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Abstract. In this paper, we will present an efficient approach for dis-
tributed inference. We use belief propagation’s message-passing algo-
rithm on top of a DHT storing a Bayesian network. Nodes in the DHT run
a variant of the spring relaxation algorithm to redistribute the Bayesian
network among them. Thereafter correlated data is stored close to each
other reducing the message cost for inference. We simulated our approach
in Matlab and show the message reduction and the achieved load balance
for random, tree-shaped, and scale-free Bayesian networks of different
sizes.
As possible application, we envision a distributed software knowledge
base maintaining encountered software bugs under users’ system config-
urations together with possible solutions for other users having similar
problems. Users would not only be able to repair their system but also to
foresee possible problems if they would install software updates or new
applications.

1 Introduction

Peer-to-peer systems currently share local information by pairwise interactions
in a cooperative way. The most popular application to date is file-sharing such
as Gnutella and BitTorrent providing search functionality respectively efficient
content distribution. Shared data is usually file-based and files are not correlated
with each other, i.e., it is sufficient to find a desired file and to be able to download
it. More sophisticated applications rely on correlated data probably spread out
among several nodes and downloading each part for local processing can be too
expensive. Another solution is to perform distributed inference directly in the
network so that data remains at providing nodes and only small messages to
process the inference are exchanged.

Distributed inference is already applied for various applications in other net-
works such as sensor networks [1] where network limitations are probably more
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obvious. We envision applications on top of a peer-to-peer system relying on
knowledge provided by nodes and used to solve inference problems. A practical
example is a distributed knowledge base for software bugs observed by users.
Currently, bug reports are submitted on user acceptance to a central knowledge
base for further processing. We assume that most of the bug reports are not
submitted because users are afraid to reveal their identity. In our distributed
scenario, the reports are inserted into a peer-to-peer system concealing the users
identity. Distributed inference is then used to suggest solutions for occurred er-
rors as known from central knowledge bases.

Belief propagation [2] enables distributed inference by a simple message-
passing algorithm between nodes in a Bayesian network modeling correlations
between variables. A node can represent any kind of variable, be it an observed
measurement, a parameter, a latent variable, or a hypothesis. Belief propagation
was first successfully applied in the domain of error correcting codes (Turbo
Codes [3]), speech recognition, image processing and medical diagnosis. Re-
cently, it was used in peer-to-peer systems in the context of content distribu-
tion [4] and in sensor networks [5]. The simplicity of the message-passing algo-
rithm holds the risk of being not scalable towards large-scale networks because
many small messages have to be sent between nodes. Approaches to reduce com-
munication costs such as Generalized Belief Propagation [6] cluster nodes and
build a hierarchy based on common variables of clusters. The message reduction
comes with the drawback that the size of sent messages increases exponentially
(number of statesnodes in the cluster) because the exchanged messages now con-
tain the joint probabilities of all nodes and states in the cluster. What remains
unsolved is how nodes are clustered in a distributed way requiring no global
knowledge and coordination so that the communication costs are minimized.

In this paper, we will present a decentralized algorithm to cluster variables
at nodes to reduce the number of physical messages sent over the network by
not increasing message sizes. The overall number of messages to run Pearl’s
belief propagation algorithm remains the same but most of them are sent node-
internally which does not induce any bandwidth nor latency costs. Our clustering
algorithm is based on the spring relaxation technique used for example in peer-
to-peer systems for virtual coordinate systems [7] and for path optimization in
stream-based overlays [8] to find minimal energy configurations. In our case, we
try to find the minimal configuration for variables stored on nodes organized
in an P-Grid [9] overlay network. P-Grid provides us a distributed index of the
Bayesian network and efficient lookup mechanisms.

In the following, we will first explain briefly the background and the basis
of our approach, belief propagation in Section 2 and P-Grid in Section 3. Af-
terwards, we will present peer-to-peer blief propagation in Section 4 before we
evaluate our approach in Section 5. The paper discusses related work in Section 6
and future work in Section 7. We conclude in Section 8.



2 Belief Propagation

Pearl’s belief propagation [2], also known as the sum-product algorithm, is an
iterative algorithm for computing marginal probabilities, “beliefs” about possible
diagnoses, of nodes on a probabilistic graphical model such as Bayesian networks.
A Bayesian network is an directed acyclic graph of nodes representing variables
and edges representing dependence relations among the variables. If there is
an edge from node A to node B, then node B’s state depends on node A’s
state. This is specified by a conditional probability distribution for node B,
conditioned on the state of node A. A Bayesian network is a representation of
the joint distribution over all the variables represented by nodes in the graph.
We assume that the joint probability distribution factors into a product of terms
involving node pairs and single nodes. These factors are called edge potentials
ψij(xi, xj) and local potentials φi(xi). Evidence nodes are nodes with a known
value. A node can represent any kind of variable, e.g., an observed measurement,
a parameter, a latent variable, or a hypothesis. For example, consider the simple
Bayesian network in Figure 1 consisting of 3 variables OS1, Driver1 and App1.
The dependencies are as follows: if the hardware driver Driver1 is installed on
the operating system OS1, the application App1 is likely to run smoothly with
90% probability. If the driver is missing, the application runs only to 40% and if
OS1 is not installed, then the application does not run at all independent of the
driver. If it is known that OS1 is installed, then its probability would be set to 1
and the probabilities for App1 to run would only depend on Driver1 thereafter.
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Fig. 1. Bayesian network example

The belief propagation algorithm is provably efficient on trees and experi-
ments demonstrate its applicability to arbitrary network topologies using loopy
belief propagation for loopy networks [10], which we will present in the following.



The algorithm is currently used with success in numerous applications includ-
ing low-density parity-check codes, turbo codes, free energy approximation, and
computer vision.

2.1 The Message Passing Algorithm

The algorithm passes messages across the edges in the graphical model, i.e., in
each iteration, a node sends a message to an adjacent node if it has received
messages from all of its other adjacent nodes at the previous iteration. In the
first iteration, nodes send an initial message, usually set to 1, to all adjacent
nodes. In subsequent iterations, messages passed from node xi to node xj are
updated using the following rule:

mij(xj) =
∑

xi

φi(xi)ψij(xi, xj)
∏

k 6=j

mki(xi)

where φi(xi) are the local potentials of node xi and ψij(xi, xj) are the edge po-
tentials. The product of messages excludes the message received in the previous
iteration from node j, the node we are passing the message to. The messages
mij(xj) and the local potentials φi(xi) are vectors whose length corresponds to
the number of states a node xi can be in. The edge potentials ψij(xi, xj) are
N x M matrices where N is the number of states node xj can be in and M
is the number of states for node xi. Therefore, the message size of the belief
propagation algorithm grows exponentially with the number of states of nodes.

Finally, the marginal probabilities of nodes, called the beliefs, can be com-
puted by multiplying all received messages by the local potentials:

bi(xi) = αφi(xi)
∏

k

mki(xi)

The beliefs are normalized by α to avoid numerical underflow. The algorithm
converges if none of the beliefs in successive iterations changes by more than
a small threshold. For singly connected graphs, it is proven [2] that beliefs at
nodes converge to the marginal probability at that node, which is:

bi(xi) = α
∑

xj/xi

p(x) = pi(xi)

In networks with loops, evidence is counted multiple times. As all evidence is
double counted in equal amounts, Pearl’s belief propagation also provides good
approximations of the marginal probabilities in loopy networks.

3 The P-Grid Overlay

The approach presented in this paper uses the P-Grid [9] distributed hash table
(DHT). We assume that the reader is familiar with the general concepts of DHTs
and will thus only address the specific and relevant properties of P-Grid.



In P-Grid peers refer to a common underlying binary trie structure to or-
ganize their routing tables. Data keys are computed using an order-preserving
hash function to generate keys. Without constraining general applicability bi-
nary keys are used in P-Grid. Each peer constructs its routing table such that it
holds peers with exponentially increasing distance in the key space from its own
position. This technique basically builds a small-world graph [11], which enables
search in O(logN) steps. Each peer p ∈ P is associated with a leaf of the binary
trie, i.e., a key space partition, which corresponds to a binary string π(p) ∈ Π
called the peer’s path. For search, the peer stores for each prefix π(p, l) of π(p)
of length l a set of references ρ(p, l) to peers q with property π(p, l) = π(q, l),
where π is the binary string π with the last bit inverted. This means that at
each level of the trie the peer has references to some other peers that do not
pertain to the peer’s subtrie at that level which enables the implementation of
prefix routing.

Each peer stores a set of data items δ(p). For d ∈ δ(p) key(d) has π(p) as
prefix but it is not excluded that temporarily also other data items are stored
at a peer, that is, the set δ(p, π(p)) of data items whose key matches π(p) can
be a proper subset of δ(p). Moreover, for fault-tolerance, query load-balancing,
and hot-spot handling, multiple peers are associated with the same key-space
partition (structural replication), and peers additionally also maintain multiple
references σ(p) to peers with the same path (data replication).

Figure 2 shows a simple example of a P-Grid tree consisting of 6 peers re-
sponsible for 4 partitions, e.g., peer F’s path is 00 leading to two entries in its
routing table: peer E with path 11 at the first level and peer B with path 01 at
the second level. Further, peer F is responsible for all data with key prefix 00. A
search initiated at peer F for key 100 would first be forwarded to peer E because
it is the only entry in F’s routing table at level 1*. As peer E is responsible for
11 and not for the key 100, peer E further forwards the query to peer D, which
can finally answer the query.
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Fig. 2. P-Grid overlay network



4 Peer-to-Peer Belief Propagation

So far, we presented two independent approaches, on the one hand a distributed
inference algorithm based on a simple message-passing algorithm and on the
other hand an overlay system to store and retrieve data. At first sight, those two
systems have not much in common but we will show in this section that both
can benefit from each other. Our focus lies thereby on P-Grids ability to improve
the scalability of belief propagation as the application of belief propagation to
improve P-Grid’s load balancing is already shown in [12].

4.1 Distributed Knowledge Base Scenario

To motivate our idea of providing a large-scale peer-to-peer inference system,
we will describe in this section our distributed knowledge base scenario for soft-
ware dependencies. Examples for centralized knowledge bases are the one from
Microsoft [13] and Mozilla [14] providing comprehensive information about their
products and support for encountered bugs. Both use a bug report and track-
ing system, for example BugZilla [15] from Mozilla, to collect bug reports from
users with their permission. In our opinion and from our personal experience,
we assume that most users do not permit submitting bug reports to a central
authority such as Microsoft or Mozilla because they do not want to reveal their
identity and system configuration. A distributed solution would allow users to
conceal their identity because bug reports are inserted and stored at various
nodes of the peer-to-peer system making it more difficult to track user identi-
ties. Therefore, we hope to be able to collect more reports from users with our
decentralized solution leading to a more comprehensive knowledge base.

A knowledge base stores data together with their dependencies usually for
the purpose of having automated deductive reasoning applied to them. Belief
networks are one way to define those dependencies and belief propagation is an
appropriate probabilistic reasoning method. In our scenario, any kind of soft-
ware such as operating systems, device drivers and applications are nodes in our
Bayesian network and their dependencies and distributions are learned from bug
reports. A simplified bug report could look like:

� �

IF

OS = [ ’ Linux ’ , ’ 2 . 4 . 1 2 . 1 8 ’ ] AND

PACKAGE = [ ’MySQL−s e rver ’ , ’ 4 . 0 . 20 −0 ’ ] AND

PACKAGE = [ ’MyODBC’ , ’ 2 . 50 . 39 −18 . 1 ’ ]
. . .

THEN

ERROR = ’MySQL’
END

� �

A bug report starts with the used operating system, in this case with Linux
and the kernel version 2.4.12.18, followed by a list of installed packages on the
system. The second part consists of the affected application (MySQL) causing
the error. The bug report enables us already to learn that the given system



configuration leads to problems for the MySQL application. Therefore, each bug
report allows us already to create a small dependency graph, i.e., a Bayesian
network, but we are still not able to identify responsible packages causing the
problem. Therefore, we need a larger number of bug reports with probably vary-
ing system configurations to identify the strength of package dependencies, e.g.,
if a version of a package always occurs in a bug report for an application, it is
very likely to cause the problem. A solution proposal for our example bug could
be to install a different version of MyODBC as this version is listed in many bug
reports for the MySQL application.

4.2 The Inference Architecture

Our idea of providing a generic distributed inference system is based on two
fundamental design decisions: (i) no central coordination of the variables in the
system and their dependencies; (ii) no global knowledge and only pair-wise in-
teractions between nodes. Both requirements are satisfied by the P-Grid overlay
infrastructure and Bayesian networks and belief propagation. P-Grid is first used
to maintain the Bayesian network by indexing all variables in the system and all
dependencies between them. In our scenario, variables would be software com-
ponents with their version number, and their dependencies would be derived
from bug reports at their insertion. At this stage, nodes are able to derive small
dependency graphs from the bug reports they store and all the variables they
maintain locally. Those dependencies are already represented by Bayesian net-
work and have now be connected with each other. Learning a Bayesian network
structure and probabilities from distributed data is studied in various papers [16–
18]. The bug reports itself are also stored in P-Grid together with solutions for
bugs provided by users. Therefore, users have the possibility to help each other
with solutions and if no solution exists, inference can help to restrict the cause
of error.

So far, we have a system storing a Bayesian network derived from bug reports.
Belief propagation requires multiple message-passing iterations between all nodes
of the Bayesian network which are currently spread over physical P-Grid nodes.
On a global scale, this can lead to scalability problems for our system because
messages would be sent around the globe multiple times. To tackle this problem,
we uncouple variable values, the local potentials, from the P-Grid index and allow
them to be stored at different physical P-Grid nodes to improve the efficiency of
belief propagation. The current location of a variable’s local potential is stored
with the variable’s index entry. The problem remains how those local potentials
are stored close to each other, in the best case even on the same physical P-
Grid node, without central coordination and knowledge. Our proposed solution
is based on the spring relaxation technique and presented in more details in the
following section.



4.3 The Relaxation Algorithm

In this section we describe the developed relaxation algorithm based on the
spring relaxation technique. In our case, Bayesian variables are connected by
springs and the Bayesian network forms a spring network which has to be re-
laxed, i.e., the network has to be in a state requiring least possible energy. The
energy a spring requires is directly proportional to the distance between the
two P-Grid nodes the Bayesian variables are stored at. The spring between two
variables remaining at the same node requires no energy. Therefore, the optimal
solution of the spring relaxation algorithm would be to place all variables at
one node. This is of course not desirable because peer-to-peer systems are based
on the idea of load sharing which is in contradiction with the optimal solution
mentioned before. Thus, the spring relaxation algorithm also has to consider
load balancing of variables among participating nodes. P-Grid provides already
heuristic statistics about the current load of each level of the trie represented
by a peer’s routing table. These statistics are required by P-Grid itself to pro-
vide load-balancing of stored index information and are used in the following for
our approach too. The statistics are based on periodic interactions with random
peers of the routing table to sample the current load distribution. The periodic
sampling enables peers to estimate the current load of a routing table level and
the global average load.

The developed algorithm used to relax the Bayesian network is shown in
Algorithm 1. The algorithm is executed by each node iteratively till no improve-
ment is achieved anymore or a maximum number of iterations is reached. The
following list provides an overview of the used variables in the algorithm:

– localVars: list of variables the local node maintains
– avgLoad: local estimate of the global average load
– currentLoad: the current load of the local node
– routingTable: the routing table of the local node
– routingTable.levels: the number of levels in the local routing table
– candidate(j).tension(i): the tension at level i for candidate variable j
– candidate(j).tension: all tensions at all levels for candidate variable j

First, in line 1 to 4, each node checks if it has “free” variables it can move
to other nodes or not. Currently, nodes are allowed to move variables as long
as they have more than avgLoad/2 variables. P-Grid obtains an estimate for
the current average load in the system but the accuracy of this estimate is not
crucial for the algorithm. In line 5, nodes determine those local variables which
have a tension to other nodes remaining at the same level of the local routing
table leading to one tension at one level. Ideally, variables have a tension to only
one node and not to different nodes at the same level. If the local node can move
variables and it found such unidirectional variables, it moves them directly to
the corresponding level or node (line 6 to 10). Moving a variable always requires
only one message between the two involved peers.

A node can try to balance the load in the system if it maintains above average
many variables. It therefore uses all non-unidirectional variables, i.e., variables



Algorithm 1 The spring relaxation algorithm

1: freeV ars = length(localV ars)− avgLoad/2;
2: if (freeV ars <= 0) then

3: return;
4: end if

5: undirV ars = variables having a tension only at one level;
6: while ((freeV ars > 0) AND (length(unidirV ars) > 0)) do

7: move variable to a peer from the level with the tension;
8: removeFirst(unidirV ars);
9: freeV ars = freeV ars− 1;

10: end while

11:
12: multidirV ars = variables having tensions to multiple levels;
13: while ((currentLoad > avgLoad) AND (length(multidirV ars) > 0)) do

14: for i = routingTable.levels to 1 do

15: if (level i is underpopulated) then

16: candidates = variables having a tension at level i;
17: for j = 1 to length(candidates) do

18: if (candidate(j).tension(i) >= max(candidate(j).tension)) then

19: move variable to a peer from level i;
20: remove(multidirV ars, candidate(j));
21: currentLoad = currentLoad− 1;
22: if (currentLoad <= avgLoad) then

23: break;
24: end if

25: end if

26: end for

27: end if

28: end for

29: end while

which have tensions at multiple levels (line 12 and 13). Next, the node tries to
balance each level of its routing table, starting with the highest level, i.e., its
closest neighbors (line 14). Starting with the closest neighbors allows nodes to
balance load first locally before they try to balance load on peers further away
from them, i.e., on peers stored in lower levels. If a level is underpopulated (line
15), i.e., a level maintains below average many variables, then the node first
selects candidate variables out of its local variables (line 16). Candidates are all
variables which have a tension at the current level. Next, starting from line 17,
the node checks if the tension at the current level for the candidate variable is
the strongest tension the variable has considering all levels. This ensures that
variables are moved to levels with their strongest tension. This process continues
as long as candidates are available and the node has enough variables to move.



5 Evaluation

The algorithm presented in the previous section was implemented in Matlab
and evaluated with diverse networks. We present results for random networks,
binary trees and scale-free networks with up to 2048 variables in the Baysian
network and 512 nodes in the P-Grid network. Considering our scenario we
have in mind for our system, tree-based belief networks and scale-free networks
are the most realistic network topologies. The network size and the number of
variables is difficult to estimate but the evaluation shows that our approach scales
well even though no proof can be given so far. All experiments were repeated
10 times and the figures show the average of those 10 repetitions with their
standard deviation. Each time a new belief network was created and variables
were assigned randomly to nodes.

5.1 Network Topologies

We briefly describe some properties of the network topologies we used for our
evaluation. The networks were visualized with the Pajek tool [19] using the
2D Fruchterman Reingold layout for random networks and the Kamada-Kawai
layout for the others. Additionally, we show the node degree distribution by
sorting nodes according to their node degree and plotting their degree in log-log
scale.

Random Networks We constructed random networks by adding for each node
degree/2 edges to other nodes with equal probability to reach the desired average
node degree. Figure 3 shows a network of 1024 nodes with an average node degree
of 4, nodes have between 2 and 10 edges. The degree distribution indicates that
most of the nodes have a degree around the average.

(a) Network visualization
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Fig. 3. A random network: 1024 nodes with average node degree 4



Binary Trees The second used topology is a binary tree with each node having
exactly two children excluding leaf nodes. Each node has exactly one parent
excluding the root of the tree. Therefore, the node degree varies between 1 and
3 with an average around 2. Figure 4 shows a binary tree with 1023 nodes. The
degree distribution shows the leave nodes (half of the nodes) at the bottom with
1 edge, the root with 2 edges in the middle and the intermediate nodes with 3
edges at the top.

(a) Network visualization
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(b) Node degree distribution

Fig. 4. A binary tree: 1023 nodes

Scale-Free Networks The last used network topology is a scale-free network
with the property that the number of links k originating from a given node
exhibits a power law distribution IP(k) ∼ k−gamma. The network is constructed
by progressively adding nodes to an existing network and introducing links to
existing nodes with preferential attachment so that the probability of linking to
a given node i is proportional to the number of existing links ki that that node
has, i.e.,

IP(linking to node i) ∼
ki∑

j

kj

Scale-free networks occur in many areas of science and engineering, e.g.,
including the topology of web pages (where the nodes are individual web pages
and the links are hyper-links), and are therefore a good model for our scenario.
Figure 5 presents a scale-free network on the left side with highly connected
nodes in the center and loosely connected nodes at the periphery. The node
degree varies between 1 and 62 with an average around 4. The node degree
distribution follows a power-law distribution.



(a) Network visualization
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Fig. 5. A scale-free network: 1024 nodes with average node degree 4.

5.2 Message reduction

The most interesting evaluation criterion is of course the message reduction
achieved by redistributing the variables close to each other in the P-Grid net-
work. Figures 6 – 8 present the results obtained for the three network topologies.
The plots show the achieved message reduction after each iteration of the spring
relaxation algorithm by relating the number of required messages to run one
iteration of the belief propagation algorithm. At the beginning, 100% of the mes-
sages are required, while after each iteration of the spring relaxation algorithm,
less messages are required. The message reduction is given with the standard
deviation of 10 repeated simulations for each setup.

Figure 6 shows that the algorithm does not perform well for any evaluated
random network as expected. The random correlations of variables in these net-
works makes it difficult for the spring relaxation algorithm to cluster variables
close to each other to reduce the message effort. The average node degree seems
to have the strongest influence on the achieved message reduction which is not
larger than 25%. As random networks are not considered as the most realistic
model for our use case, this result is tolerable in our opinion. For binary trees,
see Figure 7, the relaxation algorithm is already able to reduce the number of
required messages to around 35% of the initially required number before running
the relaxation algorithm. The obtained results seem to be independent of the
number of nodes and variables. Finally, we observe similar results for the scale-
networks as shown in Figure 8. The relaxation algorithm is able to reduce the
message cost by about 75% independent of the number of nodes in the P-Grid
network and the number of variables in the Bayesian network.

The standard deviation is small for all network topologies and network sizes
which is an indicator that the algorithm scales well. In all experiments, the
algorithm was iterated 50 times but the main reduction is achieved in the first



10 iterations. Again, this seems to be independent of the number of nodes and
number of variables in the networks.
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(b) 512/2048/4
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(c) 256/2048/8
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(d) 512/2048/8

Fig. 6. Message reduction for random networks with different numbers of nodes/vari-
ables/degree.
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(a) 256/1024
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(b) 256/2048
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(c) 512/2048

Fig. 7. Message reduction for binary tree-based networks with different numbers of
nodes/variables.

5.3 Load-balancing

Apart from the reduction of required messages for the message-passing algo-
rithm, it is important that the load of variables is balanced among the partic-
ipating nodes. Figures 9 – 11 present the corresponding results obtained again
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Fig. 8. Message reduction for scale-free networks with different numbers of nodes/vari-
ables.

for random networks, binary trees and scale-free networks. All figures show the
average variable load which remains constant over all iterations as the number
of variables and nodes does not change. The standard deviation indicates the
load balance in the system. Additionally, the maximum load of nodes is given
by the dotted line.

Whereas the relaxation algorithm did not perform well for random networks
to reduce the number of required messages, it was more successful to balance
the load among the nodes, as shown in Figure 9. The standard deviation is
decreasing for all network sizes as well as the maximum number of variables
per node (dotted line). Similar results were obtained for the binary tree-based
networks (see Figure 10). Figure 11 shows that scale-free networks cause a slight
increase of unbalance and a large increase in the maximum load for nodes. We
think this is due to the fact that 1 or 2 nodes usually have very high degrees and
therefore cause an overload at the P-Grid node they are currently maintained.
Our relaxation algorithm is currently not able to handle this problem and we
leave this as future work. A simple solution could be to allow nodes to decline
maintaining further nodes by introducing an upper bound for the load.

5.4 Discussion

The results obtained from the first evaluations look very promising. One way
to probably further reduce the number of messages apart from the relaxation
algorithm is to combine messages to one large message if local variables have a
relation with variables at the same remote node. It is usually more efficient to
send less large messages than more small messages in a peer-to-peer system.

6 Related Work

6.1 Belief Propagation

Generalized Belief Propagation [6] reduces the number of messages by cluster-
ing correlated variables together and sending only one message between those
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Fig. 9. Variables per node for random networks with different numbers of nodes/vari-
ables/degree.

clusters. This approach has three drawbacks: (i) the message sizes increase expo-
nentially (number of statesnodes in the cluster) because the exchanged messages
now contain the joint probabilities of all nodes and states in the cluster; (ii) the
complexity of processing the messages and beliefs at nodes also increases consid-
erable with increasing number of nodes in a cluster; (iii) it is not obvious for us
how clusters are formed in a distributed way without central coordination and
knowledge which is essential in peer-to-peer systems. Though Generalized Belief
Propagation provides more accurate beliefs than Pearl’s belief propagation, it is
currently not applicable for large-scale networks.
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Fig. 10. Variables per node for binary tree-based networks with different numbers of
nodes/variables.
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Fig. 11. Variables per node for scale-free networks with different numbers of nodes/-
variables.

Reference [1] presents an inference architecture for sensor networks based on
message-passing on a junction tree. For this approach, a distributed algorithm
is first used to form a spanning tree of nodes which is used later to construct the
junction tree for inference. Junction trees group variables into cliques and their
size determines the computation costs at nodes whereas the separator size be-
tween cliques determines the communication costs. The approach was evaluated
with 54 sensor motes in a local experiment showing spanning tree optimizations
and the communication costs of the junction tree. Inference on junction trees is
exact and always results in the exact marginals at the cost of requiring building
a tree with larger messages and higher computation costs. Belief propagation
only provides approximate inference on lower overheads.

6.2 Spring Relaxation

Spring relaxation is used in various domains and we will only present two exam-
ples for peer-to-peer systems. Vivaldi [7] is a decentralized network coordinate
system using a spring-mass model to position nodes in a virtual coordinate sys-
tem according to their latencies. Nodes run the distributed spring relaxation
algorithm as soon as a new latency measurement was performed to reduce the
distance error between nodes. An application of Vivaldi is described in [8] to op-
timize the path in stream-based overlay networks. Services are placed on nodes
close to each other in the virtual latency space.

7 Future Work

An open issue is the introduction of a stop criteria for the relaxation algorithm
so that nodes detect that further iterations will not reduce the number of mes-
sages noticeably any more. This is crucial because a constant maximum number
of iterations may influence the scalability of our approach. Further, the algo-
rithm currently runs absolutely synchronized at all nodes. As this is not realistic
in peer-to-peer systems, the influence of an asynchronous execution has to be
investigated. We plan to implement our algorithm in P-Grid to evaluate it on
PlanetLab, a global-scale testbed with real network characteristics.



8 Conclusions

We presented a relaxation algorithm making large-scale distributed inference
possible in peer-to-peer systems. Our approach is based on belief propagation’s
simple message-passing algorithm to perform inference and the P-Grid overlay
network to store and maintain the required Bayesian network. Nodes of the
Bayesian network are redistributed among P-Grid nodes to cluster correlated
nodes together to minimize the required message costs for inference. Our purely
distributed approach does not require any central coordination nor global knowl-
edge. Matlab evaluations show promising results with message reductions up to
70% for various network topologies and network sizes.

References

1. Paskin, M.A., Guestrin, C.E., McFadden, J.: A robust architecture for distributed
inference in sensor networks (2005)

2. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco, CA, USA (1988)

3. Berrou, C., Glavieux, A., Thitimajshima, P.: Near shannon limit error-correcting
codes and decoding: Turbo codes. In: Proceedings of the IEEE International Com-
munications Conference. (1993)

4. Bickson, D., Malkhi, D., Rabinowitz, D.: Efficient large scale content distribution.
In: Proceedings of the Workshop on Distributed Data and Structures (WDAS),
Lausanne, Switzerland (2004)

5. Ihler, A.T., John W. Fisher, I., Moses, R.L., Willsky, A.S.: Nonparametric belief
propagation for self-calibration in sensor networks. In: Proceedings of the Third
international symposium on Information processing in sensor networks, New York,
NY, USA, ACM Press (2004) 225–233

6. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Generalized belief propagation. In: Ad-
vances in Neural Information Processing Systems (NIPS). Volume 13. MIT Press
(2000) 689–695

7. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: A decentralized network
coordinate system. In: Proceedings of ACM SIGCOMM. (2004)

8. Pietzuch, P., Shneidman, J., Welsh, M., Seltzer, M., Roussopoulos, M.: Path op-
timization in stream-based overlay networks. Technical Report TR26-04, Harvard
University, Cambridge, Massachusetts (2004)

9. Aberer, K.: P-grid: A self-organizing access structure for p2p information systems.
In: Proceedings of the 6th International Conference on Cooperative Information
Systems (CoopIS), London, UK, Springer-Verlag (2001) 179–194

10. Weiss, Y.: Correctness of local probability propagation in graphical models with
loops. Neural Computation 12(1) (2000) 1–41

11. Kleinberg, J.: The small-world phenomenon: An algorithmic perspective. In: ACM
STOC. (2000)

12. Bickson, D., Dolev, D., Weiss, Y., Aberer, K., Hauswirth, M.: Indexing data-
oriented overlay networks using belief propagation. In: Proceedings of the Work-
shop on Distributed Data and Structures (WDAS), Santa Clara, CA, USA (2006)

13. Corporation, M.: Microsoft help and support (2006)
http://support.microsoft.com/.



14. Organization, T.M.: Mozillazine knowledge base (2006) http://kb.mozillazine.org/.
15. Organization, T.M.: Bugzilla (2006) http://www.bugzilla.org/.
16. Yamanishi, K.: Distributed cooperative bayesian learning strategies. In: COLT

’97: Proceedings of the tenth annual conference on Computational learning theory,
New York, NY, USA, ACM Press (1997) 250–262

17. Heckerman, D.: A tutorial on learning with bayesian networks. Technical Report
MSR-TR-95-06, Microsoft Research, Redmond, USA (1995)

18. Chen, R., Sivakumar, K., Kargupta, H.: Collective mining of bayesian networks
from distributed heterogeneous data. Knowledge and Information Systems 6(2)
(2004) 164–187

19. Batagelj, V.: Pajek - program for large networks analysis and visualization (2001)


