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Abstract

Graph theory experienced a remarkable increase of interest among the scientific community
during the last decades. The vertex coloring problem (Min Coloring) deserves a particular
attention since it has been able to capture a wide variety of applications. For mathemati-
cians, it is interesting for an additional reason: it is extremely hard to solve it in an efficient
way.

In this thesis, we introduce several problems generalizing the usual vertex coloring problem,
and hence, extending its application domain. We say that a graph is (p, k)-colorable if its
vertex set can be partitioned into p cliques and k stable sets. Then, for a given p (respectively
k), one may ask the following questions: how to choose p cliques (respectively k stable sets)
to be removed from the graph such that the number of stable sets (respectively cliques)
partitioning the remaining vertices is minimized? These are called (p, k)-coloring problems.
We also introduce Min Split-coloring which is, given a graph G, the problem of minimizing
k such that G is (k,k)-colorable. Along the same line, given a graph G, the objective of
the problem Min Cocoloring is to minimize p + k such that G is (p, k)-colorable. All these
problems, called together generalized coloring problems, are obviously at least as difficult as
Min Coloring. The purpose of this dissertation is to study generalized coloring problems in
some restricted classes of graphs in order to bring a new insight on the relative difficulties of
these problems. To this end, we detect in a more precise way the limits between N P-hard

and polynomially solvable problems.

Chapter 1 introduces generalized coloring problems by emphasizing some preliminary results

which will guide the questions to handle in the following chapters.

Chapter 2 exposes the first class of graphs, namely cacti, where Min Split-coloring is shown
to be polynomially solvable. We also observe that generalized coloring problems can be

polynomially solved in triangulated graphs.

The main result of Chapter 3 is a new characterization of cographs: it is equivalent to say
that G is a cograph, and to state that, for every subgraph G’ C G, G’ is (p, k)-colorable if
and only if G'[V'\ K] is (p— 1, k)-colorable, where K induces a maximum clique of G’. This
result implies simple combinatorial algorithms to solve all generalized coloring problems;

the one for Min Cocoloring improves the best time complexity known so far.

In Chapter 4, we handle the recognition of polar graphs which can be seen as a particular

(p, k)-coloring, where p cliques are independent (i.e., not linked at all) and k stable sets
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form a complete k-partite graph. It is known that the recognition of polar graphs is N'P-
complete. Here, we determine the first class of graphs, namely cographs, where the polar
graphs can be recognized in polynomial time, more precisely in time O(nlogn). We also give
a characterization by forbidden subgraphs. In the same manner, we characterize monopolar
cographs, i.e., cographs admitting a polar partition with at most one clique or at most one

stable set.

Chapter 5 is devoted to generalized coloring problems in line graphs. Here, we detect the
first classes of graphs, namely line graphs of trees, line graphs of bipartite graphs and line
graphs of line-perfect graphs, where generalized coloring problems diverge in terms of NP-

hardness.

In Chapter 6 we study the approximability of generalized coloring problems in line graphs,
in comparability graphs and in general graphs. We derive approximation algorithms with
a performance guarantee using both the standard approximation ratio and the differential
approximation ratio. We show that both Min Split-coloring and Min Cocoloring are at least
as hard as Min Coloring to approximate from the standard approximation ratio point of
view, whereas, they admit a polynomial time differential approximation scheme and Min
Coloring only a constant differential approximation ratio. We also show that Min Cocoloring
reduces to Min Split-coloring in all classes of graphs closed under addition of disjoint cliques

and under join of a complete k-partite graph.

In Chapter 7, we handle two different applications of Min Split-coloring in permutation
graphs. They give birth to a new problem, called Min Threshold-coloring, that we study in

the same spirit as the other generalized coloring problems.

In the last chapter, we present several open questions arising from this thesis.

Keywords : Generalized vertex coloring, Split-coloring, Cocoloring, Polar graphs, Approx-

imation
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Résumé

La théorie des graphes a eu en essor remarquable dans la communauté scientifique pendant
les derniéres décennies. Le probléme de coloration de sommets (Min Coloration) mérite une
attention particuliére puisqu’il a de nombreuses applications. Il intéresse les mathématiciens

pour une raison de plus : il est extrémement difficile & résoudre de maniére efficace.

Dans cette thése, nous introduisons plusieurs problémes qui généralisent le probléme usuel de
coloration de sommets, et par conséquent, étendent son domaine d’application. Un graphe
est (p,k)-colorable si son ensemble de sommets peut étre partitionné en p cliques et k
ensembles stables. Pour un p (respectivement k) donné, nous considérons les problémes
suivants : comment choisir les p cliques (respectivement k ensembles stables) & enlever du
graphe de maniére & minimiser le nombre d’ensembles stables (respectivement cliques) qui
partitionnent les sommets restants ? Ces problémes sont appelés les problémes de (p,k)-
coloration. Nous introduisons aussi le probléme Min Coloration Scindée qui consiste, pour
un graphe G donné, & minimiser k tel que G soit (k, k)-colorable. Par ailleurs, pour un graphe
G donné, I'objectif du probléme Min Cocoloration est de minimiser la somme p+k tel que G
soit (p, k)-colorable. Tous ces problémes qui se nomment problémes de coloration généralisée,
sont évidemment au moins aussi difficile que Min Coloration. Le but de cette thése est
d’étudier les problémes de coloration généralisée dans des classes de graphes restreintes afin
de pouvoir mettre en évidence les difficultés relatives de ces problémes. Pour y parvenir,
on détermine de fagon précise les limites entre les problémes N P-difficiles et ceux qui sont

solubles polynomiallement.

Le premier chapitre présente les problémes de coloration généralisée en mettant en évidence
certains résultats préliminaires qui vont guider les questions considérées dans les chapitres

suivants.

Le second chapitre présente la premiére classe de graphes, & savoir les cactus, ol on peut
résoudre Min Coloration Scindée en temps polynomial. De plus, nous observons que les pro-
blémes de coloration généralisée peuvent étre résolus en temps polynomial dans les graphes
triangulés.

Le résultat principal du troisiéme chapitre est une nouvelle caractérisation des cographes :
il est équivalent de dire que G est un cographe et d’affirmer que, pour tout sous-graphe
G’ C G, G est (p, k)-colorable si et seulement si G'[V \ K] est (p — 1, k)-colorable, ou K est

une clique maximum de G’. Ce résultat implique des algorithmes combinatoires simples pour



résoudre tous les problémes de coloration généralisée; celui proposé pour Min Cocoloration

ameéliore la meilleure complexité de temps connue jusqu’a présent.

Dans le quatriéme chapitre, nous considérons la reconnaissance des graphes polaires que
l’on peut également voir comme une (p, k)-coloration particuliére, ou les p cliques forment
une union disjointe de cliques (i.e., sans aucune aréte entre elles) et les k ensembles stables
forment un graphe k-parti complet. Il a déja été démontré que la reconnaissance des graphes
polaires est NP-compléte. Nous déterminons la premiére classe de graphes, a savoir les
cographes, ou les graphes polaires peuvent étre reconnus en temps polynomial, plus préci-
sément en temps O(nlogn). Nous caractérisons également les cographes polaires par des
sous-graphes interdits. De la méme maniére, nous caractérisons les cographes monopolaires,
i.e., les cographes qui admettent une partition polaire avec au plus une clique ou au plus un

ensemble stable.

Le cinquiéme chapitre est consacré aux problémes de coloration généralisée dans les graphes
aux arétes. Nous déterminons les premiéres classes de graphes ot les problémes de coloration
généralisée divergent en termes de N'P-complétude. Ces classes sont les graphes aux arétes
des arbres, les graphes aux arétes des graphes bipartis et les graphes aux arétes des graphes

aréte-parfaits.

Dans le sixiéme chapitre, nous étudions ’approximabilité des problémes de coloration gé-
néralisée dans les graphes aux arétes, les graphes de comparabilité et les graphes généraux.
Nous proposons des algorithmes d’approximation avec une garantie de performance en uti-
lisant les rapports d’approximation classique et différentiel. Nous montrons que Min Colo-
ration Scindée et Min Cocoloration sont tous les deux au moins aussi difficiles & approcher
que Min Coloration du point de vue du rapport d’approximation standard. Par contre, ils
admettent un schéma d’approximation différentiel en temps polynomial et Min Coloration
admet seulement un rapport d’approximation différentiel constant. Nous montrons égale-
ment que Min Cocoloration se réduit & Min Coloration Scindée dans toutes les classes de
graphes fermées par les opérations d’adjonction de cliques disjointes et de liaison compléte

avec un graphe k-parti complet.

Dans le septiéme chapitre, nous considérons deux applications de Min Coloration Scindée
dans les graphes de permutations. Elles donnent naissance & un nouveau probléme, appelé
Min Coloration avec Seuil, que nous abordons avec la méme méthodologie que celle utilisée

pour les autres problémes de coloration généralisée.

Dans le dernier chapitre, nous présentons plusieurs questions ouvertes qui surgissent de cette
thése.

Mots-clés : Coloration de sommets généralisée, Coloration Scindée, Cocoloration, Graphes

polaires, Approximation
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Ozet

Graf teorisi son yillarda daha da artan bir ilgi ile geligsimini slirdiirmektedir. Tepe boyama
problemi, genig bir uygulama alanina sahip olmasinin yanisira, etkin bir ¢6ziimiiniin bulun-

masininin son derece zor olmasi nedeniyle de bu gelisgmede 6zel bir yere sahiptir.

Bu galigmada, tepe boyama problemini ve dolayisiyla uygulama alanini genellegtiren yeni
problemler incelenmigtir. Tepe kiimesi, p tane klige ve k tane bagimsiz kiimeye parcalanabi-
len bir graf (p, k)-boyanabilir olarak adlandirilmigtir. Verilen bir p (ya da k) dogal sayis: i¢in,
graftan silinecek p kligi (ya da k bagimsiz kiimeyi), geriye kalan tepeleri parcalayabilecek
bagimsiz kiime (ya da klik) sayisini en aza indirecek gekilde nasil secmeliyiz sorusu goézoniine
alinmigtir. Bu ¢aligmada, ifade edilen soru (p, k)-boyama problemi olarak adlandirilmigtir.
Bununla birlikte, verilen bir G grafinin (k, k)-boyanabilir olacak gekilde & sayisiin en kiiciik
degerini bulma problemi yarik-boyama problemi baghg: altinda tanimlanmigtir. Tam-boyama
problemi olarak tanimlanan, verilen bir G grafinin (p, k)-boyanabilir olmasin saglayacak
en kiiciik p + k dogal sayisinin bulunmasi problemi de incelenmigtir. Yukarida ifade edi-
len problemler genellestirilmis boyama problemleri baghg altinda toplanirsa, bunlarin en
az “klasik” boyama problemi kadar zor olduklar1 agikardir. Bu tezin amaci, genellegtirilmig
boyama problemlerini kisitlanmig baz1 graf siniflarinda inceleyerek, incelendikleri simflardan
kaynaklanan NP-zor veya polinomyal olmalarina yol agan nedenleri ortaya koymak ve bu

sekilde, belirtilen problemlerin birbirlerine gore zorluklarina aciklik getirmektir.

Birinci bdliim, genellegtirilmis boyama problemlerine ait tanim ve 6zelliklerle, daha sonraki

boliimlerde kullanilacak temel bilgileri igermektedir.

Ikinci béliim, yarik-boyama probleminin polinomyal c¢oziilebilir oldugu graf simflarmdan
bilinen ilk sinif olan kaktiisleri ele almaktadir. Bu béliimde ek olarak, genellegtirilmis boyama

problemlerinin {i¢cgensel graflar i¢in polinomyal ¢oziilebilir oldugu gozlemlenmektedir.

Uciincii boliimde elde edilen en énemli sonug kograflarin yeni bir karakterizasyonudur. Buna,
gore, bir G grafinin kograf olmas1 egdeger bicimde su sekilde ifade edilebilir : her bir G’ C G
altgrafi i¢in, G”’in bir (p, k)-boyanabilir graf olabilmesi i¢in gerek ve yeter kogul, K kligi
G’ grafinin bir maksimum kligi olmak tizere G'[V \ K]'nin (p — 1, k)-boyanabilir olmasidir.
Bu sonug¢ yardimiyla genellegtirilmis boyama problemlerini ¢ézen kombinatoryal algoritma-
lar sunulmugtur. Buna gore, tam-boyama problemi icin literatiirdeki algoritmalarla kiyas-

landiginda en iyi zaman karmagiklig elde edilmigtir.

Dérdiincii boliimde, p kligin ayrik oldugu (aralarinda hicbir ayrit bulunmadig1) ve k bagim-
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siz kiimenin tam k-parcall bir graf olugturdugu (aralarinda miimkiin olan tiim ayritlarin
bulundugu) 6zel bir (p, k)-boyama problemi olarak da diisiiniilebilecek olan, bir grafin ku-
tupsal olup olmadigimi belirleme (tanima) problemi ele alinmigtir. Kutupsal graflarin tanin-
masinin N'P-tam oldugu bilinmektedir. Kutupsal graflarin kograflar iginde O(nlogn) za-
manda tanindig) gosterilerek, kutupsal graflarin polinomyal zamanda tanindig1 bilinen ilk
kisith graf sinifi bulunmugtur. Bunun yani sira, yasak altgraflar ile kutupsal graflarin karak-
terizasyonu verilmigtir. Benzer gekilde, en fazla bir klik ya da en fazla bir bagimsiz kiime
bulunan kutupsal parcalanmas: olan, diger adiyla tek-kutupsal, kograflar karakterize edil-
migtir.

Beginci boliim ayrit graflar sinifinda genellegtirilmig boyama problemlerine ayrilmigtir. Ge-
nellegtirilmig boyama problemlerinin, agaclarin, iki-parcali graflarin ve ayrit-miikemmel gra-

flarin aynt graflarinda AP-zorluk agisindan farklh davrandig ortaya konulmustur.

Altina béliimde ise, ayrit graflar, kargilagtirmali graflar ve genel graflar i¢inde genellegtiril-
mig boyama problemlerinin yaklagiklik analizi yapilmigtir. Hem standart hem de diferansiyel
yaklagim oranlarini kullanarak performans garantisi veren yaklagim algoritmalar: tiiretilmig-
tir. Yarik-boyama ve tam-boyama problemlerinin standart yaklagim orani agisindan en az
klasik boyama problemi kadar zor olduklari, ancak her ikisinin de polinomyal zamanlh di-
feransiyel yaklagim gemasina, bununla birlikte klasik boyama probleminin ise sadece sabit
diferansiyel yaklagim oranina sahip olduklari gosterilmigtir. Diger yandan, ayrik klikler ek-
lenmesi ve tam k-parcali bir grafin tam baglanmas: iglemlerine gore kapali olan tiim graf

siniflarinda, tam-boyama probleminin yarik-boyama problemine indirgendigi gosterilmigtir.

Yedinci béliimde, yarik-boyama probleminin permiitasyon graflarinda iki degigik uygulamasi
ele alinmigtir. Bu uygulamalar yardimiyla, egik-boyama problemi denen ve de diger genel-
lestirilmig boyama problemleri ile benzer gekilde incelenen yeni bir problem tamimlanmigtir.

Son boéliimde, bu tez caligmasinda kargilagilan cevabi agik olan sorulara yer verilmigtir.

Anahtar kelimeler : Genellegtirilmig tepe boyama, Yarik-boyama, Tam-boyama, Kutupsal
graf, Yaklagim
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Introduction

Combinatorial optimization problems are studied in a broad variety of fields. They are
of a great use for modeling several real world problems occurring in telecommunication,
transportation, distribution systems, robotics, stock management, production systems and
scheduling. Indeed, setting an appropriate model for a particular problem is a difficult task;
but, mostly, solving it in an efficient way appears to be even more difficult. This is why the
combinatorial optimization problems are at the heart of many research topics in discrete

mathematics, theoretical computer science and operations research.

Most combinatorial optimization problems of great practical relevance are shown to be
extremely hard to solve; this means, with a very strong evidence, that there is no polynomial
time ezact algorithm to solve them (in an exact way). These problems are said to be N'P-
hard (or equivalently, they belong to the complexity class of A"P-hard) and the time required
to obtain their optimal solutions grows very quickly beyond the time limits of the human
life. Therefore, from a practical point of view, showing that a combinatorial optimization

problem is A/P-hard or not has a crucial importance.

There are several ways of handling NP-hard problems. In the first method, one may
focus on some particular cases and reduce the analysis of the problem to this framework.
The question is then to know whether the problem remains NP-hard or else, it becomes
polynomially solvable under these specific assumptions. Detecting such restricted cases
where the problem can be efficiently solved contributes to the localization of the border
between “hard” and “tractable”, and gives a deeper insight on the real difficulty of the
problem. Secondly, one may cope with the computational hardness by aiming at obtaining
some approximate solutions, that is a solution which is “close” to the optimal one, by means
of some polynomial time approzimation algorithms. The guarantee of performance of an
approximate solution is then evaluated considering a worst possible case; this tells us how
far the approximate solution can be from an optimal solution in the worst case. The quality
of the best approximation algorithm that a problem admits, is another tool to measure
the intrinsic difficulties of combinatorial optimization problems. In the third approach,
one may concentrate on the sole objective of obtaining, in a reasonable time, some “good”
solutions, which are not necessarily optimal but the best possible among a set of acceptable
solutions for a real world application. Guiding rules of such algorithms are usually based
on some intuitive ideas; thus, this field is known as heuristics. On the contrary to the

second method, in general, no theoretical performance guarantee is known beforehand for a



heuristic; its quality is tested empirically.

In this dissertation, we adopt the first two approaches to deal with some NP-hard problems
which arise in graph theory. The latter is a powerful tool of extended use in operations
research not only for modeling real world problems, but also for developing new methods in

problem solving.

Graph theory originates with a 1736 paper “The Seven Bridges of Konigsberg” by Euler [54]
and since then, the field has undergone a tremendous development. Vertex coloring is one of
the most extensively studied problems in graph theory for both its power of modeling a wide
range of real world problems (see [36, 122]) and its theoretical interests (see for instance
[10, 11, 81, 99, 23]). Given a graph, Min (vertez) Coloring is the problem of covering its

vertex set with a minimum number of stable sets (i.e., sets of pairwise non-adjacent vertices).

In this work, our main concern is to generalize Min Coloring in order to cover an even wider
field of applications. To this end, we introduce Min Split-coloring which is the problem
of covering the vertices of a given graph with a minimum number of split graphs, that is,
a graph whose vertex set can be partitioned into one stable set and one clique (i.e., a set
of pairwise adjacent vertices). More generally, we consider the problem of covering the
vertex set of a given graph with p cliques and k stable sets; several optimization problems
(called generalized coloring problems) arising from this definition are studied, including Min
Cocoloring (98, 53, 78]. To our knowledge, there is no study on these problems (except Min
Cocoloring) in the literature; this thesis is a contribution to this field (see [50, 40, 41, 39,
42, 51]). We detect new polynomially solvable cases for Min Cocoloring and for some other
problems. We also give approximation results for generalized coloring problems. In this
manner, we provide a new insight on the relative difficulties of these problems and open the
way to extensions of the application field of the coloring problem.

Let us briefly describe a problem occurring in robotics which can be modeled with Min
Split-coloring but for which Min Coloring is not appropriate. Suppose that items to be
collected are aligned along a storage corridor. There is a robot to collect these items with
the constraint that the robot makes a two-way trip along the corridor and that the sizes
of the items collected should be decreasing for the whole trip of the robot to ensure the
stability of the pile. We assume that the robot can start its trip from either end of the
corridor. The objective is to minimize the number of two-way trips that the robot makes
in order to collect all the items while satisfying the constraint of decreasing sizes. One can
show that this problem can be modeled as Min Split-coloring in the class of permutation
graphs which is a subclass of perfect graphs. More precisely, the sizes of the items aligned
on a corridor constitute a permutation. One can define the graph of this permutation by
representing each item (of a certain size) by a vertex and by linking two vertices if the item
having a larger size comes before the other one in the permutation. Then, the subgraph
representing the items collected by the robot during one two-way trip corresponds to a split
graph. This topic is studied in Chapter 7.

Let us sketch the contents of this dissertation. Chapter 1 introduces in a formal way the



generalized coloring problems and some preliminary results. Chapters 2, 3 and 5 are devoted
to the detection of polynomially solvable cases in cacti and triangulated graphs, cographs,
and line graphs, respectively. Chapter 4 studies several problems such as recognition and
forbidden subgraph characterization, related to the polar cographs. In Chapter 6, we develop
approximation algorithms for generalized coloring problems in several classes of graphs where
they remain NP-hard. Finally, Chapter 7 deals with some applications of Min Split-coloring
and some problems resulting from them. We conclude in the last chapter and mention some

avenues for future research.






Chapter 1

Definitions and preliminary results

1.1 Basic definitions

1.1.1 Computational Complexity

Combinatorial optimization consists of finding the best among a finite (or at least countable)
set of choices. In other words, it is minimizing or maximizing a function on a discrete set
while satisfying some constraints. We note that all the problems considered in this disser-
tation are combinatorial optimization problems.

In combinatorial optimization, the computational complexity of an algorithm is of crucial
importance from a practical point of view. The theory of N'P-completeness deals with the
classification of combinatorial problems in terms of the computational difficulties of the ex-
act algorithms that they admit.

A problem is formally defined by a general description of its parameters and the statement
of the properties that its answer, or its solution, is required to satisfy. An instance is just a
realization of the problem parameters. We distinguish two types of problems: decision prob-
lems are those having an answer of the form “yes” or “no”, whereas optimization problems
require a solution of the best value, i.e., minimum or maximum value, among all possible
solutions. In the latter case, a solution of the best value is called an optimal solution.

An algorithm is a step-by-step procedure giving a solution for a particular problem. An
(exact) algorithm is said to solve a problem if it gives a true answer (or an optimal solu-
tion) for every possible instance of the problem under consideration. The time complexity
function of an algorithm expresses the time requirements in the size of the problem, which
is typically measured by the input length of the problem. It gives, for any possible size, the
largest amount of time needed for the algorithm to solve a problem instance of that size.
If a problem II admits an exact algorithm whose complexity function is polynomial, then
we say that I1 is “well solved” and it belongs to the class P of polynomially solvable prob-
lems. Roughly speaking, we say that problems for which the only known exact algorithms
have an exponential time complexity (in the size of the problem) are “difficult”, since the

exponential growth of time requirement makes the problem intractable in a “reasonable”
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amount of time. We define the class NP to classify these “difficult” problems; we denote by
NP the class of decision problems that can be solved by a “non-deterministic” polynomial
algorithm. In other words, NP is the class of decision problems for which there is a polyno-
mial time algorithm verifying the correctness of the proof of an answer “yes”. Most problems
not known in P belong to this class. Finally, there is a class of “hardest” decision problems
in NP, denoted by N'P-complete; every problem in NP is polynomially reduced to every
problem in NP-complete. It means that if one could solve a problem in NP-complete by
a polynomial time algorithm A, then all the problems in NP could be polynomially solved
by performing A only a polynomial number of times and by doing a polynomial number of
elementary operations.

An optimization problem whose decision version is NP-complete is N'P-hard since, obvi-
ously, it can be used to solve the associated decision problem.

The foundations for the theory of N'P-completeness were stated by S. Cook in 1971 [27].
Further developments containing a collection of NP-complete problems can be found in
[95]. The book of Garey and Johnson [70] published in 1979 remains the first reference for
the theory of N'P-completeness.

Since a major part of this dissertation is devoted to the classification of several problems in P
and N'P-complete, the reader is referred to [70] any time more information is needed on the

theory of N'P-completeness, and to [28] for algorithms and time complexity computations.

1.1.2 Graph theory

In this section, we give some fairly standard definitions on graph theory. More specific
notions will be defined in corresponding chapters.
A graph is nothing but a finite set of points and a set of lines joining some pairs of points.

Let us put it in a more formal way as follows.

Definition 1.1 (graph). A graph G = (V, E) is defined by its vertex set V. = {v1,...,v,}
and its edge set E = {v;v; : v;,v; € V}.

Figure 1.1 shows an example of graph where vertices are linked by some edges.

V2 U5

U1

V3 V4

Figure 1.1: A graph with 5 vertices and 8 edges.

In this dissertation, graphs are undirected (edges are unordered pairs) and simple (no mul-

6
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tiple edges, no loops), unless stated otherwise.

The size of a graph G = (V, E) is the cardinality of V. We say that two vertices are adjacent
if they are linked by an edge. A neighbor of a vertex v is a vertex which is adjacent to v.
Then, N (v) denotes the neighborhood of v, i.e., the set of all neighbors of v. The cardinality
of N(v) is called the degree of v and is denoted by d(v). A(G) is the maximum degree of a
vertex in G. The non-neighborhood of a vertex v is given by N(v) = V '\ (N(v) U{v}). Two
edges are said to be adjacent if they have a common vertex. Also, we say that an edge v;v;
is incident to v; and v; (or equivalently v; and v; are incident to the edge v;v;).

Given a graph G = (V, E), the complement of G, denoted by G, is defined by the same
vertex set and two vertices in G are linked by an edge if and only if they are not linked in

G.

Definition 1.2 (path). Let (vy,...,vx) be a sequence of distinct vertices such that v;v;11 €
Ei=1,...,k—1. Then, it is a path of length k — 1, denoted by P;.

Definition 1.3 (cycle). Let (v1,...,v;) be a sequence of distinct vertices such that v;vi11 €
Ei=1,...,k—1 and vivy € E. Then, it is a cycle of length k, denoted by C}.

Definition 1.4 (clique). Given a graph, a clique is a set of pairwise adjacent vertices.

Definition 1.5 (stable set). Given a graph, a stable set is a set of pairwise non-adjacent

vertices.

Given a graph G, w(G) and «a(G) denote respectively the size of a largest clique and the
size of a largest stable set in G. (@) is also called the stability number of G. In general,
K. and S}, denote respectively a clique and a stable set of size k; in other words a k-clique
and respectively a k-stable set. Given a graph G, finding w(G) and «(G), called respectively
Maz Clique and Maz Stable Set, are N'P-hard.

Definition 1.6 (vertex coloring). A vertex coloring (or simply coloring) of a graph G =
(V,E) is a function ¢ : V — C from the set of vertices to a set of colors (which is typically
represented by a set of integer numbers) in such a way that c(v;) # c(vj) whenever v;v; € E.

A k-coloring of G is a coloring using at most k colors.

If a graph G admits a k-coloring, then we say that G is k-colorable.

Definition 1.7 (Min Coloring). Given a graph G, Min Coloring is the problem of finding
the smallest k such that G s k-colorable.

The optimal value of Min Coloring is called chromatic number and is denoted by x(G).
Note that, in a graph coloring, each color class corresponds to a stable set. Hence, mini-
mum coloring of a graph G = (V, E) can be seen as a partition of V' into a minimum number
of stable sets. 3-colorability is known to be NP-complete [71] implying that Min Coloring
is N'P-hard in general.
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Definition 1.8 (Min Clique Cover). Given a graph G = (V, E), Min Clique Cover is
the problem of finding the smallest number of cliques partitioning V.

The optimal value of Min Clique Cover, which is also N'P-hard, is called cligue cover number
and is denoted by 6(G).

For a set V' C V, G[V'] denotes the subgraph of G induced by V', meaning that G[V'] =
(V',E'") where E' = {vv; : v; € V',v; € V' and vv; € E}. Whereas, a partial subgraph
of G has a vertex set and an edge set, which are respectively subsets of the vertex set and
the edge set of G. In what follows, a subgraph H of G, denoted by H C G, is always an
induced subgraph of GG, unless stated otherwise. Note that we sometimes denote G[V \ {v}]
and G[V \ V'] respectively by G \ v and G \ V’, for the sake of simplicity.

Let G and H be two graphs. We say that G is H-free if G does not contain H as an induced
subgraph.

In the analysis of problems such as Min Clique Cover, Min Coloring, Max Clique and Max
Stable Set, there is a particularly important class of graphs, called perfect graphs.

Definition 1.9 (Perfect graphs). A graph G is perfect if and only if for all H C G, we
have x(H) = w(H).

In particular, for the class of perfect graphs, the stability number as well as the chromatic
number can be determined in polynomial time (see [81]). It was shown by Lovasz in 1972
[99] that a graph G is perfect if and only if its complement is perfect (this was known as
the weak perfect graph conjecture (see [11]). Therefore, a graph G is perfect if and only if
for all H C G, we have 0(H) = a(H). Let us also state the following theorem known as
the Strong Perfect Graph Conjecture from 1961 (formulated by Berge [10]) until it has been
proven by Chudnowsky, Robertson, Seymour and Thomas in 2002 [23].

Theorem 1.10 ([23]). A graph G is perfect if and only if it does not contain any odd hole
(i.e., Cory1,k > 2), or odd antihole (i.e., the complement of Coxy1,k > 2) as an induced
subgraph. O

Note that in this dissertation, we will be dealing mostly, but not always, with subclasses of
perfect graphs.

Given a graph, the problem of covering its vertex (or edge) set by disjoint sets (with some
property) is called a partitioning problem, whereas finding a vertex (or edge) set of maximum
size verifying some property is a packing problem.

Each time we mention that a set is mazimal or minimal, we mean inclusionwise; a set L is
maximal (respectively minimal) with respect to a certain property P if P holds for L but
the addition (respectively the removal) of an element transforms L into a set not verifying
P. Whereas the terms mazimum and minimum refer to the size of a set.

A graph G is called connected if there is a path linking any pair of vertices in G. A connected
component of GG is then a maximal connected subgraph of G. A graph which is not connected

is called disconnected.
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Let H be a graph, we denote by kH a graph consisting of k connected components isomorphic
to H. In other words, kH is the graph obtained by taking disjoint union of k copies of H;
it is denoted by kH = UleHi, where each H; is isomorphic to H. We also define the join
of two graphs G and Gb; it is the graph G U G5 denoted by G ® Gs.

A class of graphs G is called hereditary if every subgraph of a graph in G also belongs to
G. Note that in this dissertation, only hereditary classes of graphs are considered, unless
otherwise stated.

In what follows, for a given graph G = (V, E), we have |V| = n and |E| = m. See [11] for

all graph theoretical notions not given here.

1.2 Generalized vertex coloring problems

1.2.1 Definitions and basic properties

The problems we deal with in this dissertation are all some generalizations of Min Coloring.
Roughly speaking, given a graph, we want to cover its vertex set not only with stable sets
but also with cliques. We obtain different problems according to the objective function we
choose. In this section, we define the main problems commonly studied in all chapters;
namely (p, k)-coloring problems, Min Split-coloring and Min Cocoloring. We also introduce
the notion of polar graphs, exclusively studied in Chapter 4, which is a particular way of
partitioning the vertices of a given graph into cliques and stable sets. In the sequel, let us

present our basic problem in the most general form.

Definition 1.11 ((p, k)-coloring). A graph G = (V, E) is (p, k)-colorable if V' can be
partitioned into p cliques and k stable sets of G, i.e., V = (Uf:1 K’) U ( Ué?:l Sj) where
K'’s are cliques and S7’s are stable sets. Such a partition (K1, ... KP S', ... S¥) is called

a (p, k)-coloring of G.

We denote by K,S; the class of (p,k)-colorable graphs. Obviously, if G € K,Si then
G € KySy for all p’ > p and k' > k. Given a class G of graphs, G N K,S, is said to be
polynomially determined if there exists a polynomial time algorithm computing, for every
graph G € G, a (p, k)-coloring of G whenever G € IC,S}, or recognizing that G ¢ K,Sj;. Here
are the two optimization problems that we call (p, k)-coloring problems.

Definition 1.12 ((pmin, k)-coloring). Given a graph G and an integer k, (Pmin,k)-

coloring is the minimization problem of finding
Pmin(G) = min{p : G € K,Sk}.
In a similar way we define the symmetric problem.

Definition 1.13 ((p, kmin)-coloring). Given a graph G and an integer p, (p,kmin)-

coloring is the minimization problem of finding

kmin(G) = min{k : G € K,Sk}.
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The recognition of (p, k)-colorable graphs has been already studied in the literature [16, 18,
58, 96]. Nevertheless, the first results on the corresponding optimization problems that we
call (p, k)-coloring problems are given in [40, 41] and gathered in this thesis.

Let us now define the problem of Min Split-coloring which is our main concern in this

dissertation.

Definition 1.14 (Min Split-coloring). Given a graph G, Min Split-coloring consists in
finding
xs(G) = min{max(p, k) : G € K,S} = min{k : G € K15}

where xs(G) is called the split-chromatic number of G. A partition of the vertex set of G
into k cliques and k stable sets is called a k-split-coloring of G.

Note that the second term defining xs(G) is equivalent to the first one since in a split-

coloring, one may always suppose that there are empty cliques or stable sets.

Definition 1.15 (Split graph). A graph G = (V, E) is a split graph if its vertex set V can
be partitioned into a clique K and a stable set S. The pair (K, S) is called a split partition.

The reason why the problem defined in Definition 1.14 is called Min Split-coloring is that, it
amounts to covering the vertex set of a given graph by a minimum number of split graphs.
Min Split-coloring was recently defined in [50] by Ekim and de Werra. Later on, various
papers giving first results on Min Split-coloring were published [40, 41, 44]; they are all
integrated in this dissertation.

Finally, the last problem we deal with consists in minimizing the total number of cliques

and/or stable sets covering all the vertices of a graph.

Definition 1.16 (Min Cocoloring). Given a graph G, Min Cocoloring is the problem of
finding
2(G) =min{p+ k : G € K,S;}

where z(G) 1is called the cochromatic number of G. A partition of the vertex set of G into p
cliqgues and k stable sets is called a (p + k)-cocoloring of G.

Contrary to Min Split-coloring, Min Cocoloring is widely studied in the literature; first
defined in [98] by Lesniak and Straight, NP-completeness proofs and polynomial cases
are given in [76, 78, 117|, approximation results are derived in [65] and extremal graph
theoretical results are given in [53, 77].

In all these generalizations of Min Coloring, taking cliques and stable sets together has the
nice property of complementarity: the problem is basically the same whether we consider
the graph G or its complement G. In fact, G € KpSy, if and only if Ge KSp. This implies
that 2(G) = 2(G), xs(G) = x5(G), Pmin(G) = kmin(G) and kiin(G) = pmin(G) (for k = p).
Restricted to Min Split-coloring, we come up with the auto-complementarity property, which
means that solving Min Split-coloring in a graph is equivalent to solve it in its complement.

Moreover, (p, k)-coloring problems, Min Split-coloring and Min Cocoloring are all hereditary

10
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since any induced subgraph of a split graph, a clique and a stable set are respectively a split
graph, a clique and a stable set. It follows that if a graph G is (p, k)-colorable then for all
H C G, H is also (p, k)-colorable.

We also associate a packing problem with the (p, k)-coloring of a graph.

Definition 1.17 (Max (p, k)-colorable subgraph). Given a graph G, Maz (p, k)-colo-
rable subgraph consists in finding an induced (p, k)-colorable subgraph of marimum size in

G. Its optimal value is denoted by oy 1 (G).

By convention, ago(G) = 0. Also, by definition, a; 0(G) = w(G) and ap1(G) = a(G). Note
that aq1(G), called the split-independence number of G and also denoted by ag(G), is the
size of a largest induced split graph in G.

We remark that in the context of (p,k)-coloring problems and Min Cocoloring, a color
corresponds to either a clique or a stable set whereas a color is equivalent to a split graph
in the case of split-coloring.

One may immediately derive some natural relations between the optimal values of the
above problems: we have clearly ys(G) < z(G) and also z(G) < min(x(G), 8(G)) since any
coloring or covering by cliques is also a cocoloring. Furthermore, we have z(G) < 2xs(G)
because a split-coloring with xg(G) colors is a cocoloring with 2y g(G) colors. Finally, the
relation ay, 0(G) + o k(G) — pk < ap k(G) < 0y o(G) + ag 1 (G) holds since p cliques and k&
stable sets may meet in at most pk vertices.

Now, let us introduce polar graphs which are a natural extension of some classes of graphs
like bipartite graphs, split graphs and complements of bipartite graphs. Their definition
follows from [21].

Definition 1.18 (Polar graph). A graph G = (V, E) is called polar if its vertex set V can
be partitioned into (A, B) (A or B may possibly be empty) such that A induces a complete
multipartite graph (it is a join of stable sets) and B a (disjoint) union of cliques (it is the

complement of a join of stable sets).

It can be easily seen that polar graphs admit a particular (p, k)-coloring for some p and k;
complete links among stable sets and no links among cliques are two conditions that such a
(p, k)-coloring should verify. We also use the following definition.

Definition 1.19 ((s, t)-polar). A graph is (s,t)-polar if it admits a polar partition (A, B),

where A is a join of at most s stable sets and B is a union of at most t cliques.

It can be easily noticed that (1, 1)-polar graphs are just split graphs.
In this section, we will restrain ourselves to this introduction on polar graphs. Since polar
graphs are exclusively studied in Chapter 4, their definition will be recalled and their basic

properties will be discussed in a brief introduction of that chapter.
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1.2.2 General framework of our study

Obviously, the decision versions of all the generalized coloring problems mentioned above
are N'P-complete in arbitrary graphs. Considering 3-colorability which is A"P-complete, it
is easily seen that deciding whether a graph is (p, k)-colorable is N'P-complete for p > 3 or
k > 3. It follows immediately that finding v, , is also N"P-hard. Moreover, Min Cocoloring
and Min Split-coloring are N'P-hard since they contain as a special case both Min Coloring
and Min Clique Cover. Later in this chapter, more precisely in Corollary 1.39, we will also
see that there is a class of graphs, where, although o, a1, o2 and a3 can be computed
in polynomial time, it is A"P-hard to find ay ;. In what follows, since all the generalized
coloring problems are clearly in NP, we simply omit this in some of the A'P-completeness
proofs.

Several extensions of the usual vertex coloring problem have been introduced during the last
decades. One of the most relevant to our study is the problem of coloring the vertices of a
given graph in such a way that each color class verifies a given property P. This problem
originated with Folkman [64] and was extensively studied since then (see [20] for the state
of the art on this topic). In [20], Brown considered the complexity status of this problem for
various properties; he paid a special attention to the property of not containing an induced
subgraph isomorphic to H, where H is a graph fixed from the beginning. This is referred
to as H-free coloring in the literature. Along the same line, Achlioptas showed that H-free
k-coloring is N'P-complete for any graph H other than K, and K» for all k > 2 [2].

A generalization of H-free coloring is due to Kratochvil et al. [97]; a graph is (Py,..., Pp)-
colorable if it admits a partition (Uj,...,U,) of its vertex set, where each U; verifies the
property P;. Kratochvil et al. conjectured in [97] that for any additive hereditary graph
properties P;, recognizing (P4i,...,P,)-colorable graphs is N'P-complete with the obvious
exception of bipartite graphs. Note that a property P is additive if for any two vertex-
disjoint graphs verifying P, their union also verifies P. They also proved the conjecture in
some special cases. Several subcases have already been settled by various authors (see [55]).
Farrugia proved this conjecture in [55] for all induced-hereditary additive properties. More
generally, a graph is called (P1,...,Pp, Q1,..., Qx)-colorable if its vertex set can be par-
titioned into sets (Uy,...,Up, Wh,...,W}) where each U; verifies the co-additive property
P; and each W; verifies the additive property Q; (a property P is co-additive if its com-
plement, that is the property verified by the complement of the graphs with property P,
is additive). Recently, Alekseev et al. discussed in [3] the complexity status of recognizing
(Pi,...,Pp,Q1,...,Qx)-colorable graphs where P;’s and Q;’s are also hereditary properties.
In this case, the authors show that recognizing (P1,...,Pp, Q1,..., Qx)-colorable graphs is
N'P-complete whenever the recognition of (P, ..., P,)-colorable graphs or the recognition
of (Q1,...,Q)-colorable graphs is N'P-complete. The NP-completeness of (p, k)-coloring
problems for p > 3 or k > 3 also follows from this result; it suffices to consider P;’s as
Ko-free, and Q,’s as Ko-free.

As it will be explained at the end of this subsection, our methodology differs from these

studies where the focus is on the properties a color class is required to verify and the com-
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plexity status is settled for various types of properties. We will rather fix the problems on
which we work and decide their complexities in some restricted cases. Before explaining
the framework of our study, let us point out some facts on the relative difficulties of the

generalized coloring problems that we have introduced.

Remark 1.20. Min Split-coloring and Min Cocoloring are reduced to (p, k)-coloring prob-

lems in the class of all finite graphs.

Remark 1.21. (pyn, k)-coloring is reduced to (p, kmin)-coloring and vice versa in the class

of all finite graphs.

Notice that a polynomial time algorithm for (pn, k)-coloring or (p, kpin )-coloring (for any
given p and k) would immediately imply polynomial time algorithms for Min Split-coloring
and Min Cocoloring. In fact, solving one of the general (p, k)-coloring problems, say for
instance (p, kmqn )-coloring (respectively (ppin, k)-coloring), for at most n (but in reality
much less) different values of p, one can solve (pmin, k)-coloring (respectively (p, kmin)-
coloring), Min Split-coloring and Min Cocoloring by choosing the value of p which allows
to optimize the objective function of the problem under consideration. In other words,
(p, k)-coloring problems are more difficult than Min Split-coloring and Min Cocoloring and
moreover, (p, kpmin)-coloring and (pmin, k)-coloring always belong to the same complexity
class independently from the class of graphs in which we restrict our analysis. In return,
there is no such comparison between Min Split-coloring and Min Cocoloring; this topic will
be discussed in more details in Chapters 5, 6 and 7.

Although split graphs have been extensively studied by many authors (see [62, 63, 82, 9, 22]),
Min Split-coloring does not seem to have been studied to our knowledge. The only coloring
problem related to split graphs which appears extensively in the literature deals with the
case where the edge set of a graph has to be covered |22, 100]. However, this problem of edge
coloring by split graphs has neither the hereditary character nor the auto-complementarity
property mentioned above.

In a similar way, to our knowledge, the optimization problems of (p, k)-coloring, namely
(Pmin, k)-coloring and (p, kmin )-coloring, were not defined before [40] although they appear
implicitely in some algorithms of 78] and [87] .

This dissertation consists in a systematic study of generalized coloring problems defined
in this section by restricting our analysis to different classes of graphs. Each time, either
we derive polynomial time algorithms solving efficiently the problem under consideration,
or we show that, even under these particular assumptions, the problem we handle remains
NP-hard. In the latter case, an approximation algorithm will be derived and its approxi-
mation ratio will be analyzed. When appropriate, non approximability results will also be
established. Then, our purpose will be to compare the behavior of each problem in order to
determine in a best possible way the limits between N P-completeness and polynomiality,
and also to study their relative computational difficulties (in terms of admitting polynomial
time exact algorithms or the quality of the approximation ratios).

Getting back to polar graphs, it was shown in [21] that recognizing whether an arbitrary
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graph is polar is N'P-complete. In our work, we detect the first class of graphs, to our

knowledge, where the recognition of polar graphs becomes polynomial.

1.3 2-split-colorability

The NP-completeness of k-split-coloring for £ > 3 was stated in the previous section. In
the sequel, we handle the problem of 2-split-colorability and we show that it is polynomially
solvable in all finite graphs. Before adopting an algorithmic approach, we first attempt
to give a forbidden subgraph characterization of 2-split-colorable graphs; we derive partial
results in this direction.

Now, let us introduce the notion of split-critical graphs.

Definition 1.22 (k-split-critical). A graph G = (V, E) is called k-split-critical if xs(G) =
k and for allv e V, xs(G[V \v]) =k — 1.

We say that a graph is triangulated, or equivalently chordal, if every cycle of length at least
4 contains a chord, i.e., an edge linking two non-adjacent vertices of the cycle. Let us state

the following theorem characterizing split graphs.

Theorem 1.23 ([62]). For every graph G = (V, E), the following conditions are equivalent:
1. G is a split graph;
2. G and G are triangulated;

3. G does not contain 2K5, Cy or Cs. O

According to this definition, 2K5, C4 and C5 are obviously the unique 2-split-critical struc-
tures. Moreover, the recognition of split graphs can be done by a O(n?) algorithm given
in [100]. Also, a recent result in [87] shows that split graphs can be recognized by a linear
algorithm in time O(n + m); this topic will be developed in Section 2.2.

In order to characterize some 3-split-critical graphs and as a preliminary for further devel-
opments, we mention the following three facts. In what follows, we denote by OC an odd
cycle, i.e., a cycle of length 2k + 1 with £ > 1.

Fact 1.24. For any odd cycle OC of length at least 5, we have xs(OC) = 2; a 2-split-

coloring is obtained by choosing one clique (of size one or two) and two stable sets.

Fact 1.25. For any two induced odd cycles 20C' of length at least 5, we have xs(20C) = 2;
a 2-split-coloring is obtained by choosing one clique on each cycle and two stable sets in the

remaining graph.

Fact 1.26. The graph 30C consisting of three induced odd cycles is not 2-split-colorable,
i.e., xs(30C) > 3.
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1.3. 2-SPLIT-COLORABILITY

Fact 1.26 follows from the fact that each clique can contain vertices of at most one cycle
and that an odd cycle is not 2-colorable in the classical sense. Therefore, we have to assign
a new color to at least one vertex of the third odd cycle as shown in Figure 1.2. Note that
in all figures representing a split-coloring, cliques are encircled so that one may distinguish

them from the stable sets of same color.

ocs3

Figure 1.2: 30C is not 2-split-colorable.

Proposition 1.27. A graph G consisting of three induced odd cycles 30C' or its complement

G = 30C is 3-split-critical.

Proof. 1t suffices to notice that the way one can partition the vertices of a 30OC' as in Figure
1.2 is the best possible and that in this way, the inequality of Fact 1.26 turns to be an equality.
The criticality of 30C' is just routine to check. In addition, the auto-complementarity of

the split-coloring gives the result. O

The above proposition implies in particular that 3K3 and 3K3 are 3-split-critical graphs.

Now, let us open a parenthesis on k-split-critical graphs for £ > 4 and generalize this result.

Proposition 1.28. kK, disjoint union of k cliqgues of size k, and kKy, join of k stable

sets of size k with complete links, are k-split-critical.

Proof. One sees immediately that kKj is not (k — 1)-split-colorable. We obtain a k-split-
coloring of kKj by assigning repetitively a new color to a split graph consisting of an
inclusion-wise maximal uncolored (sub-)clique of a K}, and a stable set having one vertex
in each remaining maximal (sub-)clique. One may observe that removing any vertex makes
our graph (k — 1)-split-colorable. In addition, the criticality of kK} is obtained by the

auto-complementarity of the split-coloring. O

Note that mKj with arbitrary large m is still k-split-colorable, i.e., we do not increase xg
by adding new disjoint K}’s, but it is no more k-split-critical. This fact can be observed for
mKy, with m > 4 in Figure 1.3.

Let us construct another k-split-critical graph which is also triangle-free. It makes use of
Mycielski graphs that are constructed iteratively; we denote by My the Mycielski graph of
iteration k. We start with My which consists of two vertices linked by an edge. At iteration
k, we take one copy v’ of each vertex v in Mj_; and we link v’ to all neighbors of v. Then

we add one more vertex z; linked to all vertices introduced at iteration k. One can show
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Figure 1.3: mK} is 4-split-colorable.

that for all k, My, is triangle-free and x(M}) = k, moreover, it is k-critical in the usual sense

(i.e., the removal of any vertex yields a (k — 1)-colorable graph) [105].

Proposition 1.29. kM, and kM;, where M, is the Mycielski graph of iteration k, are
k-split-critical.

Proof. A k-split-coloring of kM), is obtained by taking at most k cliques (one from each
disjoint Mj}) and by partitioning the remaining vertices into k (or k — 1, if exactly k cliques
are set) stable sets. Moreover, for all v € kMy, we have xgs(kMj \ v) = k — 1. An optimal
split-coloring is obtained by taking k—1 cliques, each one consisting in zj in a M}, except the
one where the vertex v is removed, and k — 1 stable sets covering M}, \ v and (k—1)(My \ zx)
(which is possible since M, is k-critical). Moreover, kMj, is not (k — 1)-split-colorable since
each My is not (k — 1)-colorable unless we remove a clique containing z; and there are
exactly k of them. The k-split-criticality of kM, follows from the autocomplementarity of
k-split-coloring. O

Let us go back to the case of 2-split-colorability. Proposition 1.27 means that whenever a
graph G contains three induced odd cycles or its complement, the split-chromatic number
of G is at least 3. However, the number of induced odd cycles do not play any key role in
the determination of yg for xs > 3 because xs(mOC) = 3, Ym > 3.

We know that the 3-split-critical graphs of Proposition 1.27 do not form a complete list
of forbidden subgraphs characterizing 2-split-colorable graphs. For instance, a particular
C5-cactus described in Chapter 2, Section 2.1.2 (see Figure 2.4 a)) is another 3-split-critical
graph not containing 30C. Several other examples can be easily stated, for instance, the
graph in Figure 1.4 on which a possible 3-split-coloring is represented. It would be interesting
to be able to complete this (not finite) list of forbidden subgraphs to characterize 2-split-
colorable graphs.

One can observe that the 2-split-colorability problem is closely related to the graph biparti-
zation problem (see [61] for a survey), where we are looking for a minimum vertex set such
that its removal gives a bipartite graph. In return, in our problem, we relax the minimality
requirement and instead, we impose on the vertex set hitting every odd cycle to have the
property of being covered by two cliques.

Let us describe the basic idea of a polynomial time algorithm for any graph, which ends,

if any, with a (2,2)-coloring of a given graph and, if not, with a negative answer. To this
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Figure 1.4: A 3-split-critical graph.

purpose, we need to be able to decide whether a given subgraph is in 1S or in KySy.
In the first part of the algorithm recognizing a (1,2)-colorable graph, we set a necessary
partition of vertices by applying a test on the neighborhood and on the non-neighborhood
of every vertex. In fact, in a (1,2)-coloring of a graph, if a vertex x is in a clique then
N(z) € KoSs, and if z is in a stable set then N(x) € K1S;. It implies that for a vertex
z, if N(z) ¢ KoS2 then necessarily z is in a stable set and, similarly, if N(z) ¢ K1S; then
necessarily x is in a clique. The second part consists in finding a final (2,2)-coloring via
testing only a polynomial number of modifications on the necessary partition. Note that the
detection of (1,2)-colorable and (2, 1)-colorable graphs are given in [16] and detailed in [19].
In return, the complete proof for 2-split-colorability with its exact complexity has never
been published; Brandstédt has just mentioned in [19] that this problem is also polynomial
and that details can be found in his technical reports [15]. This method enables us to decide
the 2-split-colorability of any graph in polynomial time'. We do not detail this algorithm
here; instead, we propose, in the next section, the generalization of this approach in order
to obtain an algorithm deciding (under some conditions) the (p, k)-colorability of general
graphs for any fixed p and k.

1.4 (p, k)-coloring of general graphs

In this section, we emphasize some particular cases where (p, k)-colorability can be polyno-
mially determined: we will observe that this happens for fixed p and k together with some
additional conditions.

We have already seen that (p, k)-colorable graphs for (1,2) and (2,1) are shown to be poly-
nomially determined [19]. Besides, the cases for (1,0), (0,1), (1,1), (2,0) and (0,2) are
obviously known to be polynomially determined. Let us recall that a graph G is in S,
if and only if G is in K1 Sp; consequently, for every class of graphs C closed under comple-
mentation, X,S; N C is polynomially determined if and only if S, N C is polynomially
determined.

The main idea of the algorithm of (p, k)-coloring of general graphs is based on the following

remark.

!The exact time complexity is polynomial with a high degree.
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Remark 1.30. If (K',...,K? S' ..., S¥) is a (p, k)-coloring of G, where p,k > 1, then
for all x € U?ZISJ, G[N(x)] is (p,k — 1)-colorable, and for all x € U!_ | K', G[N(x)] is
(p — 1, k)-colorable.

Here we give an explicit form of an algorithm deciding whether a given graph is in ,S;, or
not and, whenever it is, giving a (p, k)-coloring of the graph. Then, polynomially solvable

cases will be exhibited from this exact algorithm.

Algorithm 1 (p, k)-coloring of general graphs

Input: graph G, (p,k) e Nx N

Output: a (p, k)-coloring of G if any, answer "G is not in IC,S;" otherwise
LS80, K — 0

2. Phase 1
3. for all z € V do
4. if G[{z} UN(z)] ¢ K,—1Sk. then
5. S — S U{x};
6. else
7. if G[N(x)] ¢ K,Sk—1 then
8. K — K'u{z}
9. if G[S'] ¢ KoS, or GIK'] ¢ K,Sp then
10. print “G is not in K,S;,”, exit.
11. Phase 2
12. if GV \ &' € K,Sp then
13. deduce a (p, k)-coloring, exit.
14. else
15. for all z ¢ K'US’ do
16. (KL,...,KE Sk ... SE=1)] «— a (p,k — 1)-coloring of G[N(x)];
17. [(KL,...,KP7' SL ... SF)]«——a (p—1,k)-coloring of G[{z} UN(z)];
18. for all (W,, Z,, Wz, Zz) such that
W, CURZISE, [Wa| < (k—1)p
Z: € N@)\UTLS, 1Z,] < (k= 1)p
Wy CUE_ SI (W] < pk
Zz C {x} UN(2) \U}_1 5%, |Zz| < (p— 1)k do
19. S"— S"U(UEZISE\ W) U Z U (U S2\ W) U Zz;
20. if G[S"] € KoSk, and G[V \ §"] € £,Sy then
21. deduce a (p, k)-coloring of G, exit.
22. print “G is not in K,S),”, exit.

Theorem 1.31. Let G be a hereditary class of graphs, let (p,k) € Nx N, p,k > 1. If
KpSk-1NG, Kp—1S8:NG, KoSpNG and K,SoNG are polynomially determined, then K,5,NG
is also polynomially determined by Algorithm 1.
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Proof. Algorithm 1 gives a (p, k)-coloring of a given graph in polynomial time when the hy-
potheses of the theorem are satisfied. Remark 1.30 implies that Phase 1 works by necessary
conditions. This means that if G is (p, k)-colorable then vertices placed in K’ (respectively
S') during the first phase necessarily belong to some clique (respectively stable set) in every
(p, k)-coloring of G. Consequently G € K,S;, if and only if K’ and S’ can be completed
to a partition (KC,S) of V, where GIK] € K,Sp and G[S] € KoSi. This is namely the
aim of Phase 2 where the existence of such a completion is tested through any possible
partition of vertices respecting S’ and K'. Note that every vertex z € V' \ (K U S) satisfies
G{z}UN(z)] € Kp—1Sk and G[N(z)] € K,Sk—1. A (p, k)-coloring of G is detected in line 13
if the set of vertices not included in S8’ can be partitioned into p cliques, given the fact that
S e KoSk.

If line 13 is not executed, then, in every (p, k)-coloring of G (if any), at least one vertex
of V'\ (K"US&’), say xo, belongs to a stable set. Therefore, (KX US) N N(zp) € KpSk_1.
Then, let (K7°,..., K70, 51°,..., 55 ) and (K{°,..., K% ,S7°,...,S;°) respectively be a
(p, k — 1)-coloring of G[N(x)] and a (p — 1, k)-coloring of G[{zo} U N(z0)].

Since every stable set intersects K in at most p vertices, and every clique intersects S in at
most k vertices, we obtain §” = S for an execution of line 19. Then, a (p, k)-coloring of G

is detected during the related execution of line 21, which concludes the proof. O

We remark that Algorithm 1 gives a priority to stable sets. Note that line 13 can be replaced
by a test on K’ and not on &’; namely, if G[V \ K] € KoSk then deduce a (p, k)-coloring of
G. In such a “clique version”, (W, Z,, Wz, Zz) are of sizes p(k—1), pk, (p— 1)k and (p—1)k,

respectively.

Corollary 1.32. If K;SoNG and KoS;NG are polynomially determined fori < k and j < p,
then K;S; NG is polynomially determined for i < k and j < p.

If G is a class of graphs for which Min Coloring and Min Clique Cover are polynomially
solvable, then for every fixed (7,5),K;So NG and KoS; N G are polynomially determined.
This is for example the case if G is a subclass of perfect graphs.

A special case of this result is the test of 2-split-colorability [19].

Corollary 1.33. (G is the class of all finite graphs) Since IC;So and KoS; are polynomially
determined for i,7 < 2, KoSs s also polynomially determined.

The above algorithm is a nice generalization of the idea in [19] for recognizing (1,2) and
(2,1)-colorable graphs. Nevertheless, there is a simpler algorithm by Feder et al. giving
the same result with a lower time complexity in [58]. Their result works in a more general
framework where the objective is to partition the vertex set of a given graph into a sparse
and a dense graph. In [58], S and D are defined as two classes of graphs, respectively called
sparse and dense, satisfying the following conditions: both & and D are hereditary classes,
and there exists a constant ¢ such that the intersection SN D has at most ¢ vertices for any

SeSand D € D. A sparse-dense partition of a graph G with respect to the classes S and
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D, is a partition of the vertex set of G into two parts where one induces a sparse graph and

the other one induces a dense graph. Their result is stated as follows.

Theorem 1.34 ([58]). All sparse-dense partitions of a graph with n vertices can be found

in time O(n**T2T(n)), where T'(n) is the time for recognizing sparse and dense graphs. [

Obviously, a (p, k)-coloring is a sparse-dense partition where the constant ¢ = pk; a (p,0)-
colorable graph is a dense graph and a (0, k)-colorable graph is a sparse graph. In this

particular case, Theorem 1.34 can be restated as follows.

Corollary 1.35. Let G be a hereditary class of graphs, let (p,k) € Nx N,p,k > 1. If
KpSo NG (respectively KoSi N G) is determined in time O(T,(n)) (respectively O(T(n))),
then K,Sk NG can be determined in time O(n?***2max (T, (n), Tx(n))).

Their idea is based on the fact that a graph with n vertices has at most n2* different (p, k)-
colorings. To show this, let (KC,S) be a particular (p, k)-coloring of G where K induces p
cliques and S induces k stable sets. Then, any other (p, k)-coloring (K',S’) of G verifies
IKNS'| < kp and |[K'NS| < kp. In other words, if we know a particular (p, k)-coloring
then we can find all (p,k)-colorings by 2kp-local searches. Then, the idea is to find a
(0, k)-colorable induced subgraph as large as possible (in any possible (p, k)-coloring) by
performing (at most n) (2kp + 1)-local searches from a smaller (0, k)-colorable subgraph.
This procedure ends with a S’ having the same size as the unknown S. The rest of the
algorithm consists of performing a 2kp-local search on &’ until we find a (p, k)-coloring of
G or, when the case fails to rise, we conclude that there is no such partition since we tested
all possibilities.

The following result is then implied by both Theorem 1.31 and Corollary 1.35 since (0, k)-
colorability and (p, 0)-colorability are polynomially determined in the class of perfect graphs.

Corollary 1.36. If G is a subclass of perfect graphs, then K,S, NG is polynomially deter-
mined for any fixed p and k.

This corollary also follows from a result of [96] which states that, for any fixed p and k,
hereditary families of (p, k)-colorable perfect graphs have a finite list of forbidden subgraphs,
and hence a polynomial time recognition algorithm.

Another consequence of Theorem 1.34 concerns polar graphs.

Corollary 1.37. For any graph G, and for fixed s and t, it can be recognized in polynomial
time whether G is (s, t)-polar.

Proof. First, note that a join of s stable sets is a sparse graph and that a union of ¢ cliques
is a dense graph. Then, one can observe that for fixed s and ¢, there can be at most
¢ = min(s,t) vertices in the intersection of a (s,0)-polar graph and a (0,¢)-polar graph.
Furthermore, (s,0)-polar and (0, ¢)-polar graphs can be recognized in polynomial time; G is
(0,t)-polar if and only if G does not contain induced P3 and it has ¢ connected components;
G is (s,0)-polar if and only if G is (0,s)-polar. Note that the complexity is no more
polynomial if s and ¢ are not fixed. ]
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Let us note that the condition “G is hereditary” in Corollary 1.35 is needed unless N'P=P.
In fact, let us consider the class G of graphs obtained by adding a K4 to an arbitrary graph G
(without any edge between G and Kj). GNKySs is trivially polynomially determined since
such graphs are never (0, 3)-colorable. On the other hand, G N K18y is also polynomially
determined (recognition of a clique). But it is NP-complete to decide whether a graph of
G is (1, 3)-colorable. In fact a graph G is (0, 3)-colorable if and only if the graph obtained
by adding a K4 to G, which is not connected to G, is (1, 3)-colorable.

We observe that Corollaries 1.36 and 1.37 are also consequences of a result of Alekseev et
al. in [3], which is obtained, independently from sparse-dense partitions, in the framework
of recognizing (Pi,...,Pp, Q1,..., Qk)-colorable graphs (this notion is mentioned in Sub-
section 1.2.2).

In [40], we also point out that recognizing a (1, 3)-coloring remains difficult even if a maxi-
mum induced (p, k)-colorable subgraph with (p, k) equal to (1,0), (0,1),(0,2) and (0, 3) can

be polynomially computed.

Proposition 1.38. There exists a class of graphs G such that a mazximum clique, a max-
imum stable set, a mazimum induced bipartite and also a mazimum 3-colorable induced
subgraph can be polynomially computed on G, while it is N'P-complete to decide whether a
graph in G is (1,3)-colorable.

Proof. Let us revisit the proof of A"P-completeness of graph 3-colorability by reduction to
3-SAT [71]. Given an instance of 3-SAT with p clauses (C1,. .., Cp) and n boolean variables
(x1,...,2y), one constructs a graph G = (V, E) defined by:

V=ViUV,UVs,

where Vi = {R,T,F}, Vo = U {2, Z;} and V3 = U?Zl{y{,yg,yg,yi,yg}. V contains two
vertices per literal, five vertices per clause and three color vertices R, T and F (standing for

Red, True and False). Moreover,
E=FEi UEFEysUE3U Ey,

where Ey = {RT,RF,TF}, Ey = U {Rx;, Rz;,v;%;} and B3 = U_ {Ty], Ty, yjyl,
viYss vivs, viyl, yiyl}. For every clause C; = (z1,22,23), E4 contains three edges linking
the vertices of V5 associated with (z1, 29, 23) to (y{ ,y%,yg), respectively.

G is 3-colorable if and only if the related 3-SAT instance is satisfiable. Moreover, denoting
by Red, True and False the respective colors of (R,T, F') in this coloring, vertices in V;
are either True or False, which defines a truth assignment to boolean variables satisfying
every clause. It is also straightforward to verify that, for every 3-SAT instance, the related
graph G admits a 4-coloring using the 4th color only for vertex T (in other words the graph
obtained from G by removing vertex T' is 3-colorable).

We denote by = 2n+5p+3 the order of G, then we consider the graph G = (V, E’) defined
as follows: for every vertex v in V' we introduce four copies u{, u$, u$, uj in V. Finally, we

: A > T 4T :
add two vertices v’y ,u”; in V. Hence we have V = {u/; ,u"; } Upey {uy,uy, ul, uf}, while
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E is defined as follows: G[{u},v € V}],G[{uy,v € V}] and G[{u},v € V'}] are three copies
of G, G[{uy,v € V}U{u] u"{}] is a (r + 2)-clique, and finally, {u?,u3,uy, uy} where
v e V\{T} and {uT, vl ul vl o/} v’} } induce cliques in G.

By using a 3-coloring of G[V \ {T}], it is easy to compute three disjoint stable sets S*, S?
and S3 of G, each of cardinality r and containing respectively u4T, o/ Z and u” 4T. Moreover,
a(é ) = r and consequently S! is a maximum stable set of G, S1US? is a maximum induced
bipartite subgraph of G, and S' U S%2 U S3 is a maximum 3-colorable induced subgraph
of G. On the other hand, {uj,v € V} U {v/ 4]} is the unique maximum clique of G.
Consequently maximum stable set, maximum clique, maximum induced bipartite subgraph
and maximum induced 3-colorable subgraph can be polynomially computed for every graph
G associated to 3-SAT instances. G is the class of such graphs. A graph in G is (1,3)-
colorable if and only if the related 3-SAT instance is satisfiable, which is N'P-complete to
verify. O

The proof of Proposition 1.38 suggests the following result.

Corollary 1.39. There exists a class of graphs G such that a mazimum cliqgue, a mazi-
mum stable set, a mazimum bipartite subgraph and a maximum tripartite subgraph can be

polynomially computed on G, whereas it is N'P-hard to find a mazimum split graph.

Proof. 1t suffices to remark in the proof of Proposition 1.38 that we have;

N (G‘) ) r+(r+2) if G is 3-colorable,
11 r+ (r+1) otherwise.

This follows from the observation that G admits a maximum stable set (of size r) which does

not intersect with its unique maximum clique (of size r+2) if and only if G is 3-colorable. [
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1.5 Min Split-coloring by integer programming

One may suggest the following integer programming model for Min Split-coloring in a given
graph G = (V, E) with |V| = n.

min Y zj
J

1 if vertex ¢ is in the clique of split graph j
ry = . (1.1)
0 otherwise
1 if vertex ¢ is in the stable set of split graph j
Yi; = . (1.2)
0 otherwise
Tig +xK; < 1ifik¢ E, j=1,...,1 (1.3)
n
Z(xij—i—yij) < nzj, g=1,...,1 (15)
i=1
l
Z(ﬂﬁz‘j +yy) = 1,i=1,...,n (1.6)
j=1

e {01}, j=1,...,1

Here [ is an upper bound of xs(G). We may choose | = [n/3] since G is trivially [n/3]-
split-colorable by assigning one color to any triple of vertices.

Constraints (1.1) and (1.2) define the decision variables z;; which give the vertices of G to
be assigned to the clique of the split graph j, and y;; the vertices in G to be assigned to
the stable set of the split graph j. Constraints (1.3) express that no two vertices not linked
in G can be in a same clique and, conversely, constraints (1.4) mean that no two vertices
linked in G can be in a same stable set. Constraints (1.5) say that the number of vertices
assigned to one split graph can not exceed n if this split graph exists, and 0 otherwise.
Finally, constraints (1.6) make sure that every vertex is colored by exactly one color. The
number of used colors is then given by the variables z;; z; = 1 means that color j is used in
a solution and z; = 0 says that the color j is not used.

One can notice that this model has O(n?) decision variables and O(n3) constraints. Ad-
vanced techniques have to be applied in order to solve this integer program for graphs having
a large number of vertices. However its interest is theoretical and this formulation may be
a basis for more efficient formulations involving additional constraints.

The above formulation suggests the following representation of Min Split-coloring: let & be
a positive integer and let 1,...,n be the vertices of G. We construct a graph G(k) by first
taking k copies G',...,GF of G; let §;; (i = 1,...,n) be the vertices of G’. Then we take k
copies 61, . ,E’“ of G (the complement of G); let 4;; (i = 1,...,n) be the vertices of e
Then for each i (i = 1,...,n), we form a clique on vertices 91, .., ik, Ti1,- - -, Lik. Lhe
resulting graph is G(k). We can then state the following proposition.

Proposition 1.40. G has a k-split-coloring if and only if G(k) has a stable set S with
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|S| = n.

Proof. There is a one-to-one correspondence between stable sets S with n vertices in G(k)
and k-split-colorings of G or, equivalently, integral solutions of the integer linear program-
ming model (where k colors are used):

g)ijGS<:>yij:1;
i’ijES<:>1'ij:1.

This means that ¢;; is in S if and only if vertex ¢ is in the stable set of the split graph j
and, similarly, Z;; is in S if and only if vertex i is in the clique of the split graph j. U

Remark that if we simply consider G(1) then one sees that there is a one-to-one corre-
spondence between (maximum) split graphs in G and (maximum) stable sets in G(1). It
is interesting to notice that as soon as G contains an induced Ps, G(1) is not perfect (it
contains an induced Cj).

It is clear that solving Min Split-coloring by using the above integer programming model
necessitates some elaborate techniques as for instance branch-and-cut. Development of such
methods is not explored in this dissertation; the above integer programming model is only
given in order to suggest new research fields in the study of Min Split-coloring. For instance,
classes of graphs for which the integer programming formulation of Min Split-coloring has

some nice properties which make it easy to solve can be studied.
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Chapter 2
Cacti and triangulated graphs

In this chapter, we exhibit a class of graphs, called cacti, where Min Split-coloring is solved
in polynomial time. In the first section, we derive polynomial time algorithms to solve Min
Split-coloring and to find the split-independence number in cacti. These are based on the
article [50].

In the second section, we mention similar results in triangulated graphs. Polynomial time
algorithms for generalized coloring problems are easily derived from the results of Hell et
al. [87], and the split-independence number follows from some structural properties of

triangulated graphs.

2.1 Cacti

A cactus is defined as a connected simple graph where no two elementary cycles share an
edge. In other words, no two elementary cycles have more than one common vertex. Let us
remark that a tree is a cactus. Conversely, when each cycle of a cactus is contracted to a
vertex, then we get a tree.

Note that in cacti, the size of a clique is at most three. For the split-coloring of cacti, we
will focus on elementary odd cycles since the only connected components remaining after
coloring odd cycles are even cycles, paths and trees, and once again, they are 2-colorable
in the classical sense, i.e., 2-split-colorable by choosing only two stable sets. Moreover, we
know that a cactus is bipartite if it contains no (elementary) odd cycles and hence it is
2-split-colorable. On the other hand, cacti are always 3-split-colorable because they are
3-colorable in the classical sense. In conclusion, the split-coloring of cacti boils down to be
a decision between 2 and 3-split-colorability.

In the process of finding the split-independence number of a cactus, the assignment of a
vertex to a stable set and/or to a clique associated with a split graph is strongly related to
the structure (even or odd cycle, bridge, i.e., edge not contained in any cycle) to which this
vertex belongs. Again, we will see that we have to proceed differently for vertices located

in an odd cycle than for others.
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CHAPTER 2. CACTI AND TRIANGULATED GRAPHS

For the reasons just mentioned, first, we need a procedure listing all odd cycles in a cactus.
Although in arbitrary graphs, the number of odd cycles can grow exponentially with the
number of vertices, their number is bounded above by |(n — 1)/2] in cacti. This bound
corresponds to the number of odd cycles in a cactus where a single central vertex is shared
by all cycles of length three formed by the other n — 1 vertices. In order to include odd
cycles of a cactus G = (V, E) with |V| =n, |E| = m in a list £, we first observe that any
2-connected component (that is, a subgraph H of G which can be disconnected from G with
the removal of at least two vertices) of a cactus is a cycle. Then we apply the algorithm
of Tarjan [111] to detect all separating vertices and all cycles. This is a depth first search
algorithm which provides a list of blocks and a list of separating vertices for any arbitrary
graph in time linear in O(m). Note that a separating vertez is a vertex whose removal gives
a disconnected graph, and a block is a maximal non-separable subgraph, so it may be either
a 2-connected component or an isthmus, i.e., an edge whose removal increases the number
of connected components [11]. Having a list of all blocks, it suffices to eliminate edges and

cycles of even length to obtain the list £ of odd cycles.

2.1.1 Split independence number in cacti

In this section, we concentrate on the problem of finding an induced split graph of maximum
size in a cactus G = (V, E), where |V| = n, |E| = m. In other words, we try to find a
stable set S and a clique C' in G such that |S U C| is maximum. For this purpose, we will
first describe a simple algorithm to find a maximum stable set in a cactus, since, to our
knowledge, such an algorithm has not been given elsewhere.

We adopt a dynamic programming approach. Given a cactus G and its lists of cycles
and separating vertices, one can construct a corresponding arborescence A using the block-

cutpoint tree (see [83]):

e each cycle, each edge not contained in a cycle and each separating vertex in G is

represented by a vertex in A;

e two vertices are linked in A if and only if they correspond to a block and a separating

vertex contained in it;

e all the edges in A are oriented towards a chosen separating vertex (preferably one

closest to a leaf).

Note that vertices corresponding to two cycles, or two separating vertices in GG are not linked
in A. Having such an arborescence A, one can label separating vertices (v;) in increasing
order according to the direction of exploration of A. Then, another label may be given to
vertices representing cycles in such a way that labels of cycles linked to and oriented towards
v; would be smaller than the labels of cycles linked to and oriented towards v; whenever
j < i. An example of labeling can be seen in Figure 2.1 where the labels of cycles, edges and

separating vertices (black ones) of G are determined by means of the arborescence A. This
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2.1. CAcTI

way of labeling G is not unique but perfectly defines a direction for exploring the original

graph G by dynamic programming,.

3
2 f 4
o—= <—O
U1 V2
A 6 o<
V3 5
U4
7
Us

Figure 2.1: An arborescence A corresponding to graph G.

One may proceed in the exploration order of separating vertices and compute the stability
number in the subgraph G; lying in the lower part of v; (which consists of cycle(s) oriented
towards v;) according to two scenarios: v; is excluded in the maximum stable set of G; or it
is authorized. Hence, for any separating vertex v;, we will compute two weights; w®(v;) =
maximum weight of a stable set in G; — v;, and w*(v;) = maximum weight of a stable set
containing v; in G, where the weight of a stable set is simply the sum of the weights of
its vertices. Having computed w®(v;) and w®(v;) for a separating vertex, we can replace
G — v; by one vertex v(G;) of weight w*(v;) since its best contribution to a maximum
stable set of G, which, in this case, does not contain v;, is equal to w®(v;). On the other
hand, putting v; in a stable set will imply that we add w®(v;) vertices in a maximum stable
set of G, and that v(G}) cannot be put in the same stable set. Consequently, the weight of
the vertex v; will be equal to w®(v;).

One can explore a whole cactus G repeating this procedure until we obtain a maximum
stable set of G. Note that both for computing w®(v;) and w*(v;), the problem with which
we have to deal is exactly the maximum weighted stable set problem in a caterpillar (i.e., a
tree with the property that the removal of its leaves results in a path); this is easily solved.
Once an optimal solution is obtained, this maximum weight contains, as information, the set
of vertices giving the corresponding maximum stable set. The number of calculations of this
kind is equal to the number of separating vertices. Algorithm 2 describes the application of
the above idea in order to find a maximum stable set in a cactus. In Figure 2.2, the method
is represented for the graph G of Figure 2.1. At each step, only the weights that we need
are shown in brackets. Note that the remaining graph after the application of Algorithm 2
is either a path or a cycle with an edge pending from one of its vertices; therefore the final
computation of the algorithm is trivial.

The above discussion leads to the following result.

Lemma 2.1. For a cactus G, a(G) can be found in time linear in O(m + k), where k is

the number of separating vertices in G.
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CHAPTER 2. CACTI AND TRIANGULATED GRAPHS

Algorithm 2 Maximum stable set in cacti

Input: a cactus G
Output: a maximum stable set of G
. set the weights of all vertices to 1;
. determine separating vertices and the list £ of odd cycles in Gj

1

2

3. construct an arborescence A;

4. for all separating vertex v; (considered in the exploration order of A) do
5

compute w®(v;) = weight of a maximum weighted stable set of G; not containing

Uj;
6. compute w®(v;) = weight of a maximum weighted stable set of G; containing v;;
7. replace Gj — v; by a vertex v(G;) of weight w®(v;), assign the weight w®(v;) to vj,

link v(Gy) to vy;
8. compute the weighted stability number of the remaining graph and return the corre-

sponding stable set.

®)
® O
md&yvs O
8 8

Figure 2.2: Computing the stability number of a cactus G.

Theorem 2.2. For a cactus G, an induced split graph of mazimum size can be found in

linear time.

Proof. First of all, Algorithm 2 returns a maximum stable set Sy, giving a(G). Observe
that we have a(G) + w(G) — 1 < ag(G) < a(G) + w(G) for any graph. Having the list £
of all odd cycles, we search for a triangle K% in it which verifies a(G — K%) = a(G) for a
of G — K}. If such a pair (K%, S:

mm) exists then it constitutes a

maximum stable set S},

split graph of maximum cardinality ag(G) = a(G)+3 in G. Otherwise any pair (K%, S% )
is a split graph of maximum cardinality as(G) = a(G) + 2. Whenever £ contains no K3,
a clique of size 2 can be chosen in such a way that none of its vertices is contained in a
maximum stable set S,,q; of G. This claim is true since there would necessarily be two
adjacent vertices of an odd cycle which do not appear in S,,4,. Finally, if £ contains no

odd cycles then obviously ag(G) = a(G) + 1. O
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2.1.2 Split-coloring of cacti

Having the list of all odd cycles of G, we will consider an auxiliary graph G' = (V', E')
where every vertex v; € V' corresponds to an odd cycle OC* of G, hence |V'| = |£| = L.
Two vertices v} and v} of V' are linked if and only if the distance between OC* and OC” is
at most 1, i.e., either OC" and OC” have a common vertex or there are vertices in OC" and
OCYJ which are adjacent. Note that if G is a cactus then so is G’ since, by construction, two

cycles sharing an edge in G’ implies that there are cycles sharing at least one edge in G.

Algorithm 3 Split-coloring of cacti
Input: a cactus G

Output: xs(G)
1. construct G'; //as already described in the proof of Theorem 2.3

2. if there is a stable set of size three in G’ then

3. print “xg(G) = 3, exit.

4. else

5 choose v} and v}, such that vjvh ¢ E’, set K'' = {v]}, K> = {v}} and R = 0);
6 for all vertex v} € V' do

7. if vjv] € E' and v[v}, ¢ E’ then

8 store v} in K'l;

9 else if vjv), € E' and vjv| ¢ E' then

10. store v} in K'?;

11. else

12. store v} in R;

13. for all vertex v, € R do

14. if v/ is adjacent to every vertex in K'! (respectively in K'?) then
15. remove v} from R to K'' (respectively to K'?);

16. if R =( then

17. K" and K'? are both cliques;

18. print “ys(G) = 2", exit.

19. else

20. Jv € V' which constitutes a clique neither with K’' nor with K'?;
21. print “G is a OCs-cactus and ys(G) = 37, exit.

Theorem 2.3. Algorithm 38 decides in O(L3) time whether a cactus is 2 or 3-split-colorable.

Proof. We first remark that the stability number of G’ is the largest number of induced
disjoint union of odd cycles in G. More precisely, we are not interested in the exact value
of a(G") because we know that if o(G’) > 3 then xs(G) > 3, due to Fact 1.26. Therefore,
a simple procedure which tests for every triplet in G’, in O(L?) time, whether it forms

a stable set or not does the job. Having such a triplet, we may claim that our cactus is
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3-split-colorable.

Otherwise we fix an arbitrary pair of non-adjacent vertices {v],v}} corresponding to two
induced odd cycles in G, and we try to partition the vertex set V'’ into two cliques K’' and
K'? containing respectively v} and v5. One can observe that having two cliques covering
the vertex set V'’ of G’, we can trivially exhibit a 2-split-coloring of G. More precisely, the
existence of a clique in G’ implies that there is a set of odd cycles in G which are pairwise
at distance at most 1, and that there is a clique in G of size 1, 2 or 3, which contains at
least one vertex of each odd cycle of this set. In other words, the two cliques K'' and K2
in G/ found by Algorithm 3 tell us exactly how to choose two cliques K! and K2 in G, each
one associated with a split graph covering together the vertex set of G according to Fact
1.24. That is why Algorithm 3 searches for a partition into K’' and K'? that we would like
to be cliques. Therefore, K'* (respectively K'?) contains only vertices which are adjacent
to v} (respectively v5). We can see in Figure 2.3 an illustration of how Algorithm 3 gives a

2-split-coloring of the graph given in a).

11 KIQ
WA ~
N rO\Uy
/ 1 \ 1 \
\ | |
4 3 o s
/ \ /
2 7
) A cactus G. G’ partitioned into K'! and K'?.

c) 2-split-coloring of G.

Figure 2.3: An example of split-coloring of a cactus.

In general, the phase of vertex assignment yields two cliques K’! and K’? because of the
fact that we have at most two induced odd cycles. There is only one case which is easily
detected by Algorithm 3, where we do not obtain this result. It is due to the possible type
of connection between two fixed induced odd cycles OC! and OC?: OC' and OC? linked by
a (5. This exception, called C5-cactus, consists in a central cycle of length 5 sharing each
one of its vertices with at least one other odd cycle; an example of Cs-cactus appears in
Figure 2.4. We observe that there is no way to partition the vertices of the auxiliary graph

of a (Cs-cactus into two cliques.

It follows that a cactus G is 2-split-colorable if and only if there are at most two induced
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a) A Cs-cactus. b) Its auxiliary graph.

Figure 2.4: Cs-cacti are 3-split-colorable.

odd cycles and G is not a Cs-cactus; it will be 3-split-colorable otherwise. [l

Here we find an other 3-split-critical structure in addition to the ones given in Chapter 1,
Section 1.3: a Cs-cactus with unique odd cycles linked to each vertex of the central Cs is
3-split-critical.

Finally, let us notice that for Min Cocoloring, we have obviously z(G) < 3 for any cactus
G by taking a usual coloring. Moreover, we have z(G) = 2 if and only if either x(G) = 2,
or 0(G) = 2, or it is a split-graph. Note that all of these cases are trivially detected. One
can also easily see that general (p, k)-coloring problems can be solved by methods similar to
the one of Min Split-coloring. Nevertheless, they do not seem to be interesting to develop

because of the chromatic number of cacti which is bounded above by three.

2.2 'Triangulated graphs

Recall that a graph G is triangulated if any induced cycle C}, of G with k > 4 has a chord.
In what follows, we exhibit the results on all (p, k)-coloring problems in triangulated graphs.

First, let us introduce some notions that will be used in the sequel.

Definition 2.4 (Simplicial vertex). Given a graph G = (V,E), a vertex v € V is called

simplicial if N (v) is a clique in G.

Definition 2.5 (Perfect elimination order). Given a graph G, an order (1,2,...,n) is
a perfect elimination order if for all i, N; = {j : j € N(i) and j > i} is a clique, i.e., i is a

simplicial vertex in the graph induced by vertices i + 1,...,n.

It is known that a graph G is triangulated if and only if it admits a perfect elimination
order [46, 67]. Moreover, given a triangulated graph G, one can find x(G) and all maximal
cliques of G in time O(n + m) [112] and also a(G) in the same time complexity [72], all
with algorithms based on a perfect elimination order. Finally, note that an optimal coloring
is obtained by a reverse greedy algorithm which proceeds in the order n,n — 1,...,1 and

assigns to each vertex the smallest available color.
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2.2.1 Split-independence number in triangulated graphs

Theorem 2.6. For a triangulated graph G = (V, E), the split-independence number ag(G)

can be obtained in O(D(n + m)) time, where D is the number of maximum cliques in G.

Proof. 1t is easily seen that a maximum stable set and a maximum clique cannot share more
than one vertex, hence a(G) + w(G) — 1 < ag(G) < a(G) + w(G). Having the list of all
maximum cliques K*’s, obtained from the list of all maximal cliques by eliminating the ones
which are not maximum, it suffices to find a maximum stable set S* in G — K*. It should
be trivially noted that a(G) — 1 < || < a(G). If there exists S? such that |S?| = a(G) for
some 4, then S is also a maximum stable set in G and K?U S? is a maximum split graph of
size ag(G) = a(G) + w(G). Otherwise, we can conclude that there is no pair of maximum
clique and maximum stable set having no common vertex. In this case, any pair (K*, S%)
forms a maximum split graph of size ag(G) = a(G) + w(G) — 1. To decide, we only run
once the algorithm finding all maximal cliques in G, and D times the algorithm finding a

maximum stable set in G — K*, where D is the number of maximum cliques. O

Let us note that, in triangulated graphs, it is rather hard to generalize this result to find
@y in polynomial time for given p and k; in fact, it is already N'P-hard to find ;o and
g in split graphs which are triangulated and co-triangulated (i.e., their complement is
triangulated) [120]. In return, this problem becomes interesting for fixed p and k since both
finding o, o and ay , are polynomially solvable in triangulated graphs for fixed p and & [120].

This direction can be explored in a future research.

2.2.2 (p, k)-coloring of triangulated graphs

In this section, we derive polynomial time algorithms for all (p, k)-coloring problems based
on the results of Hell et al. [87]. The following theorem characterizes (p,k)-colorable
triangulated graphs by forbidden subgraphs.

Theorem 2.7 ([87]). A triangulated graph is (p,k)-colorable if and only if it does not
contain (p + 1)Kxy1 as an induced subgraph. O

Note that if an arbitrary graph contains (p + 1)Kjxy1 as an induced subgraph then it is
trivially not (p, k)-colorable. Nevertheless, the converse is true only for triangulated graphs.
Algorithm 4 is then derived in [87] for the recognition of (p, k)-colorable triangulated graphs.
Note that c; and s; are the colors corresponding respectively to the j’th clique and the j'th
stable set used to color the vertices of a given graph. We denote by S’ the set consisting of

1, together with all vertices among 1,2,...,7 — 1 colored s1, s2,...,sp.

Corollary 2.8. (p,k)-coloring problems, Min Split-coloring and Min Cocoloring are poly-

nomially solvable in triangulated graphs.
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Algorithm 4 Recognition of (p, k)-colorable triangulated graphs [87]

Input: a triangulated graph G with a perfect elimination ordering 1,2,...,n of its vertices,
an integer p

Output: a (p, ki )-coloring of G

1. color the vertex 1 by sy;

2. if vertices 1,2,...,7 — 1 are colored without using color ¢; then

3. if G[{1,...,i}] is p-colorable then

4 remove the colors from 1,2,...,7% — 1 and color 1,2,...,7 with colors
51,52,...,5p; //using the reverse greedy algorithm

5. else

6. keep the coloring of 1,2,...,7 — 1 and color i with ¢y;

7. if vertices 1,2,...,7 — 1 are colored having used colors ci,ca,...,c, then

8. if 9b < a which is the least subscript such that 7 is adjacent to the first vertex

colored with ¢, then

9. color ¢ with c¢p;

10. else if S’ is p-colorable then

11. remove the colors from the vertices of S\ ¢ and color S? with colors
51,82,...,Sp; //using the reverse greedy algorithm

12. else

13. keep the coloring of 1,2,...,¢ — 1 and color ¢ with cg41.

Proof. Although Algorithm 4 is conceived to recognize a (p, k)-colorable triangulated graph,
in fact, it minimizes k& such that the graph is (p, k)-colorable for any given p; we set kpn
to be the largest value of a, such that there is a vertex colored c,, or ki = 0 if all vertices
are colored with s1, s2,...,s,. Furthermore, it is done in time O(n(n + m)) since it works
with at most n applications of reverse greedy algorithm. The solutions for (pyin, k)-coloring,
Min Split-coloring and Min Cocoloring in triangulated graphs can be then computed in time
O(n?(n 4+ m)) according to Remarks 1.20 and 1.21. O

An algorithm with better time complexity, namely O(n(n 4+ m)), for Min Cocoloring is
derived in [78]. It explores the characterization of triangulated graphs which states that
they are exactly the intersection graphs of subtrees in a tree [73]. The question of whether
Min Split-coloring admits an algorithm with time complexity better than O(n?(n + m))
in triangulated graphs is an interesting question that we leave for future research. Also, a
natural continuation of these results would be to consider the generalized coloring problems
in classes of graphs containing triangulated graphs, like quasi-triangulated graphs' and
weakly triangulated graphs?.

Note finally that Hell et al. give also a simplification of Algorithm 4 for p =k =1 in [87].

LA graph G is quasi-triangulated if it admits an order of its vertices such that for any subgraph H of G,
either the largest vertex in H is simplicial in H or the smallest vertex in H is simplicial in H.

2A graph G is weakly triangulated if neither G nor G contains chordless cycles of length greeter than or
equal to five.
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This allows to derive a recognition algorithm of split graphs in time O(n 4+ m), which is a

better time complexity than the algorithm in time O(n?) given in [100].
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Chapter 3
Cographs

In this chapter which exhibits the results obtained in [40], we focus on a subclass of perfect
graphs: the cographs. Cographs are intensively studied in the literature with respect to
various partitioning problems. Thanks to their nice structural properties (we introduce them
in Section 3.1 that follows), they generally admit polynomial time algorithms for problems
(including Min Coloring, Min Clique Cover, Max Stable Set and Max Clique) which are not
always that easily solvable in other classes of graphs. For instance, precoloring extension can
be solved in linear time in cographs [92] while it is N'P-complete in bipartite graphs [90]. In
a similar way, there is a linear time algorithm solving chromatic sum in cographs while the
same problem is NP-complete in the class of bipartite graphs [91]. But, contrarily to this
first impression, there is also a significant number of A/P-complete problems in cographs:
for instance achromatic number® [12], list coloring [92], partition into three stable sets of
size at most [ [13]| and generalized chromatic sum [91]. In this context, the complexities of
generalized coloring problems appear as an open problem far from being trivial.

In this chapter, we give a new characterization of cographs which leads to efficient algorithms
for solving (p, k)-coloring problems, Min Split-coloring and Min Cocoloring respectively in
O(n? + nm) time, O(n? 4+ nm) time and O(n3/?) time. Here, we improve the time bound
given in [78] for Min Cocoloring of cographs by answering an open question of [65]: we
show that the greedy cocoloring algorithm given in [65] is an exact algorithm only for
cographs. We also give a dynamic programming algorithm to find the maximum induced
(p, k)-colorable subgraph. In addition, we present characterizations of (2,1)- and (2,2)-
colorable cographs by forbidden configurations?. Damaschke proves in [34] that there cannot
be infinitely many cographs without having one as an induced subgraph of another. This
implies that any hereditary subfamily (e.g. (p, k)-colorable cographs or polar cographs) must
be characterized by a finite set of forbidden induced subgraphs. Finally, we also mention

some results of Feder et al. [57] concerning different generalized colorings of cographs and

!Given a graph G = (V, E), its achromatic number is the maximum number of stable sets Vi,...,Vx

partitioning V' and such that, for each pair of distinct sets V; and V;, V; U Vj is not a stable set.
*These ideas have been used since then by Francisco et al. in [66] to characterize (p, k)-colorable cographs,

for all p and k.
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determining in particular (p, k)-colorability of cographs in linear time for fixed p and k.

3.1 Preliminaries on cographs

We will consider cographs, also called Pj-free graphs, which are defined as graphs without
induced path on four vertices, i.e., without Pj.

Cographs were first introduced as complement reducible graphs by Corneil et al. in [29].
Note that the complement of a cograph is a cograph as well since P, is isomorphic to a Pj.
They are a subclass of perfect graphs admitting linear time algorithms for Min Coloring,
Min Clique Cover, Max Stable Set and Max Clique [30]. In fact, it is shown in [25] that,
given a graph, while applying the greedy coloring algorithm assigning the first available
color to its vertices considered in some order, the only structure preventing the algorithm to
give an optimal solution occurs on a particular ordering of vertices of an induced P,. Since
there is no induced P, in cographs, a greedy coloring algorithm gives an optimal coloring
for all orderings of vertices; this is obtained in linear time in the size of the graph.

It is well-known that for a cograph G, either G or G is disconnected (see [29]). Further-
more, cographs are precisely the graphs that can be constructed from one vertex using the
operations of taking disjoint unions and taking complements. Subsequently, a unique tree
can be constructed with cograph G as the root and with internal vertices labeled to mark
which of these two operations joins subgraphs. This tree is known as the cotree and can be
constructed in time O(n + m) [29]. In the cotree T'= (N, A) associated with a cograph G,
every leaf corresponds to a vertex and vice versa. Every internal vertex x is labeled by its
type t(z) (either 0 or 1) and corresponds to the subgraph G(z) of G containing all children
of z. If t(x) = 0 (i.e., = is a O-vertezr), then G(z) is disconnected and every connected
component induces a child of . If t(x) = 1 (i.e., x is a I-vertez), then G(z) is connected
and every connected component of G(z) induces a child of z. If 2 denotes a vertex in the
cotree, then cix, cox, . .. are the children of z and C(x) is the set of its children. Given the
cotree of a cograph, a maximum clique and a maximum stable set can be found in time
O(n).

Let us finally remark that in cographs, induced split graphs reduce to threshold graphs; these
are defined as a subclass of split graphs for which there is an ordering of vertices such that
the neighborhoods form a nested family [100]. In other words, a threshold graph admits
a split partition (S, K) where for any two vertices v,u in S, the sets of neighbors satisfy
N(v) 2 N(u) or N(u) 2 N(v). In fact, threshold graphs are exactly (2K2,Cy, Py)-free
graphs [26].

3.2 Max (p, k)-colorable subgraph in cographs

Theorem 3.1. A mazimum induced (p,k)-colorable subgraph can be computed in time
O((p®k + pk3)n) in cographs defined by their cotree.
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Proof. The algorithm which is based on dynamic programming moves from the leaves to the
root, of the cotree and computes the matrix M(z) = (M;;(z)) @ j)e {o,...p}x{0,...k} for every
vertex x, where M; ;j(x) is a maximum (%, j)-colorable subgraph of G(z) (by convention
Moo(z) = 0).

Let us point out that, given a graph G with h connected components G1,..., Gp, o; ;(G)

is the optimal value of the following problem (with variables (i1,...,1p)):

h
max Y «; ;(Gi)
=1

) h
LOFE st. S =i
=1
i €{0,...,1}
Moreover, if (i1, ...,4;) is an optimal solution, then G[V; U...UV}], where G;[V}] is a max-

imum (4, j)-colorable subgraph of G, is a maximum (i, j)-colorable subgraph of G.

An optimal solution of F,, ; can be computed in time O(i?h) by dynamic programming
from the matrix (ai,;(Gw)) (i n)efo,...iyx {1,....h}-

This leads to Algorithm 5 below based on two procedures called respectively Compose and
Decompose. Procedure Compose computes the matrix M (z) from matrices M (cz), where
cx € C(z), by solving problems of type P,, ;. For every i,j, a maximum (i, )-colorable
subgraph M; ;(x) of G(x) is computed by dynamic programming: M 5 (respectively MZ” s)
denotes a maximum (s, j)-colorable subgraph of the graph induced by the first r connected
components of G(z) (respectively a maximum (i, s)-colorable subgraph of the graph induced
by the first » connected components of @) Procedure Decompose is a recursive proce-
dure which uses the previous one and moves from the leaves to the root according to the

dynamic programming principle.

Algorithm 5 Maximum (p, k)-colorable subgraph in cographs

Input: a cograph G and the corresponding cotree T'= (N, A) rooted in x(, two integers p
and k
Output: a maximum (p, k)-colorable subgraph of G
1. Decompose(zg, p, k);
2. return M, ;(xo).

A cograph G and the related cotree T'= (N, A) are given as well as two integers p and k.
The execution of Procedure Compose for a vertex x takes time O(p*k|C(z)|) if t(z) = 0,
and O(pk3|C(z)]) if t(z) = 1. Let us finally notice that every internal vertex of a cotree has
at least two children; consequently, the number of internal vertices is at most F' — 1 where
F' is the number of leaves; moreover, in the cotree associated with GG, F' = n is the size of

G. Consequently, the whole complexity is O((p®k + pk3)n), which concludes the proof. O
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Procedure 6 Compose

Input: z € N, (M(cz),cr € C(x) = {1z, ..., ¢|0()*}), two integers p and k
Output: M(z)
1. if t(z) = 0 then
2 for all (i,7) € {0,...,p} x {0,...,k} do
3 for s < 0 to i do
4. Mslj — M, j(c1z);
5. for r — 2 to |C(x)| do
6 for s — 0 to i do
7 qo = argmax(|]\~4;31| + |Ms—q,;(crz)], g €{0,...,5});
8 M;"j — M;"O_’jl U Ms_g,,i(crx);
9. M; () — MJS(m)l;
else //t(x)=1

10.

11. for all (i,7) € {0,...,p} x {0,...,k} do

12. for s — 0 to j do

13. Mi{s — M; s(c1x);

14. for r — 2 to |C(x)| do

15. for s — 0to j do

16. q = argmax(|M£;1| + | M s—q(cra)|,q € {0,..., s});
17. M{S — M;:;)l U M; s—go(cr2);

18. M; (m) — MJS(@'.

)

Procedure 7 Decompose

Input: z € N, two integers p and k
Output: M (x)
if C(z) =0 then
for all (i,5) € {0,...,p} x{0,...,k} do
if 14+ j =0 then
M; j(x) — 05
else
M; j(x) — {z};
else
for all y € C(x) do
Decompose(y);
Compose(z, (M (cz),cx € C(x)),p, k).

© ® NS ok WD

1

e
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3.3 (p, k)-coloring of cographs

Here is the main result of this chapter which suggests a new characterization of cographs
(Statement 3 of the following theorem) using their (p, k)-colorability.

Theorem 3.2. For any graph G = (V, E), the following statements are equivalent:

1. G is a cograph;
2. YV' CV, a11(G[V']) = a(G[V']) + w(G[V']) — 1;

3. VYV CV such that G[V'] € K,Sk, where p > 1, let K be a mazimum clique of G[V'],
then G [V\K] € Kp_1Sk.

Proof. 1. = 2. It is shown in [29] that any cograph G has the clique-kernel intersection
property, which means that every maximal clique of G has one vertex in common with
every maximal stable set of G. Thus, there is no disjoint pair of a maximum clique and a
maximum stable set in a cograph and, obviously, this property is hereditary.

1. <= 2. Assume that G is not a cograph, then it will contain at least one induced Py. It
suffices to observe that a1 1(Py) = «(Ps) + w(Py) = 2 + 2 = 4 implying that Statement 2
does not hold.

3. = 1. It suffices to notice that a P, with edges aias, asas and asaq belongs to K151 but
taking ajas as a maximum clique does not yield a (0, 1)-colorable graph.

1. = 3. Let (K',...,KP?, S, ..., S*) be a partition of V into p cliques and k stable sets.
One can decompose any maximum clique K into two parts K¢ and Kg, where Ko =
KN(K'U...UKP)and Ks = KN (S'U...US*). Obviously, Kg has at most k vertices.
Without loss of generality, one can write Kg = {x1,...,2s}, where z; € S* and s < k. An
illustration of the proof is given in Figure 3.1 where the clique K is shown by light shadowed

sets and where the dotted lines describe stable sets.

On the other hand, there is a vertex set L C K' U...U KP with |L| < |Kg| = s such that
KoUL is a maximal clique of K'U...UKP. Since G is a cograph, we can immediately say that
(K'U...UKP)\(KcUL) € K,-18p by coloring the complementary graph. Then, knowing
that (SST1U...US%) € KoSk—s, it suffices to show that LU [(STU...US*)\Kg] € KoSs
to obtain the assertion, namely G [V\K] € K,—1Sk.

Now, let us suppose that there is a clique K’ of size s+ 1 in (LU[(S'U...US*)\ Ks]. Clearly
K'NL # () since S'U...US* € KoSs and |K’'| = s + 1. In the same way, we know that
K'N[(S'U...US*)\Kg]| # 0 because |K'| > |L|. In what follows, we define K = K'NL =
{z1,...,zv}and K§ = K'N[(STU...US*)\ Kg| ={a1,...,an, ant1,-..,as41—p} such that
Vi < h, {a;} U K¢ is a clique (a;’s are possibly re-indexed) and that Vi > h + 1, Jw; €
K¢ such that a;w; ¢ E (possibly h = s + 1 —1'). K’ is shown as dark shadowed sets in

Figure 3.1. Now, let us observe the three following facts which will allow us to conclude.

Fact 3.3. {a;, z;,wj, z;} does not induce a Py = Yh, h+1 < j < s+1-U', Vi <, z;z; € E.
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Wy
Kg x‘l —l’.xs—i-l—l’+1§ :Zf.s
s e R

Figure 3.1: Proof of Theorem 3.2, implication 1. = 3.

Fact 3.4. Kc UK U{z1,...,xs41-1r} has |Kc|+ s+ 1 vertices thus it cannot be a clique
= h>1.

Fact 3.5. Vi < h, Vj > h+1, {aj,a;,wj,z;} does not induce a Py = a;z; € E.

The above facts are illustrated in Figure 3.1 where dashed lines are forbidden edges and
thick lines are the necessary edges. Then, it suffices to remark the following: Fact 3.3 and
Fact 3.5 imply that Kc UK} U{a;j,j < h}U{z;, h+1 < j < s+1—1'} is a clique of cardinality
|K| + 1, represented by the sets with bold frames, which yields a contradiction. O

The above result shows in particular that Statement 8 is true neither for comparability
graphs (known also as transitively orientable graphs) which contain cographs as a subclass,
nor for triangulated graphs.

Note also that, by the auto-complementarity of cographs, we have trivially that for all
V' C V such that G[V'] € K,S; where k > 1, then G[V'\S] € K,S;—1 where S is a
maximum stable set of G[V].

One can observe in Figure 3.2 that in Theorem 3.2, if we take a maximal stable set instead
of a maximum one, then the statement does not hold. The graph G of Figure 3.2 is clearly
(1, 1)-colorable. But, G[V \ S], where S is a maximal stable set of G, is not (1,0)-colorable.

G o—@—o
S

Figure 3.2: Theorem 3.2 does not hold with a maximal stable set.
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The proof of the following corollaries of Theorem 3.2, suggests some algorithms to solve

problems related to (p, k)-coloring.

Corollary 3.6. In any cograph G:
1. for any k, pmin = min{p : G € K, S} can be found in time O(n? + nm);

2. Min Split-coloring can be solved in time O(n? + nm).

Proof. For Statement 1, the algorithm consists in repetitively constructing a maximum
clique in the remaining graph and removing it as long as it is of size at least k + 1. Then,
S1,...,Sk are determined by a greedy coloring algorithm on the remaining graph. It suffices
to observe that according to Theorem 3.2, when the algorithm has already set pmi, cliques,
the remaining graph is in KyS; and thus does not admit a clique of size k+ 1. Note that the
only computation consists in finding py,;, maximum cliques, which takes O(ppin(n + m))
time, and running once the greedy coloring algorithm in the remaining graph, which takes
only linear time.

As for Statement 2, in step ¢ of the algorithm, one will compute a maximum clique in the
remaining graph; if it is of size at least ¢ + 1 then it will be chosen and removed from the
graph before going to step ¢ + 1, otherwise an i-coloring will be computed in the remaining
graph. To conclude, note that in step ¢, the number of fixed cliques is ¢. Therefore, if
Xs(G) = k then in step k, the remaining graph belongs to KySi. Obviously, the time

complexity is the same as the previous part of the corollary. O

It is needless to say that (p, kpn)-coloring is solved in a similar way with the same time
complexity in cographs.

One can also generalize the above corollary in the following way.

Corollary 3.7. For any cograph G and any function f : N — N, po = Min{p : G €

KpSip)} can be computed in polynomial time.

Proof. First of all, the existence of a p such that G € K,S (p) is obvious since K,,S; C K;S;i11.
Now, let us consider the same algorithm as in Statement 2 of Corollary 3.6 with the only
difference that we test if the maximum clique in step i is of size at least f(i) + 1 (and not
i+1), and consequently the algorithm ends with an optimal coloring of the rest of the graph
in f(i) (and not 7) colors. Once again, at step ¢ we have set exactly i cliques. To complete
the proof, it suffices to remark that after p,,;, steps (i = pmin), the remaining graph belongs
to KoSy(p)-

Note that for a constant function f, we obtain Statement 1 of Corollary 3.6; f(p) = p gives
the second part; f = 0 boils down to the problem of vertex covering by cliques and finally
if f = x(G) then ppin =0, i.e., G € KoSy(q)-

Finally, this result is also true when interchanging cliques and stables sets by simply applying

the same algorithm to the complement of G. 0
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3.4 Cocoloring of cographs

Min Cocoloring has been solved in time O(n?) for cographs with a dynamic programming
procedure visiting the vertices of their associated cotree from the leaves to the root [78]. In
what follows, we use Theorem 3.2 to devise a simpler algorithm for Min Cocoloring in the
class of cographs. More precisely, we show that the greedy algorithm for cocoloring given in

[65] is exact for cographs and has a better time complexity than O(n?). It runs as follows.

Algorithm 8 Greedy cocoloring
Input: a graph G = (V, E)
Output: a cocoloring Z of GG

1. Z

2. while G # () do

3. compute a maximum stable set S and a maximum clique K of G|
4. choose X = argmax(|S|,|K|) and Z «— ZU{X};

5. G G[V\X]

Theorem 3.8. For any cograph G given by its cotree, a minimum cocoloring is obtained by

the greedy cocoloring algorithm in time O(n®/?).

Proof. Let p,k be such that G € K,S;, and that 2(G) = p+ k. Assume that the greedy
algorithm does not give an optimal cocoloring. This means that there is a first step where
we cannot get an optimal decomposition anymore. At this step, assume that we have
already removed p’ cliques and k' stable sets, and that we remove a maximum clique K
without loss of generality. If G’ is the remaining graph after p’ + k&’ removals, Theorem
3.2 implies that G’ € K,_Sk_ir. By hypothesis, we have z(G') = 2(G) — p’ — k' but
2(G"\ K) > z(G) — p' — k' — 1. Note that we cannot have p — p’ < 0 since at some earlier
stage we would have faced the problem, neither p — p’ > 0 because the problem would not
occur yet. Therefore, we must necessarily have p—p’ = 0. Now, one can derive the following
inequalities using the facts that G’ € KoSi_pr and z(G') = x(G') = w(G’') = k — k-

a(G)—=1=0(G")-1>2(G'"\K) > 2(G") - 1=x(G") -1 =w(G) - 1.

Hence, the greedy algorithm should have chosen S instead of K which means that this case
is not possible.

As for the time complexity, it is well known that a maximum clique and a maximum stable
set can be found on a cotree in time O(n). On the other hand, the number of steps is
exactly z(G). If we denote by n; the number of vertices removed at step ¢ then the inequality
2(G) — (i — 1) < n; holds for i = 1,...,2(G). Summing both sides of these inequalities for
every i yields the bound O(/n) on z(G), which gives O(n?/?) as overall complexity. O
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3.5 Characterizing (2,1)- and (2,2)-colorable cographs

In this section, we give forbidden configurations characterizing (2,1)- and (2, 2)-colorable

cographs. In this purpose, let us point out the following lemma.

Lemma 3.9. FEvery connected component of a triangle-free cograph is a complete bipartite

graph.

Proof. Let G = (AU B, E) denote a triangle-free cograph which is obviously a bipartite
graph. Consider a connected component of G where one vertex a; € A is adjacent to b;
and to by of B. It is easy to verify that if one of the neighbors of a; is adjacent to a vertex
as € A then any other neighbor of a; has to be adjacent to as as well, in order to avoid
any possible Py. Applying this argument to the vertices of both A and B yields a complete
bipartite graph. [l

In what follows, we denote by H the bipartite graph H = (AUB, Ef) where A = {a1,a2, a3},
B = {b1,by,b3} and Er = {a1b1,a2be,asbs}. L is the tripartite graph L = (AU BUC, Ey)
where A = {aj,a2,a3}, B = {b1,b2,b3}, C = {c1,c2,c3} and Ep = {a;b;,a;c;,bici,i =
1,2,3}. Both of these configurations are shown in Figure 3.3 where dashed lines represent
forbidden edges and edges which do not appear in the figures are optional edges. One can
notice that as soon as one of the optional edges links two connected components of H or
L, then, by Lemma 3.9, all of the optional edges between these connected components are

present.

Figure 3.3: Configurations H and L.

Proposition 3.10. A cograph is (2,1)-colorable if and only if it does not contain configu-

ration H.

Proof. If G contains H = (Vi, Fyr) as configuration, then the subgraph G[Vy] is clearly not
(2,1)-colorable. Conversely, let us suppose that G does not contain configuration H. Let
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S* be a maximum stable set. Then, let S’ be a maximum stable set of G[V '\ S*|, G[S’ U S*]
is bipartite and admits S* as maximum stable set; hence S’ is a minimum vertex cover (a
set of vertices covering all the edges of the graph) and there exists a matching of size |S’| by
Konig’s theorem?. Since G does not contain H, this matching is of size at most 2. It means
that «(G[V \ S*]) < 2 and consequently (since cographs are perfect), G[V \ S*] € K280,
which implies G € K18;. O

Proposition 3.11. A cograph is (2,2)-colorable if and only if it does not contain configu-

ration L.

Proof. If G contains L = (V7,, E1,) as configuration, then G[V7] is clearly not (2, 2)-colorable.
Conversely, let us suppose that G ¢ K2Ss. Let S* be a maximum stable set of G, according
to Theorem 3.2, G[V \ S*] ¢ K2S;. Consequently (Proposition 3.10), 351 U S% c V' \ S*,
such that S' and S? are stable, |S'| = |S?| = 3 and G[S! U S?] admits a perfect matching.
Since S* is also a maximum stable set of the cograph G’ = G[S* U S US?], this graph is not
(2, 2)-colorable. In particular, it is not bipartite, consequently it contains a triangle (a’, ¥, )
with o’ € S*, b € S' and ¢ € S%2. (d/,b,c) is a maximum clique of G’, consequently
(Theorem 3.2) G” = G[(S* U St U S?)\ {d',V,c}] ¢ K1Sa. Thus, G” contains also a
triangle (a”,b”,¢") with a” € S*, b € St and ¢’ € S%, and G = G[(S* U St U $?) \
{a',a" b, b "} ¢ KoSz and contains a triangle (a”, 0", ¢") with o € S*, v € S* and
" € S2%. The subgraph G[{d,a",a"” b, b" b c, ", "} contains configuration L, which

concludes the proof. O

3.6 Characterizing (p, k)-colorable cographs

Following the above ideas, the forbidden configurations given in the previous section can be
generalized for (p, k)-colorable cographs for any given p and k (see Francisco et al. [66]).

In what follows, let [ x K, denote the configuration formed by [ copies of a clique of size r;

i . 1 !
%, where j = 1,... 7 then the sets {v;,...,v;},

where 7 = 1,...,r, are stable sets and the remaining edges are optional. For instance, the

if K* is a clique of size r having vertices v

configurations H and L are respectively 3 x* Ko and 3 x K3.

Francisco et al. first restate Lemma 3.9 with forbidden cliques of size I.

Lemma 3.12 (|66]). Every connected component of a cograph without K; is a (I—1)-partite
graph, forl > 2.

Their second lemma consists in a generalization of Proposition 3.10.

Lemma 3.13 ([66]). A cograph G is (p,1)-colorable if and only if it does not contain the
configuration (p+ 1) x K.

3For a bipartite graph G, the maximum number of edges in a matching is equal to the minimum number

of vertices in a vertex cover.
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Finally, they come up with the following theorem.

Theorem 3.14 ([66, 57]). A cograph G is (p, k)-colorable if and only if it does not contain
(p+1) % Kr41 as an induced subgraph. U

3.7 Concluding remarks

The results obtained in this chapter show that generalized coloring problems are rather well
solved in the class of cographs; they admit simple polynomial time algorithms. In particular,
we show that the greedy cocoloring algorithm (given in Algorithm 8) provides an optimal
cocoloring of a graph G if and only if G is a cograph.

Other results on partitioning the vertex set of a cograph into cliques and stable sets concern
the more general framework of matrix partitions studied in [57] by Feder et al. Let M be
an m by m matrix over 0,1,*%. An M -partition of a graph G is a partition of its vertex set
into m parts Vi, Va, ..., V,, such that each V] is a clique (respectively a stable set) whenever
M (i,i) = 1 (respectively M (i,7) = 0). There are all possible edges (respectively no edge)
between parts V; and V; whenever M (i, j) = 1 (respectively M(i,j) = 0), and no condition
is required on the edges between V; and V; if M (i, j) = *. When a graph does not admit an
M-partition, it is said to be an M -obstruction. The authors also consider the M-partitioning
problem with lists, i.e., under the condition that each vertex can be assigned to a restricted
list of possible parts. A constant matriz is called as (a, b, ¢)-block matriz if a,b and c are
chosen from 0,1 and *, and there is no diagonal *’s; a indicates the links between stable
sets, b between cliques and ¢ between stable sets and cliques. Then, it is clear that a graph
is (p, k)-colorable if and only if it admits an M-partition, where M is a (x, *, *)-block matrix
with p cliques and k stable sets. In [57], the authors give upper bounds (depending on p and
k) on the size of a largest minimal M-obstruction for different types of matrices M. They
obtain as a result that in cographs, any M-partition problem can be solved in polynomial
time for any fixed number of cliques and stable sets. In the case where M is a (x, *, *)-block
matrix, they precisely show that any minimal obstruction has exactly (p+1)(k+ 1) vertices
and, furthermore, it is both (k+1)-colorable and partitionable into (p+1) cliques; describing
the forbidden configurations given in Theorem 3.14.%

One can remark that polar graphs can also be expressed in terms of matrix partitions; a
graph is (s,t)-polar if and only if it admits an M-partition where M is a (1,0, x)-block
matrix with s stable sets and ¢ cliques. In the next chapter, we explore polar cographs in
terms of forbidden subgraphs and recognition algorithms.

Note finally that all M-partition problems are expressible in monadic second-order logic, and
hence solvable in polynomial time for bounded treewidth graphs (see[32]). It is also shown
in [33] that bounded cliquewidth graphs (and in particular cographs) allow a polynomial
time solution for finding maximum subgraphs with any monadic second-order logic property

(e.g. ap for fixed p and k, or a maximum (s, t)-polar subgraph for fixed s and t).

“Note that list matrix partitions of triangulated graphs (see [59]) and perfect graphs (see [56]) are also
studied in the same spirit.
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Chapter 4
Polar cographs

As mentioned at the end of the previous chapter, recognizing polar graphs can be seen
as a generalized graph coloring problem. Recognizing polar graphs amounts indeed to
determining whether a given graph admits a partition of its vertices into stable sets and
cliques allowing only some particular links among stable sets and among cliques; namely,
stable sets have to be completely linked to each other, cliques not linked at all to each other,
and no constraint is required on the links between cliques and stable sets.

In [21] it is shown that recognizing whether an arbitrary graph is polar is N'P-complete.
Thus, these graphs have not been extensively studied and no good characterization is known.
Previous works on polar graphs concern some polynomial time recognition problems. In
[103], the authors give a polynomial time recognition algorithm for polar graphs where the
largest sizes of the stable sets and of the cliques are bounded. In this case, a result of [124]
suggests that there is a finite list of forbidden subgraphs characterizing such polar graphs.
Also, in [114], the authors claim that there is a polynomial time algorithm to recognize polar
graphs, which admit a polar partition where all the cliques are of size 1. According to [69],
polar graphs with stable sets of size 1 and cliques of size at most 2 admit a characterization
with 18 forbidden subgraphs.

Alekseev et al. [3] set the complexity status of (Py,...,Pp, Q1,..., Qk)-coloring problems’
for different types of properties. The authors point out that there is an unexplored gap
when P;’s are additive hereditary, and Q;’s are co-additive hereditary?. We notice that the
recognition of polar graphs is exactly in this gap since it corresponds to (Ps-free, Ps-free)-
coloring.

The question which arises is to find restricted classes of graphs where polar graphs can
be recognized in polynomial time and admit nice characterizations. It turns out that for
cographs, one can derive results of such type; this is a first step which could be followed by
various extensions.

In this chapter, based on [51], we handle polar cographs and we provide their characterization

'Recall that a graph is (P1,. .., Pp, Q1,. .., Qx)-colorable if it admits a partition (U, ..., Uy, W1,..., Wi)

of its vertex set, where each U; verifies the property P; and each W; verifies the property Q.
2See Subsection 1.2.2 for the definitions of additive and co-additive properties.
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in terms of forbidden subgraphs in Section 4.2. We also examine the monopolar cographs
which are the (s,t)-polar cographs where min(s,¢) < 1. A characterization of these graphs
by forbidden subgraphs is given in Section 4.3. Besides, in Section 4.4, we give a polynomial
time algorithm for finding a largest induced polar subgraph in cographs using dynamic
programming on cotrees. Finally, we derive a recognition algorithm for polar cographs in

time O(nlogn) in Section 4.5.

4.1 Introduction

Before discussing briefly some properties of polar graphs, let us first recall their definition.

Definition 4.1 (polar graph, polar partition). A graph G = (V, E) is called polar if
its vertex set V' can be partitioned into (A, B) (A or B may possibly be empty) such that A
induces a complete multipartite graph (it is a join of stable sets) and B a (disjoint) union
of cliques (i.e., the complement of a join of stable sets). Such a partition (A, B) is called a

polar partition.

According to [21], a polar graph with polar partition (A, B) is said to belong to the class
(cv, B) if the size of a stable set in A does not exceed « and the size of a clique in B does
not exceed 3. Here, we classify polar graphs rather in terms of numbers of stable sets and
cliques in a polar partition (A, B) that they admit. This choice is justified by both the results
obtained in this chapter and the sake of compatibility with the notion of (p, k)-colorability
used in the rest of the dissertation. However, although inverted with respect to our basic
definition of (p, k)-colorability, in this chapter, we adopt a notation indicating first stable

sets and then cliques as it was used in [21].

Definition 4.2 ((s,t)-polar). A graph is (s,t)-polar if it admits a polar partition (A, B)

where A is a join of at most s stable sets and B a union of at most t cliques.

Thus polar graphs are just the (0o, 00)-polar graphs meaning that the numbers of stable
sets and cliques in a polar partition are unbounded. Observe that the complement G of an
(s,t)-polar graph is a (¢, s)-polar graph.

Clearly, polar graphs are closely related to (p, k)-colorable graphs; if a graph is (s, ¢)-polar
then it is obviously (¢, s)-colorable. But the converse does not necessarily hold since an
(s,t)-polar graph is a graph admitting only a particular (¢, s)-coloring. Moreover, not every
graph is polar: the graphs Ny and Ns in Figure 4.1 are not polar as can be checked, but if

any vertex is removed, the remaining graph is polar.

We will also examine a subclass of polar graphs defined as follows.

Definition 4.3 (monopolar graphs). A graph is monopolar if it is (s,t)-polar for some
s and t such that min(s,t) < 1.

In other words, for a monopolar graph, a partition (A, B) exists with at most one stable set

in A or at most one clique in B.
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N1 N2

Figure 4.1: Some minimal non-polar graphs.

It will be convenient to denote by K*(s,t) an (s, t)-polar graph with partition (A, B), which
is the join of A and B (i.e., with complete links between A and B). This graph is called a
complete (s,t)-polar graph.

Basic properties of cographs are already defined in the previous chapter; here we use the
same terminology. Let us mention some additional notations that we frequently use in this
chapter. Given two graphs G; and G2, G1 @ G2 denotes their join (with complete links)
and GG1 U Go their disjoint union (as already introduced). Let z and y be two vertices, in
this chapter, for the sake of simplicity, zy and Ty respectively mean that they are adjacent

and non-adjacent.

4.2 Characterization of polar cographs by forbidden subgraphs

In this section, we provide a forbidden subgraph characterization of polar cographs. Since
there is a finite family of forbidden subgraphs, there is an obvious polynomial time recogni-
tion algorithm. We will however describe in Section 4.5 a recognition algorithm with better

time complexity.

Theorem 4.4. For a cograph G, the following statements are equivalent:

1. G is polar;

2. neither G nor G contains any one of the graphs H, ..., Hy of Figure 4.2 as induced
subgraphs.

D <K = XX
v oYYV

Figure 4.2: Forbidden subgraphs for polar cographs.
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Proof. 1. = 2. Since every induced subgraph of a polar graph is polar and the complement
of a polar graph is polar, it is enough to show that Hi,..., H4 are non-polar. Suppose
Hy,..., Hy are polar. First, it is routine to check that none of Hy,..., Hy admits a polar
partition with one stable set. Furthermore, since a complete join of stable sets is a connected
subgraph, it follows that in each of the four graphs, one of the components must induce a
disjoint union of cliques. Clearly, it is not the case for any of the graphs. Hence they are
non-polar.

2. = 1. Suppose G is non-polar. Assume without loss of generality that G is minimal non-
polar. Assume also without loss of generality that the cograph G is disconnected (otherwise
take its complement). Let (A, B) be a partition of its vertex set into non-empty sets without
edges between A and B. By the minimality of G, both G[A] and G[B] are polar. If G[A4]
contains no induced Pj, then it is a disjoint union of cliques and hence G is polar. Hence, we
may assume that both A and B contain three vertices inducing a Ps. If both G[A] and G[B]
have polar partitions with single stable sets S4 and Sp respectively, then G has a polar
partition with single stable set S4 U Sp. Thus, assume that G[A] has at least two stable
sets in every polar partition. Let A’ C A induce the connected component containing the
join of stable sets (in a possible polar partition of A). Then, A\ A’ induces a disjoint union
of cliques. Since G is a cograph, A’ is partitioned into (C, D) with complete join between

C and D. We consider two cases.

Case 1. An induced P; in A is completely contained in D.

If C contains a non-edge, then the non-edge along with the P in D and the Pj in
B induce an H; in G, a contradiction. Thus, C must induce a clique. If C contains
an edge, then D is 2Ks-free, for otherwise G contains an Hy. D is also Cy-free (else
G contains Hj) and Pj-free. Thus D induces a threshold graph. It follows that
G[A] has a polar partition with at most one stable set and many cliques, which is a
contradiction. It follows that C' must consist of a single vertex.

Let S be a maximal stable set in D containing both the ends of P53 in D. Let ¢ be the
center of the Ps.

Claim 4.5. For anya € D\ S, ac, i.e., D\ S C N(c).

Proof. S being a maximal stable set, a has a neighbor in S. If a ¢ N(c), then D must
contain a Py, C4 or P3 U Ko, which is a contradiction since G is Py-free, Hq-free and
Hy-free. O

Claim 4.6. For anya € D\ S, ax, for some x € N(c)N S.

Proof. Similar to the proof of Claim 4.5. O

Claim 4.7. N(c)NS is linearly ordered by domination in N(c)\ S, i.e., there are no
two vertices x,y € N(c) NS such that for some a,b € N(c)\ S, xa,zb,ya and yb.
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Proof. Since a,b € N(c)\ S, ac and be. If ab then a, b, ¢, z,y and the vertex in C along
with P3 in B induce Hy. If ab, then G contains a Pj. O

Claim 4.8. There exists d € N(c) NS such that da for alla € N(c) \ S.

Proof. Follows from Claim 4.6 and 4.7. O

Claim 4.9. For x € S\ {d} and for a,b € N(c)\ S, if ab then Ta and xb.

Proof. Since da and db, it follows that if za and/or b, then D induces a Cy or Py,

which is a contradiction. O

Claim 4.10. N(c) \ S is 2K-free.

Proof. Any 2K, in N(c) \ S, along with cd, the vertex in C' and a Ps from B would

induce Hy in GG, which is a contradiction. O

Claim 4.11. G[A] has a polar partition with a single stable set.

Proof. By Claim 4.10, N(c)\ S is 2Ks-free. Also D is Cy-free. Hence N(c)\ S induces
a threshold graph. Let (S, K) be a polar partition of (N(c)\ S)UC with S’ the single
stable set and K the single clique. Then (S’ U S\ {d}, K U{d}) is a polar partition of
G[A] with a single stable set, by Claims 4.8 and 4.9. O

It follows that Case 1 is impossible.

Case 2. Every P of A intersects both C and D.
Since both C and D are Ps-free, each one induces a disjoint union of cliques. We can
assume without loss of generality that C' consists of either a single clique or a single
stable set, for otherwise, i.e., if both C' and D are neither a single clique nor a single
stable set, G contains Hs. If C consists of a single stable set, then G[A] has a polar
partition with one stable set. If C' consists of a clique of size at least 2, then D has at
most one clique of size at most 2 (else G has Hy). It follows that the rest of D forms
a single stable set and G[A] has a polar partition with a single stable set and many

cliques. Thus this case is also impossible.

It follows that G must be polar. O

4.3 Characterization of monopolar cographs by forbidden sub-

graphs

As in Section 4.2, we give here a characterization based on forbidden subgraphs; a more

involved recognition algorithm for monopolar graphs will be given in Section 4.5.
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Theorem 4.12. For a cograph G, the following statements are equivalent:

1. G is monopolar;

2. neither G nor G contains any one of the graphs G1, ..., Gy of Figure 4.3 as an induced
subgraph;

3. G or G is a disjoint union of threshold graphs and complete (1,00)-polar graphs.

Aol e

O O
Gy Ga G3 Gy Gs
@] @] @] @]
Gg G~ Gs Go

Figure 4.3: Forbidden subgraphs for monopolar cographs.

Proof. 1. = 2. Since the complement of a monopolar graph and every induced subgraph
of a monopolar graph are also monopolar, it is enough to show that Gi,...,Gg are not
monopolar. Since the non-trivial component in each of these graphs is not a disjoint union
of cliques, it must contain the join of stable sets in any polar partition. It is routine to verify
that any polar partition of these graphs must be the join of at least two stable sets and the
union of at least two cliques. Hence they are not monopolar.

3. = 1. Since a threshold graph has a polar partition into a single stable set and a single
clique, and since disjoint union of stable sets is a single stable set, it follows that if G is a
disjoint union of threshold graphs and complete (1, 00)-polar graphs, then G is monopolar
with a single stable set and a disjoint union of cliques in a polar partition.

2. = 8. Since G is a cograph, assume without loss of generality that G is disconnected.
It is enough to show that each non-trivial component of G is either a threshold graph or a
complete (1,00)-polar graph. Let G’ be any non-trivial component of G. Further assume
that G’ is a join of A and B (i.e., G’ = A ® B). The non-empty graphs A, B exist since G’
is a connected cograph with at least two vertices. We consider several cases.

Case 1. A contains an induced Cy with vertices a, b, ¢, d and edges ab, bc, cd and ad.
B must be a stable set, for otherwise G contains Gy = (Cy ® K2) U K;. Let x be any
other vertex of A. Then,
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i) = must be joined to at least one vertex of the Cy, for otherwise G contains
Go = ((C4 UK;)® K1) U Kqy;
ii) x may not be joined to exactly three vertices of the Cy, for otherwise G contains
Gr;
iii) = may not be joined to all four vertices of the Cy, for otherwise G contains
Gy = ((Cs® K1) ® K1) UKjy;

iv) 2 may not miss two adjacent vertices of the Cy, for otherwise G’ contains Pj.

It follows that each vertex of A other than a,b,c,d is joined either to a and ¢, or else
is joined to b and d. Let IV, be the set of all neighbors of @ in A and N, be the set
of all neighbors of b in A. Clearly N, and N, form stable sets by i)-iv) and are also
completely joined, to avoid induced P;. Thus G’ is a join of three stable sets. Now
G may contain at most one other component which must be a clique, for otherwise G
contains G1. It follows that the complement G is a complete (1, 3)-polar graph in this

case, as required.

Case 2. A contains an induced 2K5.
B must form a stable set, for otherwise G contains G4 = (2K2 @ Ko) U K. If A
contains an induced Pj3, then to avoid Py, it must contain P or @ of Figure 4.4 as an
induced subgraph. If A contains P, then G contains G4y = (P & K;) U K7, and if A
contains ), then G contains G3 = (Q ® K;) U K;. It follows that A is Ps-free and
hence induces a disjoint union of cliques. Hence G’ = A@® B is a complete (1, c0)-polar

graph as required.
P Q

Figure 4.4: Case 2 of Theorem 4.12.

We may now assume by symmetry that both A and B do not contain induced Cjy, 2K5
and Py, and hence form threshold graphs.

Case 3. A is a threshold graph containing a triangle.

i) If A contains a K4 \ e, i.e., a K4 where an edge is removed, then B must be a
clique, or else G contains Gg = ((K4 \ e) ® 2K,) U K. Since a threshold graph
joined to a clique is a threshold graph, G’ is a threshold graph in this case, as

required.

ii) If A contains a vertex joined to exactly one vertex of the triangle, then B must
be a clique too, or else G contains G7. Hence G’ is a threshold graph, as required.

It follows that A induces a clique and isolated vertices.
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iii) If A forms a clique and at least one isolated vertex, then B contains no non-edge,
or else G contains Gg. Thus B is a clique and hence G’ is a threshold graph, as

required.

iv) If A forms a single clique, then B being a threshold graph, G’ too is a threshold

graph, as required.
Case 4. Both A and B induce threshold graphs with no triangles.

i) If A contains an induced P3 U K, then B must be a clique, for otherwise G
contains G5 = ((P3 U K1) @ 2K31) U K;. Hence G’ is a threshold graph, as
required. So we may assume that A is either K , for some n > 1, or Ps-free.

ii) If A is K;, with n > 1, then B may not contain an induced P3; (to avoid
Gy9 = (P3 & P3) U K;) and may not contain an induced K U K; (to avoid
G7 = (P3® (K2 UK;))UK;). Thus B is a single clique or a single stable set. If
B is a clique, then G’ is a threshold graph, as required, and if B is a stable set
with at least two vertices, then G may contain only one other component which
is a clique, or else G contains G. Hence G is a complete (1,3)-polar graph, as

required.

iii) Therefore, by symmetry, we may assume that both A and B may not contain
K5 UK, for otherwise G contains Gg = ((KoUK7)® (K2 UK7))UK;. Thus, one
of A and B, say B, is a clique or a stable set. If B is a clique then, since A may
not contain 2K5 (otherwise G contains Gy = (2K2 @ K3) U K1), G’ is a threshold
graph as required. If B is a stable set, then G’ is a complete (1, 00)-polar graph

since A is a disjoint union of cliques.

Thus in all cases, either the complement G is a complete (1,3)-polar graph or G is a disjoint

union of threshold graphs and complete (1, 00)-polar graphs. O

4.4 Largest polar subgraph in cographs

In this section, we describe how to find an induced polar subgraph of maximum size in
a cograph using its cotree representation. Given a cograph G, let us denote by MC(G)
a maximum clique in G, by M S(G) a maximum stable set in G, by MT(G) a maximum
threshold graph in G, by MUC(G) a maximum (size) union of cliques in G, by M JS(G) a
maximum (size) join of stable sets in G, by MM PS(G) a maximum (1,¢)-polar subgraph
for some ¢ (maximum monopolar subgraph with one stable set) in G, by MM PC(G) a
maximum (s, 1)-polar subgraph for some s (maximum monopolar subgraph with one clique)
in G, and finally by M P(G) a maximum polar subgraph in G. n(M P(G)) denotes the size
of M P(G) and the sizes of all other maximum subgraphs are denoted in a similar way. All
maximum subgraphs mentioned below are represented by a pair (A, B) as described in the
introduction.

In what follows, we assume that the cotree representation of the cograph is given. As
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previously, each vertex = in the cotree has a type ¢(z) which is 0 or 1, and ¢z, caox, ...
are the children of x. For simplicity purposes, a vertex x will also represent the subgraph
associated with vertex x of the cotree; this should be clear from the context.

First of all, note that given a cotree, M S(x) and MC(z) can be found in linear time for
any z in the cotree [29]. Also, it has been shown in Theorem 3.2 that a maximum threshold
subgraph in cographs is obtained by the union of any maximum stable set and any maximum
clique, since no pair of maximum stable set and maximum clique is disjoint. Therefore, for
any vertex x of the cotree, MT(x) is the subgraph induced by the vertices of M C(x)UM S(x)
and n(MT(z)) = n(MC(z)) + n(MS(z)) — 1. In what follows, we assume for the sake of
simplicity that M C(x), MS(z) and MT(z) are known for any vertex x of the cotree.

Note that the following lemmas are established for computing a maximum subgraph at a
0-vertex, assuming that all parameters on children needed for the computation are already
known. Consequently, the maximum subgraph M computed at a 0-vertex has a polar
partition (A, B) such that: if M is the result of a union of maximum subgraphs M; with polar
partition (A4;, B;), where A; induces one stable set in child ¢;x, then A = U;A; (inducing
one stable set) and B = U;B; (inducing the union of cliques of each M;); if M is a subgraph
M with polar partition (A;, B;) realizing the maximum of some quantity, then A = A; and
B = B, (knowing that a sum in a maximum operator should be interpreted as a union of

the considered subgraphs).

Lemma 4.13. Given a cotree, MUC(x) and M JS(x) can be computed for any O-verter x

in time linear in the number of children of x.

Proof. Clearly, we have MUC (z) = U;MUC (¢;x) since cliques of different children are not
linked at all. On the other hand, M.JS(x) is the set realizing the maximum of

[maxn(MJS(c;z)), E n(MS(cz))].
1 .
1
In fact, if at least two children contribute, then no more than one stable set can be taken

from each child since the children of x are not linked at all. O

Lemma 4.14. Given a cotree, MM PS(z) and MM PC(x) can be computed for any 0-vertex

x in time O(h?), where h is the number of children of x.

Proof. Obviously, we have MM PS(x) = U;M M PS(c;x), since the union of one stable set
from each child yields one stable set and cliques of different children remain disjoint. Also,
MM PC(z) is the subgraph realizing the maximum of

[n(MT(z)), max n(MMPC(c;x)), rr%%x(n(MJS(cix)) + n(MC(cjx)))].

In fact, a maximum (s, 1)-polar subgraph at a 0-vertex is either a threshold graph having
the clique part in one component and the stable set part being the union of maximum stable
sets in each child, or the largest maximum (s, 1)-polar subgraph among the children, or the

largest union, among all the children, of a maximum join of stable sets in one child and a
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maximum clique in another child (if both are coming from the same child then it amounts
to be a maximum (s, 1)-polar subgraph of the child under consideration).
The time complexity is due to the third term where the maximum is taken over any possible

pair of children. O

Lemma 4.15. Given a cotree, M P(x) can be computed for any 0-verter x in time O(h?),

where h 1s the number of children of x.

Proof. A maximum polar subgraph is obtained either by taking the union of a maximum
polar graph in one child and maximum union of cliques in other children, or by taking the
union of the maximum of a threshold graph, a maximum union of cliques and a maximum
(1,t)-polar subgraph from each child. It follows that M P(z) is the subgraph realizing the

maximum of

[m;ax(n(MP(cix)) + Z n(MUC(c;z))),
J#i
Z max (n(MT(c;z)), n(MUC (¢;z)), n(MMPS(c;z)))].

Note that the time complexity is decided by the first term where the maximum is taken on

all possible pairs of children. O

Theorem 4.16. For any cograph G given by its cotree, M P(G) can be computed in time
O(n?).

Proof. One may think of an algorithm searching the cotree from the leaves to the root, and
computing for each vertex of the cotree a maximum polar subgraph; the one computed at
the root provides M P(G). By Lemma 4.15, one can compute a maximum polar subgraph
at a O-vertex. On the other hand, at a 1-vertex z, we know that the complement of the
subgraph remaining under this vertex is a disconnected graph which can be represented by a
cotree with a root of type 0. Then applying Lemma 4.15 and taking the complement of the
resulting subgraph (thus stable sets and cliques interchange roles) gives a maximum polar
subgraph at =x.

The initialization of this algorithm is done by the following assignments: for a vertex x which
is a leaf representing the vertex v, MUC(xz) and M M PC(x) are in the form (A, B), where
A=0,B={v}. MJS(z) and MMPS(z) are in the form (A, B), where A = {v},B =0
and M P(z) is in one of these forms.

The complexity is O(n?) since Lemma 4.14 and Lemma 4.15 are applied for all vertices of
the cotree. O

We remark that in a cograph G with weighted vertices, a maximum weight polar subgraph
can be found in exactly the same way as previously; it suffices to replace in all lemmas
the size of a subgraph by its weight, which is the sum of the weights of the vertices in the
subgraph.
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4.5 Recognition of polar cographs

Indeed, Theorem 4.16 of Section 4.4 implies a polynomial time recognition algorithm for
polar cographs; given a cograph G = (V, E), where |V| = n, G is polar if and only if
n(MP(G)) = n. Here we give a simpler algorithm with a better time complexity deciding
whether a given cograph is polar or not, and building a polar partition if there is one. The
main idea of the algorithm is that at a O-vertex of the cotree, the underlying graph is polar
if and only if there is a polar partition of each connected component G; with at most one
stable set, or there is at most one connected component with two or more stable sets in
every polar partition and all the others are disjoint unions of cliques. First, let us establish

the following lemma.

Lemma 4.17. A connected (1,00)-polar cograph which is neither a clique nor a threshold

graph, is a complete (1,00)-polar graph K*(1,00). This can be recognized in linear time.

Proof. Consider a (1, 00)-polar cograph G which is not a clique. If G admits a polar partition
with only one clique then it is a threshold graph which can be recognized in linear time; a
consequence of Theorem 3.2 is that a cograph is a threshold graph if and only if removing
any maximum stable set leaves a clique.

Now, assume that every polar partition of G has more than one clique. Then the stable
set is linked to all cliques since G is connected. Moreover, one can verify that the links are
complete, otherwise there are P;’s. To recognize K*(1,00), we will repetitively eliminate
one of the real twins, i.e., adjacent vertices having the same neighborhood, and label the
remaining one with u. Note that real twins have to be in a same clique in all polar partitions
and they can be found in linear time on the cotree. Consequently, G is a K*(1,00) if and
only if at the end of the process of twin elimination, the remaining graph is a complete
bipartite graph where all the vertices labeled with u are included in one stable set. We note
that this stable set may also contain some non-labeled vertices corresponding to cliques
of size one. This later condition is necessary; observe that applying the twin elimination
process to the graph of Figure 4.5 a) yields the complete bipartite graph of Figure 4.5 b)
but all vertices with label v are not in a same stable set, hence the original graph is not a
K*(1,00). Moreover, the polar partition (A, B) is such that A induces the stable set with

a)
Figure 4.5: Labeling real twins.

no labeled vertices and the cliques induced by B are obtained by keeping track of the twins
(if there is any). Note that this can be done in linear time in the number of vertices. [
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In what follows P(G) denotes a polar partition (A, B) of G. Now, if P(G) = (A, B) then we
define P(G) = (B, A), meaning that stable sets (respectively cliques) of A (respectively B)

become cliques (respectively stable sets). Clearly P(G) = P(G) and it is also a polar
partition. b is the number of connected components having at least two stable sets in every
polar partition. Also, updating (A, B) means that according to the polar partition of the
connected component under consideration, we add its stable set(s) in A and its clique(s) in
B.

Theorem 4.18. For any cograph G, Algorithm 9 can recognize whether G is a polar graph
in time O(nlogn) if G.

Proof. Algorithm 9 gives a negative answer when there is at least one connected component
with exactly one stable set in every polar partition and another connected component, which
is neither a stable set nor a clique nor a threshold graph nor a K*(1,¢). We know by Lemma
4.17 that these are all possible cases for a (1,t)-polar cograph, therefore there is no possible
polar partition for such a graph. On the other hand, if G is a polar cograph then Algorithm 9
provides a polar partition.

The complexity is provided by Lemma 4.17 and the fact that these linear operations are

repeated at most [ times, where [ is the height of the cotree, which is O(logn). O

Algorithm 9 Polar cograph recognition
Input: a cograph G and its cotree

Output: a polar partition P(G) = (A, B) of G or a negative answer “G is not polar”
1. A— 0, B+~ 0

2. if GG is disconnected with components G1,...,G) then

3. b« 0;

4. fori=1to h do

5. if G, is a stable set or a clique or a threshold graph or a K*(1,t¢) for some ¢
then

6. update (A, B);

7. else

8. b—b+1;

9. if b =0 then

10. return P(G) = (A, B).

11. else if b =1 and Jj such that Vi € {1,...,h},i # j G; is a clique then

12. P(G) « (A,B) U P(Gj); //Gj is the only connected component not verifying
line 5, hence G; is not a (1,t)-polar cograph

13. return P(G) = (A, B).

14. else

15. print “G is not a polar graph ”, exit.

16. else

17. P(G) «— P(G).
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4.6 Concluding remarks

In this chapter, we developed a characterization of polar and monopolar cographs by forbid-
den subgraphs. Polynomial time recognition algorithms for polar and monopolar cographs
with time complexities respectively O(nlogn) and O(n) are derived, as well as a dynamic
programming algorithm to find a maximum (weighted) polar subgraph in a cograph.

Let us recall that although it is NP-complete to recognize polar graphs in general, it be-
comes polynomially solvable under some circumstances. In fact, we have already pointed
out that Theorem 1.34 of Feder et al. (on sparse and dense graphs) implies in Corollary 1.37
that for any graph G and any fixed s and t, it can be determined in polynomial time whether
G is (s, t)-polar or not.

There are many questions that still remain to be answered. Among those, the characteriza-
tion of (2,2)-polar cographs by forbidden subgraphs would be a natural continuation. Also
one should explore more general subclasses of perfect graphs to characterize their polarity.
This ends the discussion on polar graphs in this dissertation. In the following chapters, we
go back to the study of (p, k)-coloring, split-coloring and cocoloring problems in particular

classes of graphs; the first candidate is the class of line graphs.
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Chapter 5
Line graphs

This chapter is based on [41]| which studies the complexity of generalized coloring problems
in line graphs.

We show that (p, k)-coloring problems (and hence Min Split-coloring and Min Cocoloring)
are polynomially solvable in block graphs which contain line graphs of trees. Then, we detect
the first class of graphs where Min Split-coloring and Min Cocoloring behave differently in
terms of complexity classes they belong to; in line graphs of bipartite graphs, Min Cocoloring
is polynomially solvable while Min Split-coloring is NP-hard. Furthermore, we show that
Min Cocoloring remains polynomially solvable in line graphs of line-perfect graphs, whereas
it becomes N'P-hard in line graphs of bipartite multigraphs even if the multiplicity is 2.
Then, we also describe a class of graphs, denoted by G = {GUnKy, }, where Min Cocoloring
is N'P-hard and Min Split-coloring is polynomially solvable. This shows that none of these
problems is harder than the other one in arbitrary graphs. The results established on
generalized coloring problems in this chapter are summarized in Table 5.1 where, for a class
of graphs G, the class of line graphs of G is denoted by L(G) = {L(G) : G € G}.

Min Cocol. | Min Split-col. | (p, k)-coloring
L(tree) Polynomial Polynomial Polynomial
L(bipartite) Polynomial N'P-hard N'P-hard
L(bipartite multigraphs) | AN P-hard NP-hard NP-hard
L(line-perfect) Polynomial NP-hard NP-hard
G ={GUnKy,} NP-hard Polynomial NP-hard

Table 5.1: Complexity of generalized coloring problems in line graphs.

As for the Max (p, k)-colorable subgraph problem in line graphs, we give polynomial time
algorithms for finding oy in line graphs of line-perfect graphs and finding 4 in general
line graphs. We also analyze the complexity status of finding «,;, in line graphs under the
hypothesis that p or k is free or fixed, free meaning that it is not part of the input. These

results are summarized in Table 5.2 where we also mention the largest class we know in
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which the problem under consideration is polynomially solvable, or the smallest class we

know for which the problem under consideration is NP-hard, according to the complexity

situation.
(stable sets) P (cliques)
k fixed free
0 Polynomial Polynomial, L(tree)
NP-hard, L(bipartite)
1 Polynomial N'P-hard, L(bipartite)
fixed (k > 2) | Polynomial, L(line-perfect) NP-hard
N'P-hard, L(triangle-free)
free Polynomial, L(line-perfect) NP-hard

Table 5.2: Max (p, k)-colorable subgraph in line graphs.

5.1 Introduction

Given a graph G, its line graph, denoted by L(G), is defined as follows: vertices of L(G)
represent edges of G and two vertices of L(G) are adjacent if and only if the corresponding
edges are adjacent in G. There is a nice characterization of line graphs by a list of nine
forbidden graphs as well as other conditions leading to a linear time recognition (see [17]).
Note that line graphs are not perfect in general; a graph is called line-perfect whenever
its line graph is perfect. Another class of graphs that we make use of in this chapter, is
triangle-free graphs defined by the absence of induced triangles. Note that bipartite graphs
are included in the class of line-perfect graphs (since there is no induced odd cycle of length
more than tree nor its complement in line graphs of bipartite graphs) and also in the class
of triangle-free graphs, while there is no such a hierarchy between triangle-free graphs and
line-perfect graphs.

Clearly, coloring the vertices of a line graph L(G) is equivalent to coloring the edges of
G; Min Edge Coloring is thus a partition of the edge set of G into a minimum number of
pairwise non-adjacent edges, which is called a matching.

In the present chapter, we consider (p,k)-colorings of line graphs, but we will formulate
them in the original graphs rather than in their line graphs, unless stated otherwise. The
(p, k)-coloring of a line-graph L(G) can be viewed as an edge (p, k)-coloring of G where the
objective is to cover the edge set of G by p bundles (a bundle is the set of edges adjacent
to the same central vertex) and/or triangles (both instead of cliques), and k matchings
(instead of stable sets). In this case, we call (p, k)-coloring problems, edge (p, k)-coloring
problems, or equivalently (p,k)’-coloring problems, and we denote oy x(L(G)) by o, (G).
Also, Min Split-coloring in L(G) is called Min Edge Split-coloring in G. The objective is
to minimize the maximum between the number of triangles or bundles (counted together)

and the number of matchings, covering (together) all the edges. The optimal value for
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G is Xs(G) = xs(L(G)). Analogously, we define Min Edge Cocoloring in G as being Min
Cocoloring in L(G). Here, we minimize the total number of triangles, bundles and matchings
covering all the edges. Then the optimal value of edge cocoloring for G is 2/(G) = z(L(Q)).
Although line graphs are not perfect, by considering the edge-versions of generalized coloring
problems, we take advantage of the fact that the edges of a graph G can be covered by either
A(G) or A(G) + 1 matchings (where A(G) is the degree of a maximum degree vertex in G)
according to Vizing’s Theorem [116]; this will be useful to develop polynomial time exact

algorithms in the present chapter and approximation algorithms in the next chapter.

5.2 (p,k)-coloring of line graphs

Let us first establish the NP-hardness of both Min Edge Split-coloring and Min Edge

Cocoloring in line graphs.

Proposition 5.1. The following statements hold:

1. edge 3-cocolorability is N'P-complete;

2. edge 3-split-colorability is N'P-complete.

Proof. Statement 1. It is clearly in NP and we prove its AN/P-completeness by a reduction
from edge 3-colorability (shown to be N'P-complete in [88]). Let us consider an instance G of
edge 3-colorability. We transform G into an instance G¢ of edge 3-cocolorability by adding
four disjoint K1 3, that is four bundles of size 3 each. Note that in any edge 3-cocoloring of
G, edges of these four bundles have to be covered by three matchings. Consequently, G¢
is edge 3-cocolorable if and only if G is edge 3-colorable.

Statement 2. Edge 3-split-colorability is clearly in NP. A similar argument shows that edge
3-colorability also reduces to edge 3-split-colorability. In order to show that, we obtain an
instance Gg of edge 3-split-colorability from an instance G of edge 3-colorability by adding
three bundles of size 4 each. Then it suffices to observe that in any edge 3-split-coloring of
Gg, edges of three disjoint K 1,4 have to be covered by three bundles. This implies that Gg
is edge 3-split-colorable if and only if G is 3-edge-colorable. O

In what follows, we consider generalized coloring problems in subclasses of line graphs. In
the sequel, an edge cocoloring will be denoted by the set (Z’,7'), where Z’ is the set of
vertices (which are the centers of bundles and represent the corresponding bundles in an
edge cocoloring) and 7" is the set of triangles, knowing that the remaining edges will be

covered by matchings only.

5.2.1 (p, k)-coloring of block graphs

Although we rather study the edge-versions of our problems throughout this chapter, in
this particular subsection, we keep our usual problem definitions. Our main purpose is to
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consider line graphs of trees but we derive more general results on block graphs. A graph
G is a block graph if every maximal 2-connected component is a clique. Remark that line
graphs of trees are special block graphs where any vertex is contained in at most two cliques;
this is due to the fact that the only cliques in a line graph of a tree correspond to bundles
in the original graph and one edge belongs to at most two bundles centered at both ends of
the edge. In the sequel, we assume that a block graph is given by the list of its cliques (with
their sizes) and separation vertices. Note that any block graph can be equivalently given
as a forest of block-cutpoint trees where white vertices represent cliques, their weights w
represent the sizes of the corresponding cliques and black vertices are the separation vertices.
White and black vertices are alternated in the forest; a white vertex representing a clique
K is only linked to the black vertices corresponding to separation vertices contained in K.
In what follows, we work on this forest representation where any leaf has a unique neighbor

which is a black vertex.

Theorem 5.2. For any block graph, (pmin, k)-coloring can be solved in time linear in the

number of mazimal cliques.

Proof. Noting that block graphs are perfect, we have to choose a minimum number of cliques
such that in the remaining graph, the size of any clique is at most k. To do that, we shall

first search the forest once to collect the following data:

e the degree of each vertex;

e the branch degree (number of adjacent vertices which are not leaves) of each black

vertex;

e the set £ of leaves (white vertices of degree 1 or 0) of weight different from (k+ 1), or
of weight (k + 1) if the branch degree of its black vertex is 1.

The solution set P will contain the vertices representing cliques that should be chosen. We

can proceed as in Algorithm 10.

The optimality of the solution results from the following facts:

(a) (expressed by lines 3 to 7 of Algorithm 10) a leaf of weight at least (k + 2) belongs

necessarily to every solution;

(b) (expressed by lines 8 to 10 of Algorithm 10) if a leaf x of weight at most k belongs
to an optimal solution P*, then there is necessarily a white vertex y of weight greater
than or equal to (k+1) in the neighborhood of its black neighbor, and (P*\{z})U{y}

is another optimal solution; so we do not introduce such an x into P;

(c) (expressed by lines 11 to 13 of Algorithm 10) if an optimal solution contains a leaf
of weight (k+1) for which a unique vertex y in the neighborhood of its black neighbor
is not a leaf, then (P*\ {z}) U {y} is an optimal solution as well.
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Algorithm 10 (p,n, k)-coloring of block graphs

Input: the forest representation of a block graph G, set L of leaves, an integer k
Output: set P of cliques in a (pin, k)-coloring of G

1. while £ # 0 do

2 pick a vertex x in L;

3 if w(z) > k+ 2 then

4 introduce x into P;

5. remove z and its black vertex v;

6 decrease the weight of the neighbors of v by 1;

7 update the degrees of these neighbors;

8 else if w(x) < k then

9 remove ;

10. decrease the degree of its black vertex by 1;

11. else if w(z) =k + 1 then

12. introduce into P the unique white vertex y adjacent to its black vertex;
13. delete z, its black vertex, y and all black vertices adjacent to y;
14. for all black vertex deleted at step 5 or 13 do

15. decrease the weights of its neighbors by 1;

16. update the degrees of its neighbors, the list £ and branch degrees of black

vertices adjacent to leaves just introduced into L;

17. delete black vertices of degree 1;

18. for all connected component do

19. choose exactly one white vertex to be introduced into P;
20. delete the component.
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Each time one applies rule (a), (b) or (c), the remaining graph is a forest whose trees have
the same black-white structure, and an optimal solution of this graph extends the current
solution to an optimal solution (of the whole graph).

Finally, note that when £ becomes empty, the remaining graph consists of independent stars
with a black center and white leaves of weight (k+1); choices made at step 19 are obviously
optimal.

Let us now evaluate the complexity. The initialization phase needs time O(L) (searching
algorithm), where L denotes the number of white vertices (there are at most L black ver-
tices). At each step 5, 9, 13 at least one white vertex is removed. Let us first evaluate the
number of updates in step 16 except for branch degrees. Such updates are performed when
a black vertex is removed, and concern directly its neighborhood. The total complexity is
O(L) (the number of edges). Finally, the number of times the branch degree of a vertex is
updated is at most the degree of this vertex. Therefore, the overall complexity is O(L). O

Note that the above result provides polynomial algorithms for all our generalized coloring
problems (not necessarily with the same time complexities) in block graphs and consequently

in line graphs of trees as well.

5.2.2 [Edge cocoloring of bipartite graphs

In this section, we give a polynomial time algorithm for Min Edge Cocoloring in bipartite
graphs and we show that Min Edge Cocoloring in bipartite multigraphs become N P-hard
even with multiplicity 2.

In bipartite graphs, Min Edge Cocoloring consists of covering the edge set of bipartite graphs
with a minimum number of matchings and bundles (since there is no triangle). Knowing
that in bipartite graphs, there are always A(G) matchings covering all the edges, at each
step of our algorithm, we will decide either to complete the edge cocoloring by matchings
only, or to introduce some vertices into the solution. The following lemma gives the decision

rule.

Lemma 5.3. For any bipartite graph G, if 2/(G) = A(G) — t where t > 0, then vertices
with degree strictly greater than A(G) —t are in Z'.

Proof. Suppose that we do not include in Z’ all vertices with degree greater than A(G) —t.
Then, there is a vertex with degree at least A(G) —t 4+ 1 — p, where p is the total number
of vertices introduced into Z’. It is easy to verify that in what follows, we cannot have a
solution with a value better than A(G) — ¢ + 1. O

This result allows us to derive the following recursive algorithm to find an optimal edge

cocoloring in bipartite graphs.

Theorem 5.4. For any bipartite graph, Algorithm 11 solves Min Edge Cocoloring in time
O((m +n)logn).
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Algorithm 11 Edge cocoloring of bipartite graphs

Input: a bipartite graph G
Output: a minimum edge cocoloring Z’ of G with value 2/(G)
1. if G # () then

2 pick a vertex x of maximum degree in G;
3 Z(G) = min{A(G),1 + 2/ (G[V \ {z}]};

4 if 2/(G) =1+ 2 (G[V \ {z}]) then

5. zZ'— Z'U{x};

6 if 2/(G) = A(G) then

7 Z' 0.

Proof. The correctness of Algorithm 11 follows from Lemma 5.3: at each step, either all
maximum degree vertices have to be included in Z’, or we can complete the edge cocoloring
by matchings only, and no other decision would be better.

The time complexity is O((m + n)log n) by using a heap with the vertices in non increasing
order of degrees. In fact, updating the structure when the vertex on the top of the heap is

removed can be made in time O(logn) and there are exactly (m + n) updates. O

Note that Algorithm 11 does not give explicitely an optimal edge cocoloring; it only com-
putes its value. The best known algorithm to complete the edge cocoloring of Algorithm 11
by an optimal edge coloring in the remaining graph is due to Schrijver [108]; this would add

a term of O(Am) to the overall time complexity.

Remark 5.5. If triangles are excluded from any solution, then Algorithm 11 finds an optimal
cocoloring in every class of graphs where X' (G) = A(G) holds.

Theorem 5.6. The problem of deciding whether 2'(G) < k, where k € N, is N'P-complete

in bipartite multigraphs, even if the multiplicity is 2.

Proof. The problem trivially belongs to NP. In order to prove its intractability, we propose
a reduction from a restriction of 3-SAT (Lemma 5.7) by revisiting the usual reduction from
3-SAT to vertex covering [70] and then by using a reduction from vertex covering! to our

edge cocoloring problem.

Lemma 5.7. The restriction of 3-SAT for which each literal appears at most three times,

and the number of clauses is at least 3/2 times the number of variables is N'P-complete.

Proof. Let us consider an instance I of 3-SAT with n > 6 variables (x1,...,z,) and m
clauses (1, ..., C),. Without loss of generality, we can assume that every variable appears
at least two times: once in the positive form and once in the negative one. One can also

construct (see for instance [106]) an equivalent instance I’ for which every variable appears in

'Given a graph G = (V, E), a k-vertex cover is a subset V' C V of size at most k such that for all
v;v; € E, at least one of v; and v; is in V’. Deciding whether G admits a k-vertex cover or not is known to
be N'P-complete [70].
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at most three clauses and every literal in at most two clauses. In fact, if a variable x; appears
k times in I, where k > 4, we replace z; by k new variables x}, ... ,xf: the first occurrence of
x; is replaced by le (the nature of the related literal, positive or negative, being preserved),
the second one by z?, and so on. We introduce k 3-clauses (Z},z2,22),..., (¥, z}, z})
guaranteeing that variables xil, . ,mf have the same truth value for any feasible truth
assignment.

We denote by n’ the number of variables in I’ and by m’ the number of clauses. It is
straightforward to verify that in the new instance, each literal appears at most three times,
and every variable at most four times and at least twice. Consequently, m’ > 2n//3 and
clauses contain at most 4n’ literals (with repetitions). It remains possible to use 2n’ literals
l1,...,l9 in additional clauses such that every literal appears at most three times. We
then add n' new variables y1,...,y and n'(2 + 2|n’/3]) clauses: (vs, ¥i, i), (Yi, Uiy bnr1i),
i=1,....n", and (Yi, Ui Yn'—i), (Y n' /3] +i> U|n' /3] +is Un'—i), © = 1,..., [n//3]. These clauses
are true for every truth assignment and every literal appears at most three times among all
clauses. Moreover, there are at least 2n'/3 4+ 2n' 4+ 2|n’/3| > 3n’ clauses (n' > 6) for 2n/
variables. Note finally that the above construction is polynomial, which concludes the proof
of Lemma 5.7. O

Let I be an instance of 3-SAT with n variables and m clauses satisfying the hypotheses of
Lemma 5.7: m > 3n/2 and each literal appears at most three times.

Let us then revisit the reduction to vertex covering |70]. One can construct in polynomial
time a graph G = (V, E) where |V| = 2n + 3m and |E| = n + 6m and satisfying A(G) < 4
such that:

7(G) < k = n + 2m < the restricted 3-SAT instance is satisfiable.
Here 7(G) denotes the value of a minimum vertex cover in G. In what follows, we show

how to construct in polynomial time a bipartite multigraph B with edge-multiplicity not
exceeding 2 such that 7(G) < n+2m & 2/(B) < 3n+ 6m + 8.

Construction of B

Let us first consider the bipartite representation of G: Bg is a simple bipartite graph
defined by Bg = (V,E,Ep),ve € Ep < v is incident to e in G. In B, every E-vertex
has a degree 2 while every V-vertex has a degree not greater than A(G) < 4. We first
add to V a set W of m + 4 isolated vertices. For every vertex e € F, we add a set X,
of 2n + 4m + 7 vertices X, = {z,i = 1,...,2n + 4m + 7} all connected to e by a simple
edge: E, = {exl,i = 1,...,2n + 4m + 7}. Finally we add a set K = {y1,...,Yrs2} =
{y1,- -+, Ynt+am+2} of vertices completely connected to vertices of V' U W by double edges:
let Ex = {(yiv)1, (yiv)e,i =1,...,n+2m+2,v € VUW}. Thus:

B = (K U E,V uwu (UeeEXe)aEB U (UeeEEe) U EK)'
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We denote by Vi = K UE and by V3 = VUW U (UecpXe) the color classes of B. The

construction is clearly polynomial. Let us then evaluate the degree of vertices in B:

Voe VUW,dp(v) <4+4+2k+4=2n+4m+S8;
Ve € E,dp(e) =2n+4m+9;

Vy € K,dg(y) =2|VUW| =4n+8m + 8§;

Vo € UeepXe,dp(z) = 1.

7(G) <n+2m = 2'(B) <3n+6m+8

Let us now suppose that 7(G) < k = n + 2m and denote by V' C V, where |V'| = n + 2m,
a vertex cover of G. Let us then consider B\ V' = B[V UVZ\ V']

Since |V'| = n+2m and V' covers edges of G, when one removes V', the degree of vertices

in E decreases at least by 1 and the degree of vertices in K decreases by 2(n + 2m). Thus,
the maximum degree of B\ V' satisfies:

AB\V') <max{2n+4m+8,2n+4m+9—1,4n+8m + 8 — 2(n+ 2m)}
=2n+4m + 8.

Consequently, 2/(B\ V') <n+2m+2n+4m+ 8 = 3n + 6m + 8.

T(G) <n+2m<«<= 2'(B) <3n+6m+8

Let us now suppose 2’ (B) < 3n+6m+8 and consider five sets X' C (UeepXe), E' C E, V' C
V,W'Cc W and K’ C K, such that:

W'+ X'+ |E'|+ V| + |K'| + AB\ WUX' UE'UV'UK")) <3n+6m+8. (5.1)

Let us denote by B’ the graph B\ (W/UX'UE'UV'UK’) = B[VAUVZ\(W/UX'UE'UV'UK')].
Without loss of generality, we can assume that X’ = ): in fact, if one adds to the remaining
graph every vertices of X’ and deletes their neighbors, the degree cannot increase while the
number of vertices cannot decrease. The same holds for W'.

Let us then notice that |E'| < 2n + 4m + 8 < |E|. In fact, in the opposite case, we deduce
from inequality (5.1) that

K|+ V'] < 3n+6m+8— (2n+4m +8) =n +2m < |K|.

Consequently, K \ K’ # () and |(VUW) \ V’| > n + 2m + 4, which implies that A(B’) >
2n + 4m + 8. Finally, by using |E'| > 2n + 4m + 8, we get:

|E'| + A(B') > 4n + 8m + 16 > 3n + 6m + 8

which contradicts inequality (5.1).
Since |F'| < |E| and X’ = (), we deduce A(B') > 2n + 4m + 7 and inequality (5.1) implies:

K[+ [E'[+ V| <3n+6m+8—(2n+4m+T7)=n+2m+1
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We deduce K \ K’ # () and
2(0E\ E')) > 2(n+6m — (n+2m+1) +|V'|) = 8m — 2+ 2|V'| > 4]V].

Consequently, since in Bg the degree of every vertex in V' is at most 4 and the degree of
vertices in F is 2, at least one vertex in E \ E’ has a neighbor in V' \ V’, which implies
AB') > 2n+4m + 8.

Then, inequality (5.1) implies |V’| < n+2m and moreover, since K \ K’ # (), by considering
the degree of vertices in K \ K’, we get

A(B') > 4n +8m +8 — 2|V’|.

Inequality (5.1) implies |V’| > 4n+8m+ 8 — (3n + 6m + 8) = n+2m. Thus |V'| = n+ 2m.
Consequently, |V'| + A(B’) = 3n + 6m + 8 and then inequality (5.1) implies |E'| = 0.
Therefore, V' covers every edges of G since in the opposite case A(B') > 2n + 4m + 9 and
consequently 2/ (B) > 3n + 6m + 9, which concludes the proof. O

5.2.3 Edge split-coloring of bipartite graphs

In this section, we establish the N'P-hardness of Min Edge Split-coloring in bipartite graphs.
We also describe a class of graphs where Min Split-coloring is polynomially solvable but Min
Cocoloring is N'P-hard; to our knowledge, this class turns out to be the first one with this

property.

Theorem 5.8. Min Edge Split-coloring is N'P-hard in bipartite graphs.

Proof. The decision version is clearly in NP. In order to prove that it is N"P-complete, we
propose a reduction from (P, 1)’-coloring in bipartite graphs.

Let (B, k) be an instance of this problem, where B = (V4, V32, Eg) is a bipartite graph and
k € N. The related question is: is it possible to remove k wvertices from B such that the
remaining graph has a degree at most 19 This problem is N'P-complete [119].

Without loss of generality, we can assume that & < 7(B) — 1 since, in the opposite case, the
instance is clearly positive. We construct a bipartite graph B’ by adding, for every vertex

vof B, (k— 1) vertices (z.,...,21) which are connected to v:

B' = (V5 U (UyerzXo), VE U (Upers Xo), Ep U Ex) = (Vg, Vi, Ep U Ex)

where Vv € VAU VA X, = {2},..., 281} and Ex = {(v,2,),v € VA UVZ, 2, € X,,}. Let
us also denote Vé U VEQ; by Vg, and Vé, U V]_%, by V.

Then, we consider L(B’) as an instance of split-coloring and show that the instance (B, k)
is positive if and only if xs(L(B’)) < k.

Let us first suppose that (B, k) is positive, and consider a set V' C Vg such that |[V'| < k
and A(B[Vp\ V’]) < 1. Since k < 7(B) — 1, we have A(B[Vp \ V']) = 1. Consequently, by
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construction of B’; we get A(B'[Vp: \ V']) = k, which implies xs(L(B’)) < k.
Let us now suppose that xs(L(B’)) < k. It means that:

V' C Vi [V'] < by A(B' Ve \ V) < k.

In fact, an optimal split-coloring of L(B’) contains at most k cliques which can be covered
by k maximal cliques, corresponding, in B’, to vertices in V' (since there is no triangle in
B'). Without loss of generality, we can assume V' C Vp: in the opposite case, consider the
set (V'\(V'N(Upevy Xu))) UN(V'N(Uper, X)), where for a set of vertices A, N (A) denotes
the set of neighbors of vertices in A. Then, A(B'[Vp \ V']) < k = A(B[Vs\V’]) <1,
which implies that (B, k) is positive. O

Proposition 5.9. In the class of graphs G = {GUnKy, : G is an arbitrary graph of size
n}, denoted for short by G = {G UnKa,}, Min Split-coloring is polynomially solvable while
Min Cocoloring is N'P-hard.

Proof. Let us consider the class G of graphs obtained by adding n K5, to an arbitrary graph
G of size n (without any link between G and nKs,,). Thus VG’ € G, there exists an arbitrary
graph G of size n such that G’ = G UnKy,. We also write that G = {G U nKs,} by abuse
of language. Let us first remark that ys(kKjy) = z(kK;) = k, and furthermore kKj is
k-split-critical but it is not a critical graph for k-cocoloring, i.e., the deletion of any vertex
does not decrease its cochromatic number.

As nK,, is an induced structure in G’, obviously xs(G’) > n. Now let us consider the
split-coloring formed by taking n cliques of size 2n. Then, the remaining graph G can be
partitioned into at most n stable sets. The value of this solution is n and hence xs(G’) = n.
As for the cocoloring problem in G, note that an optimal cocoloring of G completed by n
cliques covering nKy,, constitutes a solution and therefore z(G') < z(G) + n. On the other
hand, an optimal cocoloring of G’ contains at least n cliques included in nK5,. Consequently,
this cocoloring induces a cocoloring of G with at most z(G’) — n stable sets or cliques. This
implies that 2(G’) > z(G) + n and therefore 2(G') = 2(G) + n.

In conclusion, for any graph G’ in G = {G U nKa,}, Min Split-coloring is trivial while Min
Cocoloring is N'P-hard. O

5.2.4 Edge cocoloring of line-perfect graphs

Here, the polynomial time algorithm for Min Edge Cocoloring in bipartite graphs is extended
to line-perfect graphs. First, we recall some basic properties of line-perfect graphs.

Lemma 5.10. The following statements are equivalent:
1. G is a line-perfect graph;
2. G has no induced elementary odd cycles of length more than three [113];
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3. VY partial graphs G' of G, X'(G') = A(G"), where A'(G) is the largest number of
mutually adjacent edges. U

Min Edge Cocoloring consists in finding a minimum number of bundles, triangles and match-
ings that cover all the edges. Note that we have }'(G) = A(G) if A(G) > 3 for any
line-perfect graph G. It follows that for A(G) > 3, edges of a line-perfect graph can be
polynomially covered by A(G) matchings (considering each color as a matching); an algo-
rithmic proof of it can be found in [35].

Let us first remark that for A(G) < 2, finding 2/(G) is a trivial problem. In fact, z/(G) =1
if A(G) =1or G is a triangle, 2/(G) = 2 if G is two triangles, or one triangle and one
matching, or two matchings, and 2'(G) = 3 otherwise. In what follows, we will only deal
with the case where A(G) > 3.

We propose a recursive algorithm which will extend the edge cocoloring with A(G) match-
ings whenever A(G) < 2/(G) and in the opposite case, i.e., if A(G) > 2/(G), it will include
in the solution either a bundle or a triangle in the remaining graph. In what follows, we
first show that there exists an optimal edge cocoloring of a line-perfect graph with at most

one triangle.

Lemma 5.11. In a line-perfect graph, if (Z',T") is an optimal edge cocoloring with a min-

mmum number of triangles, then,

1. there are at most two disjoint triangles in T';
2. there are no two triangles with a common vertex in T';

3. there are no two triangles with a common edge in 7'.

Proof. Three triangles can always be replaced by three matchings, and two triangles with
at least one common vertex by either two bundles, or a bundle and a matching. Also, two
triangles with a common edge can be replaced by either two bundles, or a triangle and a
bundle. O

Lemma 5.12. In a line-perfect graph, there is an optimal edge cocoloring (Z',T") with at

most one triangle.

Proof. If A(G) < 2/(G) then an optimal edge cocoloring consists of a usual edge coloring,
hence it has no triangle.
If A(G) > 2/(G), then in an edge cocoloring (Z’,7") with a minimum number of triangles,

let us observe the two following cases for any vertex x of maximum degree.

Case 1. z € 2/ = 2/(G) = 1 + 2/ (G[V \ {z})).

Case 2. © ¢ Z' = there is at least one triangle containing vertex x in the solution.
According to Lemma 5.11, if we use a triangle containing a vertex z of maximum

degree, then we will need at least d(z) — 2 bundles and/or matchings in order to
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complete the edge cocoloring, implying 2'(G) > d(x)—1 and therefore 2'(G) = d(x)—1.

It means that there is an optimal edge cocoloring with at most one triangle.

0

It follows that in the case where there is an optimal edge cocoloring containing exactly one
triangle, this triangle have to contain a vertex x of maximum degree in G. Then, if 2/,
stands for the value of an optimal (¢riangle-free) edge cocoloring which does not contain any
triangle, then 2(G) = 1+ 2. (G(V,E \ E(G[T(x)]))), where T'(z) is the set of vertices of
the triangle chosen to be in 7”.

Bringing all these considerations together, we have
(@) = min{A(G), 1+ 2 (GV \{z}]), 1 + 27p(G(V, E\ E(G[T(x)]))}.

Finally, let us note that according to Remark 5.5, 7., can be computed in the same way as

2" in bipartite graphs.

Algorithm 12 Edge cocoloring of line-perfect graphs
Input: a line-perfect graph G

Output: a minimum edge cocoloring (Z’,7") of G with value 2/'(G)
1. if G # () then
2. pick a vertex x of maximum degree in G;
5. 2(G) = mnAG),1+ #(GIV\ {e}),1 + £pl(GV, B\ BGIT@))}, Tw) =
{z,a,b} such that (a,b) € N(x) and (a,b) € E(G);
if 2/(G) =142 (G[V \ {z}]) then
zZ'— Z'U{x};
if 2/(G) =1+ 2,p(G(V,E \ E(G[T(z)])) then
T — T U{T(x)};
if 2/(G) = A(G) then
Z — 0, T 0.

© P N> o

Theorem 5.13. For any line-perfect graph G, Algorithm 12 computes an optimal edge
cocoloring (2',T") of value 2'(G) in time O((m? +mn)logn).

Proof. The correctness of Algorithm 12 is already verified. For the time complexity, the most
expensive part is due to the computation of 2/.,(G(V,E \ E(G[T'(z)]))) for each triangle
linked to a maximum degree vertex. Let us remark that in a line-perfect graph G, the
neighborhood of a maximum degree vertex does not contain an induced path on four vertices,
because otherwise L(G) would have an odd cycle of length at least five implying that L(G)
is not perfect. It follows that the number of triangles sharing a vertex x of maximum degree
is limited by d(z). Therefore, we will compute 2/.(G(V, E\ E(G[T(z)]))) at most m times,
which will take time O((m? 4+ mn)logn). O
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5.3 Max (p, k)-colorable subgraph in line graphs

Let us recall that a stable set in a line graph L(G) corresponds to a matching in G, and
that a clique in L(G) may correspond either to a triangle or to a bundle (of the same size
as the clique) in G. Therefore finding a1 (L(G)) = aj, ;(G) is equivalent to the problem
of finding a subgraph of maximum size (with respect to edges) in G whose edge set can be

covered by k matchings and p bundles and/or triangles.

Lemma 5.14. If (p, k)’ -coloring problems are N'P-hard in a class G of graphs, then finding
O‘;mk is also N'P-hard in G. O

5.3.1 Computing oy,

In this section, we are dealing with the problem of finding a union of k£ matchings of max-
imum (total) cardinality in G. First of all, it is well known that for k¥ = 1, this problem
is polynomially solvable in all finite graphs [48]. Note that finding ), (G) is very closely
related to the edge coloring problem since each color in an edge coloring corresponds to a
matching. For this reason, the problem of finding a maximum edge subgraph which can be
covered by k matchings is called mazimum edge k-coloring problem [60].

It is shown by Holyer [88] that deciding whether an input graph is edge 3-colorable is N'P-
complete. This immediately implies that the maximum edge k-coloring problem is N"P-hard
for every k > 3. Then, Feige et al. showed that the maximum edge k-coloring is AN'P-hard
even for k = 2 [60]. In other words, finding «j , in general line graphs is N'’P-hard for k > 2.
It follows that computing «aj, ; is N'P-hard for k& > 2 and for all p. In fact, the problem of
finding a{)’ i in a given graph G can be reduced to the problem of computing afm ;. in a graph
G’ obtained from G by adding p bundles, each one with n edges where n is the number
of vertices in GG; any optimal solution giving a;%k will obviously contain the additional p
bundles since no other choice can contribute to the solution more than n — 1 edges per
bundle.

Proposition 5.15. For any k > 2, the problem of finding a(),k s polynomially solvable in
line-perfect graphs.

Proof. Let G be a line-perfect graph. If A(G) = 2, then G consists of isolated cycles
and paths, and it is trivial to compute %,k- Otherwise, if G is simple with A(G) > 3
then X'(G) = A'(G) = A(G); therefore, edges of G can be covered by A(G) matchings.
Consequently, for k& > 3, the problem of finding O‘(),k is equivalent to the (edge) mazimum
degree bounded subgraph problem where given a graph, the objective is to find a subgraph
containing as many edges as possible and such that the degree of any vertex is at most k.
This problem is known to be polynomially solvable [49] (but A'P-hard if the subgraph is
required to be connected [70]) and efficient algorithms have been given to find such subgraphs
[68]. On the other hand, finding a maximum subgraph with degree bounded by 2 is not
equivalent to computing 0/072, since the maximum degree in an odd cycle is bounded by 2
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but it can not be covered by 2 matchings. If G is line-perfect, then G does not contain any
odd cycle except triangles [113]. Moreover, for k = 2, one can find in polynomial time a
maximum triangle-free subgraph with degree bounded by 2 using the algorithm designed by
Hartvigsen [84]. O

Note that for k£ > 3, the problem of finding O/OJC is polynomially solvable in any graph G
having x'(G) = A(G). As for the bipartite graphs, 0/07 (G) is obtained by a simple maximum
flow algorithm (from the source to the sink) on the network containing graph G = (A, B, F)
and where the edges between A and B have capacity one, while edges connecting A-vertices
to the source and B-vertices to the sink have capacity k. Clearly, the value of a maximum
flow from the source to the sink in such a network gives 0/07k(G).

Finally, according to [31], determining whether a graph G = (V, E) contains a 2-regular
partial subgraph? G/ = (V,E'), E' C E (on the same vertex set) without cycles of length
5 is N'P-complete. It follows directly that finding a672 is N'P-hard already in triangle-free
graphs.

5.3.2 Computing o ;

Let us first consider the case k = 1. If M (G) denotes the size of a maximum matching in G,
then clearly, we have M(G) + A(G) — 1 < a7 ;(G) < M(G) + A(G). We will now examine
different cases with respect to the value of the maximum degree.

If A(G) > 4, then let us consider the graph G’ obtained from G by linking every maximum

degree vertex to an additional vertex v. We have the two following (exclusive) cases.

Case 1. There is a maximum matching in G which leaves at least one maximum degree
vertex unsaturated and then we have M (G) = M(G’) — 1 yielding oy 1(G) = M(G) +
A(G)=M(G") + AG) - 1.

Case 2. All maximum matchings in G saturate all maximum degree vertices and then we
have M(G) = M(G') yielding a1 1(G) = M(G) + A(G) — 1 = M(G") + A(G) — 1.

Consequently, in both cases we have o} ;(G) = M(G') + A(G) — 1.

If A(G) = 3, then o} 1(G) = M(G) + A(G) if and only if there is a maximum matching
leaving a maximum degree vertex unsaturated or leaving a triangle free, i.e., containing no
edge of a triangle and otherwise o} ;(G) = M(G) + A(G) — 1. Remark that triangles are
either single (do not touch any other triangle) or in diamonds (two triangles sharing one
edge). Let us construct the graph G’ mentioned above and give weights to its edges in the
following way: edges of each one of the ¢; single triangles of G have weight 1 (but not the
ones created by the addition of v) and all the other edges have weight 0. Note that any
matching can have at most one (weighted) edge in each triangle. Now, let us compute a
maximum matching M* of minimum weight W(M*) in G’ and consider the two following

(exclusive) cases.

2That is a partial subgraph where the degree of each vertex is exactly 2.
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Case 1. There is a maximum matching in G which leaves at least one maximum degree

vertex unsaturated and then we proceed as in Case 1 for A(G) > 4.

Case 2. All maximum matchings in G saturate all maximum degree vertices (included those
in diamonds, which implies that there is no free triangle in any diamond); consequently
M(G) = M(G"), then,

i) if W(M*) < t1, then M* leaves at least one triangle free and therefore o ; (G) =
M(G') + A(G);

ii) otherwise every maximum matching has at least one edge of each triangle and
therefore o] ;(G) = M(G') + A(G) - 1.

Finally, if A(G) = 2, then either G contains a (isolated) triangle and then o} ; = M(G) +2,
or there is no triangle in G’ and in this case we have o ; = M(G) + 1 if G admits a perfect
matching, that is a matching saturating all the vertices, and o/ ; = M(G) + 2 otherwise.

Note that the result for A(G) > 4 holds also for bipartite graphs without restriction on

maximum degree since there is no triangle in this case.

Theorem 5.16. 0/1,1(G) can be polynomially computed in any graph with the same time

complezity as for a mazimum matching of minimum weight.

Proof. One of the above methods has to be applied with respect to the value of A(G) for
the graph in consideration. The time complexity is dominated by the case A(G) = 3 where
we compute a maximum matching of minimum weight in G’. This requires the detection of
all triangles in G, which can be done in time O(m) by a breadth first search since, in the
case where A(G) = 3, the number of triangles is at most n (this value is attained with n/4

isolated cliques of size 4). O

Note that for k not part of the input, Theorem 5.8 together with Lemma 5.14 imply that
finding o, , is N'P-hard even in bipartite graphs.

5.3.3 Computing a,,,

Let us first remark that for a fixed p, an exhaustive search will give 042770 for an arbitrary
graph since the number of maximal cliques is polynomially bounded in line graphs of general
graphs. This implies that the complexity status of finding O‘;),k for a fixed p is the same
as for g ;. Consequently, finding o/, for a fixed p is N'P-hard in general graphs while it
is polynomial in bipartite graphs and line-perfect graphs. Obviously, this argument is no
longer valid for a fixed k& and p = 0, because the number of maximal stable sets is not nec-
essarily polynomially bounded in line graphs of general graphs; in fact a complete bipartite
graph has a non-polynomial number of maximal matchings.

Let us now consider line graphs of triangle-free graphs where cliques correspond only to
bundles in the original graph since there is no triangle in triangle-free graphs. Hence finding

O‘fmo is reduced to searching p bundles containing a maximum number of edges. In addition
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to this, we know that Max Stable Set and consequently® Min Vertex Cover (the problem
of covering all edges by a minimum number of vertices; a vertex v is said to cover an edge
e if e contains v as an endpoint) are N'P-hard in the class of triangle-free graphs [107]. It

is straightforward to see that computing aj, , is also A"P-hard because otherwise we could

/

»0(G) = m or not for different values

find an optimal vertex covering by checking whether «
of p.

On the other hand, the problem of finding O‘fmo is N'P-hard in bipartite graphs but polyno-
mially solvable in trees [6].

Finally, let us recall that, as mentioned in Section 5.2.3, (p, 1)’-coloring problem (for p free)
is N'P-hard in bipartite graphs. Lemma 5.14 implies that finding aj,; is N"P-hard for bi-
partite graphs and consequently for line-perfect graphs. Furthermore, the same reduction
as in the proof of Theorem 5.8 implies that finding O‘;;,k remains N P-hard for any fixed k.
The results of this section, namely the complexity status of finding Oﬁlm ;. according to p and k
in the class of bipartite graphs, line-perfect graphs and triangle-free graphs, are summarized

in Table 5.2 at the beginning of the present chapter.

5.4 Conclusion

This research has settled the complexity status of generalized vertex coloring problems in
line graphs. The next section will complete these results by developing approximation
algorithms for AP-hard cases occurring in line graphs (and also in comparability graphs
and in arbitrary graphs).

A natural question arising from this chapter concerns the relative difficulties of Min Split-
coloring and Min Cocoloring. Here we emphasized the existence of classes of graphs, namely
line graphs of bipartite graphs and line graphs of line-perfect graphs, where Min Cocoloring
is polynomially solvable whereas Min Split-coloring is AP-hard. One may wonder whether
there are known classes of graphs where the converse holds. Our result showing that in the
class of graphs G = {G UnKjy,}, Min Cocoloring is N'P-hard, while Min Split-coloring is
polynomially, solvable indicates that this is not impossible. In the next chapter, we progress
in the direction of answering this open question by showing that we can exclude from our
research a rather large class of graphs where Min Split-coloring is at least as difficult as Min

Cocoloring. More results on this topic are then obtained in Chapter 7.

3 According to a well known result [70], in any graph G = (V, E), a set V' C V is a stable set if and only
if V'\ V' is a vertex cover, i.e., a set of vertices covering all the edges.

7






Chapter 6
Approximation and bounds

In this chapter, based on [39], we derive approximation results for Min Split-coloring and
Min Cocoloring in line graphs, comparability graphs and general graphs. To our knowledge,
this provides the first approximation results for Min Split-coloring.

We first consider the class of line graphs. In the previous chapter, we showed that Min
Split-coloring is N'P-hard in line graphs of bipartite graphs while Min Cocoloring is poly-
nomial for this class. Here we approximate Min Split-coloring and Min Cocoloring in line
graphs with approximation ratios of 7/3 and 2 respectively. Then, we give improved ap-
proximations of Min Split-coloring in line graphs of line-perfect graphs (with a ratio of 2)
and line graphs of bipartite graphs (with a ratio of 1.78).

In addition, noticing that Min Split-coloring is AP-hard in comparability graphs, also
known as transitively orientable graphs, we give a 2-approximation algorithm for this case;
this result is the split counterpart of a result for cocoloring in comparability graphs [65]. In
fact, the AP-hardness of Min Split-coloring in comparability graphs follows from a more
general result that we derive: Min Cocoloring reduces to Min Split-coloring in the class of
graphs closed under addition of disjoint cliques without link to the rest of the graph and
under addition of a complete k-partite graph completely linked to the rest of the graph.
Note that this class strictly contains the class of perfect graphs.

We also study the standard and differential approximation behavior of Min Cocoloring
and Min Split-coloring in general graphs. From the standard approximation point of view,
negative approximability results of Min Coloring hold also for Min Split-coloring and Min
Cocoloring. In return, we show that Min Split-coloring and Min Cocoloring are better ap-
proximable than Min Coloring in terms of differential approximation ratio since they admit
a polynomial time differential approximation scheme, i.e., a (1 — €)-differential approxima-
tion algorithm with complexity O(n!*3/¢) for every e such that 0 < € < 1, and Min Coloring
admit only a constant differential ratio. On the other hand, a fully polynomial time differ-
ential approximation scheme (the same ratio with complexity polynomial in 1/¢) cannot be
guaranteed for any of them, unless P=N"P.

Let us state in Table 6.1 the complexity and approximation results obtained in this chapter;

references are given whenever the results were known before. A “” in an entry indicates
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that the corresponding problem has no meaning. Recall that G = {G U nKy,}, already
introduced in the previous chapter, is the class of graphs obtained by taking any arbitrary

graph of size n and adding n disjoint cliques of size 2n each.

‘ Class of gr. H ‘ Complexity ‘ Approx. ‘ Non-approx. ‘
L(G) Xs N'P-hard 7/3 4/3-¢ if PANP
z NP-hard
L(line XS N'P-hard [41] 2 DFPTAS
-perfect) z | O((m? +mn)logn) [41] - -
L(Bipart.) | xs NP-hard [41] 1.78 DFPTAS
z O((m +n)logn) [41] - -
Compar. XS NP-hard 2 DFPTAS
2 N'P-hard [117] 1.71 [65] DFPTAS
g= |xs o(1) [41] - -
{GUNnK2,} || 2 N'P-hard [41] 3/2 DFPTAS
General Xs NP-hard [19] DPTAS® | nl/M=cif PANP
z N'P-hard [19] nl/2=¢ if coRPANP
DFPTAS

“Obviously, this result also holds for all subclasses of finite graphs.

Table 6.1: Approximation results for Min Split-coloring and Min Cocoloring.

Finally, we derive some bounds on optimal split-colorings and cocolorings making use of
some intuitive ideas as well as by generalizing some well known sequential usual coloring
algorithms, namely the one due to Welsh-Powell [118] and Matula’s smallest last algo-
rithm [101, 102].

6.1 Approximation theory

As soon as the N'P-completeness theory was established, the research community started
to explore different ways of coping with NP-complete problems. Researchers having rather
an intuition that P # AP but not being able to prove it, tried to provide at least some
“good” solutions for hard optimization problems. Some of them adopted the approach of
developing intuitively good strategies to find solutions “close” to the optimal one without
having any theoretical guarantee on their distance to the optimum but satisfied by their
practical quality. The resulting procedures, known as heuristics, have the advantage of pro-
viding solutions that can be used in real world applications since relatively “good” solutions
are obtained in some “reasonable” time. For instance, tabu search, simulated annealing and
genetic algorithms are some of the widely studied heuristics which are adapted with a great
success to a broad variety of problems. See [1] and [122] for a general description of these

heuristics as well as more technical information and references on each of them. Never-
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theless, the power of heuristics is measured mainly by empirical comparisons®. Although
problem specific fine tunings often produces satisfactory solutions, they are not generally
built according to an a priori analysis to predict their performance. In other words, they
provide solutions that can be used in practice, but they do not give a deeper insight on the
intrinsic difficulties of problems.

In order to learn more on the hierarchy of the N’P-complete problems, another approach,
called approximation theory, was developed. This allows to say, for a given approximation
algorithm, how far can be an approximate solution from an optimal one in the worst case?.
Here, the objective is to provide polynomial time approximation algorithms with a perfor-
mance guarantee that a solution obtained by that algorithm is never more distant from the
optimum than by a prespecified measure. A commonly accepted measure is the approxima-
tion ratio that we introduce below. Note that this type of algorithms can be polynomial
with a high degree, meaning that they may be unusable in practice because of the time re-
quirements. However, this theory allows us to build a hierarchy between NP-hard problems
according to the class of approximability they belong to. In fact, approximation algorithms
are classified according to the type of the approximation ratio they can guarantee (see the
next subsection for their definitions). Then, one can establish positive or negative results
saying that a problem admits an approximation algorithm of certain type, or respectively
that it does not admit an approximation ratio of certain type. Consequently, this gives a
hierarchy of problems rather “well” approximable or not. This is the approach we adopt in
this chapter.

Note that the notion of “good” approximability is closely related to the approximation ratio
we use. In the sequel, we define two of them, namely standard and differential approximation
ratios. Works in this context have pointed out that it is often interesting to simultaneously
consider both points of view since these ratios provide different pieces of information about

combinatorial problems [43, 52].
6.1.1 Standard approximation ratio

We define the classical approximation ratio as follows.

Definition 6.1 (Standard approximation ratio). Let II be an optimization problem
and I an instance belonging to the set L7 of instances of II. The standard approximation

ratio of an algorithm A and for I is defined by

!See Chapter 2 of [1] by M. Yannakakis for the foundations of the complexity theory of local search.
The complexity class PLS, short for polynomial-time local search, is introduced to capture the problems
whose neighborhood can be searched in polynomial time. In spite of these theoretical developments, building
heuristics remain an experimental art.

? Average case analysis do also exist in the literature, see for instance Chapter 9 of [7] or Chapter 3 of [1].
It is based on an analysis of the expected behavior of approximation algorithms under particular probability
distributions, and leads, in general, to a better approximation behavior compared to the worst case analysis.
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where A(I) is the value of the solution of I given by A and B(I) is the value of an optimal

solution.

The absolute constant approximation ratio p4 of an algorithm A for a minimization (re-
spectively, maximization) problem is then determined by the worst case scenario:

pa = sup pa(I) (respectively, p4 = inf pa(I)).
Iely I€ly

Note that we simply denote by p the absolute approximation ratio since the algorithm under
consideration is always clear from the context.

In our case, if some ambiguity arises, we write Ag, Bs (respectively A¢, S¢) in order to refer
to Min Split-coloring (respectively Min Cocoloring).

As we have already mentioned, different behavior of N"P-hard optimization problems can
be enlightened by means of approximation classes. We define some classes of optimization
problems sharing similar approximability properties. If P # NP, they form a strict hier-
archy from badly to rather well approximated problems. See [7] for more information on

approximation classes.

Definition 6.2 (APX). APX is the class of N'P-hard optimization problems such that for

some r > 1, they admit a polynomial time r-approzimation algorithm.

Definition 6.3 (PTAS). Let II be an N'P-hard optimization problem. An algorithm A is
said to be a polynomial time approzimation scheme (PTAS) for II if, for any instance I of
IT and for all e > 0, A when applied to input (I,€) returns a (1+€)-approximate solution of I
in time polynomial in the size of the instance I. PTAS is the class of N'P-hard optimization

problems admitting a polynomial time approximation scheme.

Definition 6.4 (FPTAS). Let IT be an N'P-hard optimization problem. An algorithm A is
said to be a fully polynomial time approzimation scheme (FPTAS) for II if, for any instance
I of IT and for all e > 0, A when applied to input (I,€) returns a (1+¢€)-approzimate solution
of I in time polynomial both in the size of the instance I and in 1/e. FPTAS is the class of

NP-hard optimization problems admitting a fully polynomial time approzimation scheme.

6.1.2 Differential approximation ratio

Assume that we have an approximation algorithm for Min Vertex Cover with an approxi-
mation ratio of 2. For an instance of size 1000 with an optimal solution value of 490, this
algorithm will return a solution of at most 980 vertices. Using the well known result [70] on
the links between Min Vertex Cover and Max Stable Set, we can transform every solution
for Min Vertex Cover into a solution for Max Stable Set just by taking its complementary
in the given graph, and vice versa. This transformation yields a ratio for Max Stable Set
much larger than the one for Min Vertex Cover : 100-49%0 _ 95 5 This is the result of the

1000—980
fact that this transformation which preserves the optimal solutions does not preserve the

approximation ratio.
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Note that the preservation of the approximation ratio by some very “natural” transforma-
tions as in the example above, is a very natural property that an approximation ratio should
require in order to make the approximability theory compatible with the optimization theory.
To this end, we adopt the differential approximation ratio which is defined in an axiomatic
way in [44] to allow all the affine transformations of a problem to be equivalent in the sense
of approximability. Let us introduce the definition of the differential approximation ratio
which takes into account the worst solution, obtained by solving the same problem, keeping
the same constraints, but with a maximization (respectively minimization) objective func-
tion if the original objective is to minimize (respectively maximize)®. The value of a worst
solution for an instance I, denoted by w([), is sometimes trivial to compute; for instance,
for a Min Coloring instance I with n vertices, we have w(l) = n. The exact definition of

w(z) has to be specified for each problem.

Definition 6.5 (Differential approximation ratio). We call the differential approzi-
mation ratio, for an instance I of an optimization problem II and for an approximation

algorithm A, the ratio
_ Jwl) =MD
w(I) — BI)]

where w(I), B(I) and N(I) are respectively the values of the worst solution, an optimal

da(l)

solution and the approrimate one given by A.

Since the differential constant approximation ratio of an algorithm reflects the worst case

approximability, it is defined by
da = inf d4(I).

Iely
As previously, we simply write § where no confusion arises.
Note that 6 € [0,1] and the larger the ratio is, the better, without distinction between
maximization and minimization problems. Roughly speaking, this ratio gives the position
of the approximated value between the worst and the best one.
All the approximability classes introduced previously are similarly defined in the case of dif-
ferential framework by simply replacing the standard ratio by the differential ratio, and by
taking (1 —¢) instead of (1+¢) in the definitions of PTAS and FPTAS; they are respectively
denoted by DAPX, DPTAS and DPFTAS.
This ratio, also called z-approximation ratio [85], has been used since a long time (see for
instance [121]) and is extensively discussed in [44]| and [43]; many studies in this area have
pointed out that both ratios are complementary without trivial links between them, which
emphasizes the interest to systematically study a problem by with both ratios (see [52] and
[43]).
In particular, it has the advantage of respecting some affine equivalence such as the equiv-
alence between Max Stable Set and Min Vertex Cover, while both problems are known to

3See [44, 37| for a discussion on the worst solution.
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have radically different approximation behaviors for the usual ratio*. For instance, Min Col-
oring admits constant differential approximation algorithms, the best ratio currently known
being 59/72 [47], while it is hard to approximate from the usual ratio framework (see the
inapproximability results in [7]). On the other side, it does not admit any differential PTAS,
unless P=NP ([8]). On the contrary, some other problems are constant approximated with
the usual ratio and hard to approximate from the differential point of view and, finally,
some problems have similar behavior from both points of view.

For Min Split-coloring, we consider [n(G)/3] as worst value since one can always assume
that each color (except at most one) contains at least three vertices (every set of three
vertices induces in G a split graph). The ratio associated with G is §(G) = [[n(G)/3] —
AMG)]/[In(GQ) /3] —xs(G)]. Similarly, the differential ratio for Min Cocoloring is [[n(G) /2] —
A@)]/[[n(G)/2] — z(G)] since any pair of vertices forms either a clique or a stable set. Note
that a larger worst value such as n could be also used, leading to better approximation
ratios. But it is reasonable to consider the more restrictive values [n(G)/3] and [n(G)/2],
respectively, in order to avoid an artificial increase of the final ratio (see [44] where the
notion of worst value is discussed). It simply corresponds to restrict the analysis to “rea-
sonable” solutions.

It is an easy task to verify the following useful property of differential approximation ratio.

Property 6.6. The differential ratio is an increasing function with respect to the value of

the worst solution.

In what follows, unless otherwise stated, approximation ratio stands for standard approxi-
mation ratio. The differential ratio will be exclusively used in Section 6.5.2 of this chapter
and in Section 7.2.4 of Chapter 7.

6.2 Preliminary remarks

Let us first mention the following preliminary result on approximation dealing with standard

approximation ratio.

Proposition 6.7. There is a reduction which preserves approrimation between Min Split-
coloring and Min Cocoloring: every r-approximation algorithm for one of these problems

gives a 2r-approrimation algorithm for the other one.

Proof. Suppose we have an r-approximation algorithm for Min Cocoloring giving a solution
of value A\c(G) for any graph G. Consider the vertex partition of that solution as a split-
coloring of value A\g(G). Clearly, we have A\g(G) < A\¢(G) < rz(G) < 2rxs(G) since a

minimum split-coloring of G provides a cocoloring of value 2xs(G).

4They both admit an approximation ratio which is infinity. However, more refined analyses give approx-
imation ratios depending on the size of the instance. Given a graph G with n vertices, the best known
results state that Max Stable Set is approximable within O(( ) (see [14]) and Min Vertex Cover is

lognn)2
approximable within (2 — © \/ISW) (see [94]).
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Similarly, if we have an r-approximation algorithm for Min Split-coloring giving a solution
of value Ag(G) for any graph G, then the value of a cocoloring derived from that solution
verifies A\c(G) < 2Ag(G) < 2rxs(G) < 2rz(G). O

Corollary 6.8. For every class of graphs for which z(G) (respectively xs(G)) can be com-
puted in polynomial time, Min Cocoloring (respectively Min Split-coloring) induces a 2-

approzimation for Min Split-coloring (respectively Min Cocoloring).

It follows that z(G) can be polynomially approximated within a factor of 2 in the class
of graphs G = {G UnKy,}. In fact, a better approximation ratio can easily be obtained.
It is shown in Proposition 5.9 that for any G’ € G, we have 2(G') = n + 2(G), where
G' = G UnKs, with G of size n. Therefore, 2(G’) > n + 1 (since n > 1 and there is
no stable set contained in nKs, in an optimal cocoloring of G’) and a cocoloring of value
Ac(G") < (3n/2) + 1 can easily be obtained by taking a solution on G of value [n/2] (since
any pair of vertices forms either a clique or a stable set) and n cliques covering nKs,. This

provides an approximation ratio of 3/2.

6.3 Line graphs

In this section, we give approximation results for Min Split-coloring and Min Cocoloring in
line graphs. For this, we use the terminology defined in the previous chapter for generalized
colorings of line graphs.

Recall that both edge 3-split-colorability and edge 3-cocolorability are shown to be N'P-
complete in general line graphs (see Proposition 5.1). Since both Min Edge Split-coloring
and Min Edge Cocoloring have integral values, we can immediately deduce the following

result.

Corollary 6.9 (of Proposition 5.1). Both Min Edge Split-coloring and Min Edge Cocol-

oring are not approrimable within a factor of 4/3 — €, unless P=N"P.

Furthermore, we showed in Chapter 5 that in line-perfect graphs, Min Edge Cocoloring is
polynomially solvable while Min Split-coloring is N'P-hard (see Theorems 5.8 and 5.13).
Corollary 6.8 combined with these results allows us to state the following approximation

result.

Corollary 6.10. Min Edge Cocoloring provides a 2-approzimation for Min Edge Split-

coloring in line-perfect graphs in time O((m? 4+ mn)logn). O

Indeed, an optimal edge cocoloring of an instance is a 2-approximation of the same instance,
now viewed as an instance of Min Edge Split-coloring.

It can be easily observed that this bound of 2 is tight for the graph G = pKy, U pK),
which is obviously the line graph of a line-perfect graph. More precisely, we have z(G) = 2p
by taking 2p (disjoint) cliques. This solution induces a split-coloring of value 2p as well.

85



CHAPTER 6. APPROXIMATION AND BOUNDS

Nevertheless, we have ys(G) = p by choosing p cliques of size 2p and p stable sets covering
the remaining p cliques of size p each.

In what follows, we develop an approximation algorithm for Min Edge Split-coloring. Let
A be a polynomial time algorithm computing an edge (A + 1)-coloring for any graph of
maximum degree A [104] and an optimal edge coloring for line-perfect graphs [35]. Also,
we denote an edge split-coloring by &’; a solution is the set of edges incident to vertices
in &’ completed by an edge coloring. We consider the following algorithm for Min Edge
Split-coloring.

Algorithm 13 Greedy edge split-coloring
Input: a graph G, edge coloring algorithm A

Output: an edge split-coloring S’ of G
1. 8 0

2. while |§'| < A(G) do

3 pick a vertex x of maximum degree in G;

4. S — S U{x};

5 G — GV \{z}];

6

. compute an edge coloring of the remaining edges by .A.

The idea is that, if £ = min{d : |[{z : d(z) > d}| < d}, then by removing all vertices of
degree greater than k (the maximum degree is at most k& in the remaining graph) and by
completing the solution by k + 1 matchings [104], one finds an edge split-coloring of value
k+ 1.

Theorem 6.11. For any graph G,

1. Algorithm 13 computes an edge split-coloring of cardinality at most 2x's(G) + 1 in

polynomial time.
2. Algorithm 13 is a polynomial time 7/3-approzimation for Min Edge Split-coloring.

3. Algorithm 18 is a polynomial time 2-approximation for Min Edge Split-coloring in
line-perfect graphs.

Proof. Let us consider a graph G = (V, F), it is straightforward to verify that Algorithm 13
computes a split-coloring of G; we denote by Ag,(G) its value. Let £ = min{d : |{z : d(z) >
d}| < d}. In what follows, we show that A\, (G) < k+1 < 2x%(G) + 1.

Statement 1. Let us first note that if x's(G) = 1, then A, (G) is either 1 or 2; on the other
hand, if x's(G) = 2, then, after 2 iterations of the while-loop, the degree is less than 3 and
no more than 3 matchings are used at line 6, computing also a solution of value 3 or less.
In both cases, Ag,(G) is at most 2x's(G). In what follows, we assume that x's(G) > 3.
Note that Ag.(G) < |S8'| + 1 since |S'| > A(G\ §’), where G\ &' = G[V \ §']. Let r be the
last vertex introduced in &’ and S, = &’ \ {r}; we have |S.| < A(G \ S,) and consequently
d(r) > |S.| +1 = |S’|. Since vertices are introduced in S’ in decreasing order of their
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degree, every vertex in S8’ has degree at least |S’|. Consequently, [{z : d(z) > |S'[}| > |S'|.
It means that |S’| < min{d : [{z : d(z) > d}| < d}. It is straightforward to verify that
min{d : |[{z : d(z) > d}| < d} = k+1 and thus A\g,(G) < |S'|+1<k+1.

See Figure 6.1 for the illustration of the functions y; = [{z : d(z) > d}| and y2 = {z :
d(x) > d}|; then, k can be easily computed on the graphic as being the smallest value of
d such that the function y; = [{z : d(x) > d}| remains under the “graph” of the identity

function (or coincides with it).

il i) 2
"t v = l{e: d(@) > d)]

n—1 /f ’ygid
o e
N
| SANERR
: e o
o o
| | —e d

Eok+l AG) -1 AG)

1 — number of isolated vertices in G

Figure 6.1: Computation of £k = min{d : |[{z : d(x) > d}| < d} in a graph G.
In order to show k < 2x's(G), we prove the following lemma.

Lemma 6.12. Consider an optimal edge split-coloring of value x's(G) minimizing the num-
ber of triangles among optimal edge split-colorings of G. Denote by T the set of triangles
and by B the set of bundles in this solution (|T|+|B| < x's(G)). Let X be the set of vertices
of degree at least 2x'q(G) + 1 that are not center of a bundle in B. Then |X| < 3.

Proof. Let x € X, we denote by T, the set of triangles in T incident to x and by B, the
set of bundles centered on neighbors of = (by definition of X, x is not a center of a bundle
in B). Since the solution minimizes the number of triangles, any two triangles in 7" are
edge-disjoint and no center of a bundle in B belongs to a triangle in T. Consequently,
T, U B, contains exactly |B,| + 2|T;| edges incident to . Since only xs(G) edges incident
to x can be covered by matchings in the solution, |B,| + 2|T,| > x's(G) + 1. Let us then
define a bipartite graph I = (X,T U B, Ey), with zr € E if and only if r € T, U By, i.e.,
x is incident to an edge of bundle or triangle r. Vertices in T have a degree at most 3 in [

and vertices in B have a degree at most |X| in . We then have:

D (Bel +2T2]) = (X5(G) +1)IX], (6.1)
zeX
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> (Bu| +Ta]) < 3IT| + | X||B. (6.2)
zeX

We deduce by subtraction:

3T1 2 3 1] 2 (G(G) — 1BI+ DIX| = 31T] 2 (7] + 1)1x] - 3T
rzeX
Consequently |X| < 5. But, in this case, the number of triangles in 7' with degree 3 in I
is at most two since any graph generated by three triangles and at most five vertices can
be covered by three bundles, which is not possible if the solution minimizes the number
of triangles. Then, if |T| > 2, inequality (6.2) can be replaced by > _(|B:| + |T;]) <
2|T| + 2 + | X||B| implying | X| < 4. By the same argument as previously, since any graph
generated by two triangles and at most four vertices can be covered by two bundles, at most
one vertex in T has degree 3 in I implying |X|(|7|+1) < 4|T'|+2 and thus | X| < 3. Finally
if |T'| < 1, inequality (6.2) becomes Y . (|Bz| + |T%|) < 3 + |X||B| implying |X| < 3,
which concludes the proof. O

It implies that |[{z : d(z) > 2x5(G)} < Xx5(G) + 3 < 2x%4(G) since xs(G) > 3. Then,
k < 2x5(G) and Agr(G) < 2x5(G) + 1, which concludes the proof of Statement 1.
Statement 2. If x'y(G) < 2, Algorithm 13 uses clearly no more than 3 colors. If xs(G) > 3,
then by Statement 1, we have A\g,(G) < 2x5(G) +1 < Txs(G)/3.

Statement 8. Line-perfect graphs of maximum degree A can be edge colored in polynomial
time (by A) with A colors if A > 3, and either with 2 or 3 colors if A = 2. If A = 2,
Algorithm 13 uses at most 3 colors. If A > 3, we just have to note that, in the proof of
Statement 1, A\ar(G) < k < 2x5(G). O

Let us finally remark that the bound is tight in bipartite graphs. Consider namely an integer
p, Vi={z;,i=1,....2p}, Vo ={yi,i = 1,....2p,5 = 1,...,p+ 1} U{us,i = 1,...,p},
E={zyj,i=1,...,2p,j=1,....,p+1}U{zu;,i =1,...,2p,j = 1,...,p}. Every vertex
in V; is of degree 2p + 1 = A(B), d(u;) = 2p,i =1,...,p and vertices y;;,i =1,...,2p,j =
1,...,p+ 1 are of degree 1. The greedy algorithm removes vertices in V; (the related value
being 2p) while the optimal value p + 1 is achieved by removing ui,...,u,. The related
ratio is 2 — 2/(p + 1) and consequently the bound is asymptotically tight. The bound 2 is
achieved for the same instance without vertices y;(,41); in this case, if the greedy algorithm

makes the bad choices, it may compute a solution of value 2p only.

Proposition 6.13. For any graph G, Algorithm 14 gives a polynomial time 2-approzimation
for Min Edge Cocoloring.

Proof. Let us consider a minimum cocoloring minimizing the number of triangles. Then
it is straightforward to verify that it contains either two disjoint triangles, or one, or none
(since all other solutions can be replaced by solutions of the same value and containing less
triangles).

Algorithm 14 computes in polynomial time & minimizing k+ 1+ [{x : d(x) > k}|; then there
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Algorithm 14 Greedy edge cocoloring
Input: a graph G, edge coloring algorithm A

Output: an edge cocoloring Z’ of G

1. 2" 0;

2. while A(G\ M)+ |[M| < A(G) do //M = {z: d(z) = A(G)}
3. Z'— Z'U M,

4 G — G|V \ M];

5. compute an edge coloring of the remaining edges by A.

is an edge cocoloring consisting in bundles {x : d(z) > k} (represented by their central
vertices) completed by (at most) k + 1 matchings. Hence, we can construct such a solution
with k£ + 14 [{z : d(x) > k}| color classes.

Let us first suppose that the fixed minimum edge cocoloring does not contain any triangle.
Then, |{z : d(z) > Z/(G)}| < 2/(G) since all bundles of size greater than z/(G) have to be
taken as bundles in an optimal solution. Moreover, if [{z : d(z) > 2/(G)}| = 2/(G), an
optimal solution (containing only bundles) has been detected at a stage of the computation
of k. So we can assume |{z : d(z) > 2/(G)}| < Z/(G) — 1, but in this case, by definition of k

we have:

k+1+|{z:d(z) >k} <2(G)+1+2(G)—1=2(G).

If the optimal solution contains some triangles (one or two), one can consider all possi-
ble triangles in a solution and then apply the previous argument to the remaining graph.
This completes the proof showing that one can compute a 2-approximation of Min Edge

Cocoloring in polynomial time. O

Let us now consider Min Edge Split-coloring in bipartite graphs. Given a bipartite graph
B = (W4, Vs, E) and an integer k, let us denote by d'*(z) = |N(z) N {y : d(y) < k}| the de-
gree of x in the graph obtained by removing all neighbors of x of degree greater than k. For
i = 1,2, we also denote by V¥ = {z € V; : d(x) > k} and by V’f’k/ ={zeVi:d"x)> K}
For instance, V' ’57’“' is the set of vertices in V5, with a degree greater than &’ in the graph
obtained by deleting all vertices of V; of degree greater than k. Finally, for i € {1,2}, we
set i =3 — i, ie., {1,2} = {i,i}.

In what follows, we derive an approximation algorithm for Min Edge Split-coloring in bipar-
tite graphs. It computes three different edge split-colorings and returns the best one among
them. The first one is obtained by removing V}*¥ and Vi such El:at [VF|+|V¥| < k and that

k is minimum. The second one consists of removing first V;>~¢  (vertices of V; of degree
1+e k‘,
strictly greater than ;—J_fk:) and then V'57°" (vertices in V; with degree greater than k in

the graph G[V \ V;> <]) such that |V;> | +|V’'5 7| < k and that & is minimum. The
last solution is then calculated by interchanging the roles of V; and V5.
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Algorithm 15 Approximation of Min Edge Split-coloring of bipartite graphs

Input: a bipartite graph B = (V4, V3, E), optimal edge coloring algorithm .4 in bipartite
graphs (in time O(Am))
Output: an edge split-coloring of B

1 e+ (5—V17)/4;

2. fori=1,2 do

3. for every x € V; compute d(z);

4 for every y € V; and every x € N(y), compute 4@ )(y),

5. for every k € {1,..., A(B )} compute |V¥| and \V” B

6. di—min{k: [V |+|V'2 FE < s <—Vé+zdluv’% i,
7. dy — min{k : [VF| + [VF| < k}; 8 — Vi U Vo,

8. 19 «— argmin{d;,i =0,1,2}; S’ — &',;

9. compute an edge coloring of the remaining edges by \A.

Theorem 6.14. Algorithm 15 is a O(mn) time algorithm approzimating Min Edge Split-
coloring in bipartite graphs within ratio 2 — (5 — /17)/4 ~ 1.78.

Proof. We take ¢ = (5 — v/17)/4 ~ 0.22 as defined in the algorithm. It is the root of
14€ = 2(1—¢)? which is smaller than 1. It follows that 2—e ~ 1.78 and (1+¢)/(2—¢) ~ 0.68.
Let us first note that d = d;, = min{do,dl, da}, where dy = min{k : |[V}¥ U VJ| < k} and for

14€

k Irep k
i =1,2, d; = min{k : [V, | + |[V'27° 7| < k}. Moreover, it is immediate to verify that
Algorithm 15 computes a feasible edge split-coloring of value d. More precisely, d is such

that the graph obtained by removing at most d vertices is of degree at most d: the maximum

degree of the graph obtained by removing Vld0 U V2d° is at most dy and the graph obtained by

1+e 1+e

d;,d;
removing V;*~° "UV'27< " has degrees at most d;, i = 1,2 (note that (1+¢€)/(2—¢) < 1).
Concerning the complexity, lines 3, 5, 6 and 7 need O(m) steps while line 4 needs O(mn).

Furthermore, the optimal edge coloring algorithm .4 given in [108] coloring the edges of a
bipartite graph with A colors runs in time O(Am) which is dominated by O(mn); hence
the overall complexity is O(mn).

Let us now analyze the approximation behavior of the algorithm. Denote by ¢ = x's(B):
ALy € Vi, Ly C Va,|L1| = ¥1,|La| = 3,41 + 4o = ¢ and A(B \ (L1 U L)) < ¢, where
B\ (L1 U Lg) = B[(V1 UVa2) \ (L1 U Lg)]. In the sequel, we consider the following cases.

Case 1. ¢; > fle and ¥ > le.
Case 2. {5 < fe with the following two sub-cases.

Sub-case 2.1. |Vm+€)| > L.

Sub-case 2.2. [V;'"79| < fe.
Case 3. {1 < Le.
Let us point out the following property (P) which will be useful.
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(P) Ifz € V;\ L;,i € {1,2} and d(z) > ¢ +r, then |N(z) N L;| > r where i = 3 —i.
This holds because after removal of L;, vertex x has degree at most ¢.

Case 1. ¢1 > le and {9 > Vle.
By Property (P), Vf“z C L; for i = 1,2, then:

[y B gy OB < VR VI < 4l = €< 0 max(f, ).

We deduce, dy < ¢ + max(¢1,02) < £(2 — €) where the last inequality holds since we

are considering Case 1.

Case 2. {5 < Le.
By Property (P), we have Vf(HE) C L.

Sub-case 2.1. [V > ve = (L1 \ VUT9) < (1 — o).
Then, Property (P) implies that V' g(lﬁ)’g(%e) C L. It follows from the above
relations that ]Vlg(HE) UV'g(HE)’E(%E)\ < ¢ < (2—¢€)¢, which implies, by definition
of d; (consider k = £(2 — €) in the definition), that d; < (2 —¢).

Sub-case 2.2. [V;"79| < re.
For every z € V3 \ Ly such that d’“**9(z) > £(2 — ¢), we have by Property (P)
IN(z) N (Ly \ Vlz(lﬂ))| > /(1 — €). Then, by considering the number £ of edges
between (L1 \ Vlz(lﬂ)) and (V’g(lﬂ)’g(%e) \ L2), we deduce:

(VI _pye1 —e) < € < (b — VTN +€) < 16(1 + €)

(149

since the maximum degree of V; after removing Vf is at most £(1 + ¢).

It follows that: /(1
’V,§(1+e),z(2—e)‘ < # ={(2 — 2e).
— €

Consequently \Vf(HE)I + \V’g(HEM(Q_g)\ < (2 — €), which implies d; < ¢(2 — ¢).
Case 3. /1 < le.

It corresponds to the second case by interchanging V; and Va. Therefore ds < £(2 —¢)

and in all cases, d = min{dy, d1, d2} satisfies the expected ratio.

6.4 Comparability graphs

Comparability graphs are defined as graphs admitting a transitive orientation of their edges;
i.e., an orientation such that if ab € E is oriented from a to b and bc € E from b to ¢ then
necessarily ac € E and a is oriented towards c. They are a subclass of perfect graphs [80].
Let us first note the following result allowing us to deduce the hardness of Min Split-coloring

in comparability graphs.
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Theorem 6.15. Let G be a class of graphs closed under addition of disjoint cliqgues without
link to the rest of the graph and under addition of a complete k-partite graph completely
linked to the rest of the graph. Then, Min Cocoloring reduces in polynomial time to Min
Split-coloring in the class G.

Proof. Let us consider a graph G of size n such that z(G) = p + k (where p is the number
of cliques and k is the number of stable sets in an optimum solution) and let us first assume
that p < k. Consider the graph G’ consisting of G and | = k — p < n disjoint cliques,
each of size n + 1, without any link to the rest of the graph. Note that £ — p new cliques
completed by p cliques and k stable sets of the optimal cocoloring of G form a split-coloring
of value k, implying that xs(G’) < k < n. Consequently a minimum split-coloring of G’
necessarily contains the k — p new cliques completed by p’ cliques and k' stable sets of G.
Since xs(G') = max((k —p +p'), k") < k, we have p’ < p and k' < k. On the other hand,
p' + k" > k + p since the restriction to G of the split coloring of G’ provides a cocoloring of
value p’ + k’. Thus p’ + k' = p + k and this cocoloring of G is optimal.

If 2(G) = p+ k with p > k, we show by the same arguments that a minimum cocoloring
of G' can immediately be deduced from a minimum split coloring of G”, the graph obtained
from G by adding p — k < n stable sets, each of size n 4+ 1 and completely linked to the rest
of the graph.

Finally, in both cases, |k — p| < k + p < 2xs(G), consequently, the reduction runs as in
Algorithm 16.

Algorithm 16 Polynomial reduction of Min Cocoloring to Min Split-coloring

Input: a graph G as an instance of Min Cocoloring, an exact algorithm for Min Split-
coloring

Output: an optimal cocoloring of G
1. P —0; //P will contain cocolorings of G;
2. compute an optimal split-coloring of G
3. store in P the related partition; L «— 2xs(G);
4. for alll € {1,...,L} do

5. construct G' = G U1K, 1;

6 compute an optimal split-coloring of G’ and store its restriction to G in P;

7 construct G = K @ 1K, 41;

8 compute an optimal split-coloring of G” and store its restriction to G in P;

9

. return the best cocoloring stored in P.

O

Note that the class G just described is a strict superclass of perfect graphs; it implies among
others the following corollary that will guide us in our search for a class of graphs where

Min Split-coloring is polynomially solvable and Min Cocoloring is N'P-hard.
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Corollary 6.16. There is no subclass of perfect graphs where Min Split-coloring is polyno-
mially solvable while Min Cocoloring is N'P-hard.

Let us, for a while, consider a subclass of comparability graphs, called permutation graphs;
a graph G is a permutation graph if G and G are comparability graphs. Another immediate
implication of Theorem 6.15 follows from the fact that Min Cocoloring is NP-hard in
permutation graphs [117].

Corollary 6.17. Min Split-coloring is N'P-hard in permutation graphs.

Having established the N/P-hardness of Min Split-coloring in comparability graphs, we show
that the method proposed in [65], for approximating Min Cocoloring in comparability graphs
within a factor of 1.71, can be adapted to Min Split-coloring. Note that a graph G is a
cocomparability graph if G is a comparability graph.

Theorem 6.18. Algorithm 18 gives a 2-approzimation of Min Split-coloring for compara-

bility and cocomparability graphs in time O(n™/? + n3/?m).

Proof. Let us first establish the split counterpart of Lemma 2 in [65].

Lemma 6.19. Let G = (V, E) be a perfect graph of order n and let k satisfy k > \/n, then

Xs(G) < k and a split-coloring of size k can be computed in polynomial time.

Proof. Let G = (V, E) be a perfect graph, in Procedure 17, we consider a slight modification
of Procedure SQRTPartition of [65].

Procedure 17 SQRT-Split-partition
Input: a perfect graph G, an integer k such that k > \/n

Output: a k-split-coloring of G
1. while k£ # 0 and G is not empty do

2. if min(a(G), a(G)) < k then

3. compute a k-coloring of G or G, include each clique or stable set in the solution
and set k « 0;

4. else

5. find a stable set and a clique of size k¥ + 1 and color the related split graph of

size at least 2k + 1 with a new color;

6. set k «+— k — 1 and remove from G all already colored vertices.

It is straightforward to verify that Procedure 17 runs in polynomial time. Moreover, if line 3
is executed or if the graph becomes empty, then it computes a split-coloring of size k. If line 3
is not computed and if £ loops are performed, then at least Zi:ol 2(k—i)+1 = k(k+2) > k?

vertices are covered and consequently the graph is also covered by k split graphs. O

Now, let us analyze Algorithm 18 which is an adaptation of the algorithm APPROX COCO-
LOURING of [65] for Min Split-coloring.
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Algorithm 18 Approximation of Min Split-coloring of comparability graphs

Input: a comparability graph G, Procedure 17
Output: a split-coloring of G
1. compute a maximum 7r-colorable subgraph (C,, E,) of G and a maximum 7-colorable
subgraph (S, E/.) of G such that r is minimum subject to |C,| + |S,| > n;
2. introduce in the solution an r-split-coloring of C). U S,;
3. remove C, U S, from G;
4. complete the solution by the split graphs computed by Procedure 17 in the remaining
graph.

Since G can be decomposed into xs(G) cliques and ys(G) stable sets, we have r < xs(G),
where 7 is as described in Algorithm 18. On the other hand, since |C, N S,| < 72, we have
n — |C, US,| < r? and consequently, by Lemma 6.19, at most » < xs(G) split graphs are
computed at line 4. The computed split-coloring is of size at most 2ys(G) and the proof
is complete. Note that this result remains valid for every class of perfect graphs for which
subgraphs such as described in line 1 of Algorithm 18 can be polynomially computed.

The complexity of steps 1, 2 and 3 is O(xs(G)n3) < O(n7/2); it follows from the fact that a
maximum 7-colorable subgraph of G and G can be computed in time O(n?) in comparability
graphs [74] and that ys(G) < /n. Let us now analyze the complexity of Procedure 17 for
comparability and cocomparability graphs. Line 5 of Procedure 17 is computed at most ¢
times, where ¢ is the smallest integer such that (2k+1)+(2(k—1)+1)+...+(2(k+1—t)+1) >
n or equivalently t2 — (2k + 2)t + n < 0; hence, recalling that we have k > \/n,

. [(2k +2) — /(2k + 2)2 —zﬂ
2

IN

I 4dn
2((2k +2)+/(k+2)2 = 4n> w

INIA
:

Finding a maximum clique and a maximum stable set in a comparability graph can be
done respectively in time O(n + m) and O(nm); therefore, the complexity of this step is

dominated by O(n*/?m). This completes the proof of the overall complexity. O

94



6.5. GENERAL GRAPHS

6.5 General graphs

6.5.1 Standard approximation

Min Coloring is known to be particularly difficult to approximate since it is not approx-
imable within n'~¢ if coRP%# NP and not approximable within n/7=¢ if PANP [7]. Sim-

ilar hardness results can immediately be deduced for Min Split-coloring and Min Cocoloring.

Proposition 6.20. The following statements hold.

1/2—¢

1. If Min Cocoloring is n -approximable for 0 < e < 1/2, then Min Coloring is

n~¢-approzimable.

2. If coORP #NP, then for every ¢ > 0, Min Cocoloring is not approzimable within

n'/2=¢. If PANP, then for every € > 0, Min Cocoloring is not approzimable within
1/14—¢
n .

3. Statements 1 and 2 hold for Min Split-coloring.

Proof. Let O be an oracle for Min Cocoloring guaranteeing the ratio n'/2=¢, with e < 1 /2.
The reduction constructs G consisting in |n'=¢| +1 copies of G without link and computes
a cocoloring of G by using O. If a copy of G in G is covered only by stable sets, then it
outputs this coloring; else it outputs any greedy coloring.

If x(G) < n¢, then 2(G) < x(G) = x(G) < nf. As the cocoloring computed by the oracle
on G guarantees the ratio n(G)/2~¢ and n(G) < n?, it uses at most (n2)Y/2~¢n¢ = nl=*
colors. Consequently, at least one copy of G in G is covered only by stable sets in the
cocoloring computed by @, which leads to a coloring of G using at most n!' ~¢ colors and the

1=¢ is guaranteed. If now x(G) > n¢, then any coloring of G uses at most n colors;

ratio n
this guarantees the expected ratio, which concludes the proof of Statement 1. Statement 2
follows from hardness results for Min Coloring. Finally, Statement 3 is immediately deduced

by using the fact that for any graph G, we have xs(G) < z(G). O

This hardness result considerably limits the possibilities for approximating Min Split-colo-
ring and Min Cocoloring in general graphs. A master-slave strategy enables us to reduce
these problems to Max Stable Set and Max Clique with an increase of the ratios by a factor
O(logn) (see [4] and [109]). This is done by means of the greedy cocoloring algorithm given
in Algorithm 8 (and its split-counterpart) where the “slave” problem (Max Stable Set and

Max Clique) serves the “master” problem which is the Min Cocoloring (respectively Min

5The class RP, short for Randomized Polynomial Time, is the class of languages for which membership
can be determined in polynomial time by a probabilistic Turing machine with no false acceptance and less
than half false rejections. It is known that P C RP C N'P. coRP is the class of problems such that their
complementary (the problem with the reversed answers) belongs to RP; that is, coRP consists in languages
L that have a polynomial time randomized algorithm A erring only in the case when an instance z of a
problem does not belong to L. See [106, 115] for more information on these complexity classes.
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Split-coloring); at each step the vertices of a maximum stable set or (respectively, and) a
maximum clique are covered. This trivially leads to a O(n/logn)-approximation for both
problems; but it seems not so easy to reduce these problems to Min Coloring in order to

refine the comparison of their approximation behavior.

6.5.2 Differential approximation

Theorem 6.21. Algorithm 19 is a O(n3*) time algorithm guaranteeing a differential
approzimation ratio of (1 — 1/p) for both Min Split-coloring and Min Cocoloring.

Algorithm 19 DPTAS-split-coco
Input: a graph G, an integer p

Output: a split-coloring or a cocoloring of G with differential approximation ratio of (1 —
1/p)
1. while the current graph contains a 3p-stable set or a 3p-clique do
2. color such a stable set or clique with a new color;

3. complete the solution by an exhaustive search on the remaining graph.

Proof. For the whole complexity, note that step 3 is computed for a graph without a stable
set or a clique of size 3p, and consequently its size is less than the related Ramsey number
R2(3p,3p) < KP for a constant K [24].

It is straightforward to verify that Algorithm 19 computes either a split-coloring or a co-
coloring of the instance. The only difference between the two cases arises in line 3 that
computes either an optimal split-coloring or an optimal cocoloring in the remaining graph.
We propose an analysis valid for both problems. The problem being fixed, for a given graph
H, we respectively denote by w(H) and S(H) the worst value and the optimal value with
respect to this problem (consequently G(H) stands either for xs(H) or for z(H)).

The approximation ratio is proved by induction on n(G) (see also [86]).

If n(G) < 3p, then only step 3 is computed and the algorithm finds an optimal solution
corresponding to a ratio of 1. Let us now assume that the expected ratio is guaranteed for
every graph of size n or less, where n > 3p, and consider a graph G, of size n + 1. If no
clique or stable set of size 3p is detected at step 1, then G,, 1 is optimally colored at step 3.
Else, the algorithm attributes a new color either to a stable set or to a clique of size 3p; it
is then executed on the graph G’ obtained from G, by deleting these 3p vertices. Since

G’ is of size less than n, the ratio is guaranteed for G’. Note also that:

MGrt1) = 1+ XNG),
B(G"),
w(G') +p > MGny1),

which implies:
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w(@) +p—=AMGn1) =1 =1/p)(w(C) - B(G) +p—1

(1 =1/p)(w(G") +p — B(Gny1))

and then, since w(G,+1) > w(G")+p and ¢ is increasing with respect to w (see Property 6.6),

>
>

we have:
w(Gnt1) = MGry1) _ w(G') +p = AN(Gnt1)
> >(1—1/p).
ACrs1) =BG 1) = W) 9= BGrg) — 7P
This concludes the proof. O

It is straightforward to verify that, since Min Split-coloring (respectively Min Cocoloring)
has integral values and w(G) — xs(G) is polynomially bounded, a DFPTAS would allow to
solve it polynomially for any finite graph.

6.6 Bounds on yg and z

Now, we terminate the study on the approximation behavior of generalized coloring prob-
lems. In this section, we develop some bounds on optimal split-colorings and cocolorings.
The purpose is to obtain relatively good bounds with a limited effort in order to obtain
“good” initial solutions for some possible heuristics.

First, we give some intuitive bounds for xgs. In a second time, we extend the sequential
algorithms for the usual vertex coloring due to Welsh-Powell [118] and Matula [101, 102] to

the case of split-coloring and cocoloring.

6.6.1 Simple bounds

In the sequel, we first present a very intuitive method to obtain a lower bound on yg and

then a more theoretical result for an upper bound on yg.

A lower bound for g

Let us determine a procedure which gives an ordered set of induced maximal cliques in an

arbitrary graph G.

Procedure 20 CliquesList
Input: a graph G

Output: a set K of disjoint (not linked in between) maximal cliques in G
. repeat

choose a vertex v and find a maximal clique K" containing v;

.untilG=10

1
2
3. store KV in K, then remove K" and its neighbors from G;
4
5. reorder K = {K*} in non-increasing order of clique sizes.
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Procedure CliquesList returns a list I of induced maximal cliques in G. In other words,
there is no edge linking vertices of any pair of cliques in K. Moreover, this list is maximal
in the sense that adding any new maximal clique in K introduces edges between cliques.
An optimal split-coloring ys(K) of K constitutes a lower bound for xg(G) since, in the
best case, xg(K) colors will be sufficient to color all the vertices of G; xs(K) < xs(G).
Therefore, we will concentrate on the optimal split-coloring of a set of induced cliques of
arbitrary sizes.

Our approach can be visualized in a diagram where cliques K* are represented on the z axis
as columns of length proportional to their cardinalities r;. Ordering cliques in non-increasing
order of their sizes implies that we can read, on the y axis, the number r; of cliques K k
such that rp > 4. In this formulation, our problem consists in finding the largest k such
that min(r, ) > k. This amounts to finding the largest square that can be inserted under
the stairs. We may use the following strategy: choose repetitively the largest remaining
(not entirely colored) clique as the clique of a new split graph G; (or color) and one vertex
(not colored) from every other clique as the stable set of the same split graph. Each G; is
represented in Figure 6.2 by a grey broken line (with breakpoint at entry (7,7)). Repeating
this until no vertex remains uncolored gives rise to a split-coloring which uses exactly k&
colors. In Figure 6.2 we have K = {KJ, K2, K3, K3, K¢, KS, KI, K§, K9, K% K}

and we obtain a 5-split-coloring, which is optimal.

*

<
.

Wik 00 DO TTeo N

—

88766533221 T

Figure 6.2: Optimal split-coloring of K.

An upper bound for yg

Assume that we have a k-coloring (not necessarily an optimal coloring) of G given by stable
sets (S',...,S%). For any p < k, an optimal clique cover of (S*U...U SP) together with an
optimal coloring of (SP™! U ... U S¥) constitutes a split-coloring of G in max {6(S'U...U
5P), x(SPT1 U ... U 5*)} colors. Therefore, the split-chromatic number of G, xs(G), would
be less than or equal to the minimum on p of this quantity. Furthermore, one can determine
the minimum on any possible p-tuple of stable sets. Hence, the upper bound is expressed
in the following way:

xs(G) < min{ min {1rnax{¢9(é”1 U...US™), x(G - (Si1 U...u Slp))}}}

p L gily usi?
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Beyond the theoretical interest of this upper bound, one can identify cases where it can be
efficiently used in practice. First of all, if we can compute x(G) in polynomial time then
we will be able to take into account a smaller number of stable sets while searching for
the minimum on p. For instance, this is the case for perfect graphs. Furthermore, in this
context, #(S* U...US") and x(G — (S U...US™)) can also be computed in polynomial
time, providing an overall complexity which is polynomial, to obtain an upper bound. One
may search for conditions (on G or on the optimal coloring of G) for this upper bound to be
tight. Note that, once more, we are more likely to find such a condition on perfect graphs.

6.6.2 Welsh-Powell sequential algorithm

Let us first concentrate on the split-coloring problem. Bounds on other (p,k)-coloring
problems will be then easily derived by the same approach.

By analogy with the well known sequential coloring algorithm of Welsh and Powell [118],
we may devise a similar procedure for the split-coloring problem.

We start by ordering the vertices vq,vo,...,v, of a graph G = (V, E) in non-decreasing
order of degrees, i.e., d(vi) < d(ve) < ... < d(v,). Then we color sequentially the vertices
of G starting from v; and using the smallest available color; thus the color ¢(v;) given to
vertex v; will satisfy ¢(v;) < min{i,d(v;) + 1}. This partial coloring will give us the stable
sets of the different split graphs to be determined for obtaining a split-coloring of G.

In addition to this, we start from v, and we construct the cliques which are in the different
split graphs. For doing so, we may consider the complement G of G in which the degrees
d(v;) are given by n — 1 — d(v;); thus we have d(v,) < d(v,_1) < ... < d(v1). Constructing
the cliques in G is equivalent to constructing a coloring (in the usual sense) of G. Therefore
we start from v,, and apply the sequential coloring algorithm; the color ¢(v;) of vertex v; will
satisfy ¢(v;) < min{n — i+ 1,d(v;) + 1} =min{n —i+ 1,n —d(v;)} fori =n,n —1,..., 1.
Starting from both ends, we get to a point where we have two consecutive vertices v; and
vi41 such that v; has been colored in G by starting from vy, and v, in G by starting from

v,. We compute
Awp(l) = max { min{l, d(v;) + 1}, min{n — I,n — d(vi31)}}.

Then, vertices of G can be covered by Ay p(l) split graphs; they are obtained by taking in
S1 the vertices v; of G with color 1 and with ¢ < [; in K7 we take the vertices v; of G with
color 1 and 4 > [ 4+ 1. This gives the first split graph in the split-coloring. We continue in
the same way for colors 2,3,..., Ay p(l). Now we have to find

wP _ :
X5 (G) = min Awp(l)

in order to determine at which vertex v; we have to stop in coloring G from v; and G from
Up. So we obtain the bound of Proposition 6.22 for the split-chromatic number xg(G).
On the other hand, it is easily seen that replacing Ay p(l) by

Zwp(l) =min{l,d(v;) + 1} + min{n — l,n — d(v;41)}
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and taking the minimum on [ gives a bound on the cocoloring problem. As for the more
general (p, k)-coloring problems, the vertex where we have to stop when coloring G from
vy and G from v, is decided during the algorithm; in the (p, kmin )-coloring (respectively
(Pmin, k)-coloring) problem, we stop at the first vertex [ which can not be colored by a color
c(l) < p (respectively c¢(I) < k) in coloring G from vy (respectively G from v,,) and the

remaining vertices are colored starting from v,, (respectively v;).

Proposition 6.22. For any graph G, we have xs(G) < XE/P(G) = minj<j<p—1 Awp(l)
and Z(G) < WP — minlglgn,1 pr(l)

6.6.3 Matula sequential algorithm

One can exploit the analogy of the above coloring procedure with the procedure “smallest
last” (SL) of Matula [101, 102], where one places at the last available position of the order a
vertex with a minimum degree in the remaining graph. Such an ordering (smallest last) gives
a bound of 1 + max{min{dy(v) : v € H} : H subgraph of G} for the chromatic number.
The difficulty is that this order may not be the same as the one obtained by inserting, at
the beginning of the order, a vertex with largest degree in the remaining graph. To avoid
this problem, we may fix a priori the vertices to be colored as cliques and the vertices that
will be in some stable sets. To do so, one solution consists in splitting the graph G into
two graphs: Gg = G[{v1,ve,...,v}], where vy, v,...,v; are | vertices of smallest degrees
in G, and G = G[{vi4+1,V142,...,0,}], where v 11, v49,...,v, are the remaining vertices,
i.e., the n — [ vertices of largest degrees in G. Now, one can apply the SL algorithm to
Gy for obtaining stable sets and to G for obtaining cliques. Obviously, we use at most
maxycag{l + mingey{dy(v)}} stable sets and at most maxgcqg, {1 + min,cg{dgz(v)}}

cliques. Let us denote
An(t) = max {_ oo {1+ min{dyy(0)}}, max {1+ min{dg (0)}} }.

Zu(l) = max {1+ min{dn (v)}} + max {1+ min{dg (v)}},

then, the following bounds are obtained.

Proposition 6.23. For any graph G, we have xs(G) < ¥M(G) = minij<j<,—1 Ap (1) and
Z(G) < M — minlggn_l ZM(Z)

Once again, the above version of SL algorithm may be used to obtain some bounds on
general (p, k)-coloring problems. Different methods can be developed to decide at which
vertex the algorithm stops. For instance, one may try to assign to p cliques as many as
possible of the vertices of largest degrees in GG. This can be done by taking the maximum
number n,, such that applying the SL algorithm on the complement of the graph induced
by n, vertices of largest degrees, necessitates not more than p colors. Then, a bound on &
is obtained by applying the SL algorithm to the remaining graph.

Both of the above approaches are built on the idea of adapting Welsh-Powell and SL (Matula)
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algorithms in such a way that vertices of small degrees are assigned to stable sets and vertices
of large degrees are in cliques, which is intuitively correct. This approach is certainly more
appropriate to (p, k)-coloring problems even though its positive effect is not directly observed
on the theoretical bound obtained.

As for the complexities of these algorithms, both the computations of Ay p(l) and Axs(1)
(as well as Zyyp(l) and Zj(1)) are made by one search of vertices and therefore is sequential.
In return, taking the minimum on every possible values of [ prevents the procedure from
remaining sequential.

It is easy to observe that the SL algorithm of Matula gives a bound on the chromatic number
which is less than or equal to the Welsh-Powell bound. Since this inequality holds for both
of the terms of Ay; and Ay p (and also Zy; and Zy p), one may conclude that for any graph
G, we have Y& (G) < YW (@) and also z¥(G) < 247 (@), i.e., the theoretical bounds are
systematically much better for Matula algorithm than for Welsh-Powell algorithm.

We should just remember that these values are actually upper bounds on the split-chromatic
and cochromatic numbers, however the number of used colors are generally much below these
values as shown by the first numerical experiments. In [5], computations on random graphs
with known split-chromatic number® show that these algorithms perform rather well in
providing initial solutions to some possible heuristics. Our purpose here is just to study

these properties from a theoretical point of view.

6.7 Concluding remarks

We studied the approximation behavior of Min Split-coloring and Min Cocoloring in some
classes of graphs where they are shown to be N’P-hard. We showed that both problems
admit the same non-approximability results as Min Coloring for the standard approximation
ratio. Nevertheless, they are better approximated from the differential approximation ratio
point of view since they both admit a DPTAS, whereas Min Coloring can be approximated
only with a constant differential ratio. As a future work, subclasses of graphs could be
characterized where these problems admit better approximations; for instance, the case of
edge cocoloring could be handled. In Chapter 7 we will develop a better approximation
algorithm for a particular case of Min Split-coloring in permutation graphs.

On the other side, the detection of a class of graphs where Min Cocoloring is N'P-hard and
Min Split-coloring is polynomially solvable remains an open problem; however, following
Corollary 6.16, from now on we can narrow our research in a way excluding the classes of
graphs, where Min Cocoloring is shown to be reduced to Min Split-coloring. Note that this

latter class contains perfect graphs. In the next chapter, we will give more results on classes

5Such graphs are constructed in [45]; first a graph G = kK, is taken and a k-split-coloring of kKj with
ne cliques and n, stable sets such that max(nc,ns) = k is fixed. Then, new vertices are added to G in such
a way that each new vertex forms either a clique with an already fixed clique or a stable set with an already
fixed stable set; this is done in a random fashion. At the end, we obtain a graph G for which there is a
k-split-coloring and moreover xs(G) = k, since kKy C G.
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of graphs where both problems may behave differently in terms of complexity classes they
belong to (see Section 7.4).

An interesting future research direction arising from this chapter, would be to character-
ize classes of graphs for which the Welsh-Powell or Matula type algorithms respectively
described in Sections 6.6.2 and 6.6.3 give an optimal split-coloring and/or an optimal co-

coloring.
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Chapter 7
Permutation graphs

In this chapter, based on [42], we handle generalized coloring problems, and more specifically
Min Split-coloring, in permutation graphs. Given a permutation 7(/N) of N numbers, the
corresponding permutation graph is obtained by representing each number by a vertex and
linking vertices i and j with an edge whenever we have i > j and 7~ 1(i) < 7~!(j), where
771(7) is the position of number i in 7. A permutation graph can also be seen as a graph
G such that G and its complement G are comparability graphs; hence permutation graphs
are a subclass of perfect graphs. Remark also that permutation graphs contain cographs as
a subclass since cographs can be alternatively defined as comparability graphs of multitrees
[93].

Note that, in permutation graphs, stable sets correspond to increasing sequences, and cliques
to decreasing sequences. Partitioning permutations into increasing and decreasing sequences
has been extensively studied [117, 96, 18]. Our work will extend this research and raise some
related open questions. Observe that a minimum cocoloring is a partition of a permutation
into a minimum (total) number of increasing and decreasing subsequences. Also, an optimal
split-coloring of a permutation graph corresponds to a partition of a given permutation into
a minimum number of combinations of an increasing and a decreasing subsequences. Let
us first recall that we have already established, in Corollary 6.17, the AN/P-hardness of Min
Split-coloring in permutation graphs, by using the fact that Min Cocoloring is also N P-
hard [117] in permutation graphs.

In what follows, first we give two applications of Min Split-coloring in permutation graphs;
one for sorting cars of a train and the other one in robotics. This latter application gives rise
to a new problem, called Min Ordered Collecting, in permutations (rather than in permuta-
tion graphs) which is slightly different from Min Split-coloring and which will be studied in
more details in Section 7.2. We will observe that Min Ordered Collecting remains A'P-hard
by using a result of [110]. Nevertheless, some related polynomial cases will be established;
namely, recognition of 2-lower (or upper) unimodal permutations and finding a maximum

I-modal subsequence in a given permutation’. The latter is used, in Section 7.2.4, to derive

'The link between Min Ordered Collecting and (lower/upper) (uni-/I-) modal partitions of permutations
will also be established in the corresponding section.
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a differential approximation scheme for the problem of covering a given permutation by a
minimum number of [-modal subsequences. In Section 7.3, we introduce the problem, called
Min Threshold-coloring, of covering a permutation graph by a minimum number of thresh-
old graphs. This problem is closely related to, but different from, Min Ordered Collecting
in permutations. We show that Min Cocoloring reduces to Min Threshold-coloring under
exactly the same conditions as for Min Split-coloring (expressed in Theorem 6.15). Then, in
Section 7.4, we show that Min Split-coloring, Min Threshold-coloring and Min Cocoloring
are N'P-hard in triangle-free graphs. Note that, according to Theorem 6.15, triangle-free
graphs could have been a class of graphs in which Min Split-coloring is polynomially solvable
and Min Cocoloring is N'P-hard; we show that this is not the case. This is obtained as a
consequence of a more general result comparing computational difficulties of the problems

under consideration.

7.1 Applications of permutation graphs

7.1.1 Sorting cars

Consider the problem where there are on an input track cars labeled with numbers in
N ={1,...,n} and they are linearly ordered so that their labels form a permutation 7(N).
The objective is to use a minimum number of parallel tracks in order to have all the cars
sorted in increasing order at the output track. This problem can be modeled as a minimum
coloring problem in the permutation graph G(m) corresponding to w(N). Then the problem
consists in partitioning G(7) into a minimum number x(G(w)) of stable sets, i.e., increasing
sequences in 7, so that cars could be reassembled on the exit side of the tracks to obtain
one increasing sequence (see [80] for details).

The disadvantage of this method is that one may be obliged to use more tracks than the
number of tracks available. In such a situation, one may think of other methods to solve
this problem. A solution consists of using a cocoloring or (better) a split-coloring instead of
a coloring since we have ys(G) < 2(G) < x(G), VYG. The only requirement on the railway
net is to have an additional loop at the beginning of the output track (see Figure 7.1)
allowing the reversal of decreasing sequences corresponding to cliques into a cocoloring or a
split-coloring. In such a railway net, each one of the parallel tracks contains an increasing
sequence (a stable set) or a decreasing sequence (a clique) for a cocoloring, and an increasing
sequence mixed with a decreasing sequence (a split graph) for a split-coloring. Then in the
latter case, we rearrange all tracks to obtain only one increasing sequence by track; cars
in the decreasing sequence are sent to the loop, while cars in the increasing sequence go
directly through the straight track so that, when bringing back the cars to their original
track, we can obtain only one increasing sequence. The same procedure can be applied just
to reverse decreasing sequences in a cocoloring. Once we obtain only increasing sequences
in each track with two moves (one forward and one back), cars can be easily ordered at the

exit by pulling off each time the car with the smallest remaining label among the first cars
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1,...,n /q 7(1),...,7(n)

output track C// ' input track

of each track.

Figure 7.1: Sorting cars.

As mentioned, both Min Split-coloring and Min Cocoloring are NP-hard in permutation
graphs. Therefore the use of heuristics or approximation algorithms as the ones given in

Chapter 6 is needed to solve the above problem.

7.1.2 Robots collecting items in the order of decreasing sizes

Suppose that some items to be collected are aligned along a storage corridor; each item ¢ has
a certain label 7(i) in N = {1,...,n} and hence the labels of the items form a permutation
m(N). We may consider that labels are inversely proportional to the sizes of the items.
There is a robot to collect these items with the constraints that the robot makes a two-way
trip along the corridor, and that the sizes (respectively labels) of the items collected should
be decreasing (respectively increasing) for the whole trip of the robot to ensure the stability
of the pile. The robot can start from either left or right. The objective is to minimize the
number of two-way trips the robot makes in order to collect all the items in a way satisfying
the constraint of increasing labels.

One can observe that this problem corresponds to a restricted version of Min Split-coloring
in permutation graphs. The labels of the items form a permutation of N = {1,...,n}.
Then, for a two-way trip starting from left (respectively right), the items collected in the
forward trip correspond to a stable set (respectively clique), and the items collected in the
way back to a clique (respectively stable set) in the corresponding permutation graph. In
addition, each split graph (equivalently each two-way trip) has a split partition such that
the smallest label in the clique is greater than the largest label of the stable set; we will see,
in Section 7.3, that this problem is closely related to covering the vertices of a permutation
graph by a minimum number of threshold graphs. First, let us introduce the appropriate

terminology for the above problem and also establish some complexity results.

7.2 Min Ordered Collecting

7.2.1 Terminology and N P-hardness

Definition 7.1 (feasible trip). Given a permutation 7, we call feasible trip, a subsequence
of m which is an increasing sequence for a whole two-way trip of the robot starting from either
left or right.
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Definition 7.2 (Min Ordered Collecting). Min Ordered Collecting is the problem of

covering w by a minimum number of feasible trips. The optimal value is denoted by p(7).

Also, we denote by p;(7) and p,(7) the values of optimal ordered collectings where all fea-
sible trips start from left and respectively right.

Before mentioning the complexity status of Min Ordered Collecting, let us define the notion
of [-modal sequences, introduced in [110].

We call an internal extremum of a permutation 7, a number 7(¢) such that 2 <7 <n—1and
we have either 7(i) < m(i—1) and 7(i) < w(i+1), or (i) > w(i — 1) and 7(i) > 7(i+1). A
sequence is [-modal if it has at most [ internal extrema, the first being of either type. If the
first extremum is a maximum then the sequence is called upper [-modal and otherwise lower
[-modal. In the case [ = 1, we say that a sequence is (upper or lower) unimodal. Finally, if
a permutation can be partitioned into p decreasing and k increasing subsequences then it is
called p-decreasing k-increasing.

Let 1 = (n(1),...,7(n)) be a permutation, the reversal of m, denoted by 7, is the permu-
tation (7(n),...,m(1)). The inverse permutation, denoted by 7~!, is given by (7=1(1),...,
771(n)). Finally, we call the symmetric of 7, the permutation ms = (n+1—7(1),...,n+1—
m(n)). Clearly, p;(7) = p,(7) and p,(7) = p;(7). One can notice that the symmetric and the
reversal operations conserve p, i.e., p(m) = p(7) = p(ms), since both interchange increasing
and decreasing subsequences. Note also that p;(7) = 1 if and only if 7! is upper unimodal,

and p,(7) = 1 if and only if 7! is lower unimodal; moreover (7~1)~!

= 7. Finally, it can
be easily checked that 7 is upper [-modal if and only if 74 is lower [-modal and vice versa.
To illustrate, consider the permutation = = (1,5,2,4,3) which is a feasible trip from left;
then 7! = (1, 3,5,4,2) is upper unimodal and (7~ '), = (5,3,1,2,4) is lower unimodal.

Using the above terminology, one can state that minimizing feasible trips covering a given
permutation 7 is equivalent to finding the minimum £ such that there are at most k£ uni-

modal subsequences covering 7.

If we call Min [-modal, Min upper l-modal and Min
unimodal the problems of covering a given permutation with a minimum number of respec-
tively [-modal, upper /-modal and unimodal subsequences, then the following theorem of

[110] establishes the A'P-hardness of all these problems.

Theorem 7.3 ([110]). Min l-modal, Min upper l-modal and Min unimodal are N'P-hard

even for fized 1, in particular for | = 1. O

Corollary 7.4. Given a permutation 7, it is N'P-hard to find p(m), pi(7) and p, (7).

Proof. The corollary follows from the permutation 7! transforming (in linear time) a per-
mutation 7 such that p(r) = k to a permutation which can be covered by k& unimodal
subsequences; moreover feasible trips from left (respectively right) in 7= become upper (re-

spectively lower) unimodal sequences in 771, O

In what follows, we formulate our results in terms of Min (upper/lower) /-modal problem
rather than feasible trips. A sequence that can be covered by k (upper/lower) [-modal subse-

quences will be called k-(upper/lower) [-modal and similar notations hold for the unimodal
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case. Following subsections contain polynomial time algorithms for some problems related

to l-modal sequences.

7.2.2 Recognition of 2-lower unimodal permutations

Let 7 be a 2-lower unimodal permutation of n consecutive numbers with two lower unimodal
subsequences L1 = (my,...,mp,...,my,) and Ly = (my,...,mj,...,my ) (m;’s and m;’s
are values) covering together 7 and where p and h are such that m, = min;<;<;, (m;)
and mj = minj<j<,(m}). Without loss of generality, we assume that m, < mj and
7Y (m,) < 7~ 1(m)}) since in the opposite case, i.e., in the case where the minimum between
my, and mj, comes after the other one in 7, we may work on 7 that remains 2-lower unimodal
and verifies the above hypothesis. We have two cases illustrated in Figure 7.2 where lower
unimodal subsequences are represented as continuous lines on which discrete points are
located. In fact, without loss of generality, we may consider only Case 1 since any 2-
lower unimodal cover (Li, Ls) of Case 2 can be seen as Case 1 with two lower unimodal
subsequences (L}, L)) obtained by exchanging some appropriate points between L; and Lo:
L) will contain L from the first position to the position 7~!(m}) — 1 and also Ly from the

position m~1(m},) to the end; L) is then the remaining subsequence.

value value

k | j. position k ¥ position
Case 1 Case 2

Figure 7.2: 2-lower unimodal permutation.

To recognize a 2-lower unimodal permutation, the idea is to determine two numbers m,,
and mj, that can be considered as minima of two lower unimodal subsequences. Then, for
any 2-lower unimodal permutation, (w(1),...,7(7~1(m,))) is 2-decreasing, (7(7~1(m,)),
,m(77t(m)}))) is 1-decreasing 1-increasing and (w(7~1(m})),..., 7 (n)) is 2-increasing in
such a way that these monotone subsequences can be combined to form two lower unimodal
subsequences covering .
In what follows, min(S) denotes the minimum value in a subsequence S, and S; US> denotes
the concatenation of two subsequences S7 and S. Note that Case 1 of Figure 7.2 is just
a possible representation of the two lower unimodal subsequences L and Ly. They can be
alternatively drawn in such a way that they intersect only once (between positions k and

j). In what follows, we will rather find such a decomposition, if there is one.

107



CHAPTER 7. PERMUTATION GRAPHS

Algorithm 21 Recognition of 2-lower-unimodal permutations

Input: a permutation 7

Output: 2-lower unimodal cover of m with L, Lo or a negative answer

1.
2.

© ® N oo

10.
11.
12.
13.
14.

15.

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

26.
27.
28.
29.
30.
31.
32.

A « true;
compute k = argmin;cg 3 (m(4));

apply the greedy algorithm from left to right to partition (7(1),...,n(k)) into decreasing

sequences;
if two decreasing subsequences (D1, Ds) partition (7 (1),...,7(k)) then
po < min(Dy) and w(k) < my, € Dy;
else
if A is true then
A « false;
T« T,
go to line 2;
else //A is false, i.e., we are applying the algorithm to
print “m is not 2-lower unimodal”, exit.
repeat
apply one step of the greedy algorithm from right to left to find 2 increasing sub-

sequences (from left to right) (I3, I2);
until (Case = 1 : we reach the position k) or (Case = 2 : we reach a position r such
that m(r) can be put neither in I3 nor in I5)
if Case =1 then
L1« Dy Ul
Lo «— Dy U Iy;
return (Lq, Lo).
else //Case = 2
mj, < min(Iy);
mH(m),) — j;
Iy «— I from position j + 1 to n;
vy «— min(ls);
if (p2,7m(k),...,m(j),v2) can be decomposed into a decreasing and an increasing
subsequence (D, I) then
if 7(j) € I then
interchange I; and Io;
Li— Dy UlUly;
Lo — Dy UDU I;
return (Lq, Ls).
else
go to line 7,

108



7.2. MIN ORDERED COLLECTING

Theorem 7.5. Algorithm 21 decides in time O(m + nlogn) whether a given permutation

7 18 2-lower unimodal or not.

Proof. First of all, note that greedy algorithms finding (I3, 3) and (D;, Ds) assign each
number of 7 to the set with smallest possible index. It follows that I; will always be under
I> and D; under Ds in a lattice representation as in Figure 7.2. That is why D; contains
necessarily m, and the greedy algorithm for finding (I3, I2) succeeds in finding a number
m), that can be considered, without loss of generality, as the minimum we are looking for.
Furthermore, let us recall the following fact (see for instance [80]), which shows that these
greedy algorithms never fail in finding (11, [2) and (D, D). For the sake of completeness,

we give a short proof.

Claim 7.6. For a given permutation m, the greedy coloring algorithm based on the order

w(1),7(2),... of the vertices gives an optimal coloring of G(r).

Proof. (of the Claim) This can also be viewed as a consequence of the fact that permutation
graphs belong to the class of perfectly orderable graphs defined by the existence of a perfect
order of their vertices. The greedy coloring algorithm based on this order gives an optimal
coloring. It is known that an order is perfect if it induces no P, with edges ab, bc and cd,
where a < b and d < ¢ in the order [25]. Here, as it can be observed in Figure 7.3, for any
induced Py on ab, be and cd, we have in the order 7(1),m(2),... either b < a or ¢ < d.

value value

position position

Figure 7.3: Induced P,’s in permutations.

0

If 7 is 2-lower unimodal, then after finding (D1, D2) and (I3, I3) as described in the al-
gorithm, one of the two following things may happen; either (Dj, Ds) and ([, 12) cover
together 7, then L1 = Dy U Iy, Ly = Dy U I, gives a 2-lower unimodal cover for 7 (it corre-
sponds to the case where mj = min(n(k — 1), 7(k + 1)) which is expressed by Case = 1 in
line 15); or there are numbers between positions k£ and j which are not covered by (D1, D3)
and (I, Is) (it corresponds to Case = 2 in line 15). In the latter case, the subsequence
(uo,m(k),...,m(j),v2) should be 1-decreasing 1l-increasing (D, I) in such a way that com-
bining them with (D;, D) and (I1,I2) gives two lower unimodal subsequences. Note that
for every such decomposition (D, I), m, € I (since m, = minj<;<p(7(i))), and po € D since
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7 (u2) < 7 1(myp) and pg > my,. Furthermore, if m(j) € D then necessarily vo € I (since
mj, < vy and 71 (m}) < 71 (ve)) and Ly = D1 UI U Iy, Ly = Dy U D U I; are two lower
unimodal subsequences covering 7 (see lines 28 and 29). Otherwise, if 7(j) € I then I can
be combined with I; and D with Is, hence we obtain two lower unimodal subsequences L
and Lo as described by interchanging I; and [Is as it is done in line 27. If the algorithm
fails to find such decompositions ((D;, D2) and (D, I)) then we should apply the same on
7 which is necessarily as in Case 1 of Figure 7.2. If Algorithm 21 gives no 2-lower unimodal
decomposition for 7 neither then it means that 7 is not 2-lower unimodal.

As for the complexity of Algorithm 21, the greedy algorithms take time in O(m) and finding

one decreasing one increasing decomposition takes time in O(nlogn) [18]. O

Corollary 7.7. Given a permutation m, it can be decided in time O(m + nlogn) whether

it 1is 2-upper unimodal or not.

7.2.3 Maximum /[-modal subsequence

Consider a permutation 7 which is upper or lower [-modal. Then, it can be easily checked
that 7—! corresponds to an increasing subsequence of labels representing items collected
during [+ 1 trips back and forth of a robot (starting from left and right, respectively) which
does not unload its charge until the end of [ + 1 trips and which obeys the constraint of
increasing labels during its whole trip. In other words, a robot can collect all the items or-
dered according to 7! with [+ 1 back and forth trips respecting the constraint of increasing
labels. In what follows, given a permutation 7 representing the sizes of the items, we show
how to collect a maximum number of items by [ 4 1 trips of a robot. This will be explained

in terms of maximum [-modal subsequence of a given permutation.

Theorem 7.8. Given a permutation 7, a maximum upper or lower [-modal subsequence of

7 can be found in time O(nlogn) for fized I, and in time O(n®logn) for arbitrary .

Proof. Let m = (mw(1),...,m(n)) be a permutation in which we want to find a maximum

! consisting of |1/2] +1 copies of

upper l-modal subsequence. We construct a permutation m
7 and [1/2] copies of 73 = (n+1—7(1),...,n+1—m(n)) piled up alternatively and in such
a way that they are shifted one step to the left at each layer. Let us call 7; the permutation
at layer j, then the values in 7; are not consecutive; there are [ — 1 empty positions between
consecutive values in 7;. The permutation w! is given by all m; for 5 =0,...,1 and contains
values from 1 to (I + 1)n. Then the following formula defines each n':

(i) + jn if j is even

forj=0,...,1, mi(t+il—j) = ,1=1,...,n
J i J) {n—|—1—7r(i)—}—jn if j is odd

An example of construction of 7! can be found in Figure 7.4, where 7 = (4,2,3,6,5, 7,1,8)
and [ = 2. Here, a maximum upper 2-modal subsequence is (2,3,6,5,1,8). It corresponds

to the increasing subsequence (2,3,6,12,17,24) in 2.
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value

T2

1

o

position

Figure 7.4: Maximum upper 2-modal subsequence

! corresponds to an upper l-modal

Now, one can observe that an increasing subsequence in 7
subsequence of the same size in m and vice versa. In fact, as can be seen in the example
of Figure 7.4, an increasing subsequence in m; corresponds to a decreasing subsequence in
7 if j is odd, and to an increasing subsequence if j is even. Moreover, due to the shift
of one step to the left at each layer, copies of one label in different 7;’s cannot be taken
together in one increasing subsequence of 7!; hence, each number in 7 is represented at
most once in any increasing subsequence of 7!. Then, the result follows from the fact that
a maximum increasing subsequence in 7! can be found in time O((I + 1)nlog((I +1)n)). As
for a maximum lower [-modal subsequence, it is sufficient to consider the symmetric of m

since it interchanges upper and lower [-modal subsequences. O

7.2.4 Differential approximation

In [110], the question of existence of approximation schemes for Min Cocoloring (in per-
mutation graphs) and Min /-modal was left open. On the other hand, some approximation
algorithms with constant approximation ratios are given for the same problems. We have
already stated in Theorem 6.21 that, given an integer p, there is a polynomial algorithm in
time O(n3 1) guaranteeing a differential approximation ratio of (1 —1/p) for Min Cocolor-
ing in arbitrary graphs. Here, we answer the open question on the approximability of Min
[-modal from a different point of view; we give an approximation scheme using differential
approximation ratio instead of the classical ratio. It is obtained by a modification of Algo-

rithm 19 given in Section 6.5.2.
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Algorithm 22 DPTAS-/-modal
Input: a permutation 7 of size n, an integer p

Output: an [-modal covering of 7 with differential approximation ratio of (1 — 1/p)
1. while the current permutation has a maximum [/-modal subsequence of size at least
p(l+2) do
2. color such an l-modal subsequence with a new color;

3. complete the solution by an exhaustive search on the remaining permutation.

Theorem 7.9. Algorithm 22 is a O(n?logn) time algorithm guaranteeing a differential
approzimation ratio of (1 — 1/p) for Min l-modal.

Proof. The proof is similar to the one of Theorem 6.21 with the only difference that for a
given permutation 7 of size n, we have w(m) = [n/(l42)] since any subsequence of size [ +2
is necessarily [-modal. The complexity is implied by the complexity of finding a maximum
[-modal subsequence given in Theorem 7.8, which is repeated at most [n/(l42)] times, and
by the fact that the second step takes only constant time; this holds since the number of
vertices in the remaining graph is bounded by a constant given by a Ramsey number (since

there is no clique or stable set of size p(l + 2) in the remaining graph). O

Furthermore, in exactly the same way as for Min Cocoloring and Min Split-coloring in
general graphs, since Min [-modal has integral values and w(w) — () is polynomially
bounded, one can immediately deduce that there is no DFPTAS for Min /-modal.

7.3 Min Threshold-coloring

We have already mentioned that feasible trips in a given permutation 7, correspond to par-
ticular split graphs in the graph G(7). In this section, we explore the links between feasible
trips (or unimodal subsequences) and split graphs. We show that feasible trips correspond
more precisely to threshold graphs which form a subclass of split graphs. Nevertheless,
a minimum ordered collecting p is a uniquely defined parameter in permutations and not
in permutation graphs. These results give birth to the idea of considering the problem of
covering the vertices of a given graph with a minimum number of threshold graphs; this
problem is then studied together with Min Split-coloring and Min Cocoloring in terms of
complexity class it belongs to in restricted classes of graphs.

The following notion is given in [80].

Definition 7.10 (shuffle product). Let o and 7 be two sequences. The shuffle product of

o and T s defined as follows:
ot ={01T...0Tk :0=01...0k, and T =T1...Tk}
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where o; and T; are subsequences, k ranges over all integers and the jurtaposition means

concatenation.

Now, let us observe the following fact.

Proposition 7.11. Let 7 be a permutation, then:

pi(m) =1 < wis a shuffle product of type 1:[1,...,plwn,...,p+1],1 <p<mn;
pr(m) =1 < 7 is a shuffle product of type 2: [p+1,...,n]up,..., 1,1 <p<mn;

where shuffle products can also have only one term.

Proof. Clearly, a shuffle product of type 1 (respectively 2) gives the program of a feasible
trip for the robot which starts from left (respectively right); the first (respectively second)
term in the shuffle product coincides with the items to be collected in the way forward,
and the second (respectively first) term with the items to be collected in the way back.
Conversely, given a feasible trip from left (respectively right), the increasing subsequence in
the feasible trip gives the first term of a shuffle product of type 1 (respectively type 2) and

the decreasing subsequence the second term. O

Recall that a graph G is a threshold graph if it is a split graph with partition (K, S) and the
neighborhoods of vertices in S are nested, i.e., one can label vertices in S with integers such
that if ¢ < j then N(i) C N(j). The relationship between threshold graphs and feasible
trips is derived from the following theorem of [79].

Theorem 7.12 ([79]). The threshold graphs are precisely those permutation graphs corre-

sponding to sequences contained in
[1,2,....,plwn,n—1,....,p+1]
where p and n are positive integers. ]

An important consequence of this theorem is the following: if 7 is a shuffle product (hence
a feasible trip) then G(7) is a threshold graph but if G is a threshold graph then there
exists a permutation m which is a shuffle product and such that G is isomorphic to G(x). In
other words, there may exist several permutations giving a permutation graph isomorphic
to G. It follows that there may be different permutations 7, and m such that G(m;) is
isomorphic to G(m2), and 7 is a feasible trip but not me. Take as example m = (1,4,2,3)
and m = (3,1,2,4). Then G(m1) and G(m2) are isomorphic to a graph G consisting in
a path on tree vertices and one isolated vertex. G is obviously a threshold graph and
p(m1)=1 but p;(m2) # 1 and p,(m2) # 1. This observation shows that, given a permutation
m, Min Ordered Collecting of 7 is not equivalent to the problem of covering G(7) by a
minimum number of threshold graphs, since p(7) is an invariant of the permutation and not
an invariant of the corresponding permutation graph.

Following the above remark, a natural extension of Min Ordered Collecting in graphs appears

as the following problem.
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Definition 7.13 (Min Threshold-coloring). Min Threshold-coloring is the problem of
covering the vertices of a given graph G by a minimum number of threshold graphs. The

optimal value, called threshold-chromatic number, is denoted by x1(G).

In what follows, we discuss its complexity compared to Min Split-coloring and Min Cocol-

oring.

Theorem 7.14. Let G be a class of graphs closed under addition of disjoint cliques without
link to the rest of the graph and under addition of a complete k-partite graph completely
linked to the rest of the graph. Then, Min Cocoloring reduces in polynomial time to Min
Threshold-coloring in the class G.

Proof. Consider a graph G = (V, E) in G of size n as an instance of Min Cocoloring. We
obtain an instance G;yj of Min Threshold-coloring from G by adding ¢K,, i.e., ¢ disjoint
cliques (called external cliques) each of size n without any link to the rest of the graph, and
j stable sets (called ezternal stable sets) each of size n with complete links to G, to i K, and
between themselves, hence G;J» €g.

Suppose there is an optimal cocoloring of G with p cliques and k stable sets; so that z(G) =
p + k. Let us analyze what happens while considering Min Threshold-coloring in G;c,p‘
Suppose there is an optimal threshold-coloring with the following threshold graphs (cliques
and stable sets with all vertices in G are called internal):

e [ external cliques matched with [ external stable sets,

h internal cliques matched with A internal stable sets,

I’ isolated external stable sets (as threshold graphs),

1" isolated external cliques (as threshold graphs),

p — | — I’ internal cliques matched with p — [ — I’ external stable sets,

e k — 1 — 1" external cliques matched with k — [ — [” internal stable sets.

Therefore, we have x7(G}, ) = p + k + h — . In addition, one can write x7(G} ) <p+k
since k external cliques matched with k internal stable sets, and p external stable sets
matched with p internal cliques form a threshold-coloring of value p + k. Thus, we have
h < I. On the other hand, this threshold-coloring provides a cocoloring of G of value
2h+p—1—1"+k—1—-1" > p+k because p+ k is the value of an optimal cocoloring. Since
h <1, it follows that I’ = [” = 0; there is no isolated clique or stable set taken as a whole
threshold graph in any optimal threshold-coloring. Consequently, we have h = [ which
implies that x7(G} ) = p+k = 2(G). Hence, one can solve Min Threshold-coloring in G ;
for different values of i and j (at most x(G) x 8(G) values to check) and pick the one for
which XT(G; j) is equal to the value of cocoloring of GG induced by that threshold-coloring;
this will be an optimal cocoloring of G. Equivalently, one can choose a pair (p, k) giving
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an optimal cocoloring by detecting the maximum value of x7(Gj ;) with respect to (i,J);
clearly XT(G;J) is always less than or equal to the value of the cocoloring of GG induced by
this solution and the equality will be obtained for (i,j) giving an optimal cocoloring. This

reduction is given in Algorithm 23. O

Algorithm 23 Polynomial reduction of Min Cocoloring to Min Threshold-coloring
Input: a graph G as an instance of Min Cocoloring, an exact algorithm for Min Threshold-

coloring
Output: an optimal cocoloring of G
1. for all (4,j) € {1,...,n} x{1,...,n} do
2 construct Gj ; = (G UiK,) ® jK,;
3 compute an optimal threshold-coloring 7C of G% i
4. if the value of the cocoloring Z in G induced by 7C is equal to XT(GQ,J-) then
5

return cocoloring Z of G.

Corollary 7.15. Min Threshold-coloring is N'P-hard in permutation graphs.

Let us mention a result in [89] stating that coloring a graph in such a way that color
classes are Py-free is N'P-complete in comparability graphs. Knowing that threshold graphs
are exactly the (Py,2K,,Cy)-free graphs, Corollary 7.15 can also be interpreted in the
following way: coloring a graph, where color classes are (Py, 2K5, Cy)-free, is N'P-complete

in permutation graphs.

7.4 More complexity results

According to Theorem 6.15, Min Split-coloring is at least as difficult as Min Cocoloring
in most (but not all) of the “natural” classes of graphs. Note that the contrary is not
excluded; in Proposition 5.9, we describe a class of graphs, denoted by G = {G U nKy,},
where Min Split-coloring is polynomially solvable while Min Cocoloring is N'P-hard. This
class of graphs is obtained from any arbitrary graph G of size n by adding n disjoint Ko,
not linked to the rest of the graph. Clearly, it is neither a “natural” nor a hereditary class.
Hence, the existence of “natural” classes of graphs where Min Split-coloring is polynomially
solvable while Min Cocoloring is NP-hard remains an interesting research topic. The same
question can be also asked for Min Threshold-coloring since Theorem 7.14 is the threshold
counterpart of Theorem 6.15. One could think of the class of triangle-free graphs, i.e.,
graphs having no induced triangle, to which neither Theorem 6.15 nor Theorem 7.14 apply,
as a candidate for such a class of graphs. We show, by means of results on a larger class of
graphs containing triangle-free graphs, that this is not the case. Let us first state a result
of Gimbel et al. in [78].

Lemma 7.16 ([78]). If G is a class of graphs closed under taking disjoint unions then the
NP-completeness of k-coloring on G implies the N'P-completeness of k-cocoloring on G. [
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This result, combined with the N'P-completeness of k-coloring in triangle-free graphs (see
[107]), implies immediately that k-cocoloring is N'P-complete in triangle-free graphs. Here,
we show moreover that the cochromatic number of a triangle-free graph is equal to its

chromatic number.

Proposition 7.17. For any triangle-free graph G, we have z(G) = x(G).

Proof. First, let us introduce perfect cochromatic graphs as defined in [123]; a graph G is
perfect cochromatic if z(G") = min(x(G"), x(G")) for all subgraphs G’ of G. It is easy to
verify that triangle-free graphs are perfect cochromatic since all subgraphs in the list of

forbidden subgraphs characterizing perfect cochromatic graphs contain an induced triangle
[123]. We will show that x(G) < x(G) which gives 2(G) = min(x(GQ), x(G)) = x(G) for
all triangle-free graphs of size greater than or equal to 3. Observe that for a triangle-free
graph G of size at least 3, we have x(G) > [n/2] since every stable set of G has at most two
vertices. We only have to show that x(G) < [n/2] = [(n+1)/2] for a triangle-free graph G
of size n > 3. Without loss of generality, we may assume that G is k-critical. There exists a
k-coloring (S1,...,Sk) of G such that every vertex v € S; is adjacent to at least one vertex
in each S; with j < 4. Furthermore |S;| = 1 by criticality. In particular, vertex = in Sy, is
adjacent to some vertex y in Sy_q which is itself adjacent to a vertex z in Si_o; but x is
also adjacent to a vertex w in Si_s. We must have w # z, for otherwise G would contain a

triangle. This gives |Sk_2| > 2. The same reasoning shows that |S;| > 2 for all i < k — 2.

Claim 7.18. If|S;| =2 fori=1,...,k — 2 and |Sx_1| = 1, then G is bipartite.

Proof. (of the Claim) Let S; = {a;,b;} for i = 1,...,k — 2. We can assume that vertex x is

adjacent to aj,...,ax_2 and to y € Sk_1; then {ay,...,ax_2,y} is a stable set, otherwise G
contains a triangle. But then y is adjacent to by, ..., bx_o; hence {by,...,bx_o,x} is a stable
set. Thus G is bipartite?. This ends the proof of the claim. O

Since k > 3, we must have either |S;| > 3 for some i < k —2 or |Sk_1| > 2. In both cases, G
has size n. = 3% [S;] > 2(k—2) +1+141=2k—1. Hence k = x(G) < [(n+1)/2]. O

Here are the split and threshold counterparts of Lemma 7.16.

Proposition 7.19. If G is a class of graphs closed under taking disjoint unions then the
NP-completeness of k-coloring on G implies both the N'P-completeness of k-split-coloring
and the N'P-completeness of k-threshold-coloring on G.

Proof. Let G € G be an instance of k-coloring. We construct an instance G’ of k-split-
coloring by taking n disjoint copies of G; G’ = nG is obviously in G. It is easy to see that
xs(G") < x(G") = x(G). Assume we have ¢ cliques C1, ..., Cy in an optimal split-coloring of
nG, where t < n. Then nG\U!_;C; contains (n—t)G as a subgraph, hence xg(nG) > x(G).

2 Applying the same argument recursively, one can verify that G is in fact a complete bipartite graph
where the edges of the matching {a;b;,i = 1,...,k — 2} are removed.
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Therefore, we have ys(nG) = x(G) and if we could solve in polynomial time k-split-coloring
on nG, then we could also solve in polynomial time k-coloring on G, but this is impossible
since it is N'P-complete.

The same proof also holds for k-threshold coloring. 0

It follows immediately that Min Split-coloring and Min Threshold-coloring are A/P-hard in
triangle-free graphs.

These results show not surprisingly that, in the class of graphs closed under taking disjoint
unions, whenever k-coloring is N'P-complete, so are k-cocoloring, k-split-coloring and k-
threshold-coloring. As a consequence, classes of graphs where k-cocoloring, k-split-coloring
and k-threshold-coloring admit potentially different complexity results can only occur either
in classes of graphs closed under taking disjoint unions but where k-coloring can be solved
in polynomial time (as it is the case for line-graphs of bipartite graphs (see Theorems 5.4
and 5.8)), or in classes of graphs not closed under taking disjoint unions; this is, for instance,
non-hereditary classes of graphs (see Proposition 5.9 on the class of graphs G = {GUn K>y, })
or classes of graphs defined by some disconnected forbidden subgraphs. To complete this
picture, let us also recall that, according to Corollary 6.16, in subclasses of perfect graphs,
Min Cocoloring cannot be A/P-hard while Min Split-coloring is polynomially solvable.
Finally, note that Lemma 7.16 and Proposition 7.19 can also be stated replacing k-coloring
by k-clique cover and disjoint union by join; similar arguments are then used in their re-

spective proofs.

7.5 Open questions

There are several research topics arising from this chapter. Although it is in general N P-
complete to recognize polar graphs [21], it is shown in Chapter 4 that a polar cograph
can be recognized in time O(nlogn). The question of knowing whether the recognition of
polar permutation graphs (which is a class strictly containing cographs) is polynomial or
not, is an interesting open problem. A simpler question remains open as well: recognizing
(1,t)- or (s,1)-polar permutation graphs. In return, in the case where s and ¢ are fixed, the
polynomial time recognition of (s,¢)-polar permutation graphs follows from the following
theorem of Brandstédt et al. (Note that this is already implied by Corollary 1.37 with a
higher time complexity.)

Theorem 7.20 ([18]). Given a permutation graph G, for a fized m, it can be recognized in
time O(n™) whether G is (p, k)-colorable, where p + k = m, or not. O

Corollary 7.21. Given a permutation graph G, for fized s and t, it can be recognized in
time O(n**!) whether G is (s,t)-polar or not.

Sketch of proof. For fixed p and k, the algorithm in [18] recognizes whether a given permu-
tation graph admits a (p, k)-coloring or not. Roughly speaking, this algorithm enumerates
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CHAPTER 7. PERMUTATION GRAPHS

all possibilities in a clever way, giving a time complexity of O(nP**). It can be slightly mod-
ified to recognize (s,t)-polar permutation graphs by incorporating additional rules, namely
complete links between stable sets and absence of links between cliques. It will allow us to
consider fewer solutions than we need for the (p, k)-coloring and hence will keep the same

time complexity. O

Numerous open questions arise also from the problem of Min Ordered Collecting. We
have already pointed out that, for a permutation 7, we have p(r) > x7(G(w)). Given a
permutation graph G, is there a permutation 7 such that G(7) is isomorphic to G' and
p(m) = xr(G)? It would be also interesting to know, for a permutation graph G, how large
can be the quantity max,, |x7(G) — p(m;)|, where G(m;) is isomorphic to G.

As a natural continuation of our research, one could investigate the relative difficulty of Min
Threshold-coloring with respect to Min Split-coloring and Min Cocoloring. A first step in
this direction would be to analyze the complexity of Min Threshold-coloring in line graphs
of bipartite graphs. Recall that, in this class of graphs, Min Cocoloring is polynomially
solvable while Min Split-coloring is A/P-hard.

Another interesting topic concerns minimal obstructions.

Definition 7.22 (ideal permutation). A permutation 7 is called ideal if we have p(w) =
min(pi(r), pr ().

Definition 7.23 (minimal obstruction). A permutation 7 is a minimal obstruction if
it verifies p(m) < min(p(r), pr (7)) and all subpermutations " C 7 are ideal, i.e., p(7') =

min(p; (), pr (7).

In [75], lower and upper bounds on the size of minimal obstructions for permutations having
p(m) = 2 is studied. It can be easily shown by case enumeration that there is no minimal
obstruction of size less than or equal to 7 for permutations such that p(7) = 2; smallest
minimal obstructions that are detected have size 8. For instance, 7 = (1,8,4,3,6,2,7,5) is
a minimal obstruction; p(m) = 2 where the robot collects the items with labels (1,5, 8) by
starting from left, and the items with labels (4, 3,6,2,7) by starting from right. However,
it can be easily checked that p;(7) = p.(7) = 3 and that for all subpermutation 7’ C m,
we have p(7") = min(p;(7'), pr(7')) = 2. On the other hand, it is also shown by computer
enumeration that obstructions of size 9 contain always an obstruction of size 8, that is,
there is no minimal obstruction of size 9. These results allow us to construct the following

conjecture.

Conjecture 7.24. All minimal obstructions m with p(w) = 2 are of size 8.

Naturally, one can try to generalize the above conjecture for minimal obstructions 7 with
p(m) = k > 2. Upper and lower bounds on the sizes of such permutations can be studied and
the following question can be analyzed: is there a unique size of minimal obstructions for
each k > 2 such that p = k7 If yes, can we find it? Knowing whether there are permutations
7 such that p(7) — min(p;(7), pr(7)) > 2 would also provide us a hint for answering the

above questions.
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Conclusion

In this thesis, we have started exploring some untouched problems. Although Min Coloring
is a very well known and extensively studied problem, many directions ensuing from this
field still remain unexplored. Generalized coloring problems were one of them and our inves-
tigation on this topic has turned out to be very fruitful. We could emphasize several results
concerning the computational complexity of the generalized coloring problems. We consid-
ered these problems in some restricted classes of graphs; with such an analysis, either we
designed some polynomial time algorithms or we obtained the proof that the problem under
consideration remains intractable even in this simpler case. As expected, Min Split-coloring
and Min Cocoloring are significantly more difficult to solve compared to Min Coloring, since
they both remain NP-hard in some classes of graphs where Min Coloring is polynomially
solvable; for instance, in permutation graphs and in line graphs of bipartite graphs (for
Min Split-coloring). Our objective was also to determine the relative difficulties of Min
Split-coloring, Min Threshold-coloring and Min Cocoloring; we obtained several results in
this direction. In particular, we show that, in a large class of graphs including all perfect
graphs, Min Split-coloring and Min Threshold-coloring are more difficult than Min Cocolor-
ing. The multiplication of this kind of results would contribute to a better understanding of
the generalized coloring problems. Now, let us summarize the main results of each chapter

by emphasizing the open questions arising from them.

In Chapter 1, we introduced generalized coloring problems and we studied some k-split-
critical structures as well as some solvable cases for (p, k)-colorability. We motivated the
following chapters by pointing out interesting questions to handle in this field. A future
research already mentioned in this chapter would be the characterization of 2-split-colorable

graphs by an infinite list of forbidden configurations.

Chapter 2 dealt with cacti and triangulated graphs where Min Split-coloring is solved in
polynomial time. It would be interesting to study a possible extension of these results to
some classes of graphs generalizing triangulated graphs, such as weakly triangulated graphs

and quasi-triangulated graphs.

In Chapter 3, we showed by means of a new characterization of cographs that there are
nice combinatorial algorithms to solve all generalized coloring problems; in particular, we
improved the time complexity known so far for solving Min Cocoloring in cographs. Some

attempts have recently been made to handle the generalized coloring problems in cographs
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with the additional constraint that, given a cograph G = (V,E), a subset V/ C V is
precolored with p cliques and k stable sets, and that this precoloring has to be respected in
any (p', k’)-coloring of V', where p’ > p and k' > k [38].

In Chapter 4, we tackled the problem of recognizing polar graphs which can also be seen as a
generalized coloring problem. We could determine the first class of graphs, namely cographs,
where the polar graphs can be recognized in polynomial time. We hope that this result will
stimulate the search of similar results in other classes of graphs. Triangulated graphs would
be a first candidate for this future research. Pj-reducible graphs, which contain strictly

cographs, can also be considered in order to extend the results of both Chapter 3 and 4.

In Chapter 5, we handled generalized coloring problems in line graphs. This research allowed
us to detect several subclasses of line graphs where generalized coloring problems behave
differently in terms of NP-hardness. In view of the results obtained in this chapter, the
existence of known classes of graphs where Min Split-coloring is polynomially solvable while

Min Cocoloring is AP-hard remains as an open question.

In Chapter 6, we studied the approximability behavior of generalized coloring problems. We
derived several approximation algorithms with a performance guarantee. We also showed
that Min Split-coloring and Min Cocoloring are better approximable than Min Coloring
from the differential point of view, whereas they behave similarly when using the standard
approximation ratio. One may try to improve these results or to find better approximation

algorithms in some particular cases.

The utility of generalized coloring problems we introduced is validated by some applications
that we analyzed in Chapter 7. These examples show that, beyond their theoretical interest,
generalized coloring problems have the potential of bringing new approaches to existing
problems; their capacity of modeling is indeed wider than the one of Min Coloring. We also
dealt with several problems arising from these applications such as Min Threshold-coloring
that we propose to study in the same spirit as the other generalized coloring problems. In
this direction, there are unexplored classes of graphs as for example, line graphs of bipartite
graphs or triangulated graphs. In addition, we have presented some combinatorial problems

involving permutations; these can be studied independently from graph theory.

Many open questions were raised during this dissertation; they aim either at tightening
the limits between polynomially solvable and NP-hard for some specific problems, or at

contributing to the comparison of the difficulties of two generalized coloring problems.

Coloring and partitioning problems remain a very active field of research in the area of
combinatorial optimization. There are many practical motivations to generalize the basic
versions of these problems (think of the applications in robotics, telecommunication systems,
computer science, etc.). This thesis has explored some of them and there are many research

avenues still to be explored.
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