

simulated, while Section 3.2.2 describes the space-time representation. Sec-

tion 3.3 studies the spectrum of the PAF on a line in a room. Its spatial

and temporal frequency decay are described in Section 3.3.2 and 3.3.3 respec-

tively. Section 3.4 studies the sampling of the PAF. The sampling theorem

of the PAF is presented in Section 3.4.1 followed by a discussion on differ-

ent sampling patterns in Section 3.4.2. Based on the sampled function, one

would like to reconstruct the field in every possible position which is shown in

Section 3.4.3. Limitations due to the finite length of the array are taken in
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account in Section 3.5. The theory presented in this chapter is then verified

using simulations in Section 3.6.1 and measurements done in real environments

in Section 3.6.2. Section 3.7 is devoted to the generalization of the PAF to

multidimensional spatial positions. The conclusions are drawn in Section 3.8.

3.2 Construction of the Plenacoustic Function

To study the sound pressure field along a line of microphones in a room, one

needs to study the sound pressure field from every possible source position in

the room to any possible microphone position on the line. For simplicity the

technique is presented for a single source but it will be shown later that the

technique works as well for multiple sources. Consider a source s emitting a

signal s(t). The microphones located on the line will not record exactly s(t).

The sound at microphone m1 is s(t) convolved with the RIR corresponding

to the direct path between s and m1, followed by a possibly infinite number

of reflections on the walls (each microphone will receive a sum of delayed and

attenuated versions of s(t)). At another microphone position m2, the recorded

signal will be different since the RIR from s to m2 is different than the RIR from

s to m1. The only parameter changing between the different spatial positions

is the RIR. Therefore the rest of the analysis of this chapter will be focused on

the spatial evolution of the RIRs. Also for that reason, the name of the PAF

will be used for the rest of the chapter as the spatio-temporal RIRs.

3.2.1 Modeling the room

In order to construct the PAF in a room, the RIRs at any point in the room

need to be known. The image method discussed in [13] and in Section 2.3.1 for

the simulations of RIRs is used. The method is based on the creation of virtual

sources in order to simulate the effect of the reflections on the walls. In the

case of a rectangular rigid-walls room of size (Lx, Ly, Lz), the RIRs are given

by (2.26). Special attention has to be given to the problem of the quantization

rounding in the computation of the RIR. In [13], the delay corresponding to

each virtual source was rounded to the closest sample in time in order to reduce

the complexity of the simulations. This leads to aliasing in time and space. In

our simulations, each dirac has been replaced by a sinc function of appropriate

bandwidth delayed with the exact non integer delay. This removes the aliasing

effect. However, as the sinc functions have a very slow decay in time, one has

to consider long enough RIRs to allow the sincs to sufficiently vanish.
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3.2.2 Space time representation

With the RIRs as defined in (2.26), the PAF is constructed for a line in the

room. In that case, one can construct a two-dimensional (2D) function by

gathering all the RIRs at any position on the line, leading to a 2D continuous

function of space and time. Space represents the position, time being the

duration of the RIR. This representation is shown in Fig. 3.1(a) when a pulse

is recorded on a line of microphones in free field and in Fig. 3.1(b) for the case

of a room.

(a) (b)

Figure 3.1: PAF in time and space. (a) In free field. (b) Inside a room.

3.3 Spectrum of the Plenacoustic Function on a

Line

In this section, the PAF on a line and its associated spectrum are studied. First,

a description of the 2D spectrum of the PAF under the far field assumption is

given in Section 3.3.1. Further, the PAF on a line and its associated spectrum

are studied without any far field assumption. An analytical expression of the

two-dimensional Fourier transform (2D-FT) of the PAF is given in Section 3.3.2

together with an analysis of the spatial frequency decay of the spectrum of the

PAF. This analysis is performed for a single source and further in the case of

a rectangular room. The analysis of the temporal frequency decay in the case

of a single source and for a rectangular room is described in Section 3.3.3.

3.3.1 Far field assumption

Often, in the literature [87,63], the far field assumption is considered to simplify

matters. In the context of the sound field studied along a line, the far field
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assumption considers the source far enough away from the microphones such

that the wave front arriving on the line of microphones appears as a plane wave.

The plane wave is defined by its angle of arrival α as shown in Fig. 3.2(a). The

PAF in space and time can then be expressed as:

p(x, t) = δ
(

t − ts −
x cosα

c

)

, (3.3)

where c stands for the speed of sound propagation and ts for the time taken

by the sound to travel from the source to the center of the microphone line.

For simplicity, we consider ts = 0 meaning that at time t = 0, the plane wave

passes by the origin of the x-axis. The 2D-FT of (3.3) is shown in Fig. 3.2(b)

and given by

p̂(φ, ω) = 2πδ
(

φ + ω
cosα

c

)

, (3.4)

with φ and ω being respectively the spatial and temporal frequencies. Consid-

ering now that plane waves arrive from every possible angles, the support of

the spectrum of the impulse responses gathered by the microphones lies exactly

on a butterfly shaped spectrum as is presented in Fig. 3.2(c). Outside of the

spectrum, no energy is present [37, 36]. This result allows us to sample the

sound field and perfectly reconstruct it, since the spectrum is perfectly ban-

dlimited. Therefore, as mentioned already in the introduction of this chapter,

choosing the spatial spacing between consecutive microphones as in (3.2) leads

to perfect reconstruction of the field. This result is only possible due to the

far field assumption and is not realistic. In the next section, the 2D-FT of

the sound field is described when no far field assumption is applied. It is then

shown that there is still energy outside of the butterfly shaped spectrum which

prevents the perfect reconstruction.

3.3.2 Spatial decay of the spectrum of the plenacoustic func-

tion

An analytical expression for the 2D-FT of the PAF is given for the free field

case, followed by a general formula in the case of a rectangular room.
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Figure 3.2: Far field assumption for the spatio-temporal study of the wave field.
(a) Scheme of a plane wave arriving on a line of microphone with angle α. (b) two-
dimensional spectrum of the spatio-temporal impulse response. (c) Considering all
possible angles of arrival, the support of the wave field is described by a butterfly
shaped spectrum.

Free field case

The evolution of the RIR along the x-axis is studied. As described in Chapter 2,

the PAF in space and time domain is given by the following formula [85]:

p(x, t) =

δ

(

t −
√

(x−xs)2+(ym−ys)2+(zm−zs)2

c

)

4π
√

(x − xs)2 + (ym − ys)2 + (zm − zs)2
. (3.5)

The x component of the microphone is only varied. For simplicity, the subscript

in the variable xm was removed, denoting it by x. The variables ym, zm, xs,

ys and zs are constant. Calling d2 = (ym − ys)
2 + (zm − zs)

2, (3.5) is rewritten

as

p(x, t) =

δ

(

t −
√

(x−xs)2+d2

c

)

4π
√

(x − xs)2 + d2
. (3.6)

The 2D-FT of this function is calculated in Appendix A.1. The obtained result

for ω ∈ R+ and φ ∈ R is2:

p̂(φ, ω) = − j

4
e−jφxsH

(1)∗
0

(

d

√

(ω

c

)2

− φ2

)

, (3.7)

with φ and ω being respectively the spatial and temporal frequencies. The

magnitude of (3.7) is plotted for d = 1 in Fig. 3.3 for positive frequencies. H
(1)∗
0

represents the complex conjugate of the zero order Hankel function of the first

2Since p(x, t) is a real function, one has that p̂(−φ,−ω) = p̂∗(φ, ω), with p̂∗ the complex
conjugate of p̂. To simplify the notation, all further derivations are done for ω ∈ R

+.
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kind. This function is infinite at zero. Therefore when either d = 0 or |φ| =
ω
c the plenacoustic spectrum becomes infinite. When d = 0, it corresponds

to the situation where the source is located on the line of the microphones.

For the case of |φ| = ω
c , a more intuitive explanation is given. Consider a

sinusoid of temporal frequency ω rad/s emitted from a certain position. The

signal acquired by the microphones located at positions tending to infinity is

at one instant an attenuated sinusoid of spatial frequency ω
c rad/m. For these

microphone positions the source appears as being on the line. This explains

the infinite value of the spectrum for this spatial frequency.

The values where |φ| > ω
c correspond to the evanescent mode of the waves.

The waves lose their propagating character to become exponentially fast de-

caying waves [112, 18]. Therefore, considering ω, φ ∈ R, most of the energy is

contained in the part of the spectrum satisfying

|φ| ≤ |ω|
c

. (3.8)

This result will be used later in the sampling of the PAF. As the spectrum is

decaying very fast along the spatial frequency axis, one will be able to derive

a sampling theorem to sample and reconstruct the PAF along the spatial axis

(see Section 3.4).

An intuitive explanation is now given for the butterfly shape of the spec-

trum. At low temporal frequencies, the sound wavelength is very large and

therefore spatially, the wave is varying slowly which explains the small spa-

tial support. For higher temporal frequencies, the sound wavelength is smaller

what makes the spatial variation larger. The spatial support for higher tem-

poral frequencies is therefore larger.

Note also that for |φ| ≥ ω
c , the argument of the Hankel function in (3.7)

becomes imaginary and (3.7) can be rewritten as:

p̂(φ, ω) =
1

2π
e−jφxsK0

(

d

√

φ2 −
(ω

c

)2
)

, (3.9)

where K0 is a modified Bessel function of the second kind and order zero.

The modified Bessel function of the second kind has the following asymptotical

behavior (see [112]):

K0(x) ∼
√

π

2x
e−x. (3.10)
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Figure 3.3: Theoretical 2D spectrum of the PAF according to (3.7) for d = 1.

Note that further numerical computations show that

K0(x) ≤
√

π

2x
e−x for x > 0. (3.11)

For large φ, (3.9) can be rewritten using (3.10) as:

p̂(φ, ω) ∼ 1

2π
e−jφxs

√

π

2d
√

φ2 − (ω
c )2

e−d
√

φ2−( ω
c
)2 . (3.12)

For a fixed ω = ω0, (3.12) asymptotically behaves as:

p̂(φ, ω0) ∼
e−jφxs

2
√

π

e−dφ

√
dφ

. (3.13)

The decay along the spatial frequency axis is faster than exponential.

Rectangular room

In the case of a rectangular room of size (Lx, Ly, Lz) with perfectly reflecting

walls, all the reflections are considered as virtual sources as explained in Sec-

tion 3.2.1 and the superposition principle is applied. The expression for the

PAF is then given by (2.26). Each virtual source leads to a spectrum that

follows (3.7). The total spectrum of the PAF is the sum of the spectra of each

virtual source taken separately, leading to an infinite sum. One would like to

know how this sum is decaying for large spatial frequencies.

Results on the decay of the spatial frequency are presented in the easier case

of all the virtual sources located in the plane. Similar results can be obtained

in the general case of sources located in space.
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Figure 3.4: Image source model with the original source s1 and all the other
virtual sources.

The image model given in Fig. 3.4 was used. Our original source is s1 (with

coordinates (xs1 , ys1)) and in its immediate neighborhood, one can see three

other virtual sources (s2, s3 and s4). These four mother sources will create

an infinite number of repetitions to form all the virtual sources in the plane.

These four mother sources will be repeated in the x and y directions with a

periodicity of 2Lx and 2Ly, respectively.

As the room has finite size, an infinite line of microphones cannot be con-

sidered. The microphone line is considered to cover the whole length of the

room. In Fig. 3.4, the line is parallel to the x axis.

Define the distances from sources s1 and s2 to the line of microphones as

d1 and d2 respectively (with d1 ≤ d2). The other distances for the sources s4

and s3 to the line are in this case also d1 and d2.

An interesting aspect of this construction is that by the 2Lx periodicity of

the source positions along the x axis, the sound recorded on an infinite line is

also periodic with period 2Lx. Further, using the symmetry of the construction,

one realizes that the sound heard at position a is the same as the one heard at

position 2Lx − a with a ∈ [0, Lx].

By sampling the spectrum of the PAF on the φ axis at multiples of φ0 = π
Lx

,

one exactly obtains the Fourier series of the sound pressure field recorded on a

line from 0 to 2Lx when this sound pressure field is 2Lx periodic.

Considering the four mother sources (s1 to s4) with their periodic repeti-

tions along the x axis, the discrete spectrum of the PAF can be expressed as
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follows (for large nφ0):

p̂(nφ0, ω0) ∼
(

e−jnφ0xs1

2
√

π
+

e−jnφ0xs2

2
√

π

)

(

e−d1nφ0

√
d1nφ0

+
e−d2nφ0

√
d2nφ0

)

.

(3.14)

Therefore,

p̂(nφ0, ω0) ∼ c1(n)

(

e−d1nφ0

√
d1nφ0

+
e−d2nφ0

√
d2nφ0

)

, (3.15)

with c1(n) a bounded function in n.

Consider now the 2Ly periodic repetitions of the sources along the y axis.

Call the sources s1,i the sources with coordinates (xs1 , ys1 +i2Ly) and similarly

s2,i the sources with coordinates (xs2 , ys2 + i2Ly). Call D1,i the distances

between the line of microphones and the sources s1,i, and D2,i the distances

between the line of microphones and the sources s2,i.

D1,i = |d1 + i2Ly|, (3.16)

D2,i = |d2 + i2Ly|. (3.17)

When considering all the source repetitions in the x and y directions, the

spectrum becomes:

p̂(nφ0, ω0) ∼ c1(n)

∞
∑

i=−∞

(

e−D1,inφ0

√

D1,inφ0

+
e−D2,inφ0

√

D2,inφ0

)

. (3.18)

The right side of (3.18) can be upperbounded by:

c1(n)
∞
∑

i=0

(

e−(d1+i2Ly)nφ0

√
d1nφ0

+
e−(d2+i2Ly)nφ0

√
d2nφ0

+
e−(d

′

1+i2Ly)nφ0

√

d
′

1nφ0

+
e−(d

′

2+i2Ly)nφ0

√

d
′

2nφ0

)

,

(3.19)

with d
′

1 = 2Ly − d1 and d
′

2 = 2Ly − d2. Since d1 ≤ d2 ≤ Ly, (3.19) can be

upperbounded by

c1(n)
(

e−d1nφ0 + e−d2nφ0 + e−d
′

1nφ0 + e−d
′

2nφ0

)

(1 − e−2Lynφ0)
√

nd1φ0
. (3.20)
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Asymptotically for large n, the above expression is of the following order:

p̂(nφ0, ω0) ∈ O

(

e−d1nφ0

√
n

)

. (3.21)

This shows that for a reverberant room, the decay is faster than exponential

when the line of microphones is parallel to a wall3.

3.3.3 Temporal frequency decay

The study of the temporal frequency decay is of interest to fully characterize the

plenacoustic function. Nevertheless, in most cases sounds are bandlimited along

the temporal frequency due to the bandwidth of the emitters and receivers.

Therefore, the results of this section will be briefly presented since they only

are interesting from a theoretical point of view. The more detailed analysis of

the presented results can be found in [5]. Similarly to Section 3.3.2, results on

the temporal frequency decay for the free field case are first presented before

generalizing them for a rectangular room.

Free field

The spectrum of the PAF is given by expression (3.7). The asymptotic behavior

of the Hankel function is given by [112]:

H
(1)
0 (x) ∼

√

2

πx
ej(x−π/4). (3.22)

For large ω, (3.7) can be rewritten using (3.22) as:

p̂(φ, ω) ∼ − je−j(φxs−π/4)

2
√

2π

e−jd
√

( ω
c
)2−φ2

√

d
√

(ω
c )2 − φ2

. (3.23)

Considering a fixed φ = φ0, (3.7) asymptotically behaves as:

p̂(φ0, ω) ∼ − j
√

c

2
√

2π
e−j(φ0xs−π/4) e

−jd ω
c

√
dω

. (3.24)

3The case where the line of microphones is not covering the whole length of the room
can be seen as a windowing and is discussed in Section 3.5. The case where the line is not
parallel to the wall is studied in Appendix B. There, the line is extended along the periodic
repetitions of the room and it is shown that the measured sound field has a spectrum decaying
slightly faster than an exponential. The restriction of this infinite line inside the room can
then again be seen as a windowing as explained in Section 3.5.
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Therefore,

p̂(φ0, ω) ∼ c2(ω)√
ω

, (3.25)

with c2(ω) a bounded function of ω. This last relation shows that the de-

cay of the PAF spectrum along the temporal frequency is, up to a constant,

asymptotic as 1√
ω
.

Rectangular room

In the case of a rectangular room, one follows the same construction as in

Section 3.3.2. Considering the four mother sources (s1 to s4) in Fig. 3.4 with

their periodic repetitions along the x axis, the discrete spectrum of the PAF

can be expressed as follows (for large ω and a finite n = n0):

p̂(n0φ0, ω) ∼ −j
√

cejπ/4

2
√

2π

(

e−jn0φ0xs1 + e−jn0φ0xs2

)

(

e−jd1
ω
c

√
d1ω

+
e−jd2

ω
c

√
d2ω

)

(3.26)

∼ c3(n0)

(

e−jd1
ω
c

√
d1ω

+
e−jd2

ω
c

√
d2ω

)

, (3.27)

with c3(n0) being independent of ω.

Considering the 2Ly periodic repetitions of the sources along the y axis,

one obtains:

p̂(n0φ0, ω) ∼ c3(n0)

∞
∑

i=−∞

(

e−jD1,i
ω
c

√

D1,iω
+

e−jD2,i
ω
c

√

D2,iω

)

. (3.28)

In Appendix C, this sum is shown to converge and can be written as

p̂(n0φ0, ω) ∼ c4(ω)√
ω

, (3.29)

with c4(ω) a bounded function of ω.

3.4 Sampling and Reconstruction

In the previous sections, the decay of the 2D spectrum of the PAF has been

studied both along the temporal and the spatial frequency axes. One has

observed that the spectrum of the PAF lies on a support that is almost ban-

dlimited. This result is valid for a single source, but also for a finite number

of sources as well as for reverberation. In the scope of this section, we are
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mostly interested in the sampling of the sound pressure field along the spatial

axis. We consider that the sound pressure field positions are recorded with

omnidirectional point microphones4. Since no spatial anti-aliasing filter can be

applied in the spatial direction, the speed of the spatial frequency decay of the

2D spectrum of the PAF is the key factor for the quality of the reconstruc-

tion. Along the temporal direction, the signal can be filtered in order to avoid

aliasing.

In this section, the sampling theorem of the PAF is presented. The qual-

ity of the reconstruction is studied when sampling the sound pressure field in

space. Further, interpolation techniques are discussed in order to reconstruct

the signal from the available samples.

3.4.1 A Sampling theorem for the plenacoustic function

In order to uniformly sample the PAF along the spatial direction, a uniformly

spaced infinite number of impulse responses are considered. Call φS the spatial

sampling frequency defined as 2π
∆x where ∆x is the sampling interval between

two consecutive positions of the measured impulse responses. Next to the

spatial sampling, the RIRs also need to be sampled at a certain temporal

sampling rate depending on the desired audio bandwidth. Call ωS the temporal

sampling frequency, or ωS = 2π
∆t with ∆t the sampling period of the impulse

responses.

Consider now the spectrum of the PAF given by (3.7) at a particular tempo-

ral frequency ω0. It has approximatively the shape given in Fig. 3.5(a). When

the PAF is sampled, repetitions of the spectrum occur as shown in Fig. 3.5(b)

and the obtained spectrum is denoted as p̂S(φ, ω). As the spectrum is not

perfectly bandlimited, the repetitions will affect the reconstruction. A theorem

quantifying the signal to noise ratio (SNR) of the reconstruction of the PAF is

presented for one source emitting in free field. Call SNR(φS , ω0) the SNR of

the reconstruction for a sinusoid emitted at frequency ω = ω0 with the micro-

phones positioned with a spatial sampling frequency φS . In the present case,

the SNR is defined as follows:

SNR(φS , ω0) =

∫∞
φ=−∞ |p̂(φ, ω0)|2dφ

4
∫∞

φ=
φS
2
|p̂(φ, ω0)|2dφ

. (3.30)

The numerator in (3.30) corresponds to the energy of the spectrum of the PAF

at temporal frequency ω0. The denominator in (3.30) corresponds to the energy

contained in the spectral repetitions that will contaminate the reconstruction

4If the membrane of the microphone has a finite dimension, a spatial filtering is applied
on the recorded sound.
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Figure 3.5: Magnitude of the spectrum of the PAF. (a) Cut of the spectrum of the
PAF for a particular temporal frequency. (b) For a particular temporal frequency,
spectrum of the sampled PAF (denoted as p̂S) consisting of spectral repetitions of
the original PAF spectrum.

in the spectral domain of interest. Two different kinds of energy are present in

this denominator: the “in band” and the “out of band” energy. The “in band”

energy corresponds to the energy of all the spectral repetitions in the domain

of interest, namely [−φS

2 , φS

2 ]. The “out of band energy” is the energy present

in the spectrum that is outside of the domain of interest. It can be shown that

the “in band” and the “out of band” energies are equal in the case of an infinite

line of microphones. This explains the factor 4 in the denominator of (3.30).

Theorem 3.4.1. Assume one single source emitting in free field at a frequency

ω = ω0. When sampling the spatio-temporal sound field with a spatial sampling

frequency of φS , and reconstructing it using an ideal interpolator, the SNR of

the reconstructed signal in the band [−φS

2 , φS

2 ] can be expressed as

SNR(φS , ω0) =
1

2d
∫∞

φ=
φS
2
|H(1)

0 (d
√

(ω0

c )2 − φ2)|2dφ
, (3.31)

where H
(1)
0 is the zero order Hankel function of the first kind.
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When considering φS > 2ω0

c and using the exponential integral function

defined as Ei(x) =
∫∞

x
e−t

t dt, the SNR can be lowerbounded:

SNR(φS , ω0) ≥
π

4Ei

(

2d

√

(

φS

2

)2

−
(

ω0

c

)2

) . (3.32)

Proof: The numerator in (3.30) can be rewritten using the Parseval’s relation

as follows:

2π

∫ ∞

x=−∞
|p̃(x, ω0)|2dx, (3.33)

with p̃(x, ω0) the inverse Fourier transform of p̂(φ, ω0) along the spatial axis.

We have that p̃(x, ω0) = e−j
ω0

√
x2+d2

c

4π
√

x2+d2
, and therefore the numerator in (3.30) is

2π

16π2

∫ ∞

x=−∞

1

x2 + d2
dx =

1

8d
. (3.34)

Using (3.7) and (3.34) in (3.30) leads to (3.31).

When considering φS > 2ω0

c , the denominator in (3.30) is

1

π2

∫ ∞

φ=
φS
2

∣

∣

∣

∣

∣

K0

(

d

√

φ2 −
(ω0

c

)2
)∣

∣

∣

∣

∣

2

dφ. (3.35)

Using (3.11), (3.35) can be upperbounded by:

1

2π

∫ ∞

φ=
φS
2

e−2d
√

φ2−(
ω0
c

)2

d
√

φ2 − (ω0

c )2
dφ. (3.36)

Using the change of variable z =
√

φ2 − (ω0

c )2, (3.36) can be rewritten as:

1

2πd

∫ ∞

z=

r

“

φS
2

”2
−(ω0

c )2

e−2dz

√

z2 + (ω0

c )2
dz. (3.37)

Then, (3.37) can be upperbounded by:

1

2πd

∫ ∞
r

“

φS
2

”2
−(ω0

c )2

e−2dz

z
dz =

1

2πd
Ei



2d

√

(

φS

2

)2

−
(ω0

c

)2



 , (3.38)

where Ei represents the exponential integral function. Using (3.38) and (3.34),

(3.32) is obtained. �

As a numerical check of the tightness of the bound, the SNR has been computed
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Figure 3.6: In full lines, SNR on the reconstruction signal for different φSd for
normalized temporal frequencies ranging from 1 rad m/s to 8000 rad m/s. In dotted
line, the corresponding SNR lower bounds are given.

as a function of the spatial sampling frequency and the temporal frequency. To

take into account the distance d, it was observed that (3.31) and (3.32) can

be expressed as a function of normalized frequencies φSd and ωd. This allows

us to obtain a numerical evaluation for these two equations independently of

d. The results are shown in Fig. 3.6 in full lines for (3.31) and in dotted

lines for (3.32). In order to avoid numerical instability due to the infinite

value of the spectrum at the position φS = 2ω
c , the simulations start for each

ωd at a value of φSd larger than φSd = 2ωd
c . At one normalized temporal

frequency, it can be observed that the SNR increases for larger normalized

spatial sampling frequencies. Note that the lowerbound follows tightly the

SNR obtained numerically. A numerical example is given.

Example 3.4.1. As an example, it can be observed from Fig. 3.6 that to

reconstruct the sound field up to 8000 rad/s (or 1.3 kHz), a spatial distance

of 12.35 cm is necessary to achieve a reconstruction quality of 100 dB when

considering a unitary distance between the source and the line of microphones.

Remark that when making the far field assumption, using (3.2) would lead to

a spacing of 13.35 cm. �

Instead of considering the SNR at a specific temporal frequency, the pre-

vious result for the SNR on the reconstruction can be generalized when the

signal is in a frequency band [ω1, ω2] with power spectral density |β(ω)|2. The
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SNR on the reconstruction is then given by the following formula:

SNR(φS , [ω1, ω2])

=

∫ ω2

ω1
|β(ω)|2dω

2d
∫ ω2

ω1
|β(ω)|2

(

∫∞
φS
2
|H0(d

√

(ω
c )2 − φ2)|2dφ

)

dω
. (3.39)

When considering φS > 2max(ω1,ω2)
c , (3.39) can be lowerbounded as follows:

SNR(φS , [ω1, ω2]) ≥
π
∫ ω2

ω1
|β(ω)|2dω

4
∫ ω2

ω1
|β(ω)|2Ei

(

2d

√

(

φS

2

)2

−
(

ω
c

)2

)

dω

. (3.40)

Generalization of the sampling theorem for the cases of multiple sources in

free field or inside a room is matter of current research.

3.4.2 Plenacoustic sampling

In this section the effect of the sampling in time and space of the PAF is

represented in the spectral domain. This representation takes into account the

results of the previous section. Sampling in space is done considering a margin

taking into account the evanescent decay of the PAF spectrum. The sampling

of the PAF will first be shown in details for the rectangular sampling pattern.

Further, it will be shown that quincunx sampling can also be used to sample

the PAF.

Rectangular sampling

The schematic top view of the spectrum of the PAF is shown in Fig. 3.7(a).

When sampling the PAF along the spatial dimension with a spatial sampling

frequency of φS , repetitions of the spectrum occur as shown in Fig. 3.7(b).

When one considers the far field approximation of the sound pressure field, the

spatial sampling frequency needed to reconstruct the PAF up to a temporal

frequency ω0 is given by

φS >
2ω0

c
. (3.41)

When one does not consider any far field approximation, Fig. 3.6 has to be

considered. In that figure, the spatial sampling frequency is given for each

possible temporal frequency for a wanted reconstruction SNR. When one wants

to ensure that the highest frequency of the signal is still reconstructed with

a given SNR, the spatial sampling frequency needs to be slightly increased



3.4. Sampling and Reconstruction 45

ω

φ

(a)

ω

ω

φφS

ε
2

0

(b)

Figure 3.7: PAF spectrum. (a) Top view of the PAF spectrum. (b) Top view of
the PAF spectrum with its repetitions due to the spatial sampling.

compared to (3.41). To reconstruct the sound pressure field up to ω0 with a

given SNR0 at that frequency, the spatial sampling frequency is given by

φS >
2ω0

c
+ ε(SNR0, ω0), (3.42)

where ε(SNR, ω) is obtained from Fig. 3.6 when considering a specific temporal

frequency and a given SNR. It represents the difference between the value read

on the graph and the far field approximation (3.41). Inside the region in bold

in Fig. 3.7(b), it can be observed that for a particular φS chosen according to

(3.42):

∀|ω| ≤ ω0 SNR(φS , ω) ≥ SNR0. (3.43)

When |ω| ≥ ω0, due to the periodic repetitions along the spatial axis, the

SNR(φS , ω) decreases.

The temporal sampling of the PAF is now considered. The signal is first

bandlimited to ω0 satisfying (3.42) and sampled with a temporal sampling

frequency of ωS = 2ω0. Repetitions of the spectra occur now also along the

temporal frequency. The obtained spectrum for the PAF sampled in space and

time is shown in Fig. 3.8(a).

Conversely, considering temporal sampling first, one can say that if the

maximal temporal frequency present in the signal is ω0, then sampling the

signal at a temporal sampling frequency ωS = 2ω0, one obtains the signal

whose spectrum is shown in Fig. 3.8(b). When sampling this signal along the

spatial dimension, it is necessary to choose φS as in (3.42) in order to avoid

aliasing as shown in Fig. 3.8(a). Using the rectangular sampling, the sampling

of the PAF happens in space and time domain as shown in Fig. 3.9(a). The

corresponding spectrum is shown in Fig. 3.9(b). The final expression for our
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Figure 3.8: PAF spectrum. (a) PAF spectrum with its spectral repetitions along
the temporal and the spatial frequencies. (b) PAF spectrum with its spectral
repetitions along the temporal frequencies. In both figures, the region in bold
corresponds to the original spectrum bandlimited along the temporal frequency
without spectral repetitions.

sampled PAF 2D spectrum (denoted as p̂S) becomes:

p̂S(φ, ω) =
1

∆x∆t

∞
∑

k1,k2=−∞
p̂

(

φ − 2πk1

∆x
, ω − 2πk2

∆t

)

. (3.44)

Quincunx sampling

A tighter packing of the spectrum can be achieved by using quincunx sampling.

In time domain, the grid to be used is shown in Fig. 3.9(c). In the corresponding

spectrum, the spectral repetitions are placed such that they fill better the

whole frequency space as shown in Fig. 3.9(d). In the quincunx sampling the

spatial sampling frequency is now only φS

2 . This corresponds to a distance

between two samples on the space axis of 2∆x = 4π
φS

. This shows that using

quincunx sampling one only needs to sample the even microphones at even

times while the odd microphones are sampled at odd times. This leads to a

gain of factor two in the processing. However it does not reduce the number of

necessary microphones. Similar approaches have been used in [36] in the study

of the far field electromagnetic field. The precise value of φS to be used in

the case of quincunx sampling to ensure a SNR of reconstruction at a certain

temporal frequency is not given in this work but could be derived similarly to

the expression (3.31).
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Figure 3.9: Sampling and interpolation of the PAF. (a) Rectangular sampling
grid. (b) Plenacoustic spectrum with its repetitions for a rectangular sampling grid
with the interpolation filter in bold. (c) Quincunx sampling grid. (d) Plenacoustic
spectrum with its repetitions for a quincunx sampling grid with the interpolation
filter in bold.

3.4.3 Reconstruction by interpolation

Knowing the sound field at every point of the sampling grid, the usual inter-

polation techniques [111, 108] are applied in order to reconstruct the sound

pressure field at any location. The interpolation filter to be used is dependent

on the sampling grid, and may be separable in time and space. When the

samples have been obtained by rectangular sampling, the interpolation filter is

a low-pass filter with support [−φS

2 , φS

2 ]. The support of the filter is shown in

bold in Fig. 3.9(b). When the samples have been obtained by quincunx sam-

pling, the filter used for interpolation is a “fat fan filter” [108]. The support of

the filter is shown in bold in Fig. 3.9(d). One can compute the ideal filters in

closed forms, however these ideal interpolation filters are not realizable in prac-

tice. Therefore, one needs to slightly increase the spatial sampling frequency

to take into account the decay of the real filter. For their design, standard

techniques can be used [108].
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Figure 3.10: Effect of the windowing due to the finite length of the array.

3.5 Finite Length Aperture

In this section, the field is not measured along an infinite line but on a finite

interval inside the room. This can be seen as a windowing of the PAF in the

spatial domain. Consider a rectangular window w(x). In the present case, the

window is simply a function of the spatial position. Calling the windowed PAF

q(x, t). It satisfies q(x, t) = p(x, t)w(x). In frequency domain this is written as

q̂(φ, ω) = p̂(φ, ω) ∗ ŵ(φ, ω) = p̂(φ, ω) ∗ (ŵ(φ)δ(ω)) . (3.45)

The situation is schematically shown in Fig. 3.10.

The size of the aperture has an influence on the decay of the windowed PAF.

Taking measurements from positions between −L
2 and L

2 leads to a convolution

of the PAF spectrum with the following sinc function:

ŵ(φ) =

∫ L
2

x=−L
2

e−jφxdx = Lsinc

(

φL

2π

)

. (3.46)

At a given φ, the larger the value of L, the faster the decay will be. This fact

can be observed in Fig. 3.11. A section of the 2D spectrum of the PAF at

a particular temporal frequency (2000π rad/s) is presented. One can observe

that for larger aperture sizes the spectrum decays more rapidly as given in

(3.46).

The decay of the spectrum of the PAF along the spatial frequency will now

be slower than the one in (3.9). For a particular temporal frequency ω = ω0,

the decay is:

q̂(φ, ω0) =
e−jφxs

2π
K0

(

d

√

φ2 −
(ω0

c

)2
)

∗ ŵ(φ). (3.47)

In the case of a rectangular window, this decay is the convolution of a sinc with

a modified Bessel function K0.

Combining the finite aperture effect with the sampling of the PAF, the

following expression for the 2D-FT of the sampled windowed PAF (denoted as



3.6. Simulations and Measurements 49

−50 0 50
−30

−20

−10

0

10

20

30
slice of the spectrum of the PAF for 3 different array sizes

φ [rad/m]

A
m

pl
itu

de
 [d

B
]

50 cm 

100 cm 
150 cm 

Figure 3.11: A section of the PAF at a particular temporal frequency
(2000π rad/s). The curves represent data acquired on intervals of different lengths:
50 cm (full line), 100 cm (dotted line) and 150 cm (dashed line). A larger interval
leads to a faster decay. For this graph, we used d = 1 in (3.7).

q̂S) is obtained:

q̂S(φ, ω) =
1

∆x∆t

∞
∑

k1,k2=−∞
q̂

(

φ − 2πk1

∆x
, ω − 2πk2

∆t

)

. (3.48)

3.6 Simulations and Measurements

In this section, simulation results are presented for the interpolation of RIRs.

These results are then compared with real measurements.

3.6.1 Simulation results

RIRs have been simulated on a line in a room using the image source model.

For simulation purposes, one derives a dense set of impulse responses, keeps

a subset, and interpolates the missing ones. In the simulations, the case of

rectangular sampling of the sound field was considered. To compare the in-

terpolated with the simulated RIRs, the normalized mean square error (MSE)

criterion was used:

MSE = 10log10

∑T
i=1 (r[i] − re[i])

2

∑T
i=1 r2[i]

, (3.49)

with T the length in samples of the simulated RIRs, r the simulated RIR and

re the interpolated RIR.

In the presented simulations, 2n + 1 RIRs were simulated every cm along a

line in the room. From these simulations, we kept n + 1 measurements spaced

with 2 cm to interpolate the n “in-between” positions. With the spacing of
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Figure 3.12: Interpolation error for different array sizes. We use the same spacing
between the microphones, namely 2 cm.

2 cm, the RIRs were reconstructed up to a temporal frequency of 16000π rad/s.

In this setup, due to the limited length of the array, the decay of the spectrum

is mostly determined by the decay of the windowing function as discussed in

Section 3.5. We chose ε large enough in (3.42) to ensure a sufficient decay in the

spectrum of the finite length aperture PAF. Note that this ε can be substantially

larger than the one obtained in Fig. 3.6. The MSE for those n positions is shown

in Fig. 3.12. Different lengths of the array centered around the same spatial

position were considered, namely n = 8, 17, 35 and 71. Remark that the MSE

is only given for the interpolated positions since the positions used to apply

the interpolation are perfectly reconstructed. One can observe that using the

array corresponding to n = 71 leads to a very small error (less than −60 dB)

for the interpolation in the middle of the array. When using the same spacing

between the microphones but reducing the number of RIRs, the interpolation

error increases due to the border effects introduced by the finite length of the

array. Remark also that the curves on Fig. 3.12 are not symmetric. This is due

to the fact that the microphone array was not symmetrically located inside the

room.

3.6.2 Experimental results

Experimental results were carried out in a partially sound insulated room

with RIRs measured at different spatial positions. One loudspeaker (Genelec

1029A) was used together with a microphone array (composed of 8 Panasonic

WM61A). A frequency logarithmic sweep [86] was used to measure the RIRs.

71 RIRs were measured with a microphone spacing of 2 cm along a line in the

room. The spectrum of the measured PAF is shown in Fig. 3.13(a). Similarly

to the technique presented in the simulations, we kept 36 measurements spaced
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Figure 3.13: Experimental PAF. (a) 2D-FT of the measured plenacoustic func-
tion. (b) Interpolation error on measured RIRs.

with 4 cm to interpolate the 35 “in-between” positions. The RIRs were low-

pass filtered to 8000π rad/s. Considering (3.42), ε was chosen large enough to

ensure a sufficient decay in the spectrum of the windowed PAF. The MSE on

the 35 interpolated RIRs measurements is shown in Fig. 3.13(b). Note that the

MSE shown in Fig. 3.13(b) is obtained when using only the first 100 ms of the

RIRs. When considering the full RIRs (1 s) poorer results are obtained (on the

order of −25 dB). This results leads to the thinking that only the beginning of

the RIRs is well interpolated. To justify this conjecture, successive measure-

ments were performed at the same spatial positions with a 30 s interval. We

studied the MSE between two successive measurements using a sliding window

of 25 ms. The results were averaged over 100 measurements. It can be observed

in Fig. 3.14 that the MSE is very low at the beginning of the RIR and increases

with time. After 100 ms, the MSE between consecutive measurements is al-

ready of about −38 dB. This fact can probably be understood by a variation

of the speed of sound propagation over time. This effect is the most severe for
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Figure 3.14: MSE on successive RIRs along a sliding window of 25 ms. The
results were averaged over 100 pairs of successive measurements.

waves traveling over a wider area. Therefore, the reverberant part of the RIR

undergoes the largest relative timing changes. The speed of sound fluctuation

also has a larger impact for larger microphone to loudspeaker distances. This

speed of sound variation can be the consequence of variation of different param-

eters such as temperature, humidity and pressure in the room. In [45], similar

observations have been done and attributed to variation of temperature. They

showed that a variation of 0.1◦ can create a misalignment between RIRs of

more that 25 dB.

Remark finally that due to the limit of our eight inputs microphone array,

we had to move the array to the next positions in order to measure the 71

RIRs (our intrusion in the room probably modified the temperature and other

factors between two sets of measurements). Better results would be obtained if

all the measurements could be captured simultaneously, which was not possible

due to hardware limitations.

For completeness, a set of electromagnetic (EM) channel impulse responses

(CIRs) is also presented in this chapter. Measurements of EM CIRs have been

done in a room along a line at 78 positions spaced by 2 cm. The excitation

signal was produced by an pseudonoise generator (Centellax TG1P1A) con-

taining energy in a range between 2 GHz to 5 GHz. The impulse responses

were measured by antennas using an oscilloscope Lecroy SDA − 6000. The

2D spectrum of the CIRs is shown in Fig. 3.15. This spectrum also exhibits

a butterfly shape. Nevertheless, as the excitation signal contained small en-

ergy for frequencies below 2 GHz and the used antennas only picked up signal

of higher frequencies, the butterfly shape is only visible above that frequency,

what explains the trapezoidal shape of the spectrum. Note that in the electro-

magnetic case, the support of the butterfly is now dependent on the speed of

light propagation.
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Figure 3.15: 2D spectrum of measured electromagnetic channel impulse re-
sponses.

3.7 Plenacoustic Function for Multidimensional Spa-

tial Positions

The previous sections were devoted to the detailed study of the sampling and in-

terpolation of the sound pressure field on the line. This study can obviously be

generalized to other spatial positions of microphones (or loudspeakers). There-

fore, one wants to study the shape of spectra associated with different micro-

phones setups. Section 3.7.1 studies the spectrum of the PAF associated to a

plane of microphones. The optimal sampling pattern for positioning the micro-

phones is studied. Further, the three-dimensional space filled of microphones

is presented in Section 3.7.2.

3.7.1 Plenacoustic function on a plane

Study of the spectrum

In Section 3.3, the shape and the properties of the PAF on a line in the room

were studied. In this section, one considers a more general case where the RIRs

are studied on a plane. Consider a plane in the space filled with receivers in

the x and the y directions. Further, a source is located at position (xs, ys, zs).

At any receiver position (xm, ym, zm) the direct path coming from the source

is

p(xm, ym, t) =
δ(t − a

c )

4πa
, (3.50)

with a =
√

(xm − xs)2 + (ym − ys)2 + (zm − zs)2. The derivation of the 3D-

FT of (3.50) is done in Appendix A.2 and follows the same approach as the



54 Chapter 3.

y

ω

φ

φ

x

Figure 3.16: Schematic view of the three-dimensional spectrum of the PAF.

one presented in [18]. The result is:

p̂(φx, φy, ω) =
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




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for ω

c ≤ |φq|.
(3.51)

with φ2
q = φ2

x + φ2
y and Φ = e−j(φxxs+φyys). Note that φx and φy represent the

spatial frequencies for the microphones in the x and y directions respectively.

The obtained spectrum has a conical shape as shown in Fig. 3.16. The surface

of the cone is given by:

ω

c
=
√

φ2
x + φ2

y . (3.52)

Similarly to the results obtained with the line of microphones, one sees that

the decay of the spectrum is also faster than an exponential outside of the

conical shape. Remark that in the specific case of the source located on the

plane of the microphones, the decay becomes slower and is, up to a constant,

asymptotic as 1
φq

.

Optimal sampling pattern

Similarly to the analysis presented in Section 3.4.2, the optimal sampling pat-

tern for the positioning of the microphones on the plane is studied. The first

approach is to use the rectangular sampling as shown in Fig. 3.17(a). A spacing

of ∆x1 and ∆y1 was used for the spacing between the microphones in the x and

y directions. Fig. 3.17(b) shows the corresponding packing of the circles in the

Fourier spectrum for one temporal frequency (typically the highest frequency
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Figure 3.17: Sampling of the PAF on a plane. (a) Placement of the microphones
on the plane on a rectangular sampling grid. (b) Plenacoustic spectrum with its
repetitions for a rectangular sampling grid. (c) Hexagonal sampling grid. (d)
Plenacoustic spectrum with its repetitions for a hexagonal sampling grid.

present in the emitted signal).

The conical shape of the spectrum allows us to obtain a tighter packing of

the circles. The use of an hexagonal sampling pattern leads to a reduction of

about 15% in the number of necessary microphones. Fig. 3.17(c) shows the

new positions of the microphones on the plane. In this case,

∆x2 =
2√
3
∆x1 , ∆y2 = ∆y1. (3.53)

Fig. 3.17(d) shows the corresponding spectrum with its spectral repetitions.

Other packings of the cones can be realized to lower the temporal sampling

frequency of the A/D converters but do not reduce further the number of

microphones needed to sample the sound pressure field on a plane [37].

Simulation results

We simulated RIRs on a plane in a room using the image source model. The 3D

Fourier transform was applied on the gathered data. By looking at sections of
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Figure 3.18: Spectrum of the PAF obtained by simulations at different temporal
frequencies. (a) ω = 1500 rad/s. (b) ω = 3000 rad/s.

this spectrum for ω = 1500 rad/s and ω = 3000 rad/s, one obtains Fig. 3.18(a)

and (b), respectively. One can see that with growing temporal frequencies, the

support of the PAF spectrum also increases as given by (3.52).

3.7.2 Plenacoustic function in space

In this section microphones located in the 3D space are considered. Similarly to

the setup presented in Section 3.7.1, a source is located at position (xs, ys, zs)

and microphones at positions (xm, ym, zm). The PAF is also given by (3.50).

Note that in the present setup also zm is a variable. Call φz the spatial fre-

quency of the microphone positions in the z direction. Calculating the 4D-FT

of (3.50) is done in Appendix A.3. The result is:

p̂(φx, φy , φz, ω) =
e−j(φxxs+φyys+φzzs)

φ2
x + φ2

y + φ2
z − (ω

c )2
, (3.54)

which represents a cone in four dimensions. For a particular temporal fre-

quency, the section of this cone is a sphere. The size of the sphere obeys the
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following rule:

ω

c
=
√

φ2
x + φ2

y + φ2
z . (3.55)

Remark that the decay outside of the sphere is not exponential as it was for the

plane and line of microphones. This is due to the presence of the source at one

of the microphone positions. At a particular temporal frequency, the optimal

packing of the spheres is given by face-centered cubic lattice packing [106]. It

reduces the number of samples by a factor of about 29.3% when compared to

a normal rectangular sampling pattern.

3.8 Conclusion

In this chapter, we have introduced and studied the plenacoustic function. It

characterizes the sound pressure field at any point in space. This function

has been studied and its spectrum for the linear, the planar and the three-

dimensional case has been calculated without making any far field assumption.

The decay of the spectrum has been studied along both the temporal and

spatial frequency axis. Based on the support of the spectrum, the number and

the spacing between the microphones needed to reconstruct the sound pressure

field up to a certain temporal frequency has been determined. A quantitative

sampling theorem, trading off sampling rate for SNR, has been presented. As

an example, it has been shown that to reconstruct the sound field up to 1.3 kHz,

a spatial distance of 12.35 cm is necessary to achieve a reconstruction quality

of 100 dB for a source located at unitary distance from the line of microphones.

Using the far field assumption, this spacing would be of 13.35 cm. The optimal

sampling pattern for the microphone positions has also been given for the

linear, the planar and the three-dimensional case. Finally, simulations and

experimental results were presented and compared with the theoretical results.
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Chapter 4

Sound Field Analysis Along a

Circle and its Application to

HRTF Interpolation

4.1 Introduction

In this chapter, we explore the spatial evolution of the sound field along a circle.

We study how many sensors need to be placed on a circular array to be able

to recover the field at any position along the circle. This leads to an angular

sampling theorem of the sound field along a circle. This theorem describes

quantitatively the trade-off existing between the quality of reconstruction of the

sound field and the angular spacing between the sensors. Further, as application

of the presented theory, sampling and interpolation of head-related transfer

functions (HRTFs) is described. HRTF sampling is being looked at in terms

of sound field sampling. Considering the dual problem of a source at the ear

entrance it is shown that the angular bandwidth on circles around a listener is

limited. Consequently, angular interpolation can be applied to obtain highly

precise interpolated HRTFs. It is shown that the necessary spacing between

the HRTFs is quite small. Thus, this technique is only applicable if finely

spaced HRTF measurements are available. For example, at a sampling rate of

44.1 kHz, HRTFs need to be available every 4.9◦ to avoid spatial aliasing.

While the sound field based HRTF interpolation method enables very inter-

polation in a least mean square sense (much more precise than other methods),

its drawback is that it looses its advantage when applied to more coarsely

spaced HRTFs than would be dictated by the angular Nyquist theorem. The

theorem indeed often dictates a very dense angular sampling which makes the

59
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method difficult to apply in some practical situations.

To counteract this limitation of this first interpolation scheme, we are

proposing an HRTF interpolation algorithm which attempts to take advantage

of spatial bandwidth considerations while improving its performance for the

case when less HRTF measurements are present than required by the angular

Nyquist theorem. In the low frequency band, where very little spatial aliasing

occurs, the proposed algorithm applies an angular interpolation method similar

to the previously proposed method. At higher frequencies, the interpolation

is carried out in subbands. Angular aliasing is avoided by applying angular

interpolation to the complex temporal envelope in each subband. Given the

interpolated complex envelopes the subband signals are re-generated by modu-

lating them with a separately interpolated carrier signal. The newly presented

technique is then compared with different existing techniques. It is shown that

the new method still achieves good interpolation results in case of angular

undersampling by a factor of two to four.

4.1.1 Related work

Circular microphone or loudspeaker arrays, discussed in detail in this chapter,

are used in different techniques existing in the literature such as beamforming

[14, 63, 61], wave field analysis and synthesis [90, 92] and HRTF interpolation

[20]. Some related work is now described.

Related works exist on the topic of sound field sampling but have mostly

considered the plane wave assumption [65,64,103]. In [92], Poletti has quanti-

fied the aliasing, noise and transducer variability of circular microphone arrays

under the far field assumption. Note that there exists a major difference be-

tween the plane wave studied along a line or a circle. The linear array is the

natural way of analyzing the plane wave since one plane wave at one temporal

frequency corresponds exactly to one point in the spectrum [7, 91]. In other

words, one plane wave corresponds to one basis function of the Fourier decom-

position. As was previously described in the introduction of Chapter 3, when

considering a plane wave along a line, the sound field can be shown to have a

compact support in the frequency domain and if the Nyquist sampling condi-

tion is fulfilled, perfect reconstruction can be achieved. When the same plane

wave is studied along a circle, perfect reconstruction is not possible anymore.

It can be shown that the decomposition of a plane wave in cylindrical coordi-

nates excites all possible modes [65]. Therefore, theoretically, sensors should

be placed infinitely close to each other to be able to perfectly reconstruct the

sound field. In practice, by neglecting the modes containing little energy, a very

good reconstruction can still be achieved. Jones et al. [64] have derived bounds
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on the error made by reconstructing the field when only a limited number of

those modes are considered.

Substantial work has also been done in the field of wave field synthesis

(WFS) using circular arrays and many existing systems make use of circular

loudspeaker arrays [90]. Recently Spors et al. have investigated the aliasing

artifacts present when reproducing the sound field with WFS using linear and

circular arrays of loudspeakers [104]. Also, wave field extrapolation algorithms

can be adapted to describe the case of circular microphone arrays [59,60,61]. In

[60], the auralization of the sound field is described. The field is measured along

a circular array and further extrapolated at other positions. Different possible

geometries are described and compared for this purpose and it is concluded

that a circular array of microphones leads to the best extrapolation results. The

description of HRTFs as well as a different aspects relative to their measurement

and interpolation are described in Section 2.3.3.

4.1.2 Contributions

The contributions presented in this chapter are the following:

• A thorough analysis of the sampling of the two-dimensional sound field is

described together with an angular Nyquist theorem for circular arrays.

• Approximation formula are given for the essential support of spectrum of

the three-dimensional sound field gathered on a circle.

• Best interpolation results for HRTFs in the horizontal plane are obtained

when sampled with an angular spacing of 5◦ for reconstruction up to

44.1 kHz.

• A novel technique is presented for undersampled HRTF datasets where

the HRTFs are decomposed into their envelope and carrier signals. This

method achieves acceptable results in mean square error sense for HRTFs

measured with an angular undersampling factor of two or four.

Outline

The chapter is organized as follows. Section 4.2 studies the bandwidth limit

of the sound field on a circle. It first considers a two-dimensional setup in

Section 4.2.1 where an angular sampling theorem is developed and results are

generalized for the three-dimensional case in Section 4.2.2. Given this result,

sampling and interpolation of HRTFs are considered in Section 4.2.3. A new

technique, presented in Section 4.3, is described in order to achieve good results

in the case HRTFs are sampled too coarsely along the angular dimension. It is
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based on the decomposition of HRTFs in their complex envelopes and carrier

signals. Numerical simulations and experiments are presented in Section 4.4

together with a comparison with other existing methods. Conclusions are given

in Section 4.5.

4.2 Sound Field Analysis Along a Circle

In this section, the angular bandwidth of the sound field along a circle is

analyzed. In a first step, the study is performed in two dimensions in Sec-

tion 4.2.1. A sampling theorem is presented to describe quantitatively the

quality of reconstruction as a function of the angular sampling frequency. The

three-dimensional (3D) case is then further discussed in Section 4.2.2. Based

on these results, sampling of HRTFs is discussed in Section 4.2.3 together with

a first technique for their interpolation.

4.2.1 Angular bandwidth of the 2D sound field on a circle

In this section, two setups are explored. The first setup considers a plane wave

arriving on the circle of microphones. The second setup considers a circular

wave source. For the second setup, a sampling theorem is presented.

Plane wave assumption

The first setup considered in this section consists of a circular microphone array

of radius r. The coordinates of the different microphones are r = (rx, ry), with

rx = r cos θ and ry = r sin θ. A plane wave emitted by a plane source is

incoming on the circle of microphone with a given angle θs as is shown in

Fig. 4.1(a).

The plenacoustic function (PAF) along the circle is now defined as p(θ, t),

where the sound field recorded at each angle θ is described as function of the

time t. The sound field along the circle for a far field source emitting a Dirac

pulse is given by

p(θ, t) = δ

(

t − ts −
r cos (θ − θs)

c

)

, (4.1)

with c the speed of sound propagation and ts the time taken by the wave to

travel from the source position to the center of the microphone array. For the

simplicity of the calculations, we consider ts = 0, meaning that for t = 0, the

wave should pass through the center of the circular array. The PAF along a

circle is shown in Fig. 4.1(b). Taking the Fourier transform of (4.1) along the
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Figure 4.1: Sound field analysis along a circle. (a) A plane wave is incoming on
a circle of radius r with an angle θs. (b) Plenacoustic function studied along this
circle.

temporal axis leads to

p̃(θ, ω) = e−j ω
c

r cos (θ−θs). (4.2)

In order to study the spatial bandwidth of the sound field recorded on a circle,

the Fourier transform of (4.2) along the angular direction needs to be calculated.

Denote the angular frequency as lθ. Remark that lθ ∈ Z due to 2π periodicity

of p̃(θ, ω) in θ. We therefore have that

p̂(lθ, ω) =
1

2π

∫ 2π

0

p̃(θ, ω)e−jlθθdθ, (4.3)

and

p̃(θ, ω) =

∞
∑

lθ=−∞
p̂(lθ, ω)ejlθθ. (4.4)

To calculate p̂(lθ, ω) in the present case, we make use of the Anger-Jacobi

expansion [38, 64, 103]. It describes a plane wave as a function of a sum of

Bessel functions:

e−j ω
c

r cos (θ−θs) =

∞
∑

lθ=−∞
jlθJlθ

(ω

c
r
)

ejlθ(θ−θs). (4.5)
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Therefore,

p̂(lθ, ω) = jlθJlθ

(ω

c
r
)

e−jlθθs . (4.6)

The magnitude spectrum |p̂(lθ, ω)| is plotted in Fig. 4.2 for a circle of radius

0.6 m. Note that most of the energy is present in a butterfly shaped region.

Outside of this region, the energy present is decaying very fast. The intuition

behind the shape of the spectrum is similar to the one presented in the case of

the infinite line of microphones in Chapter 3. For low temporal frequency, due

to the large wavelength, the angular frequency support is small. For increasing

temporal frequency the butterfly is widening due to larger angular frequency

support. This support increases due to the smaller wavelength indicating faster

changes along the angular dimension. Similarly to the results of Chapter 3, the

support of (4.6) can be approximated to the region satisfying

|lθ| ≤
|ω|
c

r. (4.7)

For a given temporal frequency, the spectrum behaves as (for large lθ)

|p̂(lθ, ω)| ∼ 1

Γ(lθ + 1)

( ω

2c
r
)lθ

, (4.8)

where Γ(lθ) = (lθ − 1)!. Using Stirling’s approximation which represents an

asymptotic formula for the Γ function, it can be shown that for large lθ and a

finite ω, the magnitude spectrum decays as

|p̂(lθ, ω)| ∼ 1√
2πlθ

(

reω

2clθ

)lθ

(4.9)

∼ c1√
lθ

(

c2

lθ

)lθ

, (4.10)

with c1 and c2 two constants. This very fast decay can be observed in Fig. 4.2.

Circular source

The second setup in this section explores the more realistic case, where the

sound source is not considered as infinitely far away but at a finite distance.

The sound source is located at a distance s from the center of the array and its

coordinates are s = (sx, sy) with sx = s cos θs and sy = s sin θs. The setup is

shown in Fig. 4.3. The same analysis is valid for distances s larger or smaller

than the radius of the circle as will be shown in the sequel. Consider the source

to emit sound in free field. The Green’s function for the case of a circular sound



4.2. Sound Field Analysis Along a Circle 65

Figure 4.2: Butterfly spectrum of the PAF along a circle in far field.

source in two dimensions is given by [85, 112] and was derived in Chapter 2

p̃(x, y, ω) =
−j

4
H

(2)
0

(

ω

c

√

(x − sx)
2

+ (y − sy)
2

)

, (4.11)

with H
(2)
0 the order zero Hankel function of the second kind. In our case, we

are interested in the field studied along a circular array. The time taken by

sound to travel between the source and the different receivers located on the

circle is

h(θ) =

√

(sx − r cos θ)2 + (sy − r sin θ)2

c
. (4.12)

With (4.12), the Green’s function can be rewritten as

p̃(θ, ω) =
−j

4
H

(2)
0 (ωh(θ)) =

−j

4
H

(2)
0

(ω

c

√

r2 + s2 − 2rs cos(θ − θs)
)

. (4.13)

Note that for large argument of the Hankel function of order zero, we have

that [112]

H
(2)
0

(ω

c
r
)

∼
√

2c

πωr
e−i( ω

c
r−π

4 ). (4.14)

Similarly to the Anger-Jacobi expansion described in (4.5), it is also possible

to express a circular wave as a sum of Bessel functions. This is known as the
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Figure 4.3: A monopole source emits sound in free field. The sound field is
recorded along a circle of radius r with equally spaced microphones. The source is
located at a finite distance s from the circle.

addition theorem [112, 38]:

H
(2)
0

(ω

c
‖s− r‖

)

=

∞
∑

n=−∞
Jn

(ω

c
r<

)

H(2)
n

(ω

c
r>

)

ejn(θ−θs), (4.15)

with ‖s− r‖ describing the distance between the source and the receivers, r<

the lesser of r and s and r> the greater. In this section, we consider s ≥ r. The

exact same results are obtained for the case where s ≤ r, only s and r need to

be swapped in the equations. It will be shown to be the case in the study of

the angular bandwidth of HRTFs in Section 4.2.3.

Comparing the Fourier series in (4.15) and in (4.4) using (4.13) leads to:

p̂(lθ, ω) =
−j

4
Jlθ

(ω

c
r
)

H
(2)
lθ

(ω

c
s
)

e−jlθθs . (4.16)

The spectrum obtained in (4.16) is shown in Fig. 4.4(a) for microphones

located on a radius of 0.6 m and a source at 2 m from the center of the circle.

When comparing the magnitude spectrum between the far field and the circular

source case, we can observe that the circular case is obtained by multiplying

the far field case formula (4.6) with a Hankel function as in (4.16). We show

in Fig. 4.4(b) the effect of this multiplication for different ratios ρ = s
r in a

slice of the magnitude spectrum at ω = 10000 rad/s. It is shown that for a

source located at three times the radius of the circle, the magnitude spectrum

is very similar to the far field case. When the source approaches the circle, the

magnitude spectrum decays slower and slower as is shown for ρ varying from
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Figure 4.4: Spectrum of the PAF. (a) Butterfly spectrum of the PAF along a
circle for a circular source. (b) Comparison of the far field PAF spectrum with the
PAF spectrum for circular sources located at different distances.

Similarly to the sampling theorem described in Chapter 3, we can also de-

velop a sampling theorem for the reconstruction of the PAF along a circle. The

same approach as in Section 3.4.1 is taken and the SNR is defined in a similar
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way. Consider a cut of the PAF spectrum at one temporal frequency. The

spectrum only exists at integer values, namely lθ. This cut of the spectrum is

shown schematically in Fig. 4.5(a). When sampling the PAF along the angular

direction with an angular spacing of ∆θ, the angular sampling frequency lθS
is

defined as

lθS
=

2π

∆θ
. (4.17)

The spectrum of the sampled PAF, as discussed in Chapter 3, is obtained by

considering the original continuous angular PAF with all its spectral replicas

as shown in Fig. 4.5(b). It is given by

p̂S(lθ, ω) =
1

∆θ∆t

∞
∑

k1,k2=−∞
p̂

(

lθ −
2πk1

∆θ
, ω − 2πk2

∆t

)

. (4.18)

Due to the non-perfect bandlimitedness of the spectrum of the PAF, perfect

reconstruction is not achieved. A small error remains on the reconstruction

depending on the decay of the spectrum outside of the butterfly region. The

SNR defined in (3.30) rewrites here as

SNR(lθS
, ω0) =

∑∞
lθ=−∞ |p̂(lθ, ω0)|2

4
∑

lθ≥
lθS
2

|p̂(lθ, ω0)|2
. (4.19)

Theorem 4.2.1. In two dimensions, assume one single source emitting in free

field at a frequency ω = ω0 located at distance s from the center of a circle

of radius r. When sampling the PAF on the circle at an angular sampling

frequency of lθS
, for a particular ω = ω0, and reconstructing it using an ideal

interpolator, the SNR of the reconstructed signal in the band [− lθS

2 ,
lθS

2 ] can

be expressed as

SNR(lθS
, ω0) =

∑∞
lθ=−∞ |Jlθ

(

ω0

c r<

)

H
(2)
lθ

(

ω0

c r>

)

|2

4
∑

lθ≥
lθS
2

|Jlθ

(

ω0

c r<

)

H
(2)
lθ

(

ω0

c r>

)

|2
, (4.20)

where H
(2)
lθ

is the Hankel function of order lθ of the second kind, Jlθ is the

Bessel function of order lθ, r< the lesser of r and s and r> the greater.

Numerically, (4.20) has been simulated and the results are shown in Fig. 4.6

for temporal frequencies varying from 1 to 8000 rad/s. The simulations have

been performed for a source located at 2 m from a circle of radius 1 m. A

numerical example is given.

Example 4.2.1. consider a circular wave emitting at 8000 rad/s (1.3 kHz).
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Figure 4.5: Sampling theorem of the PAF along a circle. (a) A cut at one specific
temporal frequency of the spectrum of the PAF. (b) Due to the sampling of the
PAF in the angular direction, the spectrum of the sampled PAF contains multiple
periodic repetition of the original spectrum.

Using the approximation (4.7), one would require an angular spacing between

consecutive microphones of 7.6◦ while from (4.20) and Fig. 4.6, it turns out

that to obtain a mean SNR of 50 dB on the reconstruction, an angular spacing

of 5.9◦ is necessary. �

4.2.2 Angular bandwidth of the 3D sound field on a circle

Up to now, the sound field along a circular array has been studied for a 2D

plane wave and for a circular sound source. In a 3D setup, the sound source is

a spherical source emitting in 3D. We therefore slightly modify the setup and

introduce the third dimension. We consider a similar setup as in Fig. 4.3. The

coordinates of the different microphones are now (rx, ry , rz), with rx = r cos θ,

ry = r sin θ and rz = 0. The sound source is located at a distance s from the
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Figure 4.6: Numerical simulation for the calculation of the SNR for different ω0.

center of the array and with coordinates (sx, sy, sz) where sx = s cos θs and

sy = s sin θs. The distance s can be decomposed into a distance sp =
√

s2
x + s2

y

in the plane of the microphones and sz with

|s| =
√

s2
p + s2

z. (4.21)

The different signals recorded at any angle on the circle are gathered in a

function p(θ, t). When the sound source emits a Dirac signal, the microphones

located on the circle measure

p(θ, t) =
δ(t − h(θ))

4πch(θ)
, (4.22)

where h(θ) is defined as

h(θ) =

√

(sx − r cos θ)2 + (sy − r sin θ)2 + s2
z

c
(4.23)

=

√

s2 + r2 − 2rsp cos(θ − θs)

c
. (4.24)

Similarly to the two-dimensional case, the function h(θ) represents, at each

angular microphone position θ, the time of arrival taken by sound to propagate

from the source to the different microphones. An example of this function is

given in Fig. 4.7. To study the angular bandwidth of the sound field recorded

on a circle, the two-dimensional Fourier transform (2D-FT) of p(θ, t) is again
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Figure 4.7: Time of arrival from source to microphone at each angular position.

studied

p̂(lθ, ω) =
1

2π

∫ 2π

0

∫ ∞

−∞
p(θ, t)e−j(lθθ+ωt)dtdθ (4.25)

=
1

8π2c

∫ 2π

0

e−jωh(θ)

h(θ)
e−jlθθdθ. (4.26)

A closed form solution of this equation has not been obtained yet. Therefore, to

estimate the spatial support of the spectrum, we present some approximation

formulae in the sequel.

In the study of the spatial bandwidth of the sound field, the attenuation

depending on the distance traveled has been shown to be negligible for the

study of the essential support of the PAF spectrum in [6]. It mostly affects the

decay of the function. Therefore, a good estimate of the angular bandwidth

corresponds to the support of the function:

p̂(lθ, ω) =

∫ 2π

0

e−jωh(θ)e−jlθθdθ. (4.27)

Note that (4.27) corresponds to the Fourier transform of a phase modula-

tion (PM) signal where the carrier frequency would be equal to zero and the

modulation function would be h(θ). The bandwidth of this signal can easily

be estimated using the Carson’s rule [29, 41]. For a temporal frequency ω, the

bandwidth (BW) of p̂(lθ, ω) along the angular frequency axis can be approxi-
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mated by

BW(p̂(lθ, ω)) ≈ max
θ

[

dh

dθ

]

ω + W, (4.28)

with W the bandwidth of h(θ)1.

The maxima of the first derivative of h(θ) with respect to θ can be found

to be [6]

dh

dθ
= ±

√

A + 2spr −
√

A − 2spr

2c
, (4.29)

with A = s2 + r2. For sources located in the same plane as the circular array,

the expression of the derivative gets simpler:

• for a source located inside of the circular array,

max
θ

[

dh

dθ

]

= ±s

c
; (4.30)

• for a source located outside of the circular array,

max
θ

[

dh

dθ

]

= ±r

c
. (4.31)

Further we can also show that the maximal derivative of h(θ) associated to a

source outside of the plane of the array is always smaller than the derivative

for a source on the plane:

∣

∣

∣

∣

∣

√

A + 2spr −
√

A − 2spr

2c

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

min(sp, r)

c

∣

∣

∣

∣

.

The maximum derivative is thus only dependent on the minimum between the

distance from the center of the array to the source and the radius of the array,

max
θ

[

dh

dθ

]

≤ min(sp, r)

c
. (4.32)

The signal h(θ) is a very smooth signal and therefore its bandwidth W can be

shown to be approximately zero (unless in specific cases where the source is

very close to the microphones as has been discussed previously in Section 4.2.1).

1To apply Carson’s rule, either W ≪ maxθ

h

dh
dθ

i

ω or W ≫ maxθ

h

dh
dθ

i

ω needs to be

satisfied.
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Therefore, (4.28) becomes

BW(p̂(lθ, ω)) ≈ ω

c
min(sp, r). (4.33)

In most cases the source is considered to be in the same plane as the circular

array and we have then

BW(p̂(lθ, ω)) ≈ ω

c
min(s, r). (4.34)

As indicated by (4.34), the angular frequency support increases linearly with

the temporal frequency. This corresponds exactly to the butterfly support

presented in Fig. 4.8(a) where most of the energy is present in the region

satisfying

|lθ| ≤ |ω|r
c
. (4.35)

This spectrum was obtained by simulating the sound field measured on a cir-

cular array of radius 0.6 m with a source at 2 m from the center of the array.

The same setup was followed for real measurements where 1000 room impulse

responses (RIRs) were measured in a sound insulated room. The measurements

were performed with a microphone every 0.36◦ along a circle. These measure-

ments were performed using an automatic Pan/Tilt unit PTU − D46− 70 ro-

tating with a precision of 0.03◦ in the median plane. The RIRs were measured

using a logarithmic sweep [86] of 2 seconds duration. The loudspeaker used

was a Genelec 1029A and the microphone Beyerdynamic MC − 740. The 2D

spectrum obtained from the real RIRs measurements is shown in Fig. 4.8(b).

The support of the spectrum for the real measurements corresponds well to

the simulations. All these measurements are available online at the following

address [2].

In this chapter we only have considered the free field case where no reverber-

ation was present. We give now a justification for the fact that measurements

containing a large number of reflections also exhibit a similar magnitude spec-

trum. In Fig. 4.9, we present a scheme with a circular array of radius r and

a source s1 in a rectangular room. The reverberation is simulated with the

image source model as described previously in Chapter 3. For simplicity we

consider the source to be in the same plane as the microphones. Three virtual

sources are present in the scheme. Every virtual source leads to a butterfly

spectrum dictated by (4.34) where min(r, s) = r. Therefore the total support

is not larger with increasing number of virtual sources. Note that in the case

of a source inside of the array, the free field support would satisfy (4.34) with

min(r, s) = s. The virtual sources would then lead to larger support, namely
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(a)

(b)

Figure 4.8: 2D-FT of the sound field recorded on a circular array. (a) For a
simulated case. (b) For real measurements.

(4.34) with min(r, s) = r. In that case, the total support is then larger than

the free field support and follows the same rule as if the original source would

have been outside of the circle.

For completeness, a set of electromagnetic (EM) channel impulse responses

(CIRs) is also presented in this chapter. Measurements of EM CIRs have been

done in a room along a circular array at 280 positions along a circle of ra-

dius 70 cm. Similarly to the setup used for the linear array measurements in

Chapter 3, the excitation signal was produced by an pseudonoise generator

(Centellax TG1P1A) containing energy in a range between 2 GHz to 5 GHz.

The impulse responses were measured by antennas using an oscilloscope Lecroy

SDA − 6000. The CIRs are shown in Fig. 4.10(a) and the corresponding 2D
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Figure 4.9: Scheme of the situation with 4 sources corresponding to reverberation.

spectrum in Fig. 4.10(b). This spectrum also exhibits a butterfly shape. Nev-

ertheless, as the excitation signal contained small energy for frequencies below

2 GHz and the used antennas only picked up signal of higher frequencies, the

butterfly shape is only visible above that frequency, what explains the trape-

zoidal shape of the spectrum. Note that in the electromagnetic case, the sup-

port of the butterfly is now dependent on the speed of light propagation.

4.2.3 HRTF sampling and interpolation

In Sections 4.2.1 and 4.2.2, the spatial bandwidth of the sound field along a

circle has been studied. The same theory can be applied for the study of HRTF

interpolation. HRTFs measurements are carried out in an anechoic chamber to

characterize the effect of pinnae, head, and torso of a person on the perceived

sound [20]. The typical setup for HRTF measurements is shown in Fig. 4.11.

The loudspeakers are located along a circle around the person. The microphone

is located at the entrance of the ear canal of the listener to capture the sound.

By constructing p(θ, t) as the HRIRs measured at every possible angle, the

support of the spectrum p̂(lθ, ω) can be estimated using the theory presented

in Section 4.2.2. With the head well centered in the middle of the loudspeaker

array and the position of the microphone being d
2 = 9 cm away from the center

of the circle (half the spacing between the two ears) [20], (4.35) rewrites as

|lθ| ≤ |ω| d

2c
≈ |ω|0.09

c
. (4.36)

Therefore, for any temporal frequency, the necessary angular spacing between

consecutive loudspeaker positions can be derived. Considering the energy out-

side of the butterfly spectrum as negligible, the angular sampling frequency
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(a)

(b)

Figure 4.10: Experimental electromagnetic channel impulse responses measured
between 2 and 5 GHz. (a) CIRs measured at different angular positions. (b)
Corresponding 2D-FT of the measured CIRs.

needs to satisfy

lθS
> 2|ωmax|

d

2c
≈ 2|ωmax|

0.09

c
, (4.37)

with ωmax the maximal temporal frequency present in the signal. In particular,

(4.37) indicates that in order to sample HRTFs for an average adult human

(d ≈ 0.18 m) with a temporal sampling rate of 44.1 kHz, a spacing of at least

4.9◦ is necessary. Sampling the HRTFs with a too large angular spacing leads

to spectral repetitions corrupting all temporal frequencies above ωmax in (4.37).

HRTF interpolation

The interpolation of the dataset is done by observing that the spectrum of the

HRTFs contains almost no energy outside of the butterfly region. Therefore, as
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Figure 4.11: Setup for the recording of HRTFs.

the signal to be interpolated is almost bandlimited, good results are obtained

using a sinc interpolator. The implementation of this interpolator happens

most efficiently by zero-padding in frequency domain. This interpolation is

very suitable in the case of a circular array since the Fourier transform is

applied on an array that is 2π periodic. In the case of interpolation along

non-periodic arrays, border effects decrease the interpolation performance as is

described in Chapter 3.

Depending on the angular sampling of the database of HRTFs considered,

interpolation is only applied for frequencies satisfying (4.37). Higher frequen-

cies will not be correctly interpolated due to the spectral repetitions leading to

aliasing. For these higher frequencies other techniques need to be used as will

be shown in Section 4.3.

Head shadowing

The theory expressed above is valid in the case of HRTFs when the effect of

the head shadowing is not considered. In practice, waves are diffracted by the

head. This diffraction has to be taken into account. Diffraction has a large

impact on the level of amplitude of the HRTF [20]. It also affects the shape of

the function h(θ). In the model given by [42], the HRTFs are expressed as:

h̃(θ, ρ, µ) = − ρ

µ
e−iµρΨ, (4.38)

with

Ψ(θ, ρ, µ) =
∞
∑

m=0

(2m + 1)Pm(cos θ)
hm(µρ)

h′
m(µ)

,
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where µ is the normalized temporal frequency, Pm is a Legendre polynomial

of degree m, and hm is an mth order spherical Hankel function2. Taking the

Fourier transform of (4.38) a butterfly spectrum satisfying (4.36) is also ob-

served, as shown in Fig. 4.12(a). The obtained spectrum considering HRTFs

measured on a Kemar head [50] sampled every 5◦ in an anechoic chamber is

shown in Fig. 4.12(b). There also, (4.37) is satisfied since a spacing of 5◦ results

in almost no aliasing at 44.1 kHz.

4.3 HRTF Interpolation in a Temporal Envelope

Domain

With the analysis presented in Section 4.2.2, to reconstruct HRTFs at a sam-

pling rate of 44.1 kHz, 72 HRTFs are necessary to achieve good interpolation

results with little aliasing. This number is quite large and a lot of available

databases do not contain such a fine sampling. In this section, a method will

be presented to increase the performance of the interpolation in case a coarser

sampling of the HRTFs is at disposal for interpolation. Considering a database

containing two or four times less HRTFs than the dictated number by (4.37),

it will be shown that satisfactory results in a least mean squared sense can still

be achieved.

The technique presented in this section is based on a subband decomposi-

tion of the HRTFs. A scheme illustrating the method is shown in Fig. 4.13.

As discussed in Section 4.2, the best interpolation is achieved using the sinc

interpolation when no aliasing is present. Therefore this technique is still used

for the range of temporal frequencies satisfying (4.37). This frequency range is

denoted as a in Fig. 4.13. For the higher frequencies a new technique is pre-

sented. In this technique each subband is considered and analyzed separately.

These subbands are denoted as b in Fig. 4.13. At each angular position θi,

the subband signal is decomposed into its complex envelope signal and carrier

signal. The algorithm aligns the carriers of the different angular positions to

the carrier of a reference position. Therefore, only the envelope signals are

differing between the signals at various angular positions and interpolation is

applied to the envelopes. Due to the smaller bandwidth of the envelopes, spa-

tial aliasing is reduced. Fig. 4.13 illustrates the signals recorded at positions

θ1 and θ2. In dotted lines, the envelopes of these two signals are shown. After

carrier alignment of signal at position θ2 with the carrier of the reference signal

at position θ1, the new aligned carrier at position θ2 is shown in bold. It can

2Note that this notation is different than the one used in our thesis but has been kept as
in the original paper [42].
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(a)

(b)

Figure 4.12: 2D spectra of HRTFs: (a) using a diffraction model; (b) using
measured data.

be observed that the envelope of the signal at position θ2 is kept unmodified by

this alignment. Based on the idea that the envelope signals evolve slower along

the angular dimension than the HRTFs themselves, satisfactory interpolation

results can be obtained even when the angular spacing is not satisfying (4.37).

The technique can be summarized in four steps:
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Figure 4.13: Scheme of the presented technique for HRTF interpolation. In
the frequency range a, the interpolation happens with a sinc interpolator. In the
frequency bands denoted as b, the technique presented in this section is used.

1. The first step consists in the estimation of the carrier alignment factors

for each subband and at each angular position. The estimation of those

factors is presented in Section 4.3.1. Section 4.3.2 shows further that the
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angular support of the carrier aligned HRTFs is reduced when compared

to the original one.

2. Once the HRTFs are aligned, the next step is to interpolate the carrier

aligned HRTFs. This is discussed in Section 4.3.3.

3. The third step is to interpolate the alignment factors used to align the

different HRTFs which is also discussed in Section 4.3.3.

4. In the last step, all interpolated HRTFs are obtained by multiplying

each interpolated carrier aligned HRTF with its corresponding carrier

alignment factor.

4.3.1 Computing the carrier alignment factors in subbands.

Each subband signal is denoted as hi(θ, t) where the index i corresponds to the

subband index and θ stands for the azimuth angle characterizing the HRTF

position. The Fourier transform with respect to time of hi(θ, t) is denoted as

h̃i(θ, ω). The basic idea behind the algorithm is that each subband signal is

considered to be made of the product of a carrier and an envelope signal. For

every subband, the carriers of the different positions are aligned to the carrier

of one reference position called θr. Considering only the positive frequencies

in h̃i(θ, ω), this alignment is achieved by multiplying each HRTF spectrum

subband of position θ by a complex number ci(θ) = ejαθ,i . Denote k̃i(θ, ω) the

aligned HRTF subband, we have that

k̃i(θ, ω) = ci(θ)h̃i(θ, ω). (4.39)

The complex value ci(θ) is obtained by minimizing the error Ji defined as:

Ji =

∫ ωi+1

ωi

∣

∣

∣h̃i(θr, ω) − h̃i(θ, ω)ci(θ)
∣

∣

∣

2

dω, (4.40)

with ωi and ωi+1 the start and stop frequencies of band i.

The value of ci(θ) which minimizes Ji is calculated in Appendix D:

ci(θ) =

∫ ωi+1

ωi
h̃i(θr, ω)h̃∗

i (θ, ω)dω
∣

∣

∣

∫ ωi+1

ωi
h̃i(θr, ω)h̃∗

i (θ, ω)dω
∣

∣

∣

. (4.41)

By calculating ci(θ) as in (4.41) for each azimuthal angle and multiplying the

corresponding subband signal with it as in (4.39), the carrier signals of all

the HRTFs are aligned to the reference signal in a least mean square sense.

Fig. 4.14 shows an example of this carrier alignment procedure. The signal
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measured at the reference position θr is shown in dashed lines together with

its envelope in dashed-dotted line. The signal observed at position θ2 is shown

in full lines together with its envelope in dotted lines. Multiplying the signal

with the carrier alignment factor yields to the signal in bold lines. It can be

seen that both the signal at position θ2 and its carrier aligned version have the

same envelope. The carrier of the newly obtained signal is now aligned to the

reference signal carrier. The angular bandwidth occupied by this new HRTF
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Figure 4.14: Different subband signals.

dataset is reduced as will be shown in Section 4.3.2. This reduction of the

bandwidth is the key factor in the possibility of achieving satisfactory results

when interpolating signals whose angular spacing is not satisfying (4.37).

4.3.2 Support of the aligned HRTFs

In this section, for each subband HRTF hi(θ, t) the analytical signal h+i(θ, t)

is given by

h+i(θ, t) = hi(θ, t) + jȟi(θ, t), (4.42)

where ȟi(θ, t) stands for the Hilbert transform of hi(θ, t). Recall that

ȟ(t) =
1

π

∫ ∞

−∞

h(t)

t − τ
dτ. (4.43)

The Fourier transform with respect to time of h+i(θ, t) is denoted by h̃+i(θ, ω).

For the positive frequencies, it can be shown that

h̃+i(θ, ω) = 2h̃i(θ, ω). (4.44)
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For the negative frequencies, h̃+i(θ, ω) = 0.

The signal h+i(θ, t) can be decomposed into a carrier gi(θ, t) and a complex

envelope signal ei(θ, t). Writing the carrier signal as gi(θ, t) = ej(ωit−αθ,i),

h+i(θ, t) is obtained by

h+i(θ, t) = ei(θ, t)gi(θ, t) = ei(θ, t)e
j(ωit−αθ,i) = ei(θ, t)c

∗
i (θ)e

jωit. (4.45)

As discussed in Section 4.3.1, each carrier are aligned to the carrier of a reference

HRTF. The direction of the reference HRTF is θr. After realignment of all

HRTFs to this reference using (4.41)3, the new HRTF set is called k+i(θ, t),

with

k+i(θ, t) = ei(θ, t)e
jωit. (4.46)

Consider now the 2D spectrum of the HRTF for one subband. Call ĥ+i(lθ, ω)

the 2D-FT of h+i(θ, t) and k̂+i(lθ, ω) the 2D-FT of k+i(θ, t), one can write

k̂+i(lθ, ω) =
1

2π

∫ 2π

0

∫ ∞

−∞
ei(θ, t)e

−j(ω−ωi)tdte−jlθθdθ. (4.47)

Calling ê(lθ, ω) the 2D-FT of the complex envelope signals ei(θ, t), (4.47) can

be rewritten as

k̂+i(lθ, ω) = ê(lθ, ω − ωi). (4.48)

This shows that after carrier alignment, the 2D spectrum of the aligned HRTFs

is equivalent to the support of the complex envelopes of the HRTFs shifted to

the temporal frequency of the subband considered.

As mentioned in Section 4.3.1, multiplying the signal by the alignment

factor does not modify the real envelope of the signal. The real envelope of the

signal hi(θ, t) is obtained by calculating

envelopei(θ, t) = |h+i(θ, t)|. (4.49)

In the presented technique, the signals h+i(θ, t) are aligned by multiplication

by a phase factor ejαθ,i . This multiplication does not modify the real envelope

signal since

envelopei(θ, t) = |ei(θ, t)gi(θ, t)ci(θ)| = |ei(θ, t)|. (4.50)

3In this analysis, we consider a perfect realignment of the different carriers to the reference
one.
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As an example of the efficiency of the carrier alignment technique, consider

a simple model for HRTFs where only the delay and attenuation is considered

[85], Fig. 4.15(a) represents the 2D-FT of this database sampled every 10◦.

After carrier alignment the 2D spectrum is much narrower as can be observed

in Fig. 4.15(b). Comparing Fig. 4.15(a) and 4.15(b) at the particular temporal

(a)

(b)

Figure 4.15: 2D spectra of HRTF: (a) Original HRTF dataset. (b) Carrier aligned
HRTFs.
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frequency of 5 kHz (10000π rad/s) yields Fig. 4.16. It can be observed that the

carrier aligned HRTFs have a much narrower spectral content and can therefore

be sampled with a larger spacing between consecutive angular positions.
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Figure 4.16: At 5 kHz, the angular frequency support of the original HRTFs in
dashed lines is compared to the support of the carrier aligned HRTFs in full lines.

4.3.3 Interpolation

The interpolation of the HRTFs is carried out in three steps (corresponding

to steps 2 to 4 mentioned previously). The first step is to interpolate the

carrier aligned signals k+i(θ, t). The second step is the interpolation of the

alignment factors. The third step consists in multiplying the carrier aligned

HRTF at a specific angular position with the corresponding alignment factor.

The interpolated HRIR is obtained by inverse Fourier transform of the spectrum

where the negative frequencies have been added. The negative frequencies are

the complex conjugate of the positive frequencies to ensure real HRIRs.

For the interpolation of k+i(θ, t), a simple low-pass interpolation filter us-

ing the 4 nearest neighbors is used. Similarly to the analysis performed in

Section 4.2.3, it would be interesting to know how many angular positions are

necessary to interpolate the HRTFs at any angular position. This number can

unfortunately not easily be calculated in a closed form solution. This is due

to the fact that the angular frequency support of the complex envelopes is not

known in general. Nevertheless, as the angular support corresponding to the

carrier aligned signals corresponds to the one of the envelopes signals, it can

be concluded that the number of angular samples is reduced.

The second step is the interpolation of the carrier alignment factors ci(θ)

along the angular direction. To interpolate these complex numbers, only the

phases αθ,i are interpolated. This interpolation is also achieved by a low-pass
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filter using the 4 nearest neighbors. Nevertheless, a difficulty due to unwrapping

appears when getting the phase values from the complex numbers ci(θ). The

phase αθ,i is only known in the range from −π to π. Denoting α̂θ,i the phase

between −π to π, the phase to be found satisfies

αθ,i = α̂θ,i + 2kπ, (4.51)

with k ∈ Z. The unknown is here the value of k. Interpolation between wrong

phases leads to wrong alignment factors and poor performance of the proposed

algorithm. The unwrapping problem can be addressed by considering a re-

cursive algorithm where the subbands at lower temporal frequencies are used

to estimate the range of values of the phase in the higher temporal frequency

subband. The estimation of the new subband phase is obtained by assuming a

linear phase. This estimation of the new phase allows us then to find the k in

(4.51). Note that when the HRTF filter is very far from a linear phase filter,

some wrong evaluation of k can be found. Also, remark that as the algorithm

is recursive, the higher the temporal frequency, the larger the error can be-

come. With our algorithm, the phases for the angular positions at the different

subbands are shown in Fig. 4.17(a), (b) and (c) for different HRTF databases.

In the sequel the databases will be denoted as Database 1, Database 2, and

Database 3. Database 1 simply considers at each angular position a delay and

an attenuation satisfying the wave equation. Database 2 uses the model of head

shadowing discussed in Section 4.2.3 from [42]. Database 3 has been obtained

by measurement of the HRTFs of a Kemar head [50].

In the presented technique, one of the important parameters to be chosen is

the number of subbands in which the HRTFs are decomposed. Note that there

exists a trade-off in the choice of the bandwidth and the number of subbands.

Choosing a too large band makes it difficult to correctly align one subband

HRTF at one position with its reference using only one value (the corresponding

ci(θ)). In other words, the error Ji in (4.40) might remain important for large

bands. Choosing the band too small leads to a very large number of bands

with a more and more difficult unwrapping problem at high frequencies.

4.4 Simulations Using HRTFs Models and Mea-

sured Data

In this section, simulation results using HRTF models as well as experimen-

tal measurements are presented. The technique presented in Section 4.3 is

compared with other interpolation techniques. The three databases described
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Figure 4.17: Phase corresponding to the carrier alignment factors for different
frequency subbands: (a) For Database 1; (b) For Database 2; (c) For Database 3.

previously in Section 4.3.3 are used in this section. All HRTFs are sampled at

a temporal sampling frequency of 44.1 kHz. The purpose of this section is not

to provide a comparison of all existing techniques. Nevertheless, four meth-

ods are compared and then further discussed. The typical setup for HRTF

interpolation happens as follows. From N available HRTF measurements, the

purpose is to obtain after interpolation mN HRTFs where m stands for the

interpolation factor. In other words, m − 1 new measurements are obtained

between two consecutive original HRTFs.

• Method 1 considers an interpolation of each time sample using a periodic

sinc interpolation along the spatial direction.

• Method 2 corresponds to the new technique presented in Section 4.3.

• Method 3 corresponds to the technique presented in [81]. There, the

HRTFs are first time-aligned. The alignment is obtained by finding

the maximum of the cross-correlation function between the considered
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HRTFs. In order to have sub-sample precision in the time delay esti-

mation, the HRTFs are interpolated in the time domain prior to the

cross-correlation estimation. Once aligned, the HRTFs are interpolated

using standard interpolation. Similar results are obtained in case of linear

interpolation or low-pass interpolation using the first neighbors.

• Method 4 is a new technique presented in this study based on Method 1

and Method 3. The low frequency content of the HRTFs satisfying (4.37)

is interpolated using a sinc interpolator as in Method 1. The higher

frequency content is then interpolated using Method 3.

To compare the performance of the different interpolation algorithms, the error

obtained by interpolation of the HRTFs is studied either as a function of the

different angular positions or as a function of the temporal frequency. The mean

squared error (MSE) on an interpolated HRTF at one position is calculated

as follows. Calling h(θ, n) the original discrete-time HRTF and he(θ, n) its

estimated version, the MSE at an angular position θ0 is defined as

MSE(θ0) = 10log10

∑T
n=0 (h(θ0, n) − he(θ0, n))2

∑T
n=0 h2(θ0, n)

, (4.52)

where T stands for the number of time samples of the HRTF. When considering

the frequency dependent error, the MSE is averaged over all spatial positions

and studied as a function of the temporal frequency. We therefore introduce

the Fourier transform with respect to time of h(θ, n) and he(θ, n) denoted as

h̃(θ, f) and h̃e(θ, f), respectively. The variable f stands here for the Fourier

bin. The frequency dependent MSE is now defined at one temporal frequency

bin f0 as

MSE(f0) = 10log10

∑N
θ=0

∣

∣

∣
h̃(θ, f0) − h̃e(θ, f0)

∣

∣

∣

2

∑N
θ=0

∣

∣

∣h̃(θ, f0)
∣

∣

∣

2 , (4.53)

In Section 4.2, considerable effort was given to study the angular bandwidth

of the sound field along a circular array. It was shown that using the sinc

interpolation is recommended due to the almost bandlimited character of the

frequency support. Therefore, the sinc interpolation is described in detail in

Section 4.4.1.

4.4.1 Sinc interpolation

In this section, we describe results obtained using the sinc interpolator. Note

that due to the periodic character of the sound field, the sinc considered is not



4.4. Simulations Using HRTFs Models and Measured Data 89

the same as the one used in Chapter 3. Here the sinc is a periodic sinc [89].

The implementation of the sinc interpolator is done by zero-padding in the

frequency domain as previously mentioned in Section 4.2.3.

As was explained in Section 4.2, applying a sinc interpolation only makes

sense when (4.37) is satisfied. This relation can be verified by observing the

frequency dependent error on the interpolated HRTFs. Fig. 4.18(a) presents

the frequency dependent error on HRTFs averaged over all interpolated angu-

lar positions. An interpolation of factor two was applied in the case of 20◦

(curves A and B) and 10◦ (curves C and D) angular spacing between con-

secutive HRTFs. Curves A and C (solid lines) were obtained using Database

1 and curves B and D (dotted lines) with Database 2. It can be observed

that the curves considering the head shadowing are very close to the simpler

model without considering head shadowing. Therefore it can be concluded that

taking this effect into account does not modify the average error significantly.

Fig. 4.18(b) presents the same results for Database 3. The interpolation error

when using HRTFs every 10◦ is shown as a solid line and as a dotted line for an

angular spacing of 20◦. In both figures, the two vertical lines correspond to the

maximal values of the temporal frequencies corresponding to angular samplings

of 10◦ and 20◦ as given by (4.37). The two figures allow us to conclude that

interpolating HRTFs for higher frequencies than the ones predicted by (4.37)

leads to large errors while the interpolation error stays limited when obeying

(4.37).

Consider now 36 measurements spaced every 10◦. These measurements

are used to interpolate HRTFs every 5◦. The interpolated HRTFs are then

compared with corresponding measurements which are available in the database

and the normalized MSE is calculated following (4.52).

Using a spacing of 10◦, interpolation of the HRTFs can only be correctly

carried out up to a maximal temporal frequency of 10.8 kHz as follows from

(4.37). Therefore, prior to any interpolation the HRTFs (impulse responses) are

low-pass filtered using a low-pass filter with a cutoff frequency corresponding

to the maximum temporal frequency associated to the specific angular spacing.

The MSE of the interpolation applied to Database 1 is shown in solid line

in Fig. 4.19. The same simulation for the MSE of Database 2 is shown as the

dashed line and a the full line with + for Database 3. Database 1 and 2 exhibit

a MSE varying from −35 to −65 dB. The best interpolation is obtained at

the positions in the proximity of −90 and 90◦ while slightly worse interpola-

tion is achieved in the proximity of 0 and 180◦ (the angles are referenced in

Fig. 4.11(b)). The MSE on the interpolation of Database 3 was slightly higher

than in the simulations but still of the order of −40 dB.

These good interpolation results show that the sinc interpolation is very
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Figure 4.18: Frequency dependent MSE for the interpolation of HRTF positions.
(a) Simulations without considering the head (dotted lines, curves A and C) and
with spherical head model (solid, curves B and D). Curves A and B are obtained
with an angular spacing of 20◦ and curves C and D with 10◦. (b) Measured HRTFs
for an angular spacing of 10◦ (solid) and for 20◦ (dashed). In both figures, the
two vertical lines correspond to the maximum values of the temporal frequencies
corresponding to angular samplings of 10◦ and 20◦ as given by (4.37).

suitable to be applied when little spatial aliasing is present or when (4.37) is

satisfied.
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Figure 4.19: MSE on the reconstruction of HRTF Databases 1, 2 and 3 when
using sinc interpolation on the low-pass signals.

4.4.2 Comparison of interpolation methods

In this section, the different Methods 1 to 4 are compared and discussed. The

different methods are compared in MSE sense and the frequency dependent

error is also shown for each of them. The databases used in this section contain

HRTFs sampled every 5◦. From these databases, we use HRTFs measured every

10◦ and reconstruct the dataset every 5◦ by means of interpolation. These

interpolated HRTFs are then compared with the original HRTFs. Note that

the following results are presented for the HRTFs recorded at the left ear.

Therefore, for sources located in the region around−90◦ the ear is the ipsilateral

ear, while it the contralateral ear for sources placed in the region around +90◦.

The performance of the different algorithms are only shown for the left ear

since very similar results are obtained when considering the right ear.

Database 1

Database 1 considers the solution of the wave equation in 3D along a circular

array as discussed in Section 4.2.2. The four methods have been tested and

the results are presented in Fig. 4.20(a) and (b). In Fig. 4.20(a), it can be seen

that Method 1 only performs well around ±90◦. At the other positions, due

to spatial aliasing, this technique leads to very poor results. In Fig. 4.20(b), it

is shown that most of the error resulting from interpolation is due to the bad

interpolation of the high frequencies.

Method 2 performs the best. The mean error is of the order of −48 dB. Since

for Database 1, the HRTFs are modeled as linear phase filters the problem of
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Figure 4.20: Comparison of HRTF interpolation algorithms on Database 1. (a)
MSE for the different methods. (b) Frequency dependent error.

unwrapping can be well addressed. Therefore, we choose to work with narrow

subbands (200 Hz). The obtained results show MSE below −40 dB at almost

all angular positions. In Fig. 4.20(b), we can see that the low frequency part of

the spectrum is well reconstructed but the main difference with Method 1 lies

in the fact that the high frequency content of the HRTFs is well interpolated.

The mean error for the higher frequencies is below −60 dB.

Method 3 aligns the different signal before interpolation using either a sim-

ple linear interpolator or a 4-tap symmetric low-pass filter. In both cases, the

mean error is of about −30 dB. The frequency dependent error is shown in

full lines in Fig. 4.20(b). It can be seen that the error is larger than the one

presented in Method 2 but is nevertheless quite acceptable.
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Method 4 considers the previous method but the low frequency part of the

HRTFs is now interpolated using a sinc. It can be observed that this technique

only brings little improvement. It is due to the fact that the main source of

error is to be found in the higher frequencies which are similarly interpolated

for Method 3 and 4. In Fig. 4.20(b) the frequency dependent error is presented

in dashed bold lines.

To conclude this study for Database 1, it can be observed that the best

interpolation scheme is given by Method 2.

Database 2

Database 2 considers the model by Duda et al. [42] described in Section 4.2.3.

The comparison between the methods is shown in Fig. 4.21(a) and (b).

Method 1 gives similar results as in Database 1. The interpolation results

are only acceptable in the region of ±90◦. The frequency dependent error is

very large for increasing temporal frequencies.

Method 2 gives the best overall results with a MSE over the different po-

sitions of −33 dB. In the region around 90◦ the results are worse. This is due

to the fact that this region puts in evidence the head shadowing effect. The

HRTFs are varying faster in this region which makes them more difficult to

interpolate. The frequency dependent error shows an improvement compared

to the sinc interpolation and the mean error for high temporal frequency stays

limited to −30 dB.

Method 3 presents similar results as in Database 1. The MSE averaged

over all angular positions is of about −20 dB. Note that the MSE gets slightly

worse in the region around −90◦.

Method 4 is very comparable to Method 3 and the overall MSE is of about

−21 dB when averaged over all angular positions.

Database 2 presents a more realistic model for HRTFs interpolation. It is

shown that Method 2 delivers the best results. Around the region of −90◦ the

HRTFs are interpolated with a MSE of less than −40 dB. Nevertheless, the

region around 90◦ suffers poor interpolation, comparable to the one of Methods

3 and 4.

Database 3

Database 3 considers real measurements of HRTFs performed on a Kemar head.

The results of the comparison are given in Fig. 4.22(a) and (b).

Method 1 presents a low MSE in the region of ±90◦. The other angular

positions are more poorly interpolated. The average MSE over the different
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Figure 4.21: Comparison of HRTF interpolation algorithms for Database 2. (a)
MSE for the different methods. (b) Frequency dependent error.

angular positions is of the order of −16dB. The frequency dependent error is

shown to be large for high frequencies in Fig. 4.22(b).

Method 2 achieves the lowest average MSE of −30 dB. The best interpo-

lation results are to be found in the region of −90◦. The region around 90◦

is less well interpolated with a MSE of about −15 dB. Nevertheless, the fre-

quency dependent error is the lowest of the different methods with a frequency

dependent error below −20 dB for higher temporal frequencies.

Method 3 delivers interpolation results that are good except in the region

of the head shadowing where the MSE increases a lot. As can be seen from

Fig. 4.22(b) the frequency dependent error is quite constant over all temporal

frequencies. The low frequencies are quite poorly interpolated, which explains
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Figure 4.22: Comparison of HRTF interpolation algorithms for Database 3. (a)
MSE for the different methods. (b) Frequency dependent error.

the large errors in the region of 90◦.

In this scenario, using the sinc interpolation for the low frequencies allows

Method 4 to achieve quite good results similar to those of Method 2. The

region around 90◦ is a bit less well interpolated but overall the HRTFs are

interpolated with an average MSE of −27 dB.

Comparing the different methods leads to the conclusion that Method 2 per-

forms slightly better than Method 4 especially in the region around −90◦. For

the other regions, similar results are obtained. Nevertheless, this is an interest-

ing finding since Method 4 is quite simple and still leads to good interpolation

results.

For completeness, we have considered the case of interpolation of HRTFs
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Method 1 Method 2 Method 3 Method 4
Database 1 -5.5 -47.9 -29 -29.1
Database 2 -3.5 -33.64 -20.3 -20.7
Database 3 -15.65 -29.5 -23 -27.2
Database 3b -6.2 -19.7 -16 -18.4

Table 4.1: Table summarizing the different MSE averaged over all interpolated
positions for the different methods and databases.

every 20◦ to obtain HRTFs every 10◦. The MSE is given in Fig. 4.23 for the 4

considered methods. The four methods behave very similarly to the case where
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Figure 4.23: Comparison of HRTFs interpolation methods in the case of a spacing
of 20◦ in the database.

HRTFs are interpolated from a spacing of 10◦. The best total MSE is obtained

for Method 2 with an averaged MSE of −20 dB. The Method 4 which is simpler

in processing achieves a slightly worse MSE of −18.4 dB. Method 1 performs

quite poorly with a MSE not exceeding −7 dB. Method 3 shows similar MSE

than Method 4 except in the region around 90◦ where it performs badly.

4.4.3 Discussion

We have presented an overview of different databases tested with different

interpolation methods. To summarize the results, Table 4.1 contains for each

database and each method, the MSE averaged over all interpolated positions.

Note that Database 3b considers the Database 3 where the HRTFs are present

only every 20◦ as described for Fig. 4.23.
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Method 2 performs the best of the different methods. In the measurements,

it has been shown that the simpler Method 4 also performs quite well. The

general trend present in these results shows that for sources that see the ear as

the contralateral ear (source located on the other side of the ear, e.g. +90◦ for

the left ear) interpolation is worse than in the other angular positions. On the

other hand, it is known that the head shadowing effect creates an attenuation of

approximatively 20 dB on the perceived sound [20]. When localizing a sound,

the brain uses the signals of the two ears. For a source located at +90◦,

the HRTF from the source to the left ear has a low magnitude and contains

the head shadowing effect while the right ear gets a very direct HRTF with

higher magnitude. When interpolation of HRTFs is applied, it is likely that

the localization of the source in this scenario is still achievable even when

interpolation of the weak signal (left ear) is poor while being very precise for

the strong signal (right ear). This topic is matter of current research and

perceptual tests need to be conducted to study this scenario in more detail.

4.5 Conclusion

The sound field has been studied along a circle. The angular bandwidth of the

sound has been studied in two and three dimensions and a sampling theorem

has been presented to quantify the aliasing error as a function of the angular

sampling frequency. Based on this study, an HRTF interpolation algorithm has

been proposed. At low frequencies, where the spatial Nyquist theorem indicates

that the given HRTFs can be interpolated very precisely, spatial interpolation

on circles is applied. At higher frequencies, where the Nyquist theorem in-

dicates that not enough information for precise interpolation is available, the

spatial interpolation is carried in the complex temporal envelope domain in sub-

bands to avoid aliasing. The interpolated subbands are obtained by restoring

the carrier after interpolating the complex envelopes. Numerical simulations

carried out with HRTF models and measured data indicate that the proposed

method performs better than previous HRTF interpolation methods in a mean

square sense.
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Chapter 5

Dynamic Measurement of

Room Impulse Responses

5.1 Introduction

One of the key elements in the success of multimedia communication systems

is the capability of reproducing virtual environments to be perceived by the

listener as naturally as possible. To achieve realism, either real measurements

need to be introduced in the system, or the environment needs to be modeled

and synthetically generated [119, 82]. In both cases, room impulse responses

(RIRs) are used to give listeners the impression of being in a real environment

and enveloped by the sound. In the case of headphone playback, head-related

transfer functions (HRTFs) are usually added to achieve externalization and

more realistic impressions. The RIRs and HRTFs to be used need to be either

measured at a large number of positions in the considered space or modeled

using different techniques such as the ones described in Chapter 2. The RIRs

are then provided to the playback system. This is typically the case in wave

field synthesis (WFS) systems where measured RIRs at a large number of po-

sitions [40] are used to increase the realism of the reproduced field. Therefore,

one would like to find a way to easily and rapidly measure large sets of RIRs.

The usual technique is to use a single microphone or a microphone array. Nev-

ertheless, to capture hundreds of RIRs, the array of microphones needs to be

displaced to several positions. The intrusion of a person to modify the setup

(e.g. displace the array) changes greatly the characteristics of the room and

the temperature field inside of the room [45] and makes the measurement very

time consuming. In this chapter a technique is introduced that achieves a fast

recording of a large number of RIRs. We consider two possible setups, the first

99
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setup considers a fixed loudspeaker with a moving microphone and the second

a moving loudspeaker with a fixed microphone. In both setups, the moving el-

ement follows a trajectory (e.g. circular trajectory) with constant speed. Also,

the acquisition of the data is not done position after position but happens con-

tinuously along the trajectory. The movement is uniform and does not stop

during the acquisition. Thanks to this setup, one avoids problems linked to

abrupt stops leading to oscillations and waiting time for the microphone (or

loudspeaker) to get its position. From the one-dimensional signal gathered by

the microphone, the two-dimensional (2D) dataset (spatial and temporal) con-

taining the RIRs at all the different spatial positions along the trajectory is

reconstructed. The algorithm takes into account the Doppler shift inherent to

the moving element and cancels its effect in the reconstructed RIRs. An analy-

sis is performed to study the influence of the different parameters to be chosen

so as to achieve the reconstruction of the RIRs (e.g. length and period of the

excitation signal, frequencies contained in the excitation signal, speed of move-

ment of the microphone, temporal and spatial frequencies of the reconstructed

dataset). The trade-off existing between the speed of the moving element and

the spacing between the frequencies contained in the excitation signal is dis-

cussed1. The presented theory is shown together with measurements. These

measurements are obtained using a moving microphone holder that achieves a

precision of a few hundredths of a degree when rotating in the horizontal plane.

An interesting application of this setup can be found in the measurement of

head-related transfer functions (HRTFs). These measurements are typically

done in anechoic chambers to describe the influence of our body on the sound

measured at the entrance of our ears as was previously described in Chapter 4.

For these specific filters, the impulse responses to be measured are very short

(on the order of a few milliseconds) since no room reflections need to be cap-

tured. The whole dataset of azimuthal angles can then be recorded in a very

fast manner. In this chapter, we show that with the presented technique, mea-

surement of all HRTFs in the horizontal plane can be achieved in less than 1

second.

5.1.1 Related work

As described previously in Chapter 2, different methods exist for the measure-

ment of RIRs and HRTFs. In the literature, the measurements mostly happen

using a fixed setup. Note that in [40, 59] room impulse responses measure-

ments were carried out using a microphone moving along a circular trajectory.

1Remark that in this work, the turbulence of air due to the moving element is not taken
into account in the analysis.
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Nevertheless, the assumption was done that at low angular speed, the RIRs

can be obtained without taking the Doppler effect into account. This is not

the case in our study where the RIRs are theoretically perfectly reconstructed.

Other methods using moving microphones have been presented for improving

wave field extrapolation techniques. As was described in Chapter 2, the first

step is to measure the field along a certain trajectory, and from the gathered

information, extrapolation can be performed using the Kirchhoff-Helmholtz in-

tegral [18]. Considering the field to be extrapolated as stationary, the different

measurements do not need to be performed simultaneously. In [68, 76], it is

explained that using a moving microphone allows for measurement of the field

in more positions and therefore better extrapolation can be achieved.

5.1.2 Contributions

The contributions of this work are the following:

• The Doppler effect is put in evidence in the two-dimensional spectrum

representation of the sound pressure field when a moving source or re-

ceiver is used in the setup.

• An algorithm for the reconstruction of the static RIRs or HRTFs is pre-

sented by removing the Doppler effect present in the recording.

• A formula describing the maximal rotation speed is given in function of

the different parameters of the system.

• The measurement of HRTFs at every azimuthal angle along the horizontal

plane can be achieved in less than one second at a sampling frequency of

44.1 kHz.

• Experimental measurements using a moving microphone demonstrate the

applicability of the algorithm and confirm the presented theory.

5.1.3 Outline

The outline of the chapter is as follows. In Section 5.2, we consider a first

setup with a microphone moving along a trajectory with a uniform speed. In

this scenario, the Doppler effect needs to be considered. The Doppler effect is

briefly reviewed in Section 5.2.1 and it is shown in Section 5.2.2 that using the

2D spectrum representation of the sound field along a line, the Doppler effect

can be put in evidence. The signal recorded by a microphone moving along a

circle is then described in Section 5.2.3. The second setup considering a fixed

microphone and a moving loudspeaker is explored in Section 5.3. The micro-

phone signal is studied for a linear and a circular trajectory of the loudspeaker
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in Section 5.3.1 and Section 5.3.2, respectively. Section 5.4 presents the main

result of this work. It develops an algorithm to reconstruct the RIRs at every

possible position, from the gathered signal by the microphone. The technique

to achieve this reconstruction is presented for the two setups in Section 5.4.1

and 5.4.2. Some further remarks are given in Section 5.4.3. The theory is then

compared with experimental measurements in Section 5.5. The conclusions are

drawn in Section 5.6.

5.2 Moving Microphone Signal

In Chapters 3 and 4, the sound field has been studied along different spatial

geometries. In this chapter, we consider two specific trajectories: a line and a

circle. For both cases, the sound field has been shown to have a butterfly spec-

trum. This specific shape of the spectrum will be used to study the sound field

gathered by a microphone in the presence of a moving element in the setup. In

this section, the setup considers a fixed loudspeaker and a microphone moving

along a trajectory. The dual setup will be analyzed in detail in Section 5.3.

The reason to analyze these two setups separately is due to the different ap-

proach and analysis performed in the two cases. Also, as will be reminded in

Section 5.2.1, the Doppler effect appearing due to the movement of an element

in the setup is different in the case of a moving source or a moving microphone.

First, the Doppler effect is reviewed in Section 5.2.1. Further, the moving

microphone signal is studied when the microphone is moved along a line in

Section 5.2.2 and along a circle in Section 5.2.3.

5.2.1 Doppler effect

When considering a moving element, a frequency shift is observed on the

recorded signal. This is known as the Doppler effect and can be expressed

by the following formula2:

ω = ω0

(

c + vr

c + vs

)

, (5.1)

with c the speed of sound propagation, ω the observed frequency, ω0 the emitted

frequency, vs the speed of movement of the source and vr the speed of movement

of the receiver. A convention for the sign of the speeds in (5.1) needs to be

adopted. The positive direction is considered as the direction “listener towards

source”. Therefore, using this convention, the sign of the speed of the receiver is

2The formula is valid for the case of a movement along the same direction as the source-
receiver axis.
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Figure 5.1: Different setups for the study of the Doppler effect.

considered as positive when the source and the receiver are coming towards each

other as shown in Fig. 5.1(a). The sign of the received speed is negative when

source and receiver are moving apart as in Fig. 5.1(b). The case of the moving

source is analyzed in the next section. There, a source moving away from the

receiver leads to a positive speed in (5.1) while when the source approaches

the receiver its speed is to be considered as negative. These two situations are

shown in Fig. 5.1(c) and (d), respectively. From (5.1), it is therefore observed

that when source and receiver come closer to each other, the recorded frequency

is increased and when the source and receiver are moving apart, the recorded

frequency decreases.

5.2.2 Microphone moving along a line

The pressure recorded at all positions along a line trajectory is denoted as p(x, t)

as discussed in Chapter 3. The two-dimensional Fourier transform (2D-FT) of

this signal is p̂(φ, ω). Consider a setup with a fixed source and a microphone

moving with a constant speed of v m/s. Due to the constant speed, we have

that the position x along the line is proportional to the time as

x = vt. (5.2)

At each position the sound recorded by the microphone is the convolution of

the source signal denoted as s(t) with the corresponding RIR to be found in

the RIRs database denoted as h(x, t). Therefore,

p(x, t) =

∫ ∞

−∞
s(i)h(x, t − i)di. (5.3)
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The sound recorded by the moving microphone is denoted as r(t) with

r(t) = p(vt, t). (5.4)

Note that (5.4) corresponds to a slice of the function p(x, t) along a line of

equation (5.2). The spectrum of this recorded sound can be calculated as

follows:

r̂(γ) =

∫ ∞

−∞
p(vt, t)e−jγtdt. (5.5)

Also remark that

p(vt, t) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
p̂(φ, ω)ej(ωt+φvt)dφdω. (5.6)

Using (5.6), Expression (5.5) can be rewritten as:

r̂(γ)=
1

4π2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
p̂(φ, ω)e−jt(γ−vφ−ω)dtdφdω

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
p̂(φ, ω)δ(γ − vφ − ω)dφdω

=
1

2π

∫ ∞

−∞
p̂(φ,−vφ + γ)dφ. (5.7)

For each frequency γ, the value of the spectrum of the recorded signal is

obtained by projection of the 2D spectrum p̂(φ, ω) following the direction

~v = (1,−v) on the ω axis. This result is known as the projection-slice the-

orem: a slice in the time domain corresponds to a projection in the frequency

domain [25]. This construction is presented in Fig. 5.2 and 5.3 where the

Doppler effect is also put in evidence. Consider a plane source emitting a plane

wave arriving on one microphone line with angle α = 0◦ as shown in Fig. 5.2(a).

Consider further a moving microphone along the infinite line. The microphone

is moving with a constant speed |v| away from the plane source in the positive

x direction. As seen in Section 5.2.1, the movement leads to a frequency shift

that lowers the perceived frequency at the microphone. The receiver signal

can be obtained by projection of p̂(φ, ω) along the direction ~v. As the sound

pressure field is a plane wave with an arriving angle of α = 0◦, it has been

shown in Section 3.3.1 that its 2D spectrum is the line of equation

ω = −cφ. (5.8)

This spectrum is shown in bold in Fig. 5.2(b). The component of p̂(φ, ω) at

frequency ω0 is simply the point
(

−ω0

c , ω0

)

in Fig. 5.2(b). The projection of
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Figure 5.2: Doppler effect with a receiver moving away from the source. (a)
Schematic view of the situation. (b) Analysis of the situation in the 2D-FT domain.

this point on the ω axis happens at

ω = ω0

(

1 − |v|
c

)

. (5.9)

This is exactly the result obtained when considering the Doppler effect (5.1) for

a receiver moving away from the source. The speed of the receiver is vr = −|v|
since we are in the case of Fig. 5.1(b).

Similarly, Fig. 5.3(a) presents the situation where the receiver is moving

towards the source along the negative x direction. As can be seen in Fig. 5.3(b),

the projection of the point
(

−ω0

c , ω0

)

on the ω axis is now

ω = ω0

(

1 +
|v|
c

)

. (5.10)

This corresponds to the Doppler effect for a receiver moving towards the source.

5.2.3 Microphone moving along a circle

In this section, a source emits sound and a receiver is moving along a circle.

The pressure measured at the different positions along the circle is given by

p(θ, t). The sound recorded by the receiver moving with an angular speed of

v rad/s 3 is r(t) = p(vt, t). Similarly to (5.7), it can be derived that

r̂(γ) =

∞
∑

lθ=−∞
p̂(lθ,−vlθ + γ). (5.11)

3Note that in the case of a circular trajectory the speed is an angular speed and has units
rad/s while along a line the speed v has units m/s. We chose to keep the same letter for
simplicity of notation.
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Figure 5.3: Doppler effect with a receiver moving towards the source. (a)
Schematic view of the situation. (b) Analysis of the situation in the 2D-FT domain.

For completeness, note that when the source emits a periodic signal s(t) with

period 2π
v , r(t) becomes also periodic with the same period. In that case, we

denote r(lγ) the Fourier series of r(t) with

r̂(lγ) =

∞
∑

lθ=−∞
p̂(lθ,−vlθ + lγ). (5.12)

5.3 Recorded Signal for a Moving Loudspeaker

The second setup is now considered. A fixed microphone is recording the sound

emitted by a source moving along a trajectory. The cases considering a linear

or circular trajectory are described in Section 5.3.1 and 5.3.2, respectively.

5.3.1 Loudspeaker moving along a line

Consider a source moving along a line with speed v m/s and a receiver recording

the signal at a fixed position. The purpose of the analysis is to obtain from the

microphone signal r(t) all the RIRs from the different positions of the source

to the fixed microphone. The microphone signal can be expressed as follows:

r(t) =

∫ ∞

−∞
s(i)h(vi, t − i)di, (5.13)

where s(t) corresponds to the emitted sound and h(x, t) corresponds to the

different static impulse responses between the source and the receiver. These

impulse responses are functions of the time t and are different at each abscissa

x of the source. Now, similarly to the analysis performed in Section 5.2.2, the

spectrum of the gathered signal can be calculated. The analysis makes again
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use of the projection-slice theorem [25]. This time, a projection in the time

domain corresponds to a slice in the frequency domain. For the analysis, we

rewrite (5.13) as follows

r(t) =

∫ ∞

−∞
p(vi, t − i)di, (5.14)

with

p(vi, t − i) = s(i)h(vi, t − i). (5.15)

The Fourier transform of r(t) is denoted as r̂(γ) with

r̂(γ) =

∫ ∞

−∞

∫ ∞

−∞
p(vi, t − i)e−jγtdidt, (5.16)

Also,

p(vi, t − i) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
p̂(φ, ω)ej(ω(t−i)+φvi)dφdω. (5.17)

Replacing (5.17) in (5.16) leads to

r̂(γ) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
p̂(φ, ω)ej(ω(t−i)+φvi−γt)didtdφdω

=

∫ ∞

−∞

∫ ∞

−∞
p̂(φ, ω)δ(φv − ω)δ(ω − γ)dφdω

=
1

v

∫ ∞

−∞
p̂
(ω

v
, ω
)

δ(ω − γ)dω

=
1

v
p̂
(γ

v
, γ
)

. (5.18)

We therefore see that a projection in the spatio-temporal domain corre-

sponds to a slice of the spectrum. The slice in the frequency domain is applied

on the 2D-FT of p(x, t). From (5.15) it is observed that

p(x, t) = s
(x

v

)

h(x, t). (5.19)

Therefore p̂(φ, ω) can be written as

p̂(φ, ω) = vŝ(vφ) ∗ ĥ(φ, ω), (5.20)

where the convolution happens along the spatial frequency direction. Using
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(5.20), (5.18) can be rewritten as

r̂(γ) = ŝ(γ) ∗ ĥ
(γ

v
, γ
)

. (5.21)

As an example, consider that the excitation signal is s(t) = ejω0t, then

p̂(φ, ω) = vδ (vφ − ω0) ∗ ĥ(φ, ω). (5.22)

Consider in this example a receiver r recording the signal emitted by a source

s moving away with a speed |v| as shown in Fig. 5.4(a). In that case, the

original 2D-FT of the pressure recorded by the receiver has a support given by

ω = −cφ as shown by the dotted line in Fig. 5.4(b). In the current example,

the spatial convolution in (5.22) leads to a spectrum whose support is located

on the full line ω = −cφ+ cω0

|v| . The slice of the new spectrum with the dashed

line, ω = |v|φ, leads to a value of the frequency, recorded by the microphone,

of

ω0
c

c + |v| . (5.23)

This exactly corresponds to the frequency predicted by the Doppler effect for-

mula in the case of a source moving away from the receiver with a speed vs = |v|
as shown in Fig. 5.1(c).

When the source is moving with a speed v towards the receiver, the speed

|v| is replaced by −|v| in the equations and the observed frequency by the

receiver is now

ω0
c

c − |v| . (5.24)

The setup is shown in this case in Figs. 5.5(a) and (b).

5.3.2 Loudspeaker moving along a circle

Similarly to the approach presented in Section 5.3.1, the case of the loudspeaker

moving along a circular trajectory is studied now. p(θ, t) represents the sound

field measured at the microphone for a source located at an angle θ. Similarly

to (5.19),

p(θ, t) = s

(

θ

v

)

h(θ, t), (5.25)
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Figure 5.4: Doppler effect with a source moving away from the receiver. (a)
Schematic view of the situation. (b) Analysis of the situation in the 2D-FT domain.

with h(θ, t) the different RIRs. The same theory is still applied and the Fourier

transform of the signal gathered at the microphone is given by

r̂(γ) = p̂(
γ

v
, γ). (5.26)

When s(t) is periodic with period 2π
v , the signal r(t) becomes also periodic

with the same period. In that case, it can be shown that

r̂(lγ) =

∞
∑

lθ=−∞
p̂(lθ, vlθ)δk(vlθ − lγ), (5.27)

with δk(·) describing a Kronecker symbol.
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Figure 5.5: Doppler effect with a source moving towards the receiver. (a)
Schematic view of the situation. (b) Analysis of the situation in the 2D-FT domain.

5.4 Spatio-Temporal Reconstruction of Room Im-

pulse Responses

This section presents the main result of this work. Considering a moving ele-

ment (microphone or loudspeaker) in the setup, the purpose is to recover the

different RIRs at any position along the trajectory from the recording of the

microphone. The different aspects of the technique are explored in Section 5.4.1

for a moving microphone and in Section 5.4.2 for a moving loudspeaker. The

relation between the speed of movement and the spacing between the frequency

components of the excitation signal is specified. Section 5.4.3 discusses differ-

ent remarks related to the presented techniques and compares both setups.

Application of the technique to HRTF measurements is described. Note that

the technique is presented for the case of a movement along a circle but can
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easily be applied for the linear trajectory or other trajectories.

5.4.1 Reconstruction algorithm for a moving microphone

With the knowledge of the emitted sound, the purpose of this technique is to

reconstruct the different RIRs at any angle from the recording of the moving

microphone. The speed of the moving microphone will be shown to be the key

factor in the possible reconstruction of the RIRs at any possible angle. For this

purpose, the 2D Fourier representation is used. Fig. 5.6 shows the magnitude

of p̂(lθ, ω) representing the spectrum of the different static signals gathered

at the different angular positions along the circle. To apply our algorithm of

reconstruction, we need to impose that not all temporal frequencies are present

in the emitted signal. Energy is present only for the temporal frequencies shown

as dashed lines in the spectrum p̂(lθ, ω). The signal that is recorded by the

microphone is given by (5.11). As described in Section 5.2, the 2D spectrum

is projected following the direction ~v on the ω axis. To be able to reconstruct

the different RIRs, the emitted signal by the source has to be such that all the

lines containing energy in the spectrum p̂(lθ, ω) do not overlap once projected

on the ω axis. Consider the maximal frequency emitted by the source to be

∆ωpp1 p2

∆ω
i

ω

lθ

ω1

ω2

�v

Figure 5.6: Projection of the sound pressure field for an emitting sound containing
frequencies spaced following (5.31).

ω1. In the 2D spectrum, this frequency component corresponds to the segment

|p1p2|. When projected on the ω axis, new frequency components appear in

the range ω ∈ [ω1 − 1/2∆ωp, ω1 + 1/2∆ωp] due to the Doppler shift. To avoid

any overlapping in the projections, the next frequency component emitted by
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the source has to be chosen carefully. Denote by i the intersection point of the

projection of the point p1 with the butterfly spectrum. To obtain the ordinate

of i, denoted as ω2, recall that the minimal slope of the triangular spectrum is

given by

ω =
c

r
lθ. (5.28)

The frequency ω2 is obtained by solving a system representing the intersec-

tion between the segment |p1i| and one side of the butterfly spectrum:

{

ω = −vlθ + ω1(1 − rv
c )

ω = c
r lθ.

(5.29)

The solution of this system leads to the value ω2 = ω1

(

c−rv
c+rv

)

. Defining ∆ω as

the frequency spacing between the two consecutive temporal frequency compo-

nents ω1 and ω2 emitted by the source, it can be sown

∆ω = ω1
2vr

c + rv
. (5.30)

As can be seen in Fig. 5.6, the spacing allowed between successive temporal

frequencies is diminishing for smaller temporal frequencies. Therefore, the

excitation signal could be very dense at low frequencies. It can be shown that

the frequencies emitted by the sources need to satisfy the following relation

ωi+1 = ω1

(

c − rv

c + rv

)i

. (5.31)

Nevertheless, to ease the calculation and make the processing simpler, a con-

stant spacing ∆ω between the temporal frequencies of the excitation signal

is chosen, as presented in Fig. 5.7. The excitation signal is therefore a peri-

odic signal with period TS = 2π
∆ω . Remark that although the excitation signal

only contains discrete frequencies, it is possible to determine the RIRs at ev-

ery frequencies thanks to the sampling theorem in the frequency domain [89].

Reconstruction at all frequencies is possible when considering the RIR to be of

finite length. The duration of the RIR to be recorded, denoted as T , has to be

smaller than the sampling period TS to avoid any temporal aliasing, i.e.

T <
π(c + rv)

rvω1
. (5.32)

To record RIRs of length T , the maximal speed at which the rotation can be
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∆ω

p1 p2
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�v
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ω1

∆ω

∆ω

∆ω

Figure 5.7: Projection of the sound field with an emitting signal containing fre-
quencies spaced every ∆ω.

applied is obtained using (5.32):

vmax =
πc

r(ω1T − π)
. (5.33)

5.4.2 Reconstruction algorithm for a moving loudspeaker

In case of a moving source, it has been shown that the signal gathered by the

microphone is expressed by (5.13). In the frequency domain, this corresponds

to the slicing of a function p̂(φ, ω) along the line ω = vlθ. The function p̂(φ, ω)

corresponds to the original 2D spectrum of the RIRs convolved with the spec-

trum of the emitting signal along the angular direction. In order to ensure that

the slice is not cutting any part of the spectrum containing aliasing due to over-

lap, there needs to be some minimal spacing between the emitted frequencies.

The emitted signal needs to contain frequency values ωi satisfying

ωi+1 = ω1

(

c − rv

c + rv

)i

, (5.34)

where ω1 stands for the maximal frequency present in the excitation signal as

shown in Fig. 5.8(a). Note that this relation is exactly the same as for the

moving microphone, see (5.31). For simplicity, the emitting signal s(t) is again

considered to be periodic and therefore its Fourier transform contains temporal

frequency lines evenly spaced by ∆ω. In this case, the new setup is presented
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Figure 5.8: Fourier analysis of the sound gathered by a moving source. (a) The
frequencies of the emitted signal are ωi. The emitted signal is not periodic. (b)
Simplification of the problem where the emitted signal is periodic.

in Fig. 5.8(b). The condition to avoid any slice containing aliasing is

∆ω

v
≥ 2ω1r

c + rv
. (5.35)

The signal gathered by the microphone has been shown to have support along

the slice ω = vlθ as seen in Fig. 5.8(b). It is possible to modify this figure

and to transform the slice crossing several spectral repetitions of the butterfly

spectrum into multiple slices crossing the same butterfly spectrum as shown

in Fig. 5.9(a). All the slices are parallel and have a slope along the vector

~v1 = (1, v). This slicing of the 2D spectrum can be written as:

∞
∑

n=−∞
p̂(lθ, ω)δ(ω − vlθ − n∆ω). (5.36)
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Calculating the inverse Fourier transform of Eq. (5.36) leads to

TS

2π

∞
∑

n=−∞
p(θ + vnTS , t − nTS). (5.37)

As follows from Eq. (5.37), the slicing of the butterfly spectrum corresponds to

a periodic repetition in the angular-time domain as shown in Fig. 5.9(b). The

periodic repetition happens following the direction to ~v2 = (v,−1).

ω

lθ

∆ω

�v1

(a)

t

θ
T

�v2

TS

(b)

Figure 5.9: Moving source emitting periodic sound. (a) Butterfly spectrum sliced
by multiple lines along the direction ~v1. (b) Angular-time domain representation of
the periodic repetitions due to the slicing of the butterfly spectrum in the frequency
domain.

Considering the signal p(θ, t) to have a support in the angular-time domain

ranging in ([−π, π] × [0, T ]), it can be derived from Eq. (5.37) that the condition

to avoid temporal aliasing is T < TS . Similarly to the results obtained in

Section 5.4.1, one finds

T <
2π

∆ω
=

π(c + rv)

rvω1
. (5.38)

The maximal speed for the moving loudspeaker is therefore identical to the one

for the moving microphone:

vmax =
πc

r(ω1T − π)
. (5.39)
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5.4.3 Discussion

To summarize, a description of the presented technique is given here. An excita-

tion signal is transmitted to a loudspeaker. The emitted signal cannot contain

every frequency but has to be designed carefully as discussed in Section 5.4.1

for the moving microphone and in Section 5.4.2 for the moving loudspeaker. It

is observed that in both cases, the maximal speed of the moving element follows

the same rule, namely Equation (5.33). After recording, the Fourier transform

of the microphone signal is taken. In the case of the moving microphone this

spectrum corresponds to r̂(lγ) in (5.12). As discussed in Section 5.4.1, it cor-

responds to a projection of p̂(lθ, ω) on the ω axis. This projection needs to be

undone to recreate the 2D spectrum. This can be achieved at the condition that

no overlapping was present in Fig. 5.6. This is assured when (5.33) is satisfied.

In the case of the moving loudspeaker, the Fourier transform of the microphone

signal r̂(lγ) is given in (5.27). After rearranging the spectrum as described in

Fig. 5.9, the 2D spectrum is obtained. To obtain the different RIRs, one simply

needs in both setups to divide the obtained spectrum by the spectrum of one

period of the excitation signal and take the inverse Fourier transform of the

dataset to obtain the RIRs at the different spatial locations. As the obtained

2D spectrum is almost bandlimited along the angular frequency dimension as

was described in Chapter 4, interpolation of the RIRs at any angle can be

achieved.

A numerical example is given.

Example 5.4.1. Using (5.33), to record RIRs of 100 ms on a circular array of

radius of 1m up to a frequency of 20 kHz, the rotation needs to be achieved

at a maximal speed of v = 4.9 deg/s. The duration of one full rotation is of

approximatively 74 s. �

Note that, in order to keep the periodic character of the excitation signal,

one will need to adapt the speed such that the time to make a full rotation

corresponds to a multiple of the period of the excitation signal.

As was shown in Section 5.4.1, due to the Doppler effect, the recorded sound

can contain higher frequencies than the original emitted sound. Therefore, to

avoid aliasing due to the creation of these new frequencies, one has to choose

a temporal sampling frequency slightly higher than twice the largest emitted

frequency component.

5.4.4 Individualized HRTF measurement

The presented technique is very suitable for the recording of very short impulse

responses as is the case for HRTFs. A typical length of interest for HRTF



5.5. Experiments 117

measurement is of the order of 10 ms. Also, as was discussed in Chapter 4, the

support of the 2D spectrum has most of its energy in the region satisfying

|lθ| ≤ |ω| d

2c
, (5.40)

with d the diameter of the head (typically of the order of 18 cm). With this

modification, (5.33) becomes

vmax =
2πc

d(ω1T − π)
. (5.41)

The maximal speed to reconstruct all HRTFs up to 20 kHz is therefore of

542 deg/s. In only .66 s, the measurement of HRTFs for all angles in the

horizontal plane can be achieved. This interesting result finds application in

the fast measurement of HRTFs. This technique could be further developed to

allow every person to measure his own set of HRTFs and be able to use them

when listening during headphone playback. Obviously, the content of the audio

playback has to be adapted to support the use of HRTFs. This is precisely the

goal of the new MPEG standard that will allow the use of individualized HRTFs

for optimal audio rendering using headphones [26].

5.5 Experiments

Experiments have been carried out in a sound insulated room. A loudspeaker

(Genelec 1029A) was used to generate an excitation signal, recorded by a mi-

crophone Beyerdynamic MC−740. In this section, only the case of the moving

microphone has been considered. Rotation of the microphone was performed

using a Pan/Tilt Unit PTU − D46 − 70 4. This device allows the rotation of

the microphone with a precision of .03 deg and with a maximal rotation speed

of 60 deg/s. The room, where the measurements were performed, was so that

the RIRs have very small energy after 250 ms. The excitation signal was made

of the sum of sinusoids spaced with 4 Hz. Each sinusoid component was given

a random phase. The frequencies covered by the excitation signal ranged from

20 Hz to 22 kHz. The period of the excitation signal was of length 250 ms. To

reconstruct the signal up to 22 kHz on a circular array of radius 60 cm, the

maximal rotation speed is of 3 deg/s, as follows from (5.33). We chose to apply

a rotation of 1.8 deg/s. Therefore, the full rotation was achieved in 200 s. The

Fourier transform of the recorded signal (in blue full lines) and of the emitted

signal (in black dotted lines) are shown for low frequencies in Fig. 5.10(a) and

4The rotation of the loudspeaker would not have been possible due to the large weight of
the loudspeaker.
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Figure 5.10: Spectrum of the moving microphone signal (a) at low frequen-
cies (between 1018 and 1026 Hz); (b) at high frequencies (between 11066 and
11074 Hz).

Figure 5.11: 2D-FT of the recorded data obtained after undoing the effect of the
projection due to the recording by the moving microphone.

for high frequencies in Fig. 5.10(b). As discussed in Section 5.4.1, it can be ob-

served that for the low frequencies, the projection of the triangular spectrum is

very narrow while it becomes wider for larger frequencies. From the spectrum

of the recorded signal, the original 2D spectrum needs to be reconstructed.

This is achieved by undoing the effect of the projection appearing because of

the movement of the microphone. The obtained reconstructed 2D spectrum is

shown in Fig. 5.11. This spectrum is then further divided by the spectrum of

one period of the excitation signal. Taking the 2D inverse Fourier transform of

the result leads to the RIRs at the different angular positions. A typical RIR

obtained by the algorithm is shown in Fig. 5.12. The RIR is not exactly zero

at its beginning because of time aliasing. Aliasing happens since the RIR is

not exactly zero after 250 ms but still contains some energy.

Estimating the correctness of the reconstructed RIRs is not a straightfor-

ward task. This is mainly due to different limitations related to the setup of

the experiment. First of all, the hardware used did not allow a perfect synchro-

nization between the moving motor and the emitted sound. Another limitation
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Figure 5.12: Example of a reconstructed RIR using the presented algorithm.

of the material was due to the noise emitted by the motor when the Pan/Tilt

unit moves. Adaptively removing the noise or putting around the motor some

sound absorbing material could be considered to attenuate this noise source.

Nevertheless, the reconstructed RIRs were compared with statically measured

RIRs and the mean squared error (MSE) between them was of the order of −10

to −15 dB. Note that the measurement conditions were not exactly similar for

the measurement of the two sets of RIRs (one set obtained with the moving

microphone and the other set using a static microphone). The temperature

variation as well as the intrusion of a person in the room can lead to variations

in the speed of the sound as was shown in [45, 7]. It is shown in [45] that a

variation of 0.1◦ can create a misalignment between RIRs of more than 25 dB.

These different aspects make the comparison in MSE sense difficult. Never-

theless, it can be observed that the relative time difference and attenuation

between the reconstructed RIRs is very coherent and similar to the original

RIRs.

A new technique to record RIRs in a very fast and easy manner has been pre-

sented and measurements have shown that the goals presented can be achieved.

Some further work still needs to be addressed to solve the minor issues discussed

above.

5.6 Conclusion

In this chapter, a technique was presented to record large sets of room im-

pulse responses using a microphone or a loudspeaker moving along a trajec-

tory. The technique reconstructs the room impulse responses at any position

along a linear or a circular array. The speed of movement of the microphone

(or loudspeaker) has been shown to be the key factor for the reconstruction.

The theoretical aspects of the presented algorithm have been compared with

experimental results.
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Chapter 6

Stochastic Modeling of

Spatio-Temporal Channel

Impulse Responses Based on

the Wave Equation

6.1 Introduction

Multipath channels between moving senders and receivers are of interest in

many signal processing and communications scenarios, from acoustic echo can-

cellation to wireless mobile communications. Two physical constraints charac-

terize these channels: (i) propagation is governed by the wave equation, (ii)

movements of sender and/or receiver are smooth and slow as compared to

propagation. In this work, we show that the resulting time-varying impulse re-

sponse has a butterfly shaped spectrum, that is, its spatial bandwidth increases

linearly with temporal frequency.

The method to show this uses smooth trajectories obtained by Ornstein-

Uhlenbeck processes in space, in order to generate a suitable stochastic process

corresponding to time-varying impulse responses. The distinguishing features

of the power spectrum is its essential butterfly shape and the widening of the

shape as a function of the smoothness of movement. Experimental results verify

the established shape of the power spectra. Both the theoretical and experi-

mental results are relevant for modeling of wideband channels (e.g. acoustic

or ultra-wideband), since they predict the “variation bandwidth” as a func-

tion of temporal frequency. This in turn is important for channel adaptation,

121
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equalization and power allocation.

6.1.1 Description and problem statement

Ever since listening to a passing ambulance as kids, we know that channels be-

tween a moving source and a receiver are more interesting than static scenarios.

However, such time-varying channels are more challenging to characterize, an-

alyze and equalize. The time-invariant channel leads to a convolution between

its input and output and the Fourier domain is a natural setting to answer many

relevant questions. The linear time-varying channel still obeys a superposition

principle, but the impulse response at each instant is different. This is where

physics comes into play. The impulse response corresponds to transmission of a

pulse over a physical medium, governed by a differential equation, namely the

wave equation. And the movement of the source is not arbitrary, but governed

by Newtonian mechanics, which forces, among other things, smooth move-

ments. This implies that two subsequent impulse responses which are close in

time cannot differ that much. Consider a variation in time ∆τ between two

subsequent measured channel impulse responses (CIRs). During this variation

of time, the maximal spacing ∆d that has been traveled by the wave is

∆d = c∆τ, (6.1)

with c the speed of the wave propagation. At low temporal frequencies, the

waves propagate with very large wavelength λ. Therefore, for ∆d << λ, con-

secutive impulse response might be almost unchanged, while for high temporal

frequencies, they might be completely different.

The challenge is to transform the above intuition into a mathematically

tractable model. To do this, we use two ingredients as described in the block

diagram of Fig. 6.1.

First, we use the Green’s function which corresponds to the solution of the

wave equation to an excitation pulse as described in Chapter 2. Previous work

has been presented on the study of the solution of the wave equation along

different geometries in the acoustic case [7,6] as well as in the electromagnetic

case [37,36]. This is also the topic of the previous chapters, where, for example,

the wave field has been studied along a line by considering the two-dimensional

(2D) plenacoustic function, p(x, t). This function describes the CIRs from a

source to each position x along the line. Each CIRs is a function of the time

t. Analysis of p(x, t) was performed by considering its two-dimensional Fourier

transform (2D-FT). Introducing the spatial frequency φ and the temporal fre-

quency ω, it was shown that the support of the spatio-temporal CIR contained
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Figure 6.1: Block diagram of the general setup described in this work. On one
hand, the static CIRs are studied in a region of space. On the other hand, a
physically based trajectory for the movement of the receiver (or source) is presented.
From these two ingredients, the time-varying CIRs corresponding to the considered
system can be characterized.

most of its energy in a butterfly shaped region satisfying:

|φ| ≤ |ω|
c

. (6.2)

For low temporal frequencies, the spatial support of the butterfly shaped spec-

trum is narrow since large wavelengths do not produce fast variations along

the spatial dimension. For higher temporal frequencies, the wavelengths are

smaller which leads to faster spatial variations of the field and larger spatial

frequency support. The intuition gathered by this study is useful for the char-

acterization and modeling of time-varying channels discussed in the present

chapter1.

Second, we introduce a smooth motion model for the moving receiver (or

source or both). This is based on an Ornstein-Uhlenbeck process which can be

described by a simple autoregressive relation. Simplicity and versatility are the

two crucial characteristics of our autoregressive stochastic model: by tuning the

order and the poles of the autoregression we can easily control the smoothness of

the movement and hence describe a large family of moving receiver/source sce-

narios, from walking listeners in an audio room to automobile wireless stations,

without forgetting the passing ambulance of our childhood. This is achieved by

developing a generalization of the continuous-time Ornstein-Uhlenbeck process

to any order as described in Section 6.2.

Putting these two ingredients leads to the analysis of the CIRs studied

along a stochastic trajectory. Typical setups of interest include the study of

1More details on the deterministic spatio-temporal CIRs can be found in Chapters 3 and
4.
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Figure 6.2: Setup of the problem. (a) For an acoustic case. (b) For an electro-
magnetic case.

time-varying CIRs in the acoustic and electromagnetic case with application

to hands free telephony and mobile communications as shown in Fig. 6.2. In

this chapter, we consider a receiver r following a smooth trajectory Γ(τ) given

by the autoregressive model and a source s at a constant position as shown in

Fig. 6.2(a) and (b). Γ(τ) is the random process describing the trajectory and τ

is its independent variable. The variable τ represents the different instants at

which we consider the curve as marked on Fig. 6.2(a) and (b). The variable τ

is expressed in seconds and Γ(τ) in meters2. In this work, we are interested in

modeling the channel between the source and the receiver. We therefore con-

sider that at each position Γ(τ), the receiver measures the Dirac pulse emitted

by the fixed source. The measured impulse response is a function of the time t

representing the duration of the recorded impulse response. Considering all the

impulse responses measured from each position along the random trajectory,

the recorded dataset is a function of both τ and t. This dataset can be con-

sidered as a stochastic plenacoustic function, P (τ, t)3. As it is not convenient

to express two different times τ and t, we decide in the sequel to denote the

coordinate τ as the spatial coordinate. It is a time function but is directly

related to the position that is taken by the mobile at instant τ , namely Γ(τ).

Therefore, P (τ, t) is denoted as the spatio-temporal CIR. A typical example

2As the velocity of the moving receiver is not constant, uniform samples of τ do not lead
to uniform samples in space.

3An uppercase letter was chosen to put in evidence the stochastic character of the function.



6.1. Introduction 125

of such a function is given in Fig. 6.3 where the first three peaks of the CIRs

are shown. In order to characterize the channel from the source to the re-

Figure 6.3: Example of a time-varying channel in function of τ describing a
smoothed random trajectory and t the duration of each CIR.

ceiver, this chapter studies the autocorrelation and the power spectral density

(PSD) of the CIRs. It will be shown, similarly to the deterministic case, that

the PSD of the spatio-temporal CIR has a butterfly spectrum. To understand

the intuition behind this specific shape, note that signals gathered along the

trajectory present a high correlation at low temporal frequencies. At higher

frequencies, a lower correlation is observed which explains the widening of the

spectrum. The butterfly shape of the spectrum is dependent on the smooth-

ness of the trajectory. For larger variance of the movement, the butterfly shape

gets wider and “opens up”. This can be shown exactly in some simple cases;

for more complicated ones, approximation rules [29,113] (well known from fre-

quency modulation) and numerical simulations provide adequate answers. In

this chapter, it is also shown that a stochastic perturbation can be added to

a deterministic spatio-temporal CIR. In that case the overall PSD also has a

butterfly spectrum originating from both the stochastic and the deterministic

PSDs.

Knowing the spatio-temporal spectrum, the PSD of the one-dimensional

signal measured at the receiver is considered and by introducing a speed of

movement for the receiver, the Doppler effect is put in evidence.

With this analysis, we obtain a versatile model for time-varying channels

governed by the wave equation and smooth motion. The presented theory

is confirmed by experimental measurements. For this purpose, room impulse

responses have been measured at hundreds of positions4 along a trajectory and

the results are comparable to the theoretical ones.

4All the performed measurements are available online [2].
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Note that related work in the field on channel impulse responses modeling

has already been previously described in Section 2.3.2.

6.1.2 Possible applications

Why is this an important problem, beyond listening to passing car equipped

with sirens? First, it is a fundamental question to characterize time-varying

channels in many signal processing and communications problems. This ranges

from hands free telephony, where the channel variations are related to physical

changes (and thermal fluctuations, among other noises) to mobile communica-

tions, where cars with varying speeds pass a base station.

Second, a good characterization of channels has algorithm implications,

since many adaptive algorithms (e.g. echo cancellation in the acoustic case or

multipath cancellation in the EM case) need to be tuned to channel character-

istics [58]. Knowing characteristics of the spectrum can become very precious

when choosing parameters of adaptive algorithms. The knowledge of the sup-

port of the spectrum can lead to a quantitative analysis of the rate of adapta-

tion. At low temporal frequencies, the rate of change can be kept slow while it

has to increase at higher temporal frequencies. This topic is matter of current

research.

Third, it has legal implications. New services are submitted to spectral reg-

ulations like those of the US FCC established for ultra-wide bandwidth trans-

missions [3]. Characterizing the spectral variation induced by the movement

of the receiver/source is of foremost importance: it allows us to take spectral

regulations into account even in a dynamic scenario.

Last, physically based models can be used as a starting point for stochastic

modeling of CIRs. The currently available stochastic models [94, 93, 52] could

be parameterized to take physical constraints into account such as smoothness

of trajectories in order to generate more realistic stochastic models for CIRs.

6.1.3 Contributions

The present work aims at developing a simple model to explain and quantify

the butterfly shape of the 2D-FT of a sequence of CIRs governed by the wave

equation and physically based mobility models. In particular, the contributions

of this work are to

• develop a model for smooth random walks applicable for a large range of

applications,

• study time-varying channel impulse responses governed by the wave equa-

tions,
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• calculate and estimate the autocorrelation and power spectral density

associated to these channels,

• present experimental measurements corroborating the theoretical results.

6.1.4 Outline

We develop these contributions along the following plan. As was discussed in

the introduction, two main ingredients are necessary for this study. The first

one describes the deterministic spatio-temporal channel impulse response and

has already been discussed in details in Chapter 3. The second ingredient nec-

essary to our study is the model of the trajectory followed by the mobile. It is

described in Section 6.2. With the knowledge acquired by the two first sections,

the spatio-temporal CIR is studied along a smoothed random trajectory in Sec-

tion 6.3.1. The autocorrelation and the PSD associated to the CIR is described

in Section 6.3.2. The influence of the poles and the order of the AR process on

the smoothness of the trajectory and on the shape of the power spectral den-

sity are discussed in Sections 6.3.3. Further, the PSD of the one-dimensional

signal gathered by a moving receiver is derived in Section 6.3.45. Section 6.4

presents generalized results on the study of the stochastic spatio-temporal CIR

in the case of multipath channels. With this study one can characterize the

PSD of a channel between a fixed source and a receiver along a random tra-

jectory. In different applications, one would like to add a deterministic trend

to the movement of the receiver as discussed in Section 6.5. The presented

theory is compared to simulations and experimental results in Section 6.6. The

conclusions are drawn in Section 6.7.

6.2 Model for the Moving Receiver

To describe the time-varying channel that is observed by a moving receiver, one

has to consider a model for the movement. One option is to choose a random

walk or a random way point model [79]. Nevertheless in the present case, a

totally random trajectory would not be realistic since it allows large jumps

between consecutive positions. The typical movement of a receiver presents

some physical constraints. It satisfies Newton’s equation and therefore a certain

inertia is present in the movement due to the double integration performed

on the given acceleration. In this work, the control of the smoothness and

the speed of variation of the movement are shown to be the key factor in the

characterization of the time-varying channel. A continuous autoregressive (AR)

5In this chapter we only consider the case of a moving receiver and fixed source. Similar
results are obtained in the dual case where the source is moving with a fixed receiver.
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model is chosen to design continuous random trajectories. It allows us to easily

control and modify the smoothness of the trajectory. Modifying the order of

the AR model and displacing the positions of its poles allows the design of

a broad range of realistic random walks by keeping the possibility to include

physical constraints. In this work we present most of the results considering

the case of an AR-2 model. That is, we consider the acceleration of the receiver

to be a white Gaussian process. By integrating twice this process, the position

of the moving receiver is smoothed as will be shown in the sequel.

In this section, we introduce the AR model to be used in the rest of the chap-

ter. Typically, a continuous first-order AR model is denoted as an Ornstein-

Uhlenbeck process [31]. In this work we will generalize this process to any order.

For this purpose we introduce a linear model described by a state-space system

in controller canonical form [78]:

{

U̇(τ) = FU(τ) + bW (τ)

Y (τ) = cT U(τ),
(6.3)

with

F =



















0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .

0 0 0 . . . 1

−a0 −a1 −a2 . . . −an−1



















, b =













0
...

0

1













, c =













c1

c2

...

cn













.

U(τ) corresponds to the state variables of the system and W (τ) corresponds to

the input signal. The output of the system is Y (τ). In our study, we consider

the input W (τ) of the system to be a white Gaussian real stationary process.

Further, the output of the system is the state variable corresponding to the

position. With this choice, it can be shown that the output of the system

Y (τ) follows precisely a continuous real AR model. The order of the model

corresponds to the size of the matrix F in (6.3). In Section 6.2.1, the study

of the autocorrelation function is presented for a receiver moving following an

AR-2 law. Section 6.2.2 generalizes the results for any AR order. As will be

discussed further, more smoothness can be achieved in the output of the system

when increasing the order of the autoregressive model.

6.2.1 AR-2 process

In the case of an AR-2 process, the two state variables are position X(τ) and

velocity V (τ). The input W (τ) is a white Gaussian stationary process. To
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write the system (6.3) in two dimensions, we set

U(τ) =

[

X(τ)

V (τ)

]

, F =

[

0 1

−a0 −a1

]

, b =

[

0

1

]

, c =

[

1

0

]

. (6.4)

Using (6.4), (6.3) can be rewritten as

{

Ẍ(τ) = −a0X(τ) − a1Ẋ(τ) + W (τ)

Y (τ) = X(τ).
(6.5)

Since Y (τ) is a stationary process, its correlation can be written as

RY (∆τ) = E[Y (τ + ∆τ)Y (τ)]. (6.6)

If the system is stable, only the steady state term is present at the output,

i.e. [78]

Y (τ) =

∫ τ

−∞
cT eF (τ−l)bW (l)dl. (6.7)

Therefore, RY (∆τ) for τ ≥ 0 can be written as follows:

E

[

∫ τ+∆τ

−∞

∫ τ

−∞
cT eF (τ+∆τ−l1)bW (l1)W (l2)b

T eF T (τ−l2)cdl1dl2

]

= σ2

∫ s

−∞
cT eF (τ+∆τ−l)bbT eF T (τ−l)cdl,

(6.8)

using that E[W (l1)W (l2)] = σ2δ(l1 − l2). We assume that the matrix F can

be diagonalized6. Consequently, F can be decomposed using its eigenvalues λ1

and λ2 and eigenvector matrix V . Therefore,

eFτ = V

[

eλ1τ 0

0 eλ2τ

]

V −1 =

[

L(τ) M(τ)

N(τ) O(τ)

]

. (6.9)

Note that in the sequel the eigenvalues of the matrix F are also denoted as

poles of the AR process. The poles need to be negative to ensure the stability

of the system. Using (6.9), it can be shown that (6.8) can be rewritten as

RY (∆τ) = σ2

∫ τ

−∞
M(τ + ∆τ − l)M(τ − l)dl

= σ2

∫ 0

−∞
M(∆τ − l)M(−l)dl, (6.10)

6If this is not the case, similar results can be derived by using the Jordan decomposition
[66].
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with M(∆τ − l) = C1e
λ1(∆τ−l) + C2e

λ2(∆τ−l) where C1 and C2 are obtained

as C1 = V [1, 1]V −1[1, 2] and C2 = V [1, 2]V −1[2, 2].

By integrating (6.10), and taking into account that RY (∆τ) is an even

function, we obtain

RY (∆τ) = −σ2

(

eλ1|∆τ |
[

C2
1

2λ1
+

C1C2

λ1 + λ2

]

+

eλ2|∆τ |
[

C2
2

2λ2
+

C1C2

λ1 + λ2

])

.

(6.11)

Introducing now the random vector Y = [Y (0)Y (∆τ)]T , the correlation

matrix RY is

RY =

[

E[Y (∆τ)Y (∆τ)] E[Y (∆τ)Y (0)]

E[Y (0)Y (∆τ)] E[Y (∆τ)Y (∆τ)]

]

, (6.12)

while the probability density function of Y is given by:

fY(y) =
1

2π
√

|RY|
e

−RY (0)

2|RY |
(y2

0+y2
∆τ−

2RY (∆τ)

RY (0)
y∆τ y0). (6.13)

Note that in this expression, y∆τ corresponds to a realization of the random

variable Y (∆τ) and y0 to a realization of the random variable Y (0).

6.2.2 Generalization to AR-N process

In the case of an AR-N process the previous formulae can be generalized.

The matrix F is still considered to be diagonalizable and can therefore be

decomposed in its N eigenvalues λ1 . . . λN and N eigenvectors represented by

the eigenvector matrix V of dimension N . The autocorrelation of the process

Y (τ) is then

RY (∆τ) = −σ2





N
∑

i=1





N
∑

j=1

CiCj

λi + λj



 eλi|∆τ |



 , (6.14)

where Ci = V [1, i]V −1[i, N ].

In order to compare different AR-N processes, one has to normalize the

noise input signals. The normalization is chosen to obtain a unitary variance

for the output of the system, Y (τ). For this, one simply needs to impose that

σ2 = − 1
∑N

i=1

(

∑N
j=1

CiCj

λi+λj

) . (6.15)
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6.3 Spatio-Temporal Channel Impulse Response

In this section, the spatio-temporal CIR is studied. The filtering process of

an input signal is considered and the output process is studied both along the

temporal and the spatial dimension.

For simplicity of the calculations, a few assumptions are added to the model.

First, the movement of the receiver follows an AR model along one line as shown

in Fig. 6.4. We consider a mean distance between source and receiver of d.

s

d

y
r

Figure 6.4: Setup of the problem: a source is emitting and a receiver moving
along a line following an AR process is measuring the wave field.

For each possible position of the receiver we consider the CIR between that

position and the source. The spatio-temporal CIR obeying the wave equation

is given by (3.5). In our case, it rewrites as

P (τ, t) =
δ(t − |Y (τ)+d|

c )

4π|Y (τ) + d| . (6.16)

Another assumption done to simplify the calculations, is to consider the re-

ceiver far enough from the source to neglect the attenuation depending on the

distance, i.e. the denominator in (6.16) is considered to be constant. This

can be considered as the plane wave or far-field assumption as described in

Section 3.3.1. Also, we consider d to be at least a few times larger than the

standard deviation of the process Y . With these assumptions, (6.16) rewrites

as

P (τ, t) = δ

(

t − d + Y (τ)

c

)

. (6.17)

The next section will present the filtering of an input process with the filter

P (τ, t).

6.3.1 Filtering of an input process with the spatio-temporal

CIR

Consider an input process I(t) corresponding to the sound emitted by a source.

This input is a stationary process of mean mI and of variance σ2
I . It is then

filtered by P (τ, t) to obtain an output O(τ, t). Each realization of the process

P (τ, t) is a linear and time invariant filter with respect to time t. Therefore,
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we can consider the filtering of an input process I(t) with each of these filters.

Thanks the the stability of each realization of the process P (τ, t) (simple delay

filters), the output process O(τ, t) is well defined. We therefore have that

O(τ, t) = I(t) ∗ P (τ, t) = I(t) ∗ δ

(

t − d + Y (τ)

c

)

= I

(

t − d + Y (τ)

c

)

.(6.18)

A scheme of the situation is shown in Fig. 6.5: The mean of the output can be

I(t) P (τ, t) O(τ, t)

Figure 6.5: Filtering of a random process by the spatio-temporal CIR.

calculated as follows:

E

[

I

(

t − d + Y (τ)

c

)]

= E

[

E

[

I

(

t − d + Y (τ)

c

)∣

∣

∣

∣

Y (τ)

]]

= E[mI ] = mI , (6.19)

where the last equality in (6.19) follows from the stationarity of I(t). The

covariance of the process O(τ, t) is calculated as follows:

RO(∆τ, ∆t) = E

[

I

(

t + ∆t − d + Y (τ + ∆τ)

c

)

I

(

t − d + Y (τ)

c

)]

= E

[

E

[

I

(

t + ∆t − d + Y (τ + ∆τ)

c

)

I

(

t − d + Y (τ)

c

)∣

∣

∣

∣

Y (τ + ∆τ), Y (τ)

]]

= E

[

RI

(

∆t − Y (τ + ∆τ) − Y (τ)

c

)]

=

∫ ∞

−∞

∫ ∞

−∞
RI

(

∆t − y∆τ − y0

c

)

fY(y)dy∆τdy0. (6.20)

In Appendix E, it is shown that (6.20) can be rewritten as

RO(∆τ, ∆t) = RI(∆t) ∗ ce
− c2(∆t)2

4(RY (0)−RY (∆τ))

2
√

π (RY (0) − RY (∆τ))
, (6.21)

with the convolution along time t axis.

6.3.2 Power spectral density of the spatio-temporal CIR

From the analysis of the mean and the covariance of O(τ, t), it is observed that

the process is wide sense stationary. Therefore, a power spectral density can be
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defined. For this purpose, the Fourier transform of RO(∆τ, ∆t) with respect

to time, denoted as R̃O(∆τ, ω), is first considered

R̃O(∆τ, ω) =

∫ ∞

−∞
RO(∆τ, ∆t)e−jω∆td∆t

= SI(ω)e−(ω
c )

2
(RY (0)−RY (∆τ)). (6.22)

For an AR-2 process, we have

R̃O(∆τ, ω) = SI(ω)e−(ω
c )2[G1(1−eλ1|∆τ|)+G2(1−eλ2|∆τ|)], (6.23)

with G1 = −σ2
(

C2
1

2λ1
+ C1C2

λ1+λ2

)

and G2 = −σ2
(

C2
2

2λ2
+ C1C2

λ1+λ2

)

.

In the generalized case of an AR-N process, it can be shown that

R̃O(∆τ, ω) = SI(ω)e−(ω
c )

2
[
P

N
i=1 Gi(1−eλi|∆τ|)], (6.24)

with Gi = −σ2
∑N

j=1
CiCj

λi+λj
. For simplicity we consider in the sequel that

the emitted signal is a white Gaussian noise of unitary variance. Therefore,

SI(ω) = 1 in (6.23) and (6.24).

In Fig. 6.6(a), R̃O(∆τ, ω) is shown for an AR-2 process with poles (or

eigenvalues) located at positions −9 and −10. Note that this AR system is

stable since the poles of the system are negative as discussed previously in

Section 6.2.1. It can be observed that for ω = 0, the autocorrelation is unitary

for any ∆τ since there is a total correlation between any two receivers measuring

a DC plane wave. For increasing temporal frequencies, it can be observed

that the correlation becomes narrower, since only very closely located positions

remain correlated due to the very small wavelength of the propagating wave.

The PSD SO(γ, ω) is given by the Fourier transform of the correlation func-

tion, i.e.

SO(γ, ω) =

∫ ∞

−∞
e−jγ∆τ R̃O(∆τ, ω)d∆τ. (6.25)

While a closed form solution of this integral seems difficult to obtain, numerical

evaluation of (6.25) is shown in Fig. 6.6(b) for a receiver moving following an

AR-2 process with poles at −9 and −10. As can be seen from Fig. 6.6(b), the

PSD of the spatio-temporal CIR has most of its energy contained in a butterfly

region. The intuition behind this result is the following. Considering a source

emitting a waveform of very low temporal frequency. If the receiver position

varies slightly, the signals received at the receiver will be very correlated since

the wavelength is very large. Thus, the Fourier transform of their correlation

function will have a small support. When the temporal frequency of the emitted
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signals increases, the received signals are less and less correlated even for small

variation of the receiver position. Therefore the PSD of the spatio-temporal

CIR gets a larger support for higher temporal frequencies.

(a)

(b)

Figure 6.6: Study of the spatio-temporal CIR in free field. (a) R̃O(∆τ, ω) as
obtained from (6.24) with eigenvalues at −9 and−10. (b) PSD of this spatio-
temporal CIR.

6.3.3 Trajectory smoothness influence on the butterfly spec-

trum characteristics

When observing trajectories of mobiles governed by the wave equation, a cer-

tain smoothness is present in the movement. It is the smoothness of the move-

ment that we intend to reproduce by using AR models. To match the smooth-

ness of the original movement, a few parameters can be modified in our model,

namely the positions of the poles and the order of the AR process. In this
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section, the different parameters to be chosen when designing the matching

AR process are studied and their influence on the shape and widening of the

2D spectrum of the spatio-temporal CIRs is studied.

Poles locations of the AR system

By changing the poles (or eigenvalues) of the system, one can control the

smoothness of the trajectory. This modifies the opening of the butterfly shaped

spectrum of Fig. 6.6(b). The smaller the poles are (in absolute value), the more

narrow is the spectrum, while for very large values of the poles (in absolute

value), the frequency support of the PSD of the spatio-temporal CIR gets very

wide. For an AR-1 process, the variation of the spatial bandwidth of the PSD

has been studied in function of the position of the pole. The pole of the system

has been displaced from −.5 to −32. For each of these positions for the pole,

a cut of the PSD of the spatio-temporal CIR is shown at a temporal frequency

of 1000π rad/s (500 Hz) in Fig. 6.7(a).

Order of the AR system

As known from system theory [66], for a fixed position of the poles, increasing

the order of an AR model leads to smoother trajectories. Also, for smoother

trajectories it is observed that the PSD of the spatio-temporal CIR decays

faster. In Fig. 6.7(b), a cut of the PSD of a spatio-temporal CIR was considered

at a temporal frequency of 500 Hz. The AR models of the three first orders

are compared. The poles are all around −5, and as expected, the AR-3 model

decays fastest.

6.3.4 Power spectral density of the signal measured by a mov-

ing receiver

Until now, we have considered a continuous trajectory defining the movement

of a mobile receiver using an autoregressive model as in Section 6.2. We have

then studied the 2D spatio-temporal autocorrelation and PSD of the time-

varying channel in Section 6.3.1 and 6.3.2. So far, we have not considered the

one-dimensional signal gathered by the moving receiver, which we do now. Its

PSD will be shown to be obtained from the 2D spatio-temporal PSD by means

of a projection. Note that this kind of construction is very similar to the work

presented in Chapter 5 for the signal gathered by a moving receiver along a

deterministic circular trajectory. In Chapter 5, a similar construction is also

presented for the case of a moving source.

From the model discussed in Section 6.2, the different positions along the
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Figure 6.7: Influence of the different parameters of the AR processes on the PSD
S(γ, ω). (a) For ω = 1000π rad/s, comparison of S(γ, ω) for different values of
the poles of an AR-1 system ranging from −.5 to −32. (b) For ω = 1000π rad/s,
comparison of S(γ, ω) for AR systems of different orders. The poles of the process
are all located around −5.

trajectory are determined at each instant. From this trajectory, it is possible

to compute the average speed of the mobile denoted as va. It will be dependent

on the different parameters of the AR process. In this section, we introduce a

scaling factor ν that allows the modification of the average speed of the mobile

that now becomes νva.

As was previously discussed in Section 6.3.1, the filtering of an input process

I(t) with the spatio-temporal CIR P (τ, t) is obtained from (6.18) and can be

written as follows:

O(τ, t) =

∫ ∞

−∞
I(u)P (τ, t − u)du. (6.26)

As was described in Chapter 5, the one-dimensional signal M(t) gathered by
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the moving receiver is given by

M(t) =

∫ ∞

−∞
I(u)P (νt, t − u)du, (6.27)

Note that

M(t) = O(νt, t). (6.28)

The signal gathered by the receiver corresponds to a slice of the 2D function

O(τ, t) along the line of equation τ = νt. The parameter ν can therefore be

seen as a time scaling.

The autocorrelation of the receiver signal is

RM (∆t) = RO(ν∆t, ∆t). (6.29)

Again, it can be observed in (6.29), that the autocorrelation of the measured

signal by a moving receiver corresponds to a slice of the output signal correla-

tion RO(τ, t) along a line of equation ∆τ = ν∆t. In the frequency domain this

corresponds to a projection as stated by the projection-slice theorem [25].

The PSD of the signal recorded by the moving receiver is

SM (ξ) =

∫ ∞

−∞
RO(ν∆t, ∆t)e−jξ∆td∆t. (6.30)

Also, remark that

RO(ν∆t, ∆t) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
SO(γ, ω)ej(ω∆t+γν∆t)dγdω. (6.31)

Using (6.31), Expression (6.30) can be rewritten as:

SM (ξ) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
SO(γ, ω)e−j∆t(ξ−νγ−ω)d∆tdφdω

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞
SO(γ, ω)δ(ξ − νγ − ω)dγdω

=
1

4π2

∫ ∞

−∞
SO(γ,−νγ + ξ)dγ. (6.32)

The PSD of the signal gathered by the moving receiver is given by (6.32).

As mentioned earlier, the PSD can be obtained by projection of the original

2D PSD. For each frequency ξ, the value of the PSD of the recorded signal is

obtained by a projection of the 2D spectrum SO(γ, ω) following the direction

~ν = (1,−ν)√
ν2+1

on the ω-axis. This construction is presented in Fig. 6.8. The
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support of the PSD of the moving receiver lies on the ω-axis as can be found

out from (6.32). It is shown in bold dashed line. It can also be observed that

the PSD of the moving receiver contains higher temporal frequencies than the

original spectrum. This is due to the Doppler shift and is dependent on the

speed of the receiver.

ω

γ

ω =
γ

ν
�ν

Figure 6.8: PSD of the moving receiver signal. The signal measured by the moving
receiver is shown in dashed lines.

6.4 Multipath Channels

The autocorrelation function of the spatio-temporal CIR is now considered

for multipath channels. The first setup discussed in Section 6.4.1 considers

a single source not located along the line of the receiver movement. In Sec-

tion 6.4.2, multipath reflection is studied in a rectangular room. As discussed

in Section 2.3.2, a large literature exists on the modeling of multipath propa-

gation channels. In this chapter we do not develop a new model for multipath

propagation but we show that the CIRs have a specific PSD shape when a phys-

ically based realistic model is chosen for the spatial trajectory. For simplicity,

a model for reverberation is considered based on the image source model as

in [101]. From this model, it is shown that the butterfly shape of the studied

PSD generalizes from the case of a single source in free field to a multipath

model. Each multichannel path is considered in our analysis as a virtual source.

Each of the considered virtual source is shown to produce a butterfly shaped

PSD, therefore the total multipath channel also exhibits a similar butterfly

shape.
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6.4.1 Reflection from source

Consider a source s located at position (0, 0) emitting the process I(t) and a

receiver along a trajectory described by an AR process around the position (d, l)

as shown in Fig. 6.9(a). The output process O(τ, t) is given by the following

s

l

d

α

(a)

s

α1α2

l

d1
12

d2

s

(b)

Figure 6.9: Different setups for the study of the spatio-temporal CIR. (a) Setup
considering a source not aligned with the movement of the receiver. (b) Setup
considering virtual sources for modeling the spatio-temporal CIRs.

expression:

O(τ, t) = I

(

t −
√

l2 + (d + Y (τ))2

c

)

(6.33)
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To simplify further calculations, linearization of (6.33) with respect to Y (τ) is

performed, leading to

O(τ, t) = I

(

t −
√

l2 + d2 + cosαY (τ)

c

)

, (6.34)

with

cosα =
d√

d2 + l2
. (6.35)

Remark that this linearization corresponds to the assumption that the source

emits plane waves. Using results from Section 6.3.1, the autocorrelation of the

output process can be written as:

R̃0(∆τ, ω) = ej ω
c

√
d2+l2SI(ω)e−(ω cos α

c )
2
(RY (0)−RY (∆τ)). (6.36)

When calculating the Fourier transform of (6.36) with respect to ∆τ , we obtain

ej ω
c

√
d2+l2SO(γ, ω cosα), (6.37)

with SO(γ, ω) defined in (6.25). This shows that the largest support of the

PSD is obtained when α = 0. The reflections arriving with the smallest angles

lead to the largest support of the PSD.

6.4.2 Multipath reflections in a rectangular room

Consider now the case of two sources. The sources s1 and s2 emit plane wave ar-

riving on the receiver with angle α1 and α2, respectively, as shown in Fig. 6.9(b).

The source s2 corresponds to one virtual source mimicking the effect of the first

reflection path.

The autocorrelation function associated to the output is first calculated for

a case with two sources and then further generalized to N sources. We start

with the two sources case and define D1 =
√

d1 + l2 and D2 =
√

d2 + l2. The

new output process is defined as follows:

O(τ, t) = I

(

t − D1 + cosα1Y (τ)

c

)

+ I

(

t − D2 + cosα2Y (τ)

c

)

. (6.38)

The autocorrelation of the process, denoted as RO(∆τ, ∆t) is therefore given
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by the following expression.

E

»»

I

„

t + ∆t −
D1 + cos α1Y (τ + ∆τ )

c

«

+ I

„

t + ∆t −
D2 + cos α2Y (τ + ∆τ )

c

«–

»

I

„

t −
D1 + cos α1Y (τ )

c

«

+ I

„

t −
D2 + cos α2Y (τ )

c

«––

.

Rewriting this expression leads to

RO(∆τ, ∆t) =

∫ ∞

−∞

∫ ∞

−∞
RI

(

∆t − cosα1
y∆τ − y0

c

)

fY(y)dy∆τdy0 (6.39)

+

∫ ∞

−∞

∫ ∞

−∞
RI

(

∆t − cosα2
y∆τ − y0

c

)

fY(y)dy∆τdy0 (6.40)

+

∫ ∞

−∞

∫ ∞

−∞
RI

(

∆t − D1 − D2 + cosα1y∆τ − cosα2y0

c

)

fY(y)dy∆τdy0 (6.41)

+

∫ ∞

−∞

∫ ∞

−∞
RI

(

∆t − D2 − D1 + cosα2y∆τ − cosα1y0

c

)

fY(y)dy∆τdy0. (6.42)

To calculate the Fourier transform with respect to ∆t of this expression, we

consider each term separately. The Fourier transform of (6.39) is

SI(ω)e−(ω cos α1
c )

2
(RY (0)−RY (∆τ)). (6.43)

Similarly to the technique presented in Section 6.3.1, the Fourier transform of

(6.42) is

ejω(D1−D2)SI(ω)e
−(ω

c )2
„

RY (0)
cos2 α1+cos2 α2

2 −RY (∆τ) cos α1 cos α2

«

. (6.44)

We therefore have

R̃O(∆τ, ω) = SI(ω)
h

e
−( ω cos α1

c )2(RY (0)−RY (∆τ)) + e
−( ω cos α2

c )2(RY (0)−RY (∆τ))

+2 cos(ω(D1 − D2))e
−(ω

c )2
„

RY (0)
cos2 α1+cos2 α2

2
−RY (∆τ) cos α1 cos α2

«#

.

(6.45)

Generalizing (6.45) to N virtual sources leads to

R̃O(∆τ, ω) = SI(ω)





N
∑

i=1

e−(ω cos αi
c )

2
(RY (0)−RY (∆τ)) + 2

N
∑

i=1

N
∑

j=i+1

cos(ω(Di − Dj))e
−(ω

c )
2
„

RY (0)
cos2 αi+cos2 αj

2 −RY (∆τ) cos αi cos αj

«]

,

(6.46)

with Di =
√

l2i + d2
i . Note that di, li and αi are the distances and angles from

each virtual source to the receiver. The virtual sources can be obtained as
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in [13]. Note that (6.46) can be rewritten for an AR-2 process as

R̃O(∆τ, ω) = SI(ω)

"

N
X

i=1

e
−(ω cos αi

c )2e
−( ω

c )2[G1(1−eλ1|∆τ|)+G2(1−eλ2|∆τ|)]
+ 2

N
X

i=1

N
X

j=i+1

cos(ω(Di − Dj))e
−

„

ω
√

cos αi cos αj

c

«2
 

(G1+G2)
cos2 αi+cos2 αj
2 cos αi cos αj

−G1eλ1|∆τ|−G2eλ2|∆τ|

!
3

5 .

(6.47)

To study the Fourier transform of (6.47) with respect to ∆τ , we first analyze

the first sum. Each term in this sum leads to a PSD expressed by (6.37)

as previously studied in Section 6.4.1. There it was shown that the largest

frequency support is obtained for the smallest angle. The second sum leads to

a similar analysis since the frequency ω becomes ω
√

cosαi cosαj . Therefore,

as a result of this analysis, it is observed that the smaller the angle, the larger

is the spatial support. The maximal support is obtained, when for both sums,

angles αi and αj are zero. The maximal spatial support of the PSD of (6.47)

corresponds then to the PSD of the case where the source is on the line of

movement of the receiver as studied in Section 6.3.2.

6.5 Mixing Deterministic and Stochastic Spatio-

temporal CIR

Next to a purely stochastic spatio-temporal CIR, one may be interested in a

mixture of a deterministic and a stochastic component. The most realistic

scenario consists in a particular deterministic trajectory to which a stochastic

perturbation is added. An example of such process corresponds to the sampling

of the sound field along an array where a certain jitter exists due to the impre-

cision of the position of the measurement. This can be seen as the addition of

a stochastic jitter to a deterministic measurement. Another example is the one

presented in Fig. 6.2(b). A car is driving and receives electromagnetic signal

from an antenna placed next to the freeway. Due to some stochastic variation

in the traffic or in the landscape, the position of the car is jittered.

6.5.1 Deterministic channels

Consider a plane wave arriving on a line of receivers as discussed in Chapter 3.

The field measured along the line is

p(τ, t) = δ (t − τ cosα) . (6.48)
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Considering the Fourier transform of (6.48) with respect to time leads to

p̃(τ, ω) = e−jωτ cos α. (6.49)

Also, the 2D-FT of (6.48) is given by

p̂(γ, ω) = 2πδ (γ + ω cosα) . (6.50)

In the present section, the deterministic trend of the movement is considered

to be a simple plane wave arriving on a receiver line. Considering more gen-

eral expressions might lead to problems of the definition of the PSD of the

spatio temporal CIR mixing deterministic and stochastic trends. For example,

consider the following expression:

p(τ, t) = δ (t − f(τ)) . (6.51)

As will be shown in Section 6.5.2, the function f(τ) needs to be a linear function

of the variable τ to still be able to define a wide sense stationary autocorrelation

function of the CIR. If the deterministic trend contains a non-linear function

f(τ), linearization in little segments of the function needs to be applied. Each

segment will be studied separately and will follow the presented theory. Never-

theless, the obtained autocorrelation function will have to be spatially filtered

to match the size of the segments. In the frequency domain, this corresponds to

a convolution along the spatial axis between the PSD and the Fourier transform

of the used window. This can be considered as a short-time PSD by analogy to

the short-time Fourier transform [111] used to analyze non-stationary signals.

6.5.2 Deterministic and stochastic spatio-temporal CIR

In addition to the deterministic field measured along a line, consider now a

stochastic process added on the measurement to represent jitter. In this section,

the output of the process, denoted as Ō(τ, t), is studied when a stochastic

input process is filtered by a deterministic and stochastic spatio-temporal CIR.

Similarly to the technique presented in Section 6.3.1, we have that Ō(τ, t)

satisfies

Ō(τ, t) = I

(

t − cosα

[

τ +
Y (τ)

c

])

. (6.52)
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The autocorrelation function of this process is

RŌ(∆τ, ∆t) = E

[

I

(

t + ∆t − cosα

[

τ + ∆τ +
Y (τ + ∆τ)

c

])

I

(

t − cosα

[

τ +
Y (τ)

c

])]

= E

[

RI

(

∆t − cosα

[

∆τ +
Y (τ + ∆τ) − Y (τ)

c

])]

. (6.53)

The Fourier transform of RŌ(∆τ, ∆t) with respect to time ∆t is

R̃Ō(∆τ, ω) = ejω cos α∆τSI(ω)e−(ω cos α
c )

2
(RY (0)−RY (∆τ))

= ejω cos α∆τ R̃O(∆τ, ω), (6.54)

with R̃O(∆τ, ω) defined as in (6.36). Note that R̃Ō(∆τ, ω) is only a function of

∆τ and not directly of τ thanks to the choice of a linear function f in (6.51).

To compute the Fourier transform of RŌ(∆τ, ω) with respect to ∆τ , denoted

as SŌ(γ, ω), it is observed that (6.54) corresponds to the product between two

factors. Therefore, SŌ(γ, ω) can be written as

SŌ(γ, ω) = δ (γ + ω cosα) ∗ SO(γ, ω cosα), (6.55)

where the convolution happens along the spatial frequency dimension γ. This

convolution is shown in Fig. 6.10. Simulation have been performed and the 2D

spectrum associated to the mixing of a deterministic and a stochastic process

is given in Fig. 6.11. The AR-2 process with poles at −9 and −10 described in

Fig. 6.6(b) has been chosen together with a deterministic plane wave with an

angle of arrival of 85◦.

γ*

ω

γ

ω

γ

ω

Figure 6.10: Convolution between the deterministic and stochastic 2D spectra to
obtain the PSD corresponding to a process mixing a deterministic and a stochastic
process.
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Figure 6.11: PSD associated to a process mixing a deterministic plane wave with
angle of arrival of 85◦ with a stochastic AR-2 process with poles at −9 and −10.

6.6 Simulations and Experimental Measurements

In this section, we present results obtained by simulations of discrete AR pro-

cesses as well as real measurements.

6.6.1 Simulation results

In a first step, simulations were carried out to show that, the higher the order

of the AR process, the smoother is the trajectory, as discussed in Section 6.3.3.

A smoother trajectory relates into a smoother time of arrival from the source

to the receiver. The setup considered is the one presented in Fig. 6.4 and the

time of arrival is defined as d + Y (τ)
c as in (6.17). Note that in the simulations,

the continuous AR models are simulated by means of discrete AR models. The

poles of the continuous system have to be translated to their corresponding

discrete-time version. Considering a continuous AR system with a pole at λ,

the corresponding discrete system will exhibit a pole at eλT with T the sampling

period of the discrete system. For example, a continuous AR-1 process with

pole at −5, corresponds to a discrete system with a pole at position .995 for

a sampling period of T = 1/1000 s. For this AR-1 system, it can be seen

in Fig. 6.12(a) that the time of arrivals between the source and the receiver

following this AR model are not very smooth. With an AR-2 process with two

poles at .995, the time of arrivals get smoother as shown in Fig. 6.12(b).

Further, simulations were done to add the effect of reflections introduced

by reverberation. We still consider the setup of Fig. 6.4 but the source and

the receiver are inside a room. Next to the direct path, reflections on the walls

need to be considered. These reflections can be seen as virtual sources. As

discussed in Section 6.4, the frequency support of the PSD corresponding to
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Figure 6.12: Smoothness of the AR processes. (a) Discrete AR-1 process sim-
ulated with a pole at .995. (b) Discrete AR-2 process simulated with two poles
around .995.

the reverberant field is included in the support of the free field PSD. This is

also observed in the simulations, where Fig. 6.13(a) represents the PSD of the

spatio-temporal CIR for the free field case and Fig. 6.13(b) for a room with

reverberation.

6.6.2 Experimental results

Experiments have been carried out in a sound insulated room. A loudspeaker

(Genelec 1029A) was used to generate an excitation signal, recorded by a

microphone Beyerdynamic MC − 740. The precise positioning of the micro-

phone for the measurement of the RIRs was performed using a Pan/Tilt Unit

PTU − D46 − 70. This device allows the rotation of the microphone with a
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(a)

(b)

Figure 6.13: PSD of spatio-temporal CIR. (a) For a free field case. (b) For a
reverberant room.

precision of .03◦. Using this equipment, a set of 2000 RIRs were measured

along a circle of radius of .7 m. The RIRs were measured using a logarithmic

sweep [86]. Positions matching a discrete AR-2 process with poles at .995 and

.99 (equivalent to a continous system with poles at −5 and −10) were chosen in

the measured database and the PSD obtained for the measured database was

compared to the simulated PSD. The simulated and experimental periodograms

for this AR process are shown in Fig. 6.14(a) and (b). As can be seen, there

is a strong agreement in the support while the measured PSD appears to be

noisier.
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(a)

(b)

Figure 6.14: PSD of spatio-temporal CIRs for a discrete AR-2 process with poles
at .995 and .99, (a) obtained by simulation; (b) obtained using experimental room
impulse responses.

6.7 Conclusion

In this chapter, we have presented a stochastic model for a spatially varying

channel in the case of a receiver moving along a random trajectory with re-

spect to a fixed source. We have modeled the trajectory of the receiver as an

autoregressive model where the poles of the system control the smoothness of

the path. Theoretical results are presented for the AR-2 case and generalized

to any AR-N systems. The power spectral density corresponding to the CIR

as a function of temporal and spatial frequency has been studied. Simulations

and experimental results have been shown and compared to the presented the-

ory. This theoretical study gives a basis for a stochastic model of time-varying

channels as found in communication environments where a physical process

(e.g. user movement) drives the time-varying impulse response of a channel.
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Chapter 7

Conclusion

7.1 Thesis Summary

The main topic of interest of this thesis lies in the sampling and interpolation

of fields governed by the wave equation. While most of the results have been

presented for the acoustic case, they can easily be applied to any other field

satisfying the wave equation such as the electromagnetic wave equation. Only

the propagation speed of the phenomenon needs to be adapted.

Note that to keep a good balance between theoretical and experimental

work, each theoretical result was validated with simulations and experimental

measurements. These measurements consisted mostly in acoustic and electro-

magnetic impulse response measurements in rooms. These measurements are

available at the following address [2].

In this thesis, we have introduced the “plenacoustic function” and defined

it as the sound field generated by one source or a distribution of sources. The

function characterizes the sound field both along the spatial and the temporal

dimensions. One of the purposes of this thesis was to answer the following

question: “ How many microphones need to be placed along a geometry to be

able to reconstruct the sound field at any position along this geometry?” We

solved this question for different geometries such as a line, a plane, a circle and

the three-dimensional space filled with microphones. To solve the problem, the

Fourier representation of the sound field was used.

For the linear case, we calculated the two-dimensional Fourier transform of

the sound field along space and time and observed that the spectrum presented

a very specific butterfly shape. While most of the energy lies in the butterfly,

some small energy still remains outside of the essential support. By character-

izing this amount of energy, a spatial sampling theorem was developed. This

theorem presents the trade-off existing between spatial sampling frequency and

151



152 Chapter 7.

error on the reconstruction of the sound field. Also, a larger spatial sampling

frequency is required to achieve a similar error on reconstruction for signals with

larger maximal temporal frequencies. We compared the presented theory with

measurements of room impulses responses in the acoustic and electromagnetic

case.

For the case of the sound field studied along a circle, a similar angular

sampling theorem was presented. Acoustic and electromagnetic room impulse

responses along a circle were measured and used for comparison with the pre-

sented theory. As an application of this sampling study, we considered the prob-

lem of sampling and interpolation of head-related transfer functions (HRTFs).

These filters model the effect of the shape of the head, body and pinnae on

the sound measured at the entrance of the ear canal. HRTFs are widely used

in audio playback over headphones to increase realism and spatial perception.

Based on the sampling theorem, it was shown that HRTFs need to be sampled

every 5◦ for reconstruction at any angle in the azimuthal plane. To reduce the

number of necessary HRTFs, we developed a technique considering the decom-

position of HRTFs in complex envelopes and carrier signals. With this method,

good interpolation results were obtained in case of angular undersampling by a

factor of two or four. We compared the technique with other existing methods

for different HRTFs databases and showed that our technique achieves the best

reconstruction of HRTFs in a mean squared sense.

The Fourier representation of the sound field was further used for the mea-

surement of room impulse responses using a loudspeaker or a microphone mov-

ing along a certain trajectory (e.g. circular or linear trajectory). The pre-

sented algorithm reconstructs the different static room impulse responses from

the recorded microphone signal. For this purpose, we need to carefully design

the excitation signal provided to the loudspeaker. Also, the maximal speed for

the moving element was given as a function of the different parameters of the

system. As the main result of this work, we showed that all HRTFs in the hori-

zontal plane can be recorded in less then one second. We verified the presented

algorithm with an experimental setup using a moving microphone holder to

reconstruct the different room impulse responses along the trajectory.

In the last part of the thesis, we introduced the “stochastic plenacoustic

function” to describe the sound field gathered along a stochastically generated

trajectory. These trajectories can model the movement of a person in a con-

ference room in the acoustic case, or a moving car passing near an antenna

in the case of the electromagnetic wave equation. We studied spatio-temporal

channel impulse responses between a fixed source and a moving receiver along a

stochastic trajectory. The considered trajectories are characterized by a certain

smoothness due to the inertia present in any movement satisfying Newtonian
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equations. We modeled the smooth trajectories using continuous-time autore-

gressive processes.With this model, we observed that the power spectral density

of the spatio-temporal channel impulse responses presents a butterfly shape.

This butterfly shape was shown to directly depend on the smoothness of the

followed trajectory. We further studied this power spectral density in case of

multipath reverberation. Experimental results were carried out in the acoustic

case to confirm the theoretical results.

7.2 Future Research

In this section, we discuss some future research ideas and directions. Some

represent minor work that still needs to be performed and other describe more

general directions for future research. We present these ideas per topic covered

in this thesis.

7.2.1 Channel impulse response modeling

Based on the results obtained for the modeling and the analysis of the spatio-

temporal channel impulse responses, a few next steps are presented.

First, based on the different characteristics of the system (e.g. smoothness

of the trajectory, signals emitted), we would like to develop approximation

formulas or rules of thumb to predict the spatial bandwidth of the channel.

This would correspond to find approximations for the integral given by (6.25).

This information is of interest to characterize time-varying channels.

Second, a lot of adaptive algorithms, such as echo cancelation in acoustics

or multipath equalization in electromagnetism, can be tuned to channel char-

acteristics. Using information based on the butterfly support of the PSD of

the channel could help in choosing the different parameters in the adaptive

algorithm. Based on the intuition built in this thesis, we would like to develop

a “motion-based” adaptive algorithm. The algorithm would decompose the

input in temporal frequency subbands. The rate of adaptation of each sub-

band would be following a rule dictated by the butterfly shaped PSD, which

is depending on the smoothness of the motion. Typically, at low temporal fre-

quency the rate of adaptation could be kept slow while it would increase with

the temporal frequency. A quantitative analysis of the frequency dependent

rate of adaptation is matter of current research.

Third, in the presented chapter, the considered trajectories represent a

movement along a one-dimensional line. Generalization to 2D or 3D trajec-

tories needs to be performed to make the analysis more realistic.



154 Chapter 7.

7.2.2 Impulse response measurements

A future direction of more applied research considers the developed technique

in Chapter 5, where moving microphones or loudspeakers were used for impulse

response measurements. We would like to develop the presented technique and

create a prototype of such a measurement system. For this purpose, a few

technical issues need to be resolved. First, a motorized system needs to be

designed where the motor noise would be correctly attenuated. Another chal-

lenging point is the synchronization between the different parts of the system

(sound card and motor). For the system to work optimally, the start (and stop)

of the sound acquisition needs to be synchronized with the motor movement.

Further, different aspects related to the system should be further investigated.

For example, the effect of air turbulence created by the moving element on the

measured impulse responses should be analyzed. Developing a working proto-

type could promote the use of individualized HRTFs in headphones playback.

The current duration for the measurement of an HRTF database is of about

one hour using standard techniques [57]. With our technique, the duration

could be reduced by a factor ten to fifty. Therefore, it is really of importance

to develop a system delivering fast and robust measurements.

7.2.3 HRTF interpolation

Further work on HRTFs interpolation includes another assessment method us-

ing perceptual tests. Listening tests should be carried out to validate the ob-

tained results. In this thesis, the emphasis was given to signal processing and

the purpose was to reconstruct a signal that would be as close as possible from

the original one in a mean squared error sense. Nevertheless, listening tests

should be carried out to test the localization performance of subjects using our

interpolated HRTFs. Also, next to localization, the subjects should be asked

about any timbre change or possible distortions perceived in the reconstructed

sound.

Another future work in the field of HRTFs interpolation, is the development

of a perceptually based assessment method. As will be described below, it is

based on a conjecture that first needs to be verified. As appeared from our

HRTF interpolation results, for sources located on the same side as the ear

(ipsilateral ear), the interpolation results were very satisfying. For the sources

located on the other side of the ear (contralateral ear), the head shadowing

effect led to worse results. In [20], it is mentioned that the head shadowing effect

can attenuate signals with 20 dB. For localization, the brain uses cues based on

the two signals gathered at the ears [20]. In the presented technique, it is the

weak signal used by the brain which might be less correctly interpolated. Based
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on the conjecture that less accurate interpolation of the weak signal might not

be critical for localization1, we would like to present a new assessment criterion.

Until now, the MSE has been considered for each ear separately. We would

like to develop a MSE taking into account both left and right HRTFs. This

adapted MSE could be expressed as:

MSE(θ0) = 10log10

∑T
n=0

[

|hl(θ0, n) − hl,e(θ0, n)|2 + |hr(θ0, n) − hr,e(θ0, n)|2
]

∑T
n=0 [|h(θ0, n)|2 + |h(θ0, n)|2]

,

with T the number of time sample of each HRTF. The left and right original

HRTFs are denoted as hl(θ0, n) and hr(θ0, n) while the left and right estimated

HRTFs are hl,e(θ0, n) and hr,e(θ0, n). This new assessment for HRTFs would

have the advantage of being easily implementable and of indirectly taking some

perceptual considerations into account.

1There is no evidence that this statement is correct, it needs to be verified.
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Appendix A

Mathematical Derivations of

Multidimensional PAF

Spectra

In this appendix, we give the precise mathematical derivations for the calcu-

lation of the spectra of the PAF for different geometries. For the case of the

infinite line, the spectrum of the PAF is given in Section A.1. For the infinite

plane, the spectrum is given in Section A.2 and for the three-dimensional space,

in Section A.3.

A.1 Derivation of the 2D-FT of the PAF on a line

p(x, t) =

δ

(

t −
√

(x−xs)2+d2

c

)

4π
√

(x − xs)2 + d2
. (A.1)

The 2D-FT of (A.1) is

p̂(φ, ω) =

∫ ∞

x=−∞

∫ ∞

t=−∞
p(x, t)e−j(φx+ωt)dtdx (A.2)

Call u = x − xs, therefore

p̂(φ, ω) =
e−jφxs

4π

∫ ∞

u=−∞

e−j(φu+ ω
c

√
u2+d2)

√
u2 + d2

du (A.3)

=
e−jφxs

2π

∫ ∞

u=0

e−j ω
c

√
u2+d2

cos(φu)√
u2 + d2

du. (A.4)
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Using existing formulae in [53], one obtains:

p̂(φ, ω) = − j

4
e−jφxsH∗

0

(

d

√

(
ω

c
)2 − φ2

)

. (A.5)

A.2 Derivation of the 3D-FT of the PAF on a plane

p(xm, ym, t) =
δ(t − a

c )

4πa
,

with a =
√

(xm − xs)2 + (ym − ys)2 + (zm − zs)2. Call um = [xm, ym]T and

φ = [φx, φy]T. One can calculate the spectrum of this function

p̂(φ, ω) =

∫

R2

∫

R

δ(t − a
c )

4πa
e−j(φTum+ωt)dumdt. (A.6)

This expression can be rewritten as

p̂(φ, ω) =

∫

R2

e−j(φT
um+ω a

c
)

4πa
dum. (A.7)

Introducing u = [xm − xs, ym − ys]
T, the integral is rewritten as

p̂(φ, ω) = e−j(φxxs+φyys)

∫

R2

e−j(φT
u+ω a

c
)

4πa
du. (A.8)

Call r2 = x2 + y2, Φ = e−j(φxxs+φyys), z = zm − zs and φ2
q = φ2

x + φ2
y. The

integral can be rewritten as [25]:

p̂(φ, ω) =
Φ

2

∫ +∞

r=0

rJ0(φqr)√
r2 + z2

e
−j

„

ω

√
r2+z2

c

«

dr. (A.9)

Call m =
√

r2 + z2, we have that r =
√

m2 − z2, and also dm = r√
r2+z2

dr.

The integral becomes

p̂(φ, ω) =
Φ

2

∫ +∞

m=|z|
J0

(

φq

√

m2 − z2
)

e−jω m
c dm. (A.10)

Using existing formulae in [53], one obtains that

p̂(φx, φy , ω) =















−jΦ
2

e
−j|z|

√
( ω

c
)2−φ2

q√
( ω

c
)2−φ2

q

for |φq | ≤ ω
c

Φ
2

e
−|z|

√
φ2

q−( ω
c

)2√
φ2

q−( ω
c
)2

for ω
c ≤ |φq|.

(A.11)
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A.3 Derivation of the 4D-FT of the PAF in space

p(xm, ym, zm, t) =
δ(t − a

c )

4πa
,

with a =
√

(xm − xs)2 + (ym − ys)2 + (zm − zs)2. Call um = [xm, ym, zm]T

and φ = [φx, φy, φz ]
T. The spectrum of this function can be calculated

p̂(φ, ω) =

∫

R3

∫

R

δ(t − a
c )

4πa
e−j(φTum+ωt)dumdt. (A.12)

By introducing u = [xm − xs, ym − ys, zm − zs]
T, the integral can be rewritten

as

p̂(φ, ω) = e−j(φxxs+φyys+φzzs)

∫

R3

e−j(φTu+ω a
c
)

4πa
du. (A.13)

Call φ2
s = φ2

x + φ2
y + φ2

z , the integral can be rewritten as [25]:

p̂(φ, ω) = e−j(φxxs+φyys+φzzs)

∫ +∞

m=0

sin(φsm)e−jm ω
c dm. (A.14)

The solution of this integral can be found in [53]:

p̂(φx, φy, φz , ω) =
e−j(φxxs+φyys+φzzs)

φ2
s − (ω

c )2
. (A.15)
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Appendix B

Spatial Frequency Decay of

the PAF for Microphone

Lines Non-Parallel to a Wall

In this appendix, we consider the case of a line of microphones not parallel

to a wall. We also assume that the line of microphones is included in a plane

parallel to the floor and the ceiling of the room. Two possible configurations

are studied: the case where the coefficient of direction of the line is rational or

non-rational. For simplicity we consider in the rest of this section that
Ly

Lx
∈ Q.

1. The case of a line with rational coefficient of direction is first considered.

In Fig. B.1 a room is shown with a source and all associated virtual

sources. The line where the field is to be studied follows a direction

g = [gx,gy], with
gy

gx
a rational number. It can be observed that the

sound pressure measured on the distance denoted as L along g is enough

to know the pressure on the whole line. This follows from the periodicity

of the sources as shown in Fig. B.1. To study the spatial decay of the

spectrum of the PAF corresponding to this line, the same formalism as

in Section 3.3.2 is followed. Due to the periodicity L of the scheme, the

spatial frequency of the spectrum is only defined for discrete values nφ0,

with φ0 = 2π
L .

To obtain the spatial decay of the spectrum, one still needs to study the

effect of the infinite number of sources in the region ranging from abscissa

0 to L along g. One can remark that due to the rational character of

the coefficient of direction, there exists a periodicity in the sources along

the direction g⊥ being orthogonal to g. This periodicity depends on
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g

yL

Lx

 L

d1

g

Figure B.1: A room is shown with its virtual sources. In the middle of the figure,
the original room is shown in bold. A line with direction g is shown.

the direction g but also on the size of the room. This periodicity is

Lp =
√

(2αLx)2 + (2βLy)2, with α and β the smallest possible integer

numbers satisfying the relation

α

β
=

−gyLy

gxLx
.

Knowing this periodicity, the spectrum can easily be obtained similarly

to the derivation of Section 3.3.2. The only difference is that here more

than four virtual sources need to be considered and that the periodicity

Ly needs to be replaced by Lp. The final result is here also that

p̂(nφ0, ω) = O(e−d1nφ0),

with d1 the distance between the closest source and the line of micro-

phones.

2. The case of a line having a non-rational coefficient of direction is now

considered. In order to study the decay of the spectrum of the PAF

on that line, one studies the decay of the spectrum of the plane that

contains this line and that is also parallel to the ceiling and the floor of

that room. Further, by using the projection-slice theorem [25], one can

study the spectrum corresponding to a specific line of the PAF (our line

of interest). By observing the repetitions of the sources, one can observe

that the PAF on the plane is periodic both in the x and in the y directions

with periodicity 2Lx and 2Ly respectively. Therefore, the spectrum of
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the PAF is only defined for discrete values m and n with φ0x = π
Lx

and

φ0y = π
Ly

, p̂(mφ0x, nφ0y, ω). Without considering the periodicity, one

can remark that the PAF spectrum can also be rewritten as:

p̂(φx, φy, ω) =

∞
X

m=−∞

∞
X

n=−∞

δ(φx − mφ0x)δ(φy − nφ0y)p̂(mφ0x, nφ0y , ω). (B.1)

In order to study the spectrum of the PAF along the line of interest, one

needs to apply the projection-slice theorem. This theorem says that to

study a slice of the PAF in time domain (in this case along the line of

interest), one needs to project the spectrum along the corresponding line

in frequency. Consider that the line of interest has a direction g = [gx, gy],

the projection in the frequency domain happens along the direction g⊥ =

[−gy, gx] as shown in Fig. B.2. Further, call φg the abscissa along the line

G. Also, consider the lines G⊥(φg) orthogonal to g and at positions φg

on G. The spectrum of the PAF along the line of interest is given by:

g

y

xφ

φ

φg

gΓ(φ    )

G

g

Figure B.2: Top view of the spectrum of the PAF for the plane of microphones.
The spectrum is only defined for discrete values. The spectrum of the line of
interest corresponds to the projection the spectrum of the PAF along directions
G⊥.

p̂g(φg, ω) =

∫

G⊥(φg)

p̂(φx, φy, ω)ds, (B.2)

with s the abscissa along G⊥(φg).



164 Appendix B.

As
gy

gx
is a non-rational value, it can be observed that each sample of the

spectrum of the plane is projected on distinct positions along G. When

the source is in the same plane as the line of microphones, it was shown

in (3.51) that the decay is not anymore exponential but becomes only

linear. Therefore, in this case, the decay of the PAF spectrum decays at

least linearly. This decay is much slower than the one obtained in the

case of a rational direction.

When no source is located inside the plane of interest, we consider the

more general case where sources are also repeated along the z axis. The

decay of the spectrum will be shown to become exponential at the con-

dition that no sources are located inside the plane of the microphones.

We consider a plane of microphones parallel to the floor and the ceiling

containing the line G and the original source with all its virtual sources

outside of that plane. As shown in the image method [13], the original

source is first repeated to create the seven first virtual sources. Then,

these eight sources are further repeated with periodicity 2Lx, 2Ly and

2Lz in the x, y and z directions respectively. Similarly to the 2D case,

the PAF is periodic along the x and y directions and therefore the PAF

spectrum is discrete in φx and φy. What differs from the 2D case, is that

each of the eight original sources to be considered is now repeated along

the z axis with periodicity 2Lz. For the simplicity of the calculations, we

only consider one of the eight original sources and calculate the spectrum

of the PAF for that source repeated in the three directions. Further the

other seven original sources are considered and it will be shown that the

other sources are negligible when studying the decay of the PAF spectrum

for large spatial frequencies.

Due to the construction of the virtual sources, we have that among the

eight first sources, four are located at distance z1 from the plane of in-

terest, with z1 ≤ Lz. The other four sources are located at a distance

2Lz −z1 from the plane. Call s1 one of the sources that is separated from

the plane by a distance z1. The spectrum of the PAF along the plane in

the presence of s1 without repetitions is (for large spatial frequencies):

p̂(mφ0x, nφ0y, ω) = e−j(mφ0xxs+nφ0yys) e
−z1Γ(m,n)

2Γ(m, n)
, (B.3)

with Γ(m, n) =
√

(mφ0x)2 + (nφ0y)2.
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When considering s1 with all its repetitions along the z axis, we obtain

p̂(mφ0x, nφ0y, ω) = e−j(mφ0xxs+nφ0yys)
∞
∑

i=−∞

e−|z1+2Lzi|Γ(m,n)

2Γ(m, n)

=
e−j(mφ0xxs+nφ0yys)

2Γ(m, n)

∞
∑

i=0

(

e−(z1+2Lzi)Γ(m,n) + e−(z′
1+2Lzi)Γ(m,n)

)

,

with z′1 = 2Lz − z1. We therefore can write that

p̂(mφ0x, nφ0y , ω) =
e−j(mφ0xxs+nφ0yys)

2Γ(m, n)

„

e−z1Γ(m,n)

1 − e−2LzΓ(m,n)
+

e(z1−2Lz)Γ(m,n)

1 − e−2LzΓ(m,n)

«

.

Considering now, the other sources, we can observe that asymptotically

for large m and n, the decay of the spectrum is of the following order:

p̂(mφ0x, nφ0y, ω) = O

(

e−z1Γ(m,n)

Γ(m, n)

)

. (B.4)

It is thus shown that the PAF spectrum decays exponentially when stud-

ied in a 3D environment.

Here again, as
gy

gx
is a non-rational value, it can be observed that each

sample of the spectrum of the plane is projected on distinct positions

along G. Call φg(m0, n0) the abscissa of the projection of a specific point

of the spectrum with coordinates (m0, n0). We have that φg(m0, n0) <

Γ(m0, n0). Therefore we have that the projection of the PAF spectrum

on G decays at least as fast as (B.4).

Finally, once the spectrum of the infinite line is studied, one can still con-

sider the fact that the sound field is only studied inside the room. This part

happens similarily to the spatial windowing in Section 3.5.
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Appendix C

Temporal Frequency Decay of

the PAF in a Rectangular

Room

We have observed in (3.28) that the PAF spectrum could be expressed as

p̂(n0φ0, ω) ∼ c4(nφ0)
∞
∑

i=−∞

(

e−jD1,i
ω
c

√

D1,iω
+

e−jD2,i
ω
c

√

D2,iω

)

.

In this appendix, we investigate the convergence of p̂(n0φ0, ω).

The first and second terms are denoted as m̂1(ω) = c4(nφ0)
∑∞

i=−∞
e−jD1,i

ω
c√

D1,iω

and m̂2(ω) = c4(nφ0)
∑∞

i=−∞
e−jD2,i

ω
c√

D2,iω
, respectively. The term m̂1 can be

rewritten as:

m̂1(ω) =
c4(nφ0)√

ω

(

e−jd1
ω
c +

∞
∑

i=1

e−j ω
c
(d1+2Lyi)

√

d1 + 2Lyi
+

−1
∑

i=−∞

e−j ω
c
|d1+2Lyi|

√

|d1 + 2Lyi|

)

=
c4(nφ0)√

ω

(

e−jd1
ω
c +

∞
∑

i=1

e−j ω
c
(d1+2Lyi)

√

d1 + 2Lyi
+ e−jd

′

1
ω
c +

∞
∑

i=1

e−j ω
c
(d

′

1+2Lyi)

√

d
′

1 + 2Lyi

)

with d
′

1 = 2Ly − d1. Call the second and fourth terms of the previous expres-

sion û1(ω) and û2(ω), respectively. These two expression are shown to converge

using the Dirichlet convergence test1. Considering û1(ω), the Dirichlet conver-

gence test can be applied2 with {an} = e−j ω
c
(d1+2Lyi) and {bn} = 1√

d1+2Lyi
.

1 Let {an} and {bn} be sequences of real numbers such that {
Pn

i=0 ai} is bounded and
{bn} decreases with 0 as limit. Then

P∞
n=0 anbn converges.

2In this case we have to split the exponential in an in its sine and cosine expression to be
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This proves the convergence of û1(ω). Similarly, it can also be shown that

û2(ω) converges. Furthermore, û1(ω) and û2(ω) are periodic function of ω.

Therefore, they can be upperbounded and are converging for all possible val-

ues of ω. This leads us to the conclusion that ŝ1(ω) behaves asymptotically

as

ŝ1(ω) =
c5(ω)√

ω
,

with c5(ω) a bounded function of ω. We obtain the same result for ŝ2(ω) and

therefore we have that

p̂(n0φ0, ω) ∼ c6(ω)√
ω

,

with c6(ω) a bounded function of ω.

able to apply the convergence test since it was defined for real expressions.



Appendix D

Optimal Alignment of HRTF

Carriers

In this section we present the derivation of the complex exponential ci(θ) =

ejαθ,i minimizing the following cost function.

Ji =

∫ ωi+1

ωi

∣

∣

∣h̃i(θr, ω) − h̃i(θ, ω)ci(θ)
∣

∣

∣

2

dω, (D.1)

with ωi and ωi+1 the start and stop frequencies of band i. First, let us rewrite

Ji as follows:

Ji =

∫ ωi+1

ωi

[

|h̃i(θr, ω)|2 + |h̃i(θ, ω)|2 − h̃∗
i (θ, ω)h̃i(θ, ω)ci(θ)

−h̃i(θ, ω)h̃∗
i (θ, ω)c∗i (θ)

]

dω.

(D.2)

The value of ci(θ) which minimizes Ji is obtained by calculating the root of

the first derivative of Ji with respect to αθ,i. By deriving Ji a second time

with respect to αθ,i, it can then be verified wether the root corresponds to a

minimum or a maximum of the function.

∂Ji

∂αθ,i
= j

∫ ωi+1

ωi

(

−h̃∗
i (θ, ω)h̃i(θ, ω)ejαθ,i + h̃i(θ, ω)h̃∗

i (θ, ω)e−jαθ,i

)

dω = 0.

(D.3)

From (D.3), we have that

ej2αθ,i =

∫ ωi+1

ωi
h̃i(θ, ω)h̃∗

i (θ, ω)dω
∫ ωi+1

ωi
h̃∗

i (θ, ω)h̃i(θ, ω)dω
. (D.4)
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Therefore, the roots of ∂Ji

∂αθ,i
are

ejαθ,i = ±

√

√

√

√

∫ ωi+1

ωi
h̃i(θ, ω)h̃∗

i (θ, ω)dω
∫ ωi+1

ωi
h̃∗

i (θ, ω)h̃i(θ, ω)dω
. (D.5)

The solution in (D.5) is equivalent to these two solutions since the numerator

is the complex conjugate of the denominator

ejαθ,i = ±
∫ ωi+1

ωi
h̃i(θ, ω)h̃∗

i (θ, ω)dω
∣

∣

∣

∫ ωi+1

ωi
h̃i(θ, ω)h̃∗

i (θ, ω)dω
∣

∣

∣

. (D.6)

One of the solution corresponds to the minimum of Ji and the other to the

maximum. Calculating the second derivative ∂2Ji

∂α2
θ,i

will allow us to derive which

sign in (D.5) corresponds to the minimum of the function.

∂2Ji

∂α2
θ,i

= ejαθ,i

∫ ωi+1

ωi

h̃∗
i (θ, ω)h̃i(θ, ω)dω + e−jαθ,i

∫ ωi+1

ωi

h̃i(θ, ω)h̃∗
i (θ, ω)dω.

(D.7)

Estimating (D.7) for the two roots of the first derivative in (D.6) leads to

∂2Ji

∂d2

∣

∣

∣

∣

ejαθ,i

=



±
∫ ωi+1

ωi
h̃i(θ, ω)h̃∗

i (θ, ω)dω
∣

∣

∣

∫ ωi+1

ωi
h̃i(θ, ω)h̃∗

i (θ, ω)dω
∣

∣

∣





∫ ωi+1

ωi

h̃∗
i (θ, ω)h̃i(θ, ω)dω

+



±
∫ ωi+1

ωi
h̃∗

i (θ, ω)h̃i(θ, ω)dω
∣

∣

∣

∫ ωi+1

ωi
h̃∗

i (θ, ω)h̃i(θ, ω)dω
∣

∣

∣





∫ ωi+1

ωi

h̃i(θ, ω)h̃∗
i (θ, ω)dω.

(D.8)

The product of a complex value with its complex conjugate leads to a positive

value. Therefore, the solution with the + in (D.8) leads to a positive second

derivative and the solution with the − leads to a negative second derivative.

Therefore, to minimize the cost function Ji, the solution is

ci(θ) =

∫ ωi+1

ωi
h̃i(θr, ω)h̃∗

i (θ, ω)dω
∣

∣

∣

∫ ωi+1

ωi
h̃i(θr, ω)h̃∗

i (θ, ω)dω
∣

∣

∣

. (D.9)
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Filtering of an Input Process

by the Stochastic PAF

In this appendix, we present a mathematical derivation showing that (6.20) can

be seen as a convolution and that it can be rewritten as in (6.21). Equation

(6.20) is

RO(∆τ, ∆t) =

∫ ∞

−∞

∫ ∞

−∞
RI

(

∆t − y∆τ − y0

c

)

fY(y)dy∆τdy0. (E.1)

We are showing that (E.1) can be rewritten as a general convolution in two

dimensions

D(u, v) =

∫ ∞

−∞

∫ ∞

−∞
A(u − u′, v − v′)B(u′, v′)du′dv′, (E.2)

where A(u, v) = RI(
u−v

c ), B(u′, v′) = fY(y), u = c∆t, v = 0, u′ = y∆τ and

v′ = y0. Note that (E.2) can easily be calculated in the Fourier domain as

SD(ωu, ωv) = SA(ωu, ωv)SB(ωu, ωv), (E.3)

with SA(ωu, ωv), SB(ωu, ωv) and SD(ωu, ωv) the 2D-FT of A(u, v), B(u, v) and

D(u, v), respectively.

The PSD SA(ωu, ωv) can be expressed as follows:

SA(ωu, ωv) =

∫ ∞

−∞

∫ ∞

−∞
RI

(

u − v

c

)

e−j(ωuu+ωvv)dudv (E.4)

= cSI(cωu)δ(ωu + ωv), (E.5)

with SI(ω) the power spectral density of the input process I(t). The 2D-FT of
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B(u, v) is

SB(ωu, ωv) =

∫ ∞

−∞

∫ ∞

−∞
B(u, v)e−j(ωuu+ωvv)dudv

= C

∫ ∞

−∞

∫ ∞

−∞
e−a(u2+v2−2buv)e−j(ωuu+ωvv)dudv, (E.6)

with a = RY (0)
2|RY| and b = RY (τ)

RY (0) and C = 1

2π
√

|RY|
. Relation (E.6) is obtained

by considering (6.13). Further simplification of (E.6) leads to

SB(ωu, ωv) = C

∫ ∞

−∞
e−a(1−b2)v2

e−jωvv

∫ ∞

−∞
e−a(u−bv)2e−jωuududv

= C

√

π

a
e−

ω2
u

4a

√

π

a(1 − b2)
e
− (ωub+ωv)2

4a(1−b2)

= e
− 1

4a

„

ω2
u+ (ωub+ωv)2

(1−b2)

«

(E.7)

From (E.2), we have that RO(∆τ, ∆t) = D(c∆t, 0) with D(c∆t, 0) given by

D(c∆t, 0) =

∫ ∞

−∞

∫ ∞

−∞
cSI(cωu)δ(ωu + ωv)SB(ωu, ωv)e

jωuc∆tdωvdωu

=

∫ ∞

−∞
cSI(cωu)SB(ωu,−ωu)ejωuc∆tdωu

=

∫ ∞

−∞
SI(ω)SB(

ω

c
,−ω

c
)ejω∆tdω, (E.8)

with ω
c = ωu. To calculate SB(ω

c ,−ω
c ), (E.7) is used:

SB(
ω

c
,−ω

c
) = e

− 1
4a

 

( ω
c )2

+
(ω

c )2
(1−b)2

(1−b2)

!

= e−(ω
c )2

(RY (0)−RY (∆τ)). (E.9)

Relation (E.8) can be seen as the inverse Fourier transform of the product of the

two spectra SI(ω) and SB(ω
c ,−ω

c ). Therefore, RO(∆τ, ∆t) is the convolution

of the inverse Fourier transforms of these two spectra and is given by

RO(∆τ, ∆t) = RI(∆t) ∗ ce
− c2(∆t)2

4(RY (0)−RY (∆τ))

2
√

π (RY (0) − RY (∆τ))
. (E.10)
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