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4.1 INTRODUCTION

Piezoelectric and ferroelectric materials are widely used in many areas
of technology and science. The sensors based on the piezoelectric effect
transform mechanical signals into electrical signals and are used as ac-
celerometers, and for measurements of pressure and vibration. The piezo-
electric actuators transform electrical signals into mechanical signals and
are used in displacement actuators and force generators. Ferroelectric ma-
terials are a special class of piezoelectrics, which exhibit, in general, a large
piezoelectric response. Besides piezoelectric applications, optical, thermal
and electrical properties of ferroelectrics are exploited in a large number
of devices and components [1–3], including capacitors and nonvolatile
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memories where electrical voltage is used to displace electrical charge.
Except in memory applications, which are based on polarization switch-
ing and hysteretic polarization--electric field relationships, hysteresis is
undesired in high-precision sensor, actuator and capacitor applications.
Yet, with a few very special exceptions, the ferroelectric materials with the
highest piezoelectric properties are usually the ones with the strongest elec-
tromechanical hysteresis. The control, description, and understanding of
electromechanical (piezoelectric) and ferroelectric hystereses present thus
an important, and, as we shall try to demonstrate throughout this chap-
ter, difficult undertaking from both the practical and theoretical point of
view.

There are different approaches to how to reduce the hysteresis in piezo-
electric devices. A material scientist may attempt the challenging task of
minimizing the hysteresis by designing the material on a microstructural or
even atomic level, while keeping the high piezoelectric response. A device
engineer will try to construct an active feedback system that will reduce
hysteresis of the output signal by controlling the driving-field input signal.
In each case, the control process is greatly facilitated if the physical origins
of the hysteresis are known. From the fundamental point of view, the in-
terest in piezoelectric hysteresis includes the fact that it appears between
mixed variables such as electric field and mechanical strain, or mechanical
pressure and electric charge. This electromechanical coupling is responsi-
ble for some unusual hysteretic phenomena, such as clockwise hysteresis
that is not encountered in hysteretic processes that relate purely electric
(e.g. electric polarization--electric field), elastic (strain--stress) or magnetic
(magnetization--magnetic field) variables.

Origins and mechanisms of the piezoelectric hysteresis are complex
and, as illustrated in Fig. 4.1, they manifest themselves in qualitatively
different forms. We shall see that a study of hysteresis can give valuable
information on different physical processes that take place in ferroelec-
tric materials, e.g. domain-wall pinning, defect ordering, and nature of
defects. In that sense, this chapter will approach hysteresis from the mate-
rials science point of view. The first part of the chapter will mainly discuss
piezoelectric hysteresis in ferroelectric materials; however, the formal ap-
proach, wherever given, is quite general and is valid for nonferroelectric
piezoelectric materials as well.

The polarization--electric field hysteresis in ferroelectric materials is
discussed in some detail in the last part of the chapter. It is a wide sub-
ject, ranging from the nonswitching dielectric hysteresis that encompasses
a huge number of dielectric relaxation phenomena to processes related to
polarization switching. The hysteresis in ferroelectric and dielectric prop-
erties will be discussed through a few selected examples. Throughout
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FIGURE 4.1 Field dependence, hysteresis, and frequency dispersion associated
with the direct piezoelectric effect in (a) SrBi4Ti4O15, (b) Nb-doped PZT, (c)
(Pb, Sm)TiO3, and (d) Mn doped SrBi4Ti)4O15 (courtesy of Cyril Voisard) ceramics.
Arrows in (d) indicate the clockwise sense of hysteresis rotation for this material.
The hystereses are measured under compressive pressure and are subsequently
centered numerically.

the text, attempts will be made to demonstrate how a study of hystere-
sis may be a powerful tool to get insight into microscopic processes tak-
ing place in ferroelectric and piezoelectric single crystals, ceramics and
polymers.
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With a few exceptions, mainly in the field of actuators [4–6], and in the
studies of ferroelectric switching [7–9], the experimental investigations of
piezoelectric and ferroelectric hysteresis are carried out by applying a pe-
riodic, constant-amplitude signal; thus, the most commonly adopted ap-
proach in describing the hysteresis in ferroelectrics and piezoelectrics is in
terms of looping and phase angle rather than in terms of branching. As we
shall see later, this approach, even though restricted [10], can nevertheless
give rich information on different hysteretic processes in ferroelectric and
piezoelectric materials. First of all, some of the most important and inter-
esting hysteresis processes in piezoelectric and ferroelectric materials are
manifested simply by the frequency-dependent phase angle between the
driving field and the linear material response. Secondly, in many nonlin-
ear (field-dependent) cases that will be discussed in detail, the processes
that in the first approximation can be described as rate independent are
in fact accompanied by a weak frequency dependence of the hysteresis
parameters, so that the description of the hysteresis in terms of the phase
angle and looping becomes convenient. The simultaneous occurrence of
the nonlinear, rate-independent, and linear, rate-dependent, processes in a
material makes the analysis of associated hystereses very challenging from
both the experimental and theoretical points of view. Finally, in piezoelec-
tric materials, the simple, linear hysteresis originating from the relation-
ship R = mF0 sin(�t − �), (where F is the general driving field (input),
R is the material response (output) and m the material coefficient) can
exhibit interesting properties, such as the clockwise and horizontal hys-
tereses (with its axes parallel to R and F axes), that are not observed in
F-R processes that relate conjugate work variables. The author believes
that this unusual, even though mathematically simple, hysteretic behav-
ior deserves to be treated in some detail in a general book on hysteretic
phenomena.

It is difficult to make self-contained a relatively short text that treats
a subject of such complexity as hysteresis. To bridge unavoidable gaps
in the text, references that contain more detailed and complementary in-
formation are given whenever possible. The choice of examples given
in the text is necessarily biased by the author’s own research, interest,
and preferences. It must be mentioned that a rigorous theoretical treat-
ment of the piezoelectric hysteresis is, unfortunately, still lacking and the
number of experimental studies dealing with the subject from the physical
point of view is rather limited. Owing to recent activities in the field of
ferroelectric memories, understanding of ferroelectric hysteresis is much
more advanced.

The chapter starts with a somewhat extended introduction into fer-
roelectric and piezoelctric properties. An appendix is provided, which
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defines most important variables that are not defined in the text and which
also gives a short thermodynamic derivation of piezoelectric constitutive
equations.

4.2 BASIC DEFINITIONS

4.2.1 DEFINITION OF THE DIELECTRIC, PIEZOELECTRIC, AND
ELASTIC COEFFICIENTS

In this section the basic dielectric, elastic, piezoelectric, and ferroelectric
properties and relations necessary for further reading are defined. The
reader interested in more details should consult classical textbooks [1,11].
Most of the properties discussed in this text are tensors; however, the scalar
treatment is sufficient for most examples discussed later in the text and the
tensor indices are often omitted. In those cases where direction of the effect
is important, the matrix description based on the Voigt convention [11] is
used for tensors of the third and fourth rank.

Application of an electric field, Ei (V/m) (i = 1, 2, 3) on an insulating
material polarizes the material by separating positive and negative charges.
A macroscopic manifestation of the charge separation is the surface charge,
described by the electric polarization vector, Pi (C/m2). The field and
polarization are related by:

Pi = �ijEj (4.1)

where �ij (F/m) are components of the tensor of the dielectric susceptibility.
The total surface-charge density that is induced in the material by the ap-
plied field is given by the dielectric displacement vector,Di (C/m2), which
includes both charges associated with polarization of the material (Pi) and
charges created by the polarization of free space (�0Ei):

Di = �0Ei + Pi = �0Ei + �ijEj = �0�ijEj + �ijEj = (�0�ij + �ij)Ej = �ijEj (4.2)

where �ij = �0�ij + �ij is the dielectric permittivity of the material and
�ij is Kronecker’s symbol (�ij = 1 for i = j, �ij = 0, for i �= j). Scalar
�0 = 8.854 × 10−12 F/m is known as the dielectric permittivity of vacuum.
For most ferroelectric materials �0�ij << �ij and �ij ≈ �ij. In practice, the
relative dielectric permittivity, �ij = �ij/�0, also known as the dielectric
constant of the material, is more often used than the dielectric permittivity.
Typical values of � in piezoelectric materials are 10--10 000. Relations (4.1)
and (4.2) are valid only in the linear approximation.
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The relationship between the stress �m (N/m2) applied upon an elastic
material and the resulting strain xmn ( - ) is given, in the linear approxima-
tion, by Hooke’s law:

xm = smn�n (4.3)

wherem, n = 1, 2, . . . , 6 (see Appendix A) and smn is the elastic compliance.
The inverse relationship �m = cmnxn defines the elastic stiffness tensor cmn
(N/m2). In most ferroelectric materials, values of s are of the order of
10--100 × 10−12 m2/N.

Piezoelectric materials are a class of low-symmetry [11] materials that
can be polarized, in addition to an electric field, also by application of a
mechanical stress. The linear relationship between the stress �m applied
on a piezoelectric material and the resulting charge densityDi is known as
the direct piezoelectric effect and may be written as:

Di = dim�m (4.4)

where dim (C/N) are piezoelectric coefficients. d is a third-rank tensor.
This effect is used, for example, in accelerometers for seat-belt tension
systems and pressure sensors. The charge density--pressure relationship in
a typical piezoelectric ferroelectric (e.g. soft Pb(Zr,Ti)O3 or PZT) presents
hysteresis as shown in Fig. 4.1(b).

Piezoelectric materials have another interesting property: they change
their dimensions (they contract or expand) when an electric field E is
applied to them. This converse piezoelectric effect describes the strain
that is developed in a piezoelectric material due to the applied electric
field:

xm = dkmEk = dtmkEk (4.5)

where tdenotes the transposed matrix. The units of the converse piezoelec-
tric coefficient are m/V. This effect is the basis of displacement actuators
used in, e.g. scanning systems in electronic microscopes and fuel injection
valves in cars. Typical hysteretic behavior of a piezoelectric actuator based
on PZT ceramics is shown in Fig. 4.2. Values of d range from 2 to > 2 000
pC/N or pm/V in, respectively, quartz and Pb(Mg1/3Nb2/3)O3-PbTiO3
single crystals.

The piezoelectric coefficients d for the direct and the converse piezo-
electric effects are thermodynamically identical, i.e. ddirect = dconverse.
Note that the sign of the piezoelectric charge Di and piezoelectric strain
xm depends on the direction of the mechanical and electric fields and
piezoelectric coefficients. It is common to call a piezoelectric coefficient,
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FIGURE 4.2 Displacement--voltage hysteresis in a typical piezoelectric ceramic
actuator. (Courtesy of E.L. Colla).

measured in the direction of the applied field, the longitudinal coefficient,
and that measured in the direction perpendicular to the field the transverse
coefficient. Other piezoelectric coefficients are known as shear coefficients.
All piezoelectric coefficients can be either positive or negative.

There are a number of symmetry conditions imposed on �, s and d co-
efficients by the symmetry of the stress and strain tensors, thermodynamic
relations and crystal symmetry. These conditions limit number of indepen-
dent and nonzero coefficients. For example, the piezoelectric effect cannot
exist in centrosymmetric materials [11].

4.2.2 PIEZOELECTRIC CONSTITUTIVE EQUATIONS AND COUPLING
OF ELECTRIC AND MECHANICAL PROPERTIES

Electric charge in a polar material may be induced by an external electric
field Eqn. (4.1), or by a stress through the piezoelectric effect, Eqn. (4.4).
Similarly, the mechanical strain in a piezoelectric material may be induced
by an electric field through the converse piezoelectric effect, Eqn. (4.5),
or by an external stress through Hooke’s law, Eqn. (4.3). This coupling
of different effects places important experimental constraints on property
measurements. Assume, for example, that an electric field is applied on
the major surfaces of a piezoelectric plate. If the sample is laterally me-
chanically free to change its dimensions, the resulting longitudinal strain
(parallel to the field) is due to the pure piezoelectric effect, Eqn. (4.5). If the
sample is partially clamped, so that it cannot expand laterally (for example,
a thin film deposited on a thick substrate), the resulting longitudinal strain
will be a sum of the piezoelectric strain, Eqn. (4.5), and the mechanical
strain Eqn. (4.3) that opposes the piezoelectrically induced lateral strain
and which is defined by the clamping conditions [12,13].
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The coupling between the elastic and electrical parameters of a mate-
rial can be introduced formally using the thermodynamic approach (see
Appendix B). The results are equations of state that give relations between
material parameters measured under different experimental conditions.
These relations are essential for modeling and understanding the response
of piezoelectric materials. A more detailed discussion can be found in
[1,14]. For isothermal processes, combination of Eqns. (4.2)--(4.5) written
in the matrix notation leads to:

xm = sT,Emn�n + dT,�im Ei, (4.6)

Di = dT,Eim �m + �T,�ij Ej, (4.7)

where superscripts indicate variables held constant. Thus, the pure piezo-
electric strain (charge) is obtained only under conditions of zero stress (zero
electric field). Equations (4.6), (4.7) are known as the piezoelectric consti-
tutive equations. Other combinations of electric and mechanical variables
give three additional sets of constitutive equations (see Appendix B).

4.2.3 FERROELECTRIC MATERIALS

Polar materials possess an effective electric dipole moment in the absence of
an external field. In general, the individual dipoles are randomly oriented
in the space. In so-called pyroelectric materials, all dipoles are oriented in
the same sense, creating surface charge, which is a measure of the macro-
scopic spontaneous polarization, PS. Ferroelectrics are a special case of
polar materials where spontaneous polarization PS possesses at least two
equilibrium states; the direction of the spontaneous polarization vector
may be switched between those orientations by an electric field. The crys-
tal symmetry requires that all ferroelectric materials must be pyroelectric
and all pyroelectric materials must be piezoelectric. Today, the majority
of piezoelectric materials in practical use, with the important exception of
quartz, are ferroelectrics. The modern definition of ferroelectric polariza-
tion can be found in some recent texts [15], but for our purposes we can
limit ourselves to the simple approach given here.

Most ferroelectric materials undergo a structural phase transition from
a high-temperature nonferroelectric (or paraelectric) phase into a low-
temperature ferroelectric phase. Some ferroelectrics, like barium titanate,
BaTiO3, undergo several phase transitions into successive ferroelectric
phases. The transition into a ferroelectric phase usually leads to strong
anomalies in the dielectric, elastic, thermal and other properties of the ma-
terial [1,16,17], and is accompanied by changes in the dimensions of the
crystal unit cell. The associated strain is called the spontaneous strain, xS
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FIGURE 4.3 Illustration of the changes in a two-axial ferroelectric material as it
transforms from a paraelectric cubic into a ferroelectric tetragonal state.

It represents the relative difference in the dimensions of the ferroelectric
and paraelectric unit cells. Some changes that can occur in a ferroelectric
material that transforms from a paraelectric cubic into a ferroelectric tetrag-
onal phase are illustrated in Fig. 4.3. Readers interested in the theoretical
treatment of ferroelectricity and related phenomena should consult one of
the many textbooks on the subject [1,14,16,17].

4.2.4 FERROELECTRIC DOMAINS

To introduce ferroelectric domains, and avoid a too general discussion, we
take as an example lead titanate, PbTiO3. Lead titanate is a perovskite crys-
tal that transforms from a nonferroelectric cubic to a ferroelectric tetragonal
phase at 490◦C. Perovskite crystals have a general formula ABO3 where
valence of A cations takes values from +1 to +3 and of B cations from +3
to +6. As shown in Fig. 4.4, the structure may be viewed as consisting of
BO6 octahedra surrounded by Acations. Most of the ferroelectric materials
that are of practical interest have a perovskite structure and many, such as
lead zirconate titanate, Pb(Zr,Ti)O3, are solid solutions of PbTiO3. The
spontaneous polarization in PbTiO3 lies along the cT-axis of the tetragonal
unit cell and the crystal distortion is usually described in terms of the shifts
of O and Ti ions relative to Pb [18]. In the ferroelectric phase, the crystal
is spontaneously strained with aT(= 0.390 nm) < aC < cT(= 0.415 nm)
where aT and aC are the a-axes of the tetragonal and cubic unit cells, and
cT is the c-axis of the tetragonal cell.

The spontaneous polarization in a ferroelectric crystal (or a grain in
a ferroelectric film or ceramic) is usually not uniformly aligned through-
out the material along the same direction. The six directions (including
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FIGURE 4.4 Perovskite crystal in its paraelectric cubic (left), ferroelectric tetrago-
nal (middle), and rhombohedral (right) states. PbTiO3, which is cubic in the para-
electric phase and tetragonal in the ferroelectric phase, can adopt rhombohedral
structure when modified by about 50 per cent Zr.

positive and negative orientations) along the three aC-axes of the cubic cell
in PbTiO3 are equivalent, and spontaneous polarization may arise with
equal probability along any of them when the crystal is cooled through
the ferroelectric phase-transition temperature. Directions along which the
polarization will develop depend on the electrical and mechanical bound-
ary conditions imposed on the sample, as discussed below. The regions
of the crystal with uniformly oriented spontaneous polarization are called
ferroelectric domains. The region between two domains is called a domain
wall. The walls that separate domains with oppositely oriented polariza-
tion are called 180◦ walls and those that separate regions with mutually
perpendicular polarization are called 90◦ walls (Fig. 4.5). Because cT- and
aT-axes in a tetragonal crystal are different, the angle between polarization
directions on each side of a 90◦ domain wall is slightly smaller than 90◦
[19]. In the domain-wall region, the polarization changes from one do-
main to another continuously but steeply [19]. The ferroelectric domain
walls are therefore much narrower than the domain walls in ferromagnetic
materials. Observations with transition electron microscopy show that the
width of the domain walls in ferroelectric materials is of the order of 1--10
nm [1,19,20], that is, as little as 2--3 crystal unit cells. The width of the
domains increases with increasing temperature, as the phase transition is
approached [21].

The ferroelectric domains form to minimize the electrostatic energy
of the depolarizing fields and the elastic energy associated with the me-
chanical constraints to which the ferroelectric material is subjected as it
is cooled through the paraelectric--ferroelectric phase transition [1,22,23].
Onset of spontaneous polarization at the transition temperature leads to
the formation of surface charges. This surface charge produces an elec-
tric field, called the depolarizing field Ed, which is oriented oppositely to
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FIGURE 4.5 Illustration of the formation of 180◦ and 90◦ ferroelectric domain
walls in a tetragonal perovskite ferroelectric. Tetragonal distortion is exaggerated.
Effects of the depolarizing field, Ed, and the stresses, � are minimized by the
creation of domain walls.

PS (Fig. 4.5). The depolarizing field will form whenever there is a non-
homogeneous distribution of the spontaneous polarization, for example,
due to the fall-off of the polarization near the surface of the ferroelectric
(polarization is zero outside the ferroelectric and nonzero inside) or due
to a change in the direction of the polarization at grain boundaries. The
depolarizing field may be very strong (of the order of MV/m) render-
ing the single-domain state of the ferroelectric energetically unfavorable
[1,22]. The electrostatic energy associated with the depolarizing field may
be minimized if: (i) the ferroelectric splits into domains with oppositely
oriented polarization, Fig. 4.5, or (ii) the depolarizing charge is compen-
sated by electrical conduction through the crystal or by charges from the
surrounding material (for example, from atmosphere or the electric circuit
to which the material is connected). The depolarizing field often cannot
be completely compensated, and as grown ferroelectric crystals often ex-
hibit reduced or even zero pyroelectric and piezoelectric effects due to the
presence of ferroelectric domains.

Splitting of a ferroelectric crystal into domains may also occur due to
the influence of mechanical stresses, as shown in Fig. 4.5 [23,24]. Assume
that a part of the PbTiO3 crystal is mechanically compressed along the [100]
cubic direction as it is cooled through the phase-transition temperature. To
minimize the elastic energy, the long cT-axis of the tetragonal cell will de-
velop perpendicularly to the stress. In the unstressed part of the crystal,
the polarization may remain parallel to the direction of the stress (short
aT-axis perpendicular to the stress). The domain walls in PbTiO3 may



348 CHAPTER 4 Hysteresis in Piezoelectric and Ferroelectric Materials

therefore separate regions in which polarization orientation is antiparal-
lel (180◦ walls) or perpendicular (90◦ walls) to each other. Both 90◦ and
180◦ walls may reduce the effects of depolarizing electric fields but only
formation of 90◦ walls may minimize the elastic energy. A combination of
electrical and elastic boundary conditions to which a crystal is subjected as
it is cooled through the ferroelectric phase-transition temperature usually
leads to a complex domain structure with many 90◦ and 180◦ walls. Since
domain walls themselves carry energy, the resulting domain-wall configu-
ration will be such that the sum of the domain-wall energy, crystal surface
energy, and elastic and electric fields energy is minimal [1,23].

The domain walls that differ in orientation from the spontaneous po-
larization vector are called ferroelectric domain walls and those that differ
in orientation from the spontaneous strain tensor are called ferroelastic
domain walls. In PbTiO3, the 180◦ walls are purely ferroelectric because
they differ only in orientation of the polarization vector. The 90◦ walls are
both ferroelectric and ferroelastic, as their differ in orientation of both the
polarization vector and the spontaneous strain tensor [24].

The types of domain walls that can occur in a ferroelectric crystal de-
pend on the symmetry of both nonferroelectric and ferroelectric phases
of the crystal [25]. In the rhombohedral phase of the lead zirconate ti-
tanate, Pb(Zr,Ti)O3, Fig. 4.4, and BaTiO3, for example, the direction of
the polarization develops along the body diagonals (direction 〈111〉) of the
paraelectric cubic unit cell. This gives eight possible directions of the spon-
taneous polarization with 180◦, 71◦ and 109◦ domain walls. Criteria that
may be used to derive possible types of domain walls in a ferroelectric
material were derived by Fousek and Janovec [25].

4.2.5 FERROELECTRIC HYSTERESIS AND POLING OF FERROELECTRICS

Owing to the complex set of elastic and electric boundary conditions at
each grain, the ferroelectric grains in polycrystalline materials are always
split into many domains. If the direction of the spontaneous polarization
through the material is random or distributed in a such way as to lead to
zero net macroscopic polarization, the piezoelectric effects of individual
domains will cancel out and such materials will not exhibit piezoelectric
effect, which requires at least noncentrosymmetric symmetry of the mate-
rial [11]. Polycrystalline ferroelectric materials (ceramics) may be brought
into a polar state by applying a strong electric field (10--100 kV/cm), usu-
ally at elevated temperatures. This process, called poling, can reorient
domains within individual grains along those directions that are permis-
sible by the crystal symmetry and that lie as close as possible to the direc-
tion of the field. A poled polycrystalline ferroelectric exhibits piezoelectric
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properties, even if many domain walls are still present. As-grown fer-
roelectric single crystals usually contain many domains and may exhibit
weak piezoelectric properties. A single crystal that does not contain do-
mains is said to be in a single-domain or monodomain state. The single-
domain state in single crystals may be achieved by poling.

Note again that, by definition, the poling, i.e. polarization reversal
by a field, is possible only in ferroelectric materials. A piezoelectric non-
ferroelectric polycrystalline material (e.g. quartz) with randomly oriented
grains cannot be poled and exhibits macroscopic piezoelectric properties.

After the removal of the poling field (at zero field) a ferroelectric ma-
terial possesses macroscopic polarization, called remanent polarization,
PR. The maximum remanent polarization that may be achieved in a poly-
crystalline material depends on many factors, including available domain
states, electromechanical boundary conditions at grain boundaries and
sample surface, and imperfections such as elastic and charged defects in
the material.

A defining, and the most important, characteristic of ferroelectric ma-
terials is polarization reversal (or switching) by an electric field. We have
seen that the natural state of a ferroelectric material is a multidomain state.
Application of an electric field will reduce (in ceramics) or completely re-
move (in crystals) domain walls. One consequence of the domain-wall
switching in ferroelectric materials is the occurrence of the ferroelectric
hysteresis loop, Fig. 4.6. At small values of the alternating electric field,
the polarization increases linearly with the field amplitude, according to
relation (4.1). This corresponds to segment AB in Fig. 4.6. In this region,
the field is not strong enough to switch domains with unfavorable direc-
tion of polarization. As the field is increased, the polarization of domains
with unfavorable direction of polarization will start to switch along direc-
tions that are crystallographically as close as possible to the direction of the
field, rapidly increasing the measured charge density (segment BC). The
polarization response in this region is strongly nonlinear and Eqn. (4.1)
is no longer valid. Once all the domains are aligned (point C) the ferro-
electric again behaves as a linear dielectric (segment CD). When the field
strength starts to decrease, some domains will back-switch, but at zero
field the polarization is nonzero (point PR). To reach the zero polarization
state, the field must be reversed (point F). A further increase of the field
in the negative direction will cause a new alignment of dipoles and satu-
ration (point G). The field strength is then reduced to zero and reversed
to complete the cycle. As already mentioned above, the value of polariza-
tion at zero field is called the remnant polarization, PR. Typical values are
0.001 to 1 C/m2 [1]. The field necessary to bring the polarization to zero
is called the coercive field, EC. In most widely used ferroelectric ceramics
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FIGURE 4.6 Ferroelectric (P--E) hysteresis loop. The hexagons with gray and
white regions represent schematically repartition of two polarization states in the
material (e.g. in grains of a ceramic) at different fields. The symbols are explained
in the text. The loop shown is measured on a (111)-oriented 1.3 �m thick sol-gel
Pb(Zr0.45Ti0.55)O3 film. (Courtesy of David V. Taylor).

and crystals its value is of the order of 0.1--10 MV/m. In single crystals,
the spontaneous polarization PS may be estimated by taking the intercept
of the polarization axis with the extrapolated linear segment CD. It should
be mentioned that the coercive field, EC, that is determined from the inter-
cept of the hysteresis loop with the field axis is not an absolute threshold
field [22]; if a low electric field is applied over a (very) long time period
the polarization will eventually switch. Note that in an experiment only
changes of the polarization, such as �P = 2|PR| induced by electric field,
or the temperature derivative of polarization, �P/�T, can be measured, but
not the absolute value of polarization.

An ideal hysteresis loop is symmetrical, so the positive and negative
coercive fields and positive and negative remanent polarizations are equal.
The coercive field, spontaneous and remanent polarization, and shape of
the loop may be affected by many factors including the thickness of the
sample, presence of charged defects, mechanical stresses, preparation con-
ditions, and thermal treatment. Their effects on the hysteresis loop will be
discussed in Section 4.5.

The hysteresis shown in Fig. 4.6 is obtained under switching condi-
tions. Under ideal conditions and in a single-crystal material, the whole
domain-wall structure is wiped out by the field at point D and new
domains with orientation opposite to those of PR start nucleating at the
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FIGURE 4.7 Strain--electric field (x--E) hysteresis loop (butterfly loop) in ferro-
electrics: (a) idealized loop in a crystal in which polarization reverses only by 180◦,
and (b) the polarization and strain loops measured on a (111)-oriented, 322 nm
thick, sol-gel Pb(Zr0.53Ti0.47)O3 thin film (Courtesy of David V. Taylor).

sample surface once the field reverses direction. The mechanisms of do-
main nucleation and propagation depend on many factors. For example,
different mechanisms are observed in the same composition of PZT in bulk
and thin-film form (Section 4.5) [26].

In addition to the polarization--electric field hysteresis loop, the po-
larization switching by electric field in ferroelectric materials leads to the
strain--electric field hysteresis, as shown in Fig. 4.7. The strain--electric
field hysteresis loop, which resembles the shape of a butterfly and is called
the butterfly loop, is due to three types of effects. One is the normal con-
verse piezoelectric effect of the lattice, and the other two are due to switch-
ing and movement of domain walls. Let us consider as an example a
monodomain single crystal and assume that polarization can be instanta-
neously switched by 180◦ reversal only. To illustrate how the strain in the
crystal changes during the field cycling we can use the following simple,
but instructive, description [27].

At zero field (point A in Fig. 4.7(a)), the strain of the crystal is taken
to be zero. The electric field is then applied in the direction of the sponta-
neous polarization. As the field is increased, the crystal expands through
piezoelectric effect, according to Eqn. (4.5) and the strain traces line ABC.
The expansion continues until the maximum field is reached (point C). At
point C the field starts to decrease, but is still parallel to PS. The strain of
the sample traces the same line but in the opposite direction (from C to A).
At point A the strain is again zero. The field then changes its direction,
becoming antiparallel to PS. As the field strength increases in the nega-
tive direction, the crystal contracts with respect to point A, according to
Eqn. (4.5). At point D the field is large enough to switch the direction
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of polarization. After switching, the polarization becomes parallel to the
field, and the strain again becomes positive (point E). During a further in-
crease of the field in the negative direction, strain increases to point F, and
then decreases back to point A as the field is decreased in accordance with
Eqn. (4.5). The reversal of the polarization and sudden change of the strain
happens again at point G. Ideally, the strain--field curve is linear, indicating
that the strain is purely piezoelectric except at the switching points D and
G.

In reality, the strain--field relationship is more complicated, as shown
in Fig. 4.7(b) for a PZT thin film. Samples usually contain a number of
non-180◦ domains. The movement and switching of non-180◦ walls may
involve a significant change in dimensions of the sample, in addition to
the pure piezoelectric response of the material within each domain. The
switching of a- and c-axes of a tetragonal unit is, for example, accompanied
by a strain of approximately one per cent in BaTiO3 (a =∼ 3.994Å, c =∼
4.034Å at 20◦C, [28]) and six per cent in PbTiO3 (a = 3.902Å, c = 4.156Å
at room temperature [18]). Clearly, there is no question of achieving such
large strains in a ferroelectric material because only some parts of the sam-
ple contain non-180◦ walls, their orientation may be unfavorable and some
of these walls will never switch under realizable experimental conditions.
The contribution to the strain from the switching and movement of non-
180◦ domain walls may, however, be comparable to the piezoelectrically
induced strain. This has recently been shown experimentally by compar-
ing total electric-field-induced strain and strain due to 90◦ domain-wall
switching in a Pb(Zr,Ti)O3-based ceramic [29]. The jump from one polar-
ization orientation to another in real materials is less sudden than schemat-
ically shown in Fig. 4.7(a) because the coercive field may vary for different
domains. During the field cycling, a residual (or remanent) strain may be
observed at zero field if domains on average do not switch to their origi-
nal positions at zero field [30,31]. The nonhysteretic, linear portion of the
strain--field relationship may not even be observed in many experiments
because the single-domain state may not be reached until very high fields.
On the other hand, the contribution to the strain from the displacement
of domain walls is strongly nonlinear and hysteretic, and it is this part
of the strain--electric field relationship that is most often experimentally
observed.

There is a tendency in the recent literature on thin ferroelectric films to
refer to the relationship between the piezoelectric coefficient and the electric
bias field as ‘piezoelectric hysteresis’. In analogy to magnetic, ferroelec-
tric and elastic hystereses, the term ‘piezoelectric hysteresis’ in this text is
reserved for the strain--electric field and charge density--pressure relation-
ships.
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FIGURE 4.8 Switching and nonswitching ferroelectric hystereses. (Courtesy
David V. Taylor).

4.2.6 CONTRIBUTION OF DOMAIN-WALL DISPLACEMENT TO THE
ELECTROMECHANICAL PROPERTIES

In this work we shall mostly discuss the piezoelectric and dielectric hys-
tereses under nonswitching conditions. Experimentally, this means that
the maximum applied field is lower (Fig. 4.8) than the coercive field EC
that would be measured under the same experimental conditions (e.g. the
same temperature, frequency, number of cycles and waveform). In other
words, it is assumed that during a ‘nonswitching’ experiment, the domain
structure on average remains the same, while domain walls may move on
a small scale by bending, jumps and local switching. We thus make an im-
plicit assumption that domain-wall displacement is the main source of the
dielectric, elastic and piezoelectric hystereses. As we shall see later, this
is a reasonable assumption in most cases encountered in practice, how-
ever, examples will be given where other mechanisms control hysteresis
in electromechanical properties.

Contribution of domain-wall displacement to the properties of ferro-
electric materials is a very complex problem [17]. Understanding the mech-
anisms of domain-wall nucleation and displacement during the switching
process is relatively advanced [26,32–34]. It is, however, questionable
whether the description of domain-wall displacement under switching
conditions can be straightforwardly extrapolated to the subswitching case
where the driving field is weaker, domain-wall structure does not change
(at least not ‘on average’), and the nucleation process is probably absent.

There is very little direct evidence on how weak-to-moderate (sub-
switching) field displacement of domain walls contributes to the electrical,
elastic, and piezoelectric properties. Yang et al. [35] have observed pinning
and bowing of a single 180◦ domain wall in LiTaO3 single crystals using a
polarization-sensitive collection mode near-field-scanning optical micro-
scope, Fig. 4.9. In most of the older literature, a domain wall is usually
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FIGURE 4.9 Schematic presentation of bowing of a pinned domain wall as pro-
posed by Yang et al. [35]. The dots represent pinning centers and arcs the bowed
portion of the domain wall.

FIGURE 4.10 (a) Kinks in a 90◦ domain wall in lead titanate observed by
high-resolution transmission electron microscopy (courtesy P. Stadelmann), and
(b) schematic representation of the possible motion of the domain wall under an
external field. The black dots represent pinning defects.

assumed to move as a membrane subjected to a restoring force through
a viscous medium [36–40]. Other modes of domain-wall movement may
be envisioned. It is known that under large, switching fields, domain-
wall jumps (Barkhausen jumps) take place [1]. It is not unreasonable to
assume that parts of domain walls move in the form of local Barkahausen
jumps even under macroscopic nonswitching conditions, as suggested in
Fig. 4.10. One recent result discusses direct observation of such domain-
wall dynamics in (BaSr)TiO3 thin films, using atomic force microscopy [41].
Calculations [42] and indirect experiments [43] show that the domain-wall
contributions may account for as much as 50 per cent of the total observed
dielectric or piezoelectric effect.

Displacement of ferroelastic--ferroelectric walls (such as 90◦ walls) can
contribute to dielectric, piezoelectric and elastic effects. Movement of 180◦
walls contributes directly to the polarization. In the case of 180◦ wall dis-
placement, the induced strain changes with twice the frequency of the
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applied electric field [44], so that this movement does not contribute di-
rectly to the piezoelectric effect (according to the linear equation (4.5) strain
and field should change with the same frequency). The contribution of dif-
ferent types of domain walls to the electromechanical properties has been
reported by several authors (see, for example, [45,46]).

Identification of microscopic hysteretic mechanisms in ceramics is dif-
ficult (see Section 4.3.3 on lead titanate), while in single crystals an easy
test can distinguish whether hysteresis has its origin in domain-wall dis-
placement or in another process. The properties are measured in a crystal
that is partially poled, i.e. it contains some domain walls. Then, the crystal
is completely poled to remove domain walls and properties are measured
again. In most cases the difference in the response between the poled and
unpoled crystal can be safely attributed to domain-wall-related mecha-
nisms [47].

One approach toward understanding various contributions to elec-
tromechanical hystersis is to investigate processes that lead to hysteresis
reduction. For this reason, different methods to control electromechanical
hysteresis in ferroelectric materials are discussed in some detail in Section
4.4.4.

4.3 PIEZOELECTRIC HYSTERESIS IN LINEAR
SYSTEMS

It was stated in the Introduction that we shall start our discussion on piezo-
electric hysteresis by first considering different processes that lead to the
phase angle (phase ‘lag’) between corresponding mechanical and electric
variables. For reasons that will become clear later, we shall prefer the term
‘phase angle’ rather than ‘phase lag’. It should be noted that in a linear
system driven by a periodic signal with constant amplitude (typical exper-
imental situation, although not typical situation in practice), knowledge
of the phase angle and of the response amplitude gives complete informa-
tion on the hysteresis. This is equivalent to expressing relevant material
coefficients in complex form. The case of nonlinear systems is much more
complicated and the phase angle and amplitude of the fundamental and
all higher harmonics is necessary for a full description of the response (see
Section 4.4). Thus, a measurement of the hysteresis loop always contains at
least as much or more information than just the knowledge of the response
magnitude and the phase angle. Unfortunately, in most of the first studies
of piezoelectric relaxation, especially those in polymer materials [48], only
information on complex material coefficients is given, i.e. the response is
treated as linear with a phase angle.
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Historically, investigations of piezoelectric hysteresis began by theo-
retical models followed by experimental studies of the relaxation and of
the piezoelectric phase angle. For a historical review, the reader may con-
sult [49,50]. In these early publications the hysteresis itself is rarely, if ever,
mentioned. With few exceptions [51–53], the first experimental studies
were focused on the piezoelectric relaxation in polymers (for a review see
[48]). In solid ferroelectrics, the piezoelectric phase angle and hysteresis
have in the past been studied mostly in the context of device control, where
mechanisms of the hysteresis have not been of primary concern [4,5,54].
Only relatively recently have the first studies of the piezoelectric hysteresis
in solid ferroelectrics and the first attempts to develop a physical descrip-
tion of its microscopic mechanisms appeared [43,55–60].

One of the first derivations of the frequency dependence of piezo-
electric coefficients was proposed by Meixner and Reik [61] in the frame-
work of irreversible theromodynamics, followed by Nowick and Heller
[62] and subsequently by other authors in the field of solid-state ferro-
electrics [49,58,63,64] and polymers [48,65–67]. Treatment of nonlinear
piezoelectric hysteresis is more recent [55,57,59,60] and is still insufficiently
developed.

In the rest of this section we shall discuss several models and exper-
imental results of studies of linear piezoelectric hysteresis. Piezoelectric
and dielectric hysteresis in nonlinear materials will be discussed in Section
4.4 and ferroelectric hysteresis is the subject of Section 4.5.

4.3.1 DEBYE-TYPE PIEZOELECTRIC RELAXATION. BISTABLE MODEL
OF PIEZOELECTRIC RELAXATION

The bistable model for piezoelectric relaxation has been proposed in vari-
ous forms by several authors, including Nowick and Heller [62], Arlt [49]
and Smits [64]. A piezoelectric material is assumed to have defects or
species (generalized defects) that are both elastic [62] and electric dipoles.
Examples of such defects are 90◦ domain walls and ionic substitution--ionic
vacancy dipoles, as shown in Fig. 4.11.

An often discussed dipole example is the Fe−1
Ti − V+2

O pair, where a
double-charged oxygen vacancy would be shared by two single-charged
acceptor cations, see Section 4.5.2. Double-charged acceptor substitution
is another possibility. Exact charges of defects are often unknown, partic-
ularly in the case of transition metal oxides that can adopt several valence
states. Without an external field, these simultaneously elastic and dielectric
dipoles are randomly distributed along equivalent crystallographic direc-
tions, giving zero net strain and polarization. In ceramics, due to random
orientation of the grains, dipoles are distributed randomly in the space
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FIGURE 4.11 Schematic representation of elastic and electric dipoles. On the
left, generalized elastic dipoles are represented by ellipses and electric dipoles
by arrows. (a) Defect dipoles, such as an acceptor-oxygen vacancy pair, and (b)
non-180◦ domain walls. Arrows show external electric and stress fields, which
reorient generalized dipoles.

while their orientation within a single domain is dictated by the crystallo-
graphic constraints [62].

We next show how a simple bistable model can lead, through the piezo-
electric coupling of elastic and dielectric effects, to relaxation and hysteresis
in the piezoelectric properties. The derivation given below closely follows
the standard procedure for this type of problem [49,64]. In the presence of
an external electric field E, the electric energyWe of the electric dipole � is:

We = −�E, (4.8)

and in the presence of an elastic stress �, the energy of an elastic dipole �
is defined as:

Wm = −��. (4.9)

If the number of equally oriented dipoles per unit volume is n, then
the electric and elastic energy densities are, respectively:

we = −n�E, (4.10)

wm = −n��. (4.11)
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FIGURE 4.12 Bistable potential with and without external elastic, �, and electric,
E, fields. W0 is the height of the barrier andWem the energy change due to the field
application.

The total polarization P and strain x per unit volume due to the defect
contribution are:

P = n�, (4.12)

x = n�. (4.13)

It is understood that relationships (4.8)--(4.13) are, in general, tensor equa-
tions.

To simplify the discussion further, it is assumed that defects are one-
dimensional and at the same time electric and elastic dipoles. This is a
contradiction which, however, does not violate the general character of
the results and which disappears in a three-dimensional model [49,62,64].
Defects now have only two possible ‘orientations’, described by the two
potential wells in Fig. 4.12. If elastic and electric external fields are zero,
both wells are at the same energy level and are occupied by n/2 defects per
unit volume. If external electric field E and elastic field � are now applied,
one well is lowered in energy by the amount Wem = |�E + ��| and the
other increased by the same amount (Fig. 4.12).

The number of jumps of defects from well 1 to well 2 per unit time is
given by thermodynamic statistics [64,68] as:

	12 = A exp[−(W0 + (�E+ ��))/kT], (4.14)

where W0 is the height of the potential barrier and A is a constant. In the
weak-field limit |�E+ ��| << kT and Eqn. (4.14) becomes:

	12 = 	[1 − (�E+ ��)/kT], (4.15)

where 	 = A exp[−W0/kT] is the number of jumps per unit time in the
absence of fieldsE and �. W0 is called the activation energy. The frequency
of jumps from well 2 to well 1 is given by 	21 = 	[1 + (�E + ��)/kT].
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At equilibrium, n1	12 = n2	21 = (n − n1)	21, where n1 and n2 are the
equilibrium populations of wells 1 and 2, respectively. Since the total
concentration of defects is n = n1 + n2, it follows that:

n1 − n2 = (n1 + n2)[(�E+ ��)/kT]. (4.16)

According to Eqns. (4.12)--(4.13), the contributions of the defects to the
equilibrium polarization and strain are:

�P = (n1 − n2)�,

�x = (n1 − n2)�,
(4.17)

which gives, using Eqn. (4.16):

�P = n�2

kT
E+ n��

kT
�,

�x = n��
kT
E+ n�2

kT
�.

(4.18)

In the absence of equilibrium, the number of particles entering wells 1 and
2 can be written as:

dn1

dt
= −dn2

dt
= n2	21 − n1	12. (4.19)

Together with Eqn. (4.15) and corresponding expression for 	21 one obtains:

(
dn1

dt
− dn2

dt

)
� = 2(n2	21 − n1	12)� = 2	[(n2 − n1)� + n(�2E+ ���)/kT],

(4.20)
and, together with Eqn. (4.17):

d�P(t)
dt

= −1


�P(t)+ Peq, (4.21)

where Peq = n(�2E+ ���)/kT and 
 = 1/(2	). Expression (4.21) indicates
that the rate of change of polarization (or strain, if the equivalent expres-
sion for strain is used) is proportional to the distance from the equilibrium;
incidentally, this represents the simplest way in which time-dependent
material response R(t) (e.g. polarization or strain) may approach the
equilibrium value Req [68]. A similar equation can be derived for �x(t),
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finally giving:

�P(t)+ 

d�P
dt

= n�2

kT
E+ n��

kT
�,

�x(t)+ 

d�x
dt

= n��
kT
E+ n�2

kT
�.

(4.22)

For periodic fields E = E0ei�t and � = �0ei�t, d(�P)/dt = i��P and
d(�x)/dt = i��x. Now, if constitutive equations (4.6) and (4.7) are added
to Eqns. (4.22), using superscript ∞ for the parameters of the perfect ma-
terial (or for � → ∞), the following result is obtained:

D = D∞ + �P =
[
�∞ + n�2

kT(1 + i�
)

]
E+

[
d∞ + n��

kT(1 + i�
)

]
�,

x = x∞ + �x =
[
d∞ + n��

kT(1 + i�
)

]
E+

[
s∞ + n�2

kT(1 + i�
)

]
�.

(4.23)
The total complex piezoelectric coefficient d can then be written as:

d = d∞ + �d
1 + i�


, (4.24)

where �d = n��/kT. After separation of the real and imaginary compo-
nents and defining d0 − d∞ = �d where d0 is the value of d at � = 0, one
obtains:

d = d∞ + d0 − d∞

1 + �2
2 − i
(d0 − d∞)�


1 + �2
2 . (4.25)

Equation (4.25) has the same form, Fig. 4.13, as the well-known Debye
equation. Note that the maximum in d′′ occurs at �
 = 1. Frequency
�m at which d′′ is maximum is called relaxation frequency and 
 = 1/�m
is known as relaxation time. Clearly, s and � coefficients will, according
to Eqns. (4.23), behave in the same way as the piezoelectric coefficient,
except that �s = n�2/kT and �� = n�2/kT. It is also plausible to expect
that piezoelectric relaxation is subjected to the same types of deviation from
the ideal Debye-type relaxation as the elastic and dielectric properties ([69],
and Section 4.3.3).

Equations (4.23) indicate that a material that contains defects that are
simultaneously elastic and electric dipoles (such as ferroelastic domain
walls), and which experiences the simple relaxation in elastic and dielectric
properties, will exhibit the same type of relaxational behavior in its piezo-
electric properties. This is a general result obtained by several authors
and is observed under different experimental conditions: a process that in
a piezoelectric material contributes to both elastic and dielectric response
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FIGURE 4.13 Some of the possible frequency dependences of the piezoelectric
coefficients described by Eqn. (4.25). Numerical values of parameters in Eqn.
(4.25) are chosen arbitrarily to illustrate different possibilities. The dots indicate
frequencies at which the hystereses were taken. See also [65].

will contribute to the piezoelectric properties as well [40,47–49,64,70]. Ex-
perimentally, this is manifested by similar frequency or temperature de-
pendences of the complex elastic, dielectric and piezoelectric coefficients
[40,48,66,71], Fig. 4.14. However, the implication contained in the above
derivation that a material must contain defects that are both elastic and elec-
tric dipoles in order to exhibit piezoelectric relaxation should be taken with
care. As will be shown in Section 4.3.4 for the case of heterogeneous (com-
posite) piezoelectrics, each component of a heterostructure may exhibit, for
example, the dielectric relaxation only while the whole composite exhibits
both the elastic and piezoelectric relaxations. The elastic and piezoelectric
relaxations of the composite are then just a consequence of the piezoelec-
tric coupling, whereas the physical origin of the loss is purely dielectric
[58,72].

Relations (4.23) are derived by using constitutive equations (4.6)--(4.7)
where dependent variables x and D are extensive variables. Experimen-
tally, this choice is often the most convenient one. Other combinations
of independent and dependent variables (Eqns. (B12)--(B17)) lead to the
same type of equations as expressions (4.23) for the g, h and e coefficients
[49,64,73]. It is interesting that in the same material some of the piezoelec-
tric coefficients may be real while the others are complex (see [48,64,66,73]
and Section 4.4.4).

Equations (4.23) and (4.25) give the first indication of unusual behavior
of piezoelectric relaxation: the frequency-dependent parts of the elastic and
dielectric terms are always positive definite (they contain terms �� ∝ �2
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FIGURE 4.14 Similar temperature dependence of the complex piezoelectric, di-
electric and elastic coefficients in a (Pb, Sm)TiO3 ceramic, measured by the reso-
nance technique. For details see [71].

and �s ∝ �2), whereas the piezoelectric term contains term �d ∝ ��, which,
being a product of components of the electric and elastic dipole tensors,
can, in principle, be either positive or negative. In addition, �d does not
have to have the same sign as the corresponding d∞ coefficient [62–65].
Such a case has been observed experimentally in AgNa(NO2)2, see Section
4.3.3.2. For a more general and rigourous thermodynamic treatment of
these issues the reader may consult [62,74]. Note that moduli � = 1/�
and c = 1/s, which correspond to compliances � and s, will naturally have
�� < 0 and �c < 0.

Figure 4.13 summarizes selected frequency dependences and hystere-
ses that can result from Eqn. (4.25). In agreement with the requirement that
the power loss must be positive [75], the dielectric and elastic hystereses,
relating conjugate work variablesD and E, and x and � (for positive com-
pliances), always rotate in the counterclockwise sense. This is not the case
for the piezoelectric hysteresis, Fig. 4.13, which for the same coefficient can
be either counterclockwise or clockwise. This does not violate the second
law of thermodynamics since neither (x, E)nor (D,�)are pairs of conjugate
work variables. In other words, while in elastic (x versus �) and dielec-
tric (D versus E) hystereses the products x� and ED have units of energy
density, products xE and �D of the corresponding piezoelectric hystereses
do not have energy-density units. In this sense, it is instructive to follow
arguments of Holland [70] presented in the next section to see how piezo-
electric coupling affects total power dissipation in a piezoelectric material.
Experimental evidence of clockwise piezoelectric hysteresis will then be
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presented in subsequent sections. Note also that the bistable model has
been considered so far in the limit of the weak field. Once the field becomes
comparable or higher than kT, there will be another, rate-independent and
nonlinear contribution to hysteresis. Those effects will be discussed in
Section 4.4.

The bistable model is not the only model that leads to relaxation equa-
tions of the type (4.25). To describe the contribution of vibrating domain
walls to the piezoelectric, elastic and dielectric properties of tetragonal
ferroelectric ceramics, Arlt et al. [39,40], for example, have assumed that
moving domain walls are subjected to a restoring force and a frictional
(rate-dependent) force in addition to an external periodic force. The gov-
erning equation in that case is:



d�l
dt

+ �l = − 1
Ac

(
�WE

��l
+ �WM

��l

)
, (4.26)

where �l is the domain-wall displacement, A is the vibrating domain-
wall area, c is the restoring force constant, the relaxation time is 
 = b/2c,
and b is the friction constant. Energies of electric � and elastic � dipoles
(i.e. the elastic and electrical energy of 90◦ domain walls) are defined as
WE = −�iEi/2 and WM = −�ij�ij/2. For the particular case considered,
these authors obtained that the contribution of domain walls to the permit-
tivity, elastic compliance and piezoelectric coefficients can be expressed in
periodic electric and elastic fields as:

��33D = P2
SF(�, c, A)f�,

SE33D = x2
SF(�, c, A)fS,

d33D = xSPSF(�, c, A)fd,
(4.27)

where subscript D denotes domain-wall contribution, PS and xS are spon-
taneous polarization and strain, f are geometrical factors that describe ori-
entation of domain walls, and

F(�, c, A) = 1/[2c(1 + i�
)]. (4.28)

Equations (4.27) therefore have the same form as expression (4.24) obtained
from the bistable model. We shall see later in Sections 4.3.3 and 4.3.4 that
other mechanisms can lead to the same mathematical expressions for the
piezoelectric relaxation as Eqn. (4.25), even though the physical origins
of the relaxation are different. Thus, care is needed when attributing a
particular model to experimental data.
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4.3.2 COMPLEX PIEZOELECTRIC COEFFICIENTS AND ENERGY
DISSIPATION

It is known from the theory of dielectric and elastic materials that the
imaginary components of dielectric permittivity �, and elastic compliance
s, are directly related to the dissipation of electric and elastic energy in a
material. Holland [70] has shown that the expression for the total energy
dissipation in a piezoelectric material is modified by a term that is a function
of the imaginary components of the piezoelectric coefficients. His approach
is outlined below.

Holland uses a generalized Poynting vector S that, in a piezoelectric
material, has an additional elastic term:

S = 1
2
(E×H∗ − �u∗), (4.29)

where E and H are vectors of electric field and magnetic displacement, re-
spectively, � is the stress tensor, and u is the velocity vector of an elemental
volume of the material. An asterisk denotes the complex-conjugate tensor.
Therefore, the first term in Eqn. (4.29) represents as usual the electromag-
netic energy flux and the second term is the elastic energy flux. The density
of the power dissipation in the material is defined as:

Pd = −Re(divS) (4.30)

where Re denotes the real part of the expression. Using Maxwell equations
for a nonconductive medium, curlE = −i�B and curlH = i�D, where
B = �0H is the magnetic field vector, and Newton’s second law, div� =
−�2��, where � is the density of the material and � displacement vector
of the elemental volume under a periodic field [76], Eqn. (4.30) becomes:

Pd = �
2

Im(Eid∗
im�m + Ei�∗ijE∗

j + �ms
∗
mn�

∗
n + �md

∗
jmE

∗
j ), (4.31)

where electric displacement D and strain x = grad� are eliminated using
the constitutive relations (4.6) and (4.7).

The stress � and the field Emay be represented by a generalized force
(or field) vector Fp = [�m, Ei], where p = [m, i] = 1, 2, . . . , 9. Material
coefficients �, d and s then form a 9 x 9 matrix of complex coefficients
mpq = m′

pq − im′′
pq:

[mpq] =
[
smn dmi
djm �kl

]
. (4.32)
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Equation (4.31) can now be rewritten in the form:

Pd = �
2

Im(Fpm∗
pqF

∗
q ) = �

2
|Fp||Fq|(m′′

pq cos �pq +m′
pq sin �pq), (4.33)

where |Fp| =
√
(Re Fp)2 + (Im Fp)2 is the modulus of the force Fp and �pq

is the phase angle between Fp and Fq. Since sine is an odd function, terms
containing sin �pq and sin �qp cancel out. Hence,

Pd = �
2

|Fp||Fq|m′′
pq cos �pq. (4.34)

The power dissipation function Pd therefore consists of pure elastic terms
|�m||�n|s′′mn cos �mn, pure electric terms |Ei||Ej|�′′ij cos �ij, and coupled terms
|�m||Ei|d′′

mi cos �mi. Mechanical and electric energy losses are represented
by the imaginary components of the elastic compliance and dielectric per-
mittivity. Imaginary components of the piezoelectric coefficients are re-
sponsible for the mixed terms.

Power dissipation Pd in a passive material must always be greater
than or equal to zero. This limits the possible values of the imaginary
components m′′

pq. To find which conditions m′′
pq must satisfy in order that

Pd�0, Holland assumes that the components of the generalized field F
are all mutually independent [77]. These components can be then chosen
so that phase angle �pq = 0 or 
. Equation (4.34) then may be written
as Pd = �

2 FpFqm
′′
pq where Fp and Fq are real numbers. Since Fp are all

independent, Pd�0 only ifm′′ is a positive-definite matrix. This means that
all principal minor determinants ofm′′ must be greater than or equal to zero
[70,78]. For a 9 x 9 matrix there are 29 = 512 minor principal determinants.
For a matrix of mth order, nth order minor principal determinants are
obtained by crossing anym--n rows andm--n columns that are obtained by
reflecting crossed rows with respect to the main diagonal of the original
matrix. The positiveness of the first-order principal determinants gives
that all elements on the main diagonal of m′′ must be nonnegative:

m′′
pp�0. (4.35)

This is an expected result since the diagonal elements ofm′′ represent elas-
tic and dielectric losses. Inspection of all principal determinants shows
that there are no conditions on the sign of the imaginary components of
the piezoelectric coefficients, while there are conditions on their magni-
tude. Therefore, terms |�m||Ei|d′′

mi cos �mi in Eqn. (4.34) represent power
loss when d′′

mi cos �mi > 0 and partial reduction of the power loss when
d′′
mi cos �mi < 0. The latter case does not violate the law of conservation
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of energy as long as the total Pd�0. This is ensured if all minor principal
determinants of m′′ are nonnegative.

While there are no constraints on the sign of the imaginary components
of the piezoelectric coefficients, their absolute values are clearly limited.
For example, the conditionm′′

ppm
′′
qq�(m′′

pq)
2 must be satisfied to have Pd�0.

Thus, for example, in the case of the point group 6mm (poled ferroelectric
ceramics), the positive-definite value of m′′ requires that:

s′′11�
′′
33�(d′′

31)
2, s′′33�

′′
33�(d′′

33)
2, s′′44�

′′
11�(d′′

15)
2, (4.36)

where superscripts E and � are dropped out. According to Eqn. (4.36),
if a material has zero elastic or dielectric energy losses, the corresponding
imaginary components of the piezoelectric coefficients will be zero as well.
This agrees with the discussion in the previous sections where it was in-
dicated that a material must contain defects that relax under both elastic
and electric fields in order to show piezoelectric relaxation. We shall see
later that this condition has to be taken with care. In complex systems,
for example, if either elastic or dielectric dissipation alone is present, the
piezoelectric and dielectric or elastic dissipation will still, in general, be
nonzero due to electromechanical coupling.

The above very simplified approach has been discussed by other au-
thors. Lakes [50] has investigated energy losses in piezoelectric materi-
als at subresonant frequencies and found that relations among imaginary
components of the elastic compliance s, dielectric permittivity � and piezo-
electric coefficient d depend on the geometry of the piezoelectric solid.
In addition, Lakes showed that electric field and elastic stress cannot, in
general, be taken as independent and that the relation between them also
depends on the geometry of the piezoelectric material. Lakes’ findings
do not, however, make Holland’s results invalid; it is always possible to
apply upon a piezoelectric solid of the given geometry a set of electric and
elastic fields with such configurations that the phase angle between them
vanishes. The situation here is similar to that with electromechanical cou-
pling factors defined by Berlincourt et al. [79]. For simple geometries these
coupling factors depend only on properties of the material; for a more
complicated system of stresses and electric fields, coupling factors become
dependent on external variables. The most important result of Holland’s
analysis is that the power dissipation density Pd in piezoelectric materials
depends on the piezoelectric phase angle that may be either positive or
negative.

In the next sections we shall discuss some specific examples of piezo-
electric hysteresis and relaxation, and demonstrate experimental evidence
of clockwise hysteresis, and reduction of power loss due to piezoelectric
coupling.
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4.3.3 EXPERIMENTAL EXAMPLES OF DEBYE AND QUASI-DEBYE
PIEZOELECTRIC RELAXATION IN FERROELECTRIC CERAMICS
AND SINGLE CRYSTALS

In this section we discuss three examples of the Debye-like piezoelectric re-
laxation: two in ferroelectric ceramics with compositions Pb0.85Sm0.1Ti0.98
Mn0.02O3 (PSmT) and Pb0.76Ca0.24TiMnO3 + 0.3% wt MnO2 (PCaT), and
the third in AgNa(NO2)2 single crystals. PSmT and PCaT are interest-
ing because the large piezoelectric relaxation observed is quite unexpected
for lead-titanate-based materials. The simple structure and composition of
these materials suggest that the relaxation is probably of extrinsic origin, for
example, due to moving defects such as domain walls or charged defects.
Difficulties in identifying the origins of the piezoelectric relaxation will be
demonstrated using these compositions. The relaxation in AgNa(NO2)2
is much better understood and is associated with displacement of NO−

2
radicals, which from part of the crystal cell; it is thus of intrinsic character.
It is exactly in this intrinsic relaxation of AgNa(NO2)2 that some unusual
hystereses, such as horizontal hysteresis and clockwise hysteresis, can be
deduced from the experimental data.

Piezoelectric Relaxation in Modified Lead-Titanate
Ceramics

PbTiO3 is an interesting material for high-frequency transducers used in
acoustic emission, Doppler probes, and medical imaging. Pure lead-titanate
ceramics are difficult to manufacture as they tend to break on cooling from
the sintering temperature (> 1 000◦C) because of the high spontaneous
strain that develops at the phase-transition temperature (490◦C, see Sec-
tions 4.2.3 and 4.2.4). Doping with rare earths (e.g. Sm) or alkaline earths
(e.g. Ca) reduces the spontaneous strain of PbTiO3 and has the additional
beneficial effect of increasing the d33/d31 ratio [71,80]. The high piezoelec-
tric anisotropy is useful for reducing the coupling between the lateral and
thickness vibrational modes. The role of Mn is to decrease the conduc-
tivity and thus to improve the poling of the ceramics. The longitudinal
and transverse direct piezoelectric coefficients d33 and d31 in these compo-
sitions are nearly linear with the driving pressure, however, they exhibit a
strong Debye-like frequency dependence and hysteresis, as shown in Fig.
4.1(c) for the d33 in PSmT. The Cole--Cole (d′′ versus d′) plot, which for
an ideal Debye-process leads to a perfect semicircle with its center on the
d′ axis, reveals a high-frequency tail in these materials, Fig. 4.15, which
suggests a broad distribution of the relaxation times [69]. In that case, the
Debye equation (4.24) is replaced by an empirical equation with general
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FIGURE 4.15 (a) Frequency dependence of the complex direct longitudinal piezo-
electric coefficient d33 = d′ − id′′, and (b) its Cole--Cole plot in PSmT ceramics at
room temperature.

form:

d = d∞ + �d

[1 + (i�
)�]� (4.37)

where 0<��1 and 0<��1 are so-called stretching exponents. For � = � = 1
Eqn. (4.37) is identical to the Debye equation; for 0<��1, � = 1 it is known
as the Cole--Cole; for 0<��1, � = 1 as the Davidson--Cole; and for �,��1
as the Havriliak--Negami equation [81,82]. Plot d′′ versus d′ is called Cole-
-Cole plot. Without going into details of the theoretical treatment of re-
laxation phenomena, it should be mentioned that the fractional exponents
are obtained when diffusion processes that control relaxation occur in a
disordered medium. Such systems have recently been successfully treated
within the framework of the fractional Fokker--Planck equation [83,84].

The problem of the origin of the piezoelectric relaxation in ferroelectric
materials is nontrivial, and the modified lead titanates are a good example
to illustrate some of the difficulties encountered in the identification of the
mechanisms underlying the relaxation and the hysteresis. It will be seen
later that this task is even more complex when nonlinear processes are
included. In PSmT ceramics, the possible relaxing species include vibrating
domain walls, and reorientation of dipole pairs consisting of Sm+3 cations
on a Ti+4 site (donor) and lead vacancies, V−2

Pb , created to compensate
the donor charges. As shown in Section 4.3.1, both mechanisms could
lead to the same functional dependence of the piezoelectric coefficient on
frequency, even though the physical origins are different. One way to
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FIGURE 4.16 Relaxation of the complex direct longitudinal piezoelectric coeffi-
cient d33 = d′ − id′′ in PSmT ceramics at different temperatures. (Courtesy Jamasp
Jhabvala).

discriminate between the various possibilities is to look at values of the re-
laxation parameters, such as relaxation strength, �d, activation energy, and
relaxation time, and compare the theoretical predictions of the particular
model with the experimental values. A brief analysis of relaxation in mod-
ified lead-titanate ceramics is given below, with the intention to illustrate
the approach and difficulties for this particular case where physical origins
of the hysteresis and relaxation are still not clear. The reader interested in
sophisticated tools for the analysis of relaxation spectra can consult [85]
and references therein.

When d33 of PSmT is measured as a function of the temperature and
frequency, one obtains the behavior typical for a thermally activated pro-
cess, Fig. 4.16, where the peak in the imaginary component occurs at higher
frequencies as the temperature is increased [82]. Such behavior is the con-
sequence of the fact that the mean relaxation time follows the Arrhenius
law, 
 = 
0 exp(E/kT), as derived in Section 4.3.1. The activation energy
can then either be calculated by fitting the appropriate relaxation equation
with expression (4.37) or can be estimated by plotting for each temperature
the frequency �max = 1/
, at which the maximum of the d′′

33 occurs [85]. In
the case of PSmT, the activation energy is around 0.4 eV and 
0 ≈ 10−6 sec
(�inf ≈ 106 s−1), as shown in Fig. 4.17. The activation energy associated
with the relaxation in the dielectric permittivity has been measured or in-
vestigated theoretically in many perovskites and it ranges from 0.075 eV
for polaronic processes at low temperatures [86] via ∼ 1 eV for the most
common relaxation due to motion of oxygen vacancies to several eV for
displacement of A and B cations [87]. For ions jumps, the value of the
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FIGURE 4.17 Arrhenius behavior of the relaxation frequency maximum,
�max = �inf exp(−Ea/kT) in PSmT. (Courtesy Jamasp Jhabvala).

pre-exponential factor 
0 is of the order of phonon frequencies (1012 Hz),
much higher than that observed in PSmT [88]. On the other hand, recent
first-principle calculations predict that the energy barrier for displacement
of 90◦ domain walls is extremely small in pure and defect-free PbTiO3, of
the order of kT (0.02 eV) at room temperature [89]. It is probable that the
presence of imperfections associated with dopants and the grain bound-
aries may increase this barrier in ceramic PSmT with respect to the pure
single crystalline PbTiO3.

Perhaps the best argument that speaks in favor of the domain walls
as the relaxing species in PSmT is the piezoelectric behavior of PCaT. Fig-
ure 4.18 shows relaxation in two samples of PCaT from the two different
sources, one from the author’s own laboratory and the other from [90],
but with approximately the same Ca content. One sample shows relax-
ation comparable to that in PSmT, whereas the hysteresis and relaxation
are much weaker in the other sample. The nature and concentration of the
additives used to control the conductivity of the sample with the strong
relaxation are not known, but is probably below 1% wt. (Pb,Ca)TiO3 is
prepared assuming that Ca occupies only site A in the perovskite cell, but
it is possible that Ca spontaneously distributes itself between the A and B
sites [71]. If this is indeed the case, addition of Ca would create lead va-
cancies and holes/oxygen vacancies as the charge compensating defects.
Reorientation of these defects is then a possible source of the piezoelectric
relaxation. The arguments against the relaxation due to ionic displacement
and in favor of domain-wall displacement are the following. Since the two
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FIGURE 4.18 Relaxation and hysteresis in d33 of two PbCaT ceramics with the
same concentration of Ca. The dashed line is generated after [90]. The full line
describes unpublished data from the author’s laboratory. (Courtesy of Jamasp
Jhabvala).

samples have approximately the same concentration of the Ca-dopant, any
ionic relaxation should be somehow related to the presence of a small con-
centration of other cations or impurities. It is, however, difficult to see
how a small variation in the additive concentration (such as MnO2, [71])
could explain the strong difference in the behavior of the two samples, if
the relaxation is due to ionic motion of the Ca-created defects. Equally, it
is unlikely that the strong relaxation could be a consequence of the ionic or
electronic hopping associated with the presence of the low concentration
of Mn cations or impurities. On the other hand, even small concentrations
of dopants in perovskite ferroelectrics can be very effective in creating pin-
ning centers for the domain walls (see [28] and Section 4.5.2). Thus, in the
absence of more systematic and detailed experimental results, one can, us-
ing these hand-waving arguments, speculate that the relaxation in PSmT
and in one of the PCaT samples could be due to domain-wall displacement.
However, the nature of the domain-wall displacement in these materials
is qualitatively different from that in highly nonlinear soft PZT (compare
Figs 4.1(b) and 4.1(c)). Finally, it is significant that elastic relaxation in Ca
and Sm-modified PbTiO3 also exhibits activation energy of approximately
0.4 eV [91].

In PSmT, the � and � parameters from Eqn. (4.37) are in the range
from 0.6 to 0.9, indicating that the relaxation takes place in a somewhat
disordered medium. Examples of piezoelectric relaxation in strongly dis-
ordered material will be discussed in Section 4.4.2.
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Piezoelectric Relaxation in AgNa(NO2)2 Single Crystals

The piezoelectric relaxation in this material is of interest for two reasons.
Firstly, the relaxation occurs in monodomain single crystals so that dis-
placement of domain walls can be eliminated as a possible cause of the re-
laxation and hysteresis. Secondly, the Debye-type piezoelectric relaxation
observed in this material exhibits unusual characteristics. The real com-
ponent of the complex longitudinal piezoelectric coefficient d22 changes its
sign with temperature and frequency, Fig. 4.19. From the data presented
in Fig. 4.19, one can predict unusual hysteresis behavior. For example, at
−13◦C and 20 kHz, where d′

22 > 0, d′′
22 < 0, the hysteresis rotates clockwise.

When d′
22 = 0, d′′

22 < 0 the hysteresis is horizontal, i.e. its axes lie parallel
to the strain--electric field axes. The hystereses calculated from the data in
Fig. 4.19 are discussed and shown in Section 4.3.5 (Fig. 4.30).

The unusual behavior of AgNa(NO2)2 can be explained qualitatively
by deriving its dielectric, elastic and piezoelectric properties within the
framework of thermodynamic theory [92]. This crystal undergoes a
paraelectric--ferroelectric phase transition at 38◦C. In the ferroelectric phase
NO−

2 polar molecules are ordered, and thus contribute, in addition to the
ionic and electronic polarization, to the total polarization of the crystal.
While the relaxation of the ionic and electronic contributions takes place
at infrared and optical frequencies [1,93] the relaxation of NO−

2 radicals
occurs around 50 kHz. The origin of the unusual piezoelectric properties
of AgNa(NO2)2 is in competing effects of the three contributions to the
polarization. The ionic and electronic components are constant at low fre-
quencies, but change with temperature as the phase-transition temperature
is approached. The dipolar contribution changes with both temperature
and frequency. In alternating fields, the dynamic dielectric, elastic and
piezoelectric coefficients can be written, in the one-dimensional case, as:

�T,�(�) = �T,�∞ (�)+ p(�)2

A(T)

1
1 + i�
T,E

= �T,E∞ (�)+ �T0 − �T∞
1 + i�
T,E

, (4.38)

sT,E(�) = sT,E∞ (�)+ S2

A(T)

1
1 + i�
T,E

= sT,E∞ (�)+ sT0 − sT∞
1 + i�
T,E

, (4.39)

dT(�) = dT∞(�)+
p(�)S
A(T)

1
1 + i�
T,E

= dT∞(�)+
dT0 − dT∞

1 + i�
T,E
, (4.40)

where p(�) is a function of the radical dipole moment and coefficients of the
crystal free energy, A(T) is a function of the temperature, and S is another
function of the coefficients of the crystal free energy. Note that the pre-
dicted relaxation time is the same for all three coefficients; this was indeed
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FIGURE 4.19 Relaxation of the d22 piezoelectric coefficient in AgNa(NO2)2
monocrystals. (a) Cole--Cole plots at different temperatures, and (b) the tempera-
ture dependence of the static (d0) and high-frequency (d∞) piezoelectric d22 con-
stants. Arrows in (a) indicate frequencies used for calculations of hystereses loops
shown in Fig. 4.30. (From [63] with kind permissions of T. Yamaguchi and H.
Nishimori, Chairperson of the publication committee of the Physical Society of
Japan.)

observed experimentally [63]. A change of the sign of the piezoelectric
coefficient is then a consequence of the competing evolutions of d∞ and d0
with temperature, Fig. 4.19(b). As could be expected, Eqns (4.38)--(4.40)
have the same form as Eqns (4.23) in Section 4.2.1. The change of sign
is possible only in the piezoelectric coefficients while � and s are positive
definite.

4.3.4 CLOCKWISE PIEZOELECTRIC HYSTERESIS IN A
HETEROGENEOUS PIEZOELECTRIC

Let us consider two piezoelectric materials connected in series, Fig. 4.20.
For simplicity, it is assumed that both samples are ferroelectric ceramics,
with their polar axes oriented in the same sense (head-to-tail) perpendic-
ular to the plane of the layers. The surface charges due to ferroelectric
polarization are considered to be completely compensated. If a pressure
� is applied parallel to the polar axes, the surface-charge density, Di, is
produced in each layer i through the direct longitudinal piezoelectric ef-
fect, Di = di�, where di is the corresponding piezoelectric coefficient. It
is further assumed that all effects arising from lateral piezoelectric effects,
different elastic properties of the two materials, and mechanical deforma-
tion caused by the electric fields through the converse piezoelectric effect,
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FIGURE 4.20 Bilayer structure consisting of two piezoelectrics oriented in the
same sense. Arbitrarily assigned positive and negative piezoelectric charges are
marked at the interface. For the given configuration, the net charge at the interface
is positive, defining the direction of fields Ei.

may be neglected [67]. As will be shown later, this assumption holds well
for the materials considered in this study. An extension of this approach,
taking into account lateral effects and elastic properties of bilayers, has
been discussed by Turik and Radchenko [94]. The extension of the model
to include these additional effects leads to extra terms in the final equations
but does not modify qualitatively the main conclusions of the work. We
next assume that the external faces of the bilayer are connected to a charge
amplifier, under short-circuit (virtual ground) conditions. If the piezoelec-
tric coefficients of the two layers are different, a net charge will appear
at the interface between the two layers, Fig. 4.20. This charge will give
rise to an electric field Ei and associated charge density (polarization), �iEi,
in each layer, where �iEi is the dielectric permittivity of layer i. The total
charge response of layer i is thus given byDi = �iEi+di�. Using Poisson’s
condition �2

Vi/�x2 = 0, where Vi are electric potentials, Ei = −�Vi/�x,
and the following boundary conditions: V1(x = 0) = 0, V2(x = l) = 0,
and V1(a) = V2(a), and V1(a) = V2(a); the fields Ei may be calculated as a
function of pressure � as:

E1 = v2(d2 − d1)�/(�1v2 + �2v1), E2 = −E1v1/v2, (4.41)

where vi is the volume fraction of layer i.
Under the short-circuit conditions described above, the piezoelectri-

cally induced surface-charge densityD of the bilayer is related to the pres-
sure � by D = dtot�, where dtot is the effective piezoelectric coefficient of
the bilayer. Since for two materials connected in series D1 = D2 = D, the
effective piezoelectric coefficient dtot of the bilayer can be calculated as:

dtot = (v1�2d1 + v2�1d2)/(v1�2 + v2�1). (4.42)

If lateral effects are considered, Eqn. (4.42) would include an extra term de-
pendent on the elastic coefficients of the two materials and their transverse
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piezoelectric coefficients. Apart from simplifications used in its derivation,
Eqn. (4.42) is generally valid for two piezoelectrics (including nonferro-
electrics) arranged in series.

We now consider the case when the pressure is alternating, � =
�0 cos(�t). If the two materials are weakly conducting, we assume that the
conductivity, �, can be introduced [95] through the complex permittivity,
�i = �′i − i�i/�. For simplicity, �′i will be sometimes written as �i and it will
be clear from the context to which variable the symbol refers. Replacing
the complex �i in Eqn. (4.2), dtot also becomes complex and one obtains

dtot = d∞ + �d
1 + 
2�2 − i�
�d

1 + 
2�2 = d′
tot(�)− id′′

tot(�), (4.43)

where 
 = (v1�′2 + v2�′1)/(v1�2 + v2�1) is the relaxation time (the time con-
stant) of the bilayer, �d = d0 − d∞ is the relaxation strength, d0 = (v1d1�2
+ v2d2�1)/(v1�2 + v2�1) is the static (�→0) piezoelectric coefficient of the
bilayer, and d∞ = (v1d1�′2 + v2d2�′1)/(v1�′2 + v2�′1) is the piezoelectric co-
efficient at �→∞. Expression (4.43) has the same form as piezoelectric
relaxation obtained from bistable model, Eqn. (4.25), and rate-dependent
displacement of domain walls, Eqn. (4.27). However, its physical ori-
gin is different. It is a consequence of the difference in the conductivity
and piezoelectric coefficients in the two layers, and is thus similar to the
Maxwell--Wagner relaxation for two dielectrics, except that the imaginary
term proportional to 1/� is missing [93]. If d1 = d2, then d0 = d∞ and re-
laxation does not occur even if the permittivities and conductivities of the
two phases are different. Thus, the relaxation has a truly electromechanical
origin and is not due solely to the dielectric effect. Owing to the nonzero
d′′

tot, the piezoelectric coefficient is out of phase with the pressure, and the
charge versus pressure relationship exhibits a hysteresis. The sign of d′′

tot
is determined by the sign of �d. For �d > 0 (d0 > d∞), d′

tot decreases with
increasing frequency, exhibiting retardation, whereas for �d < 0, d′

tot in-
creases with the increasing frequency, exhibiting relaxation [96], Fig. 4.21.
As commonly done in the literature on relaxation processes [96], we re-
fer to both cases as relaxation. Depending on the sign of �d, the tangent
of the piezoelectric phase angle, tan �p = d′′

tot/d
′
tot, can be either positive

or negative (the longitudinal d′
tot in ferroelectric ceramics is always posi-

tive). Consequently, the piezoelectric (charge versus pressure) hysteresis
can have either a counterclockwise or a clockwise sense of rotation, as illus-
trated in Fig. 4.21. In other words, the total piezoelectric chargeD (material
response) may either lag behind or precede the pressure � (excitation), as
already anticipated in Section 4.3. If other mechanisms, besides the con-
ductivity, contribute to the dielectric dispersion [�i = �′i(�)− i�′′i (�)], Eqn.
(4.43) must be modified accordingly. An equation similar to (4.43) has been
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FIGURE 4.21 The piezoelectric retardation and relaxation of a bilayer consisting
of two materials with the properties typical for bismuth-titanate-based Aurivillius
structures (d2 = 10 pC/N, �2/�0 = 100, �1/�0 = 200, �1 = 10−9 (�m)−1, �2 = 10−10

(�m)−1, V0 = 0.5, �0 = 8.85 × 10−12 F/m). The piezoelectric coefficient of phase
1 is varied. Calculations are made using Eqn. (4.43). Hystereses are shown at two
selected values of d1, illustrating the counterclockwise and clockwise rotations.

derived by Ueda et al. [95] for a three-phase polymer system consisting
of a continuous nonpiezoelectric phase, in which are embedded spherical
piezoelectric particles surrounded by a conducting shell.

Let us examine more closely the reasons for the appearance of the
negative piezoelectric phase angle and the clockwise hysteresis. The total
charge associated with each layer consists of two contributions. The first,
purely piezoelectric part di�, is instantaneous, nonhysteretic (if piezoelec-
tric coefficientsdi are not complex) and is exactly in phase with the pressure.
The second part, �iEi, associated with the field Ei, is due to uncompensated
piezoelectric charges (d1 �= d2) at the interface. In nondispersive materials,
depending on the sign of d2−d1, one of �iEi is exactly in phase (0◦) and the
other exactly in antiphase (180◦) with the pressure �, Eqn. (4.41). Owing
to the dielectric permittivity dispersion (e.g. by conductivity), there is an
additional phase angle between charges �iEi and pressure � leading to the
charge versus pressure hysteresis. In the following discussion we consider
only the conductivity effects.

Let a pressure � be applied on the bilayer, as shown in Fig. 4.20. The
piezoelectric effect then produces instantaneously chargesQ1 andQ2 at the
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FIGURE 4.22 The time dependence of the pressure � and the piezoelectric charge
Q in the case of (a) relaxation and (b) retardation.

interface, which for the given configuration are of the opposite sign, (Q1 >
0, Q2 < 0, Fig. 4.22). The total charge Q at the interface may be written as
Q = Q1 +Q2. Let us next assume that |Q1| > |Q2| (equivalent to d1 > d2).
If the charge decays much faster through material two, |Q| increases with
time. If the charge decays faster through material one, |Q| decreases with
time. The piezoelectric response exhibits retardation in the former case,
and relaxation in the latter case, as shown in Fig. 4.22. The electric fields
Ei, and associated charges, �iEi, which are proportional to Q, therefore
show the same temporal dependence as Q. For an alternating pressure,
�iEi thus exhibits a phase angle with respect to the pressure. From the
discussion above it follows that the sign of the phase angle (retardation or
relaxation) must depend on the electrical time constants of the two layers.
The component of �iEi, which is out of phase with �, written here as (�iEi)′′,
can be calculated using Eqn. (4.41) where �i is replaced with complex
�i = �′i − i�i/�. One obtains that (�iEi)′′ is the same for both layers and is
equal to:

(�iEi)
′′ = �(
2 − 
1)(d2 − d1)v1v2�2�1

(1 + �2
2)(v2�1 + v1�2)2
�0, (4.44)

where 
i = �′i/�i is the electrical time constant of the layer i. As expected
from the discussion above, (�iEi)′′ depends on the electrical time constants
of the two layers. Note that the phase angles between �1E1 and � and �2E2
and � are not equal because the in-phase components of �iEi are different
for the two layers.

Rearrangement of the terms in Eqn. (4.43) leads to the following ex-
pression for the imaginary part of the bilayer’s piezoelectric coefficient:

d′′
tot = �
(
2 − 
1)(d2 − d1)v1v2�2�1

(1 + �2
2)(v2�1 + v1�2)(v2
1�1 + v1
2�2)
. (4.45)

It is seen that for a given d2−d1, the sign of the piezoelectric phase angle
and the sense of the hysteresis rotation are defined by the difference in the
electrical time constants of the two layers, 
2-
1. Because the time constants
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of the two layers are functions of temperature, the same bilayer may, as
a function of temperature, exhibit a positive, a negative or a zero piezo-
electric phase angle corresponding, respectively, to a counterclockwise or
clockwise hysteresis, Fig. 4.21, or absence of hysteresis. This unusual re-
sult does not violate energy conservation since, as discussed in Section
4.3.2, D and � are not conjugate work variables. In addition, the author
has shown numerically that this type of piezoelectric dispersion satisfies
Kramers--Kronig relations. This is expected since the causality principle
must be obeyed. Those results will be published elsewhere.

As shown by Holland [70] and as outlined in Section 4.3.2, the total
energy loss in piezoelectric materials consists of mechanical and electri-
cal contributions, both of which are always positive, and of a coupled
piezoelectric term, which may be either positive (energy loss) or negative
(partial energy gain). The piezoelectric term is always smaller than the
electric and mechanical terms so that the total energy loss, as required by
thermodynamics, is positive even when the piezoelectric ‘loss’ term is neg-
ative. Considering the piezoelectric hysteresis, it is helpful to remember
that the charge--pressure hysteresis in the piezoelectric effect is only a part
of the total material response, which, depending on the boundary condi-
tions, also contains elastic (strain--pressure) and dielectric (charge--electric
field) hystereses. In the present case, the total energy loss will, for exam-
ple, include conductivity losses and elastic losses. We next show that the
elastic relaxation and hysteresis are induced in a heterogeneous piezoelec-
tric sample even in the case when only conductivity losses are present in
the individual components. This effect is solely due to electromechanical
coupling.

Let us consider again the bilayer model presented in Fig. 4.20. Both
layers are subjected to the same stress �. The strain xi in each compo-
nent is given by constitutive relations (4.6), where, for simplicity, we again
consider longitudinal effects only:

xi = diEi + si�. (4.46)

As before, subscript i denotes components of the bilayer, and Ei are
given by Eqn. (4.41). The total strain x of the bilayer is:

x = v1x1 + v2x2. (4.47)

After inserting xi from Eqn. (4.46) and Ei from Eqn. (4.41), x can be
written as x = stot� where compliance of the bilayer, stot, is given by:

stot = v1s1 + v2s2 − v1v2(d1 − d2)
2

v2�1 + v1�2
. (4.48)
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FIGURE 4.23 The retardation and relaxation of elastic compliance of a bilayer
consisting of two materials with the properties typical for bismuth-titanate-based
Aurivillius structures (d2 = 10 pC/N, �2/�0 = 100, �1/�0 = 200, �1 = 10−9 (�m)−1,
�2 = 10−10 (�m)−1, V0 = 0.5, �0 = 8.85 × 10−12 F/m, s1 = 8 × 10−12 m2/N,
s2 = 5 × 10−12 m2/N). The piezoelectric coefficient of phase 1 is varied. The plot
is generated using Eqn. (4.48) and �i = �′i − i�i/�.

Expression d2
i /(�isi) is the coupling coefficient [79] and in simple geome-

tries, such as the present case, has the meaning of the electromechanical
energy conversion factor. Thus, it is always equal to or less than one [79].
This means that stot is a positive-definite coefficient. If bilayer components
are elastically and piezoelectrically perfect, and the only source of disper-
sion is conductivity in each layer (�i = �′i − i�i/�), one obtains that stot is
dispersive, Fig. 4.23, and that the x--� relationship is hysteretic. As ex-
pected, the elastic phase angle is always positive, i.e. strain lags in phase
behind pressure, and the elastic hysteresis of the composite always rotates
in a counterclockwise sense. Note that the sample is short-circuited and
the electric field across the bilayer is zero; however, the individual layers
exhibit counterclockwise dielectric hysteresisD--E due to the conductivity
losses. Using relations (B12)--(B17) it is possible to show that gtot, etot and
htot coefficients of the bilayer are complex, exhibiting either counterclock-
wise or clockwise hysteresis. It should be mentioned that tan �htot is small
since, in the first approximation, tan �htot ≈ tan ��tot + tan �stot − tan �dtot,
but is nonzero. This last relationship can be derived from Eqn. (B21), by
taking all coefficients as complex, and neglecting the quadratic and higher
loss terms.

Finally, we point out that the Maxwell--Wagner-like mechanism is not
the only process that can lead to piezoelectric relaxation of the bilayer.
If components of the bilayer are dielectrically nondispersive, but exhibit
dispersion in their elastic properties, the piezoelectric coefficient and per-
mittivity of the bilayer would become dispersive through the electrome-
chanical coupling.
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4.3.5 EXPERIMENTAL EVIDENCE OF CLOCKWISE PIEZOELECTRIC
HYSTERESIS

Despite numerous observations of piezoelectric relaxation with negative
and positive phase angles over the past 40 years [63,65,66], mainly made
on polymer-based systems, the first explicit discussion and experimental
evidence of the clockwise piezoelectric hysteresis has been presented only
recently [58,72]. The bilayer model discussed above lends itself perfectly
to such a study. Two piezoelectric ceramics with nondispersive piezoelec-
tric properties, and different conductivities and permittivities are chosen
[58,72]. Properties of each individual component and of the composite
can be measured. From the properties of the components it is possible
to calculate the expected responses of the ceramic--ceramic composite and
compare them with the experimental results.

The experiments have been performed on SrBi4Ti4O15 and related fer-
roelectric ceramics. These materials belong to the family of layered struc-
tures or Aurivillius phases. The crystal structure of these materials consists
of one or more perovskite layers separated by bismuth oxide sheets, Fig.
4.24. Ferroelectric phases of many of these compounds exhibit orthorhom-
bic structure, with ferroelectric polarization lying parallel to the plane of
the layers. The single crystals and grains in ceramics have a tendency to
grow in the form of thin plates, with crystal layers parallel to the plane of
the platelets, Fig. 4.24. Conductivity of the grains is highest in the plane
of the layers while the piezoelectric properties are high along the polar-
ization direction and small or zero in the direction perpendicular to the
plane of the layers. Using hot-forging techniques, textured ceramics can
be prepared so that the majority of the grains are oriented in the same di-
rection, Fig. 4.24. A bilayer can be formed with two such ceramics, one
with grains oriented perpendicularly and the other parallel to the external
pressure, Fig. 4.25. For the crystal symmetry of SrBi4Ti4O15, the piezoelec-
tric properties of the ceramic with grain platelets oriented perpendicular
to the pressure will show small (ideally zero) piezoelectric response. The
ceramic with grain platelets oriented parallel to the pressure will show a
high piezoelectric effect. Regardless of their orientation, the piezoelectric
effect of textured ceramics is nondispersive. As expected from the model,
such a bilayer exhibits piezoelectric relaxation, Fig. 4.26, with a phase an-
gle [58,72] which, in the case of the bilayer prepared from the hot-forged
SrBi4Ti4O15, ceramics, exhibits clockwise hysteresis over a large tempera-
ture range.

In ceramics with random-oriented grains, plate-like grains often form
colonies with the same orientation, Fig. 4.27. These colonies and surround-
ing grains of different orientation form basic bilayer units. Each such unit,
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FIGURE 4.24 Schematic presentation of (a) Aurivillius layer structure; (b) single
crystals with platelet form; (c) textured ceramics with plate-like grains; (d) ceramics
with randomly oriented plate-like grains.

FIGURE 4.25 Schematic presentation of a bilayer formed of two textured
SrBi4Ti3O15 ceramics using a hot-forging technique. The direction of polarization
P is indicated for each layer.

FIGURE 4.26 Real (circles) and imaginary (triangles) components of the piezo-
electric d33 coefficient of an SrBi4Ti3O15 bilayer at 190◦C. The open symbols rep-
resent measured values and the full symbols calculated values. The dashed lines
are guides for the eye. (Courtesy of Marlyse Demartin).
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FIGURE 4.27 Microstructure of SrBi4Ti4O15 ceramic with randomly oriented
grains. Occasionally, two or more grains form colonies where all grains exhibit the
same orientation. Together with the neighboring grains or colonies with dissimilar
orientation, these clusters form local bilayers. (Courtesy of Marlyse Demartin).

and their average over the whole sample, may exhibit Maxwell--Wagner
piezoelectric relaxation. As the microstructure of the sample changes (grain
size, packing of the grains, density, etc.), samples with nominally the same
composition, but prepared in a different way, may exhibit either clockwise,
zero or counterclockwise hysteresis, as shown in Fig. 4.28 for SrBi4Ti4O15
ceramics. A striking example of the piezoelectric relaxation with hysteresis
evolving with frequency from clockwise to counterclockwise is shown in
Fig. 4.29 for a Bi4Ti3O12 ceramic [58]. Like SrBi4Ti4O15, this ceramic is also
composed of anisotropic grains which locally form bilayer units.

It is interesting to consider the piezoelectric hysteresis in AgNa(NO2)2
single crystals, in which piezoelectric relaxation was discussed in the previ-
ous section. Even though the authors did not explicitly consider or measure
the hysteresis, the data presented give enough information to reconstruct
the hysteresis at different frequencies and temperatures. If we express the
piezoelectric coefficient as d22 = d′

22 − id′′
22 then the strain is given by [63]:

x = |d22|E0 sin(�t− �), (4.49)

where � represents the phase angle between the field and strain. Then,
tan � = d′′

22/d
′
22. An unusual property of this material is that the real part

of the piezoelectric coefficient d′
22 changes the sign with the frequency,

Fig. 4.19. At 3 kHz and −13.5◦C, d′
22 < 0 and d′′

22 < 0, giving clockwise
hysteresis, Fig. 4.30. Note that this case, when both the real and imaginary
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FIGURE 4.28 Left: piezoelectric coefficient and its phase angle as a function of
frequency; and right: hysteresis in SrBi4Ti3O15 ceramics with nominally the same
composition but processed under different conditions illustrating the absence of
hysteresis, clockwise or counterclockwise. (Courtesy of Cyril Voisard).

components are negative, corresponds to the usual counterclockwise hys-
teresis when both the real and imaginary components are positive. At 10
kHz and −13.5◦C (see Fig. 4.19) d′

22 = 0 and d′′
22 < 0. One thus obtains

� = −90◦, i.e. the strain advances the field by 90◦. This leads to a clockwise
hysteresis with its major and minor axes parallel to the coordinate system
axes, as shown in Fig. 4.30. Finally, at 20 kHz and −13.5◦C, d′

22 > 0 and
d′′

22 < 0 give clockwise hysteresis, Fig. 4.30. Unfortunately, in their exper-
iments Yamaguchi and Hamano [63] have measured the phase angle and
not the hysteresis directly.

In summary, in the case of piezoelectric coefficients, neither the real
nor imaginary parts of a piezoelectric coefficient have a definite sign, the
sign of the two components may be opposite, and either real or imaginary
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FIGURE 4.29 Piezoelectric coefficient d33 and tan �p of a single-phase Bi4Ti3O12
ferroelectric ceramic with highly anisotropic grains, at room temperature as a func-
tion of frequency. On the right are shown charge-pressure hysteresis loops at se-
lected frequencies, with a clockwise hysteresis at 0.07 Hz and counterclockwise
hysteresis at 70 Hz. (Courtesy of Pedro Duran Martin).

FIGURE 4.30 The piezoelectric hystereses in AgNa(NO2)2 single crystals calcu-
lated from data presented in Fig. 4.19 at −13.5◦C.

components may vanish at a given frequency or temperature. Some of the
possibilities are summarized in Fig. 4.13. Consequently, the piezoelectric
hysteresis may exhibit clockwise hysteresis and hysteresis with its main
axes parallel to the coordinate system axes. Such cases are not possible in
properties relating the conjugate work variables (e.g. polarization--electric
field, elastic strain--stress, or magnetization--magnetic field).
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FIGURE 4.31 Piezoelectric resonator in transverse (d31) mode. The gray area
indicates symmetrical electroded surfaces, and the double arrow the direction of
vibrations. The l, w and t indicate the length, width and the thickness of the sample,
and P is the polarization.

4.3.6 REDUCTION OF POWER LOSS DUE TO PIEZOELECTRIC
COUPLING

As shown by Holland [70] and discussed in Section 4.3.2, the piezoelectric
coupling may lead to a partial reduction of the power loss in a material.
In this section we show direct experimental evidence of such power-loss
reduction, observed in a piezoelectric resonator.

For completeness, we first briefly outline the derivation [79] of equa-
tions governing oscillations of a piezoelectric material subjected to an alter-
nating electric field, E = E0ei�t. At so-called quasi-static conditions (low
frequency), the strain x is homogeneous throughout the sample and, in a
perfect material, follows the field, x = dE0ei�t (Eqn. (4.5)). If the rate of
change of the field is comparable to the velocity of acoustic waves through
the material, the strain is no longer homogeneous, internal stress � de-
velops in the sample and modifies the piezoelectric strain. If we consider
a long ceramics bar, poled along its thickness, Fig. 4.31, the constitutive
equations can be written as:

x1 = d31E3 + s11�1, (4.50)

D3 = �33E3 + d31�1. (4.51)

At acoustical wavelengths the material can be considered as continu-
ous. Newton’s law for an elemental volume dV displaced by distance �
can be written as:

�dV�2�/�t2 = F, (4.52)

where F = (��1/�x)dV is the force. Since the field E1 is independent on
the coordinate x and since by definition x1 = ��/�x, Eqns (4.50) and (4.52)
together give the following wave equation:

�2�

�t2
= 1
sE11�

�2�

�x2
= (vE)2

�2�

�x2
, (4.53)
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where vE is the velocity of the transverse elastic waves in the bar. For
simple harmonic motion, � = �0ei�t and one obtains from Eqn. (4.53)

� = [C1 sin(�x/v)+ C2 cos(�x/v)]ei�t (4.54)

Using x1 = ��/�x and Eqn. (4.50), C1 and C2 can be calculated from the
following boundary conditions: �1 = 0 at x = 0, x = l. Substituting
Eqns. (4.54) and (4.50) into (4.51), the dielectric displacement D3 can be
calculated. The admittanceY of the vibrating bar is obtained from the ratio
of the current I and voltage V across the vibrating bar:

Y = I/V = w
∫ �D3

�t dx∫
E3dz

. (4.55)

Finally, the admittance of the bar can be expressed as a function of material
coefficients d, s and �:

Y = i
�wl
t

(
��33 − d2

31

sE11

)
+ i

2wd2
31

(
√

�sE11)s
E
11t

tan
�l(

√
�sE11)

2
. (4.56)

We see that resonance occurs (admittance becomes infinite) when � =
n
/(l

√
�sE11) where n = 1, 3, 5 . . .. This is the same frequency at which

mechanical resonance of an unloaded frictionless bar occurs. The piezo-
electric resonance is thus nothing else but a mechanical resonance excited
in piezoelectric materials by an electric field that oscillates at the frequency
that is identical to the mechanical resonant frequency of the bar. Clearly,
this situation is ideal since some sort of mechanical damping and electri-
cal losses are always present. In the presence of losses, purely imaginary
admittance Y = iB in Eqn. (4.56), is shown in Fig. 4.32(a), will exhibit
a real part, G, called conductance. The full admittance, Y = G + iB, is
shown in Fig. 4.32(b). Formally, electrical and mechanical losses and their
piezoelectric coupling can be introduced by replacing the real s, � and d
in Eqn. (4.56) with complex s′ − is′′, �′ − i�′′ and d′ − id′′ [40,53,71,97–99].
The power dissipation of a resonator near the resonant frequency can be
expressed as [100]:

Pd = 1
2
V2

0 ReY, (4.57)

where V0 is the driving-voltage amplitude. Thus, the power dissipation
is proportional to the conductance G of the resonator. We see from Fig.
4.32(a) that in an ideal resonator the power dissipation is zero (G = 0),
whereas in a ‘lossy’ resonator, due to the piezoelectric coupling, the power
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FIGURE 4.32 Admittance of (a) a lossless and (b) a lossy piezoelectric resonator.

dissipation becomes large at resonance (G exhibits a maximum). This can
be seen by inserting complex material coefficients into (4.56). One obtains
that:

G ∝ �K(�′′s, d)+ 2d′d′′F1(�, s)− [d′2 − d′′2]F2(�, s), (4.58)

where indexes are dropped out, K(�′′s, d) is a function of the material pa-
rameters but not of the frequency, and F1 and F2 are functions of the fre-
quency and real and imaginary components of the elastic compliance. Over
the limited frequency range at resonance, the material coefficients are as-
sumed to be independent of frequency. For a nonpiezoelectric material,
G ∝ ��′′ and G increases [93] with increasing frequency.

In modified lead-titanate ceramics, see Section 4.3.3, the d31 coefficient
changes its sign with temperature [71]. As in AgNa(NO2)2, at the temper-
ature where d′

31 = 0, the imaginary part d′′
31 �= 0. When G(�) of the bar

is measured in the vicinity of the temperature where d′
31 changes the sign,

a minimum is observed in G(�), Fig. 4.33. According to Eqn. (4.57), and
general description of conductivity-related losses in dielectric materials
[93], such a minimum suggests that the part of the total power dissipation
that is due to the conductivity, is reduced. This result appears to be the
only direct experimental evidence of reduction of the power dissipation due
to piezoelectric coupling.

4.4 PIEZOELECTRIC AND DIELECTRIC HYSTERESIS
IN NONLINEAR SYSTEMS UNDER
SUBSWITCHING CONDITIONS

In previous sections we have discussed piezoelectric hysteresis in linear
systems, where hysteresis originates from the frequency- and temperature-
dependent phase angle between the field and the material response. Alarge
number of heterogeneous systems and composites, ferroelectric ceramics,
polymers and single crystals exhibit this type of piezoelectric hysteresis.
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FIGURE 4.33 Conductance G(�) of a PSmT ceramic at the temperature range
where the real part of the piezoelectric coefficient, Re d31, changes sign. Near 30◦C,
where Re d31 = 0, G(�) exhibits a minimum indicating a small reduction in the
power dissipation.

However, the piezoelectric response of some of the most widely used fer-
roelectric piezoelectrics is more complex. A typical soft Pb(Zr1−x,Tix)O3
ceramic exhibits a strong piezoelectric nonlinearity and nonlinear hystere-
sis, in addition to the frequency-dependent piezoelectric coefficient, Fig.
4.1(b). In this section, we shall see how this type of hysteresis in piezoelec-
tric materials can be described, and will look in some detail into problems
associated with the frequency dependence of the nonlinear and hysteresis
parameters.

We start the section with a brief description of the Pb(Zr1−x,Tix)O3
(PZT) solid solution. PZT belongs to the perovskite family (Section 4.2.3,
Fig. 4.4). At room temperature it exhibits ferroelectric tetragonal struc-
ture for x > 0.48, ferroelectric rhombohedral structure for x < 0.48 [28]
and a monoclinic structure in a narrow region around x ≈ 0.48 [101,102].
The narrow region separating the tetragonal and rhombohedral phases is
called the morphotropic phase boundary (MPB). The compositions that
lie at the MPB exhibit high piezoelectric properties, Fig. 4.34, [103,104]
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FIGURE 4.34 Schematic representation of (a) the temperature--composition phase
diagram of complex solid solutions, such as PZT, and (b) typical dependence of
the piezoelectric coefficients on composition. The maximum is observed approx-
imately at the morphotropic phase boundary, in the region where the tetragonal
and rhombohedral phases meet via an intermediate monoclinic or orthorhombic
phase. The phases indicated by the dashed lines are observed in some materials.

accompanied by dielectric, elastic, and piezoelectric nonlinearity, hystere-
sis and frequency dispersion of the properties. Typical values of the piezo-
electric coefficients in PZT are 100--500 pm/V or pC/N. This is two orders
of magnitude higher than in quartz. The PZT material can be made hard or
soft (see Section 4.5.2), with various strength of hysteresis and nonlinear-
ity. There are hundreds of other ferroelectric materials and solid solutions
[1,28], however, the qualitative description given below has a rather gen-
eral validity.

Furthermore, we shall draw a parallel between dielectric and piezo-
electric response. As shown in Section 4.4.4, at week fields, which are
mainly of interest in this section, the strain and polarization response are
dominated by the movement of ferroelastic domain walls. This means that
the dielectric (polarization--field) and piezoelectric (strain--field) hystere-
ses are governed by the same mechanisms. By comparing the two types
of hysteresis it is possible to obtain information on the actual hysteresis
process operating in a material.

4.4.1 DESCRIPTION OF THE PIEZOELECTRIC AND DIELECTRIC
HYSTERESES AND NONLINEARITY

Rayleigh Hysteresis and Higher Harmonics Response

The simplest type of the piezoelectric hysteresis and nonlinearity observed
in polycrystalline ferroelectrics is shown in Fig. 4.35, for a soft PZT
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ceramic.1 At weak fields the direct piezoelectric coefficient is nearly a lin-
ear function of the driving-field amplitude and the associated hysteresis
exhibits sharp ends indicating the fact that the hysteresis is nonlinear and
that its origin is more complex than in systems discussed before in Section
4.3, where the hysteresis is simply a consequence of the phase angle be-
tween the driving field (input) and the material’s response (output). The
hysteresis evolves with the field in such a way that its tip follows the curve
of the charge density maximum, Fig. 4.35. This type of nonlinear piezo-
electric behavior has been observed in a number of ferroelectric ceramics,
Fig. 4.36. At larger fields, the coefficient curves either upward [105–107]
or downward and may exhibit a field independent region at very weak
fields (see Section 4.4.3). As we shall see below, the key feature of this
type of electromechanical response is that the hysteresis and nonlinearity
are closely related; in ideal cases, one property (hysteresis or nonlinearity)
can be quantitatively predicted once the other property (nonlinearity or
hysteresis) is known. A similar type of hysteresis has been observed for
the dielectric properties of ferroelectric materials [108–111].

In the regime where the piezoelectric or dielectric coefficient is approx-
imately a linear function of the driving-field amplitude, the piezoelectric
or dielectric nonlinearity and hysteresis can be well described [57,112] by
the Rayleigh equations, well known from the field of magnetics [75,113].
In the case of piezoelectric or dielectric response, the Rayleigh equations
are written as:

R(F) = (minit + �mF0)F ± �m(F2
0 − F2)/2, (4.59)

R(F0) = (minit + �mF0)F0,

m(F0) = minit + �mF0, (4.60)

where the material coefficientm = � or d, the general driving field F = � or
E, the general material response R = D or x, F0 and R0 are corresponding
amplitudes, �m is the Rayleigh coefficient for the dielectric polarization,
converse or direct piezoelectric effect, and minit is the zero-field value of
the permittivity, converse or direct piezoelectric coefficient. In the rest of
the text, indexm in �m will often be omitted for simplicity. Equation (4.59)
describes the hysteresis, with the sign ‘+’ corresponding to the descend-
ing, and the sign ‘−’ to the ascending fields. The knowledge ofm(F0) then

1All measurements of the direct piezoelectric effect discussed in this chapter were per-
formed under compressive bias stress and dynamic stress whose amplitude is at least half of
that of the compressive bias. For convenience of presentation, the hystereses are presented
centered with respect to both the dynamic stress and charge density axes.
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FIGURE 4.35 (a) Charge density--pressure hysteresis, (b) field dependence of the
charge density and d33, and (c) evolution of the hysteresis with increasing field
amplitude, in a soft PZT ceramic. In (a) and (b) circles and squares represent
experimental points, and the solid lines are obtained using Rayleigh relations (4.59)
and (4.60).

allows calculations of R(F0) and vice versa, as demonstrated in Fig. 4.35
for the direct piezoelectric and in Fig. 4.37 for the converse effect. There-
fore, the hysteresis and nonlinearity have their origin in the same physical
process. As we shall see later, this is not always the case: a process that
contributes to the coefficient nonlinearity may not necessarily be hysteretic.
Furthermore, the term ‘quasi-Rayleigh behavior’ will be used whenever
the hysteresis and nonlinearity are closely related in the above sense (one
can be calculated from the other), even if the behavior predicted by Eqn.
(4.60) is not satisfied, i.e. it is more complex than linear (see Section 4.4.3).
The reasons and justification for this rather loose employment of the terms
will become apparent later on in this section.

While the original discovery of the Rayleigh law in magnetics was em-
pirical [114], several theoretical models have been subsequently developed
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FIGURE 4.36 Field dependence of the longitudinal piezoelectric coefficients in
four ferroelectric ceramic materials. In each case (except in SrBi4Ti4O15 where the
response is anhysteretic) the charge--force hysteresis has the shape illustrated in
Fig. 4.35(c).

FIGURE 4.37 (a) Field dependence of the strain and d33, and (b) strain--electric
field hysteresis in a PZT thin film. In (a) and (b) circles and triangles represent
experimental points and solid lines are obtained using Rayleigh relations (4.59)
and (4.60). (Courtesy David V. Taylor).

with the specific purpose to deriving these relations [114–116]. Those early
physical models, the formal description by Preisach [114] (Section 4.4.3)
and some very recent results [117,118] have all shown that the Rayleigh be-
havior in magnetics is intimately linked to the disorder in the system. By
simplifying the problem considerably, one can say that the Rayleigh behav-
ior is obtained when domain walls move in the form of small Barkhausen
jumps in a medium with randomly distributed pinning centers, Fig. 4.38.
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FIGURE 4.38 Energy profile for a domain wall moving in a medium with random
pinning centers. For details see [115,116,122].

Following these different approaches, one can easily see that a similar
theoretical framework can be used for the description of the displacement
of domain walls in any ferroic medium (ferromagnetic, ferroelectric, fer-
roelastic), or, even more generally, for the displacement of other types of
interfaces. The Rayleigh law is thus used to describe the ferroelectric [119–
122] and piezoelectric hysteresis [57], usually assuming that the underlying
mechanism is the displacement of domain walls. It is tempting to speculate
that in ferroelectric compositions close to the morphotropic phase bound-
ary, where free energies of neighboring phases are close to each other, the
interfaces between different phases can be moved by external fields and
contribute to the properties in a similar way as the moving domain walls
[59]. At present, there is no direct evidence that this interphase boundary
displacement is actually happening.

We next investigate properties of the Rayleigh relations by examin-
ing, in some detail, Eqn. (4.59) for the hysteresis. If F = F0 sin(�t), then
development of Eqn. (4.59) into Fourier series gives:

R(F)= (minit + �F0)F0 sin(�t)− 4�F2
0

3

cos(�t)

−4�F2
0

3


[
1
5

cos(3�t)− 1
35

cos(5�t)+ . . .
]
. (4.61)

There are several remarkable properties of Eqn. (4.61). The first is that
only odd harmonics are present. This is a property of nonlinear functions
that exhibit so-called half-wave symmetry, R(t + T/2) = −R(t), where t is
the time and T the period of the driving field [123]. The second property
is that only cosine terms appear in the Fourier series. For a sinusoidal
driving field, cosine terms indicate phase lag, implying that in a Rayleigh
system all nonlinear contributions are hysteretic. This should not be en-
tirely unexpected if one remembers that the Rayleigh equations describe
the response of a system in which displacement of domain walls in the form
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of Barkhausen jumps is controlled by a random distribution of the pinning
centers. Equation (4.61) thus reflects the fact that every domain-wall dis-
placement is at the same time hysteretic and nonlinear. This property be-
comes clearer when described in the framework of the Preiscah formalism
(Section 4.4.3). An alternative way of stating the same fact is by looking at
the phase angle of higher harmonics. Expansion of a nonlinear function
into Fourier series may be written as:

R(t) =
∑

[R′
n sin(�t)+ R′′

n cos(n�t)], (4.62)

where n is the number of the harmonic, and R′
n and R′′

n are the expansion
coefficients. The phase angle�n of thenth harmonic, which, in analogy with
the discussion of complex material coefficients in Section 4.3, is defined by
Rn(t) = √

(R′
n)

2 + (R′′
n)

2 sin(n�t− �n), can be calculated as:

�n = − arctan(R′′
n/R

′
n). (4.63)

Since for a Rayleigh system and for n > 1 all R′
n = 0 (Eqn. (4.61)), it

follows that the phase angle of all higher harmonics is ±90◦. Finally, the
third important property of Eqn. (4.61) is that all hysteretic and nonlinear
terms are quadratic functions of the driving-field amplitude.

The above analysis thus identifies a fingerprint of the Rayleigh be-
havior that can be verified experimentally. Let us illustrate this on some
examples and see how analysis of the nonlinearity and hysteresis can be
used to detect different processes that take place in a ferroelectric. Figure
4.39(a) shows the dielectric permittivity of a 1.44 �m thick PZT thin film
with Zr/Ti ratio 45/55 and [111] preferential orientation as a function of
the amplitude of the driving electric field. As-prepared, aged film was
first subjected to fields of increasing amplitude, up to ∼4.5 MV/m (first
branch of the measurement cycle). The field amplitude was then decreased
(second branch) to zero and then increased again (third branch). The per-
mittivity is a strong function of the field, and it is evident that the film
changes its response between the first and the subsequent branches of the
measurement cycle. Once the response of the film has stabilized (second
and third branches), the permittivity can be well described by Eqn. (4.61).
The parameters �init and � derived from the field dependence of the per-
mittivity are used to predict theD--E hysteresis, Fig. 4.39(b), giving a good
agreement between the experimental and calculated values. Furthermore,
the third harmonic of the dielectric displacement is proportional to E2.2

0 ,
Fig. 4.39(c), close to what is predicted by Eqn. (4.61). Finally, during the
second and the third branches, the value of the phase angle of the third har-
monic, Fig. 4.39(d), is close to 90◦, again as predicted by Eqn. (4.61). In the
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FIGURE 4.39 Dielectric permittivity for increasing and decreasing field ampli-
tudes. (a) The bottom curve is measured during the first increasing branch of the
first field cycle. After the first cycle, the increasing and decreasing branches coin-
cide; (b) polarization--field hysteresis; (c) amplitude of the third harmonic of po-
larization versus field amplitude; and (d) phase angle (represented here as 180-�3)
of the third harmonic for increasing and decreasing field amplitudes (see (a)). The
measurements were made on a PZT thin film, as explained in the text. (Courtesy
David V. Taylor).

following paragraph we shall try to show how small discrepancies from
the behavior predicted by Eqn. (4.61) may be used to detect the presence
of different types of nonlinear processes and domain-wall pinning mecha-
nisms taking place in the material. It is clear that, in the absence of a more
rigorous theoretical treatment, such a discussion may be only qualitative.

The difference in the permittivity behavior (the first harmonic response)
between the first and the subsequent branches of the field cycle indicates
that the film changes its state during the first measurement. This is reflected
in the behavior of the phase angle of the third harmonic -- it is zero at the
beginning of the first branch and then switches to ≈ 90◦ at high fields.
During the subsequent cycles, the phase angle is ≈ 90◦, except at weak
fields, indicating the existence of a threshold field for the nonlinear con-
tributions. If we assume that the origin of the hysteresis and nonlinearity
is in the field-induced displacement of domain walls, the behavior of the
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films can be tentatively explained in the following way. The as-prepared,
aged films contain defect centers that strongly pin domain walls (see Sec-
tion 4.5.2). When the field is first applied, the domain walls’ movement is
reversible (nonhysteretic) but nonlinear. This may happen if the domain
walls move under the field away from the pinning centers, but return to
them due to strong restoring forces once the field is removed. This is seen
in the presence of the third harmonic, whose angle is zero. Once the field
is strong enough to depin the domain walls, they start moving in a hys-
teretic, nonlinear way, in the form of Barkhausen pulses, and contribute to
polarization in a way predicted by the Rayleigh equations: the phase angle
of the third harmonic becomes ≈ 90◦, meaning that most of the nonlinear
contributions to the third harmonic are hysteretic.

Another consequence of the nonlinear, nonhysteretic (reversible) move-
ment of the domain walls is that, in a general case, the amplitude of
the third harmonic material response is expected to be proportional to
a3E

3
0 + a5E

5
0 + . . . [124,125], whereas in the Rayleigh case only a term pro-

portional to E2
0 appears in the expansion. Small deviations from the be-

havior predicted by the Rayleigh equations may thus be due to residual,
strongly pinned domain walls that move in a reversible nonlinear fash-
ion. The threshold field for the third harmonic phase angle suggests that
the energy profile for domain walls is not perfectly random (see Section
4.5.2) and does not contain shallow minima that would allow domain-wall
contributions at very weak fields.

To test these hypotheses, the as-prepared, aged films were subjected
to a thermal treatment to release domain walls from the pinning centers. If
polarization is then measured immediately, without waiting for the film to
age and the charged defects to pin the wall again (Section 4.5.2), the third
harmonic switches to 90◦ at much weaker fields (Fig. 4.40) than in an aged
film (Fig. 4.39(d)), consistent with the assumption that most of the domain
walls will be depinned by the thermal treatment. We shall return to this
result in Section 4.5.2.

Similar results are obtained for the piezoelectric strain--electric field
relationship, Fig. 4.41. Depending on the film state (degree of aging),
preparation condition, texture, thickness, and other parameters, the dis-
crepancy from the ideal Rayleigh behavior is found in different degrees.
For example, the exponent of the third harmonic field dependence is found
to vary between 1.9 and 2.6 [126]. Perhaps the most interesting feature is
the appearance of the second harmonic in the polarization response, which
is absent in Eqn. (4.61). The second harmonic is probably a consequence of
the asymmetry in the material induced by internal bias field that renders
the Rayleigh loop asymmetric (see Section 4.4.3). The internal field (i.e. the
poling of the film) may be a consequence of the measuring process itself
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FIGURE 4.40 Phase angle (represented here as 180-�3) of the third harmonic of
polarization response for increasing and decreasing field amplitudes in an annealed
PZT film. Compare with (d) in Fig. 4.39. (Courtesy David V. Taylor).

FIGURE 4.41 (a) Amplitude of the third harmonic of the strain as a function of
the field amplitude, and (b) phase angle (represented here as 180-�3) of the third
harmonic of the strain as a function of the field amplitude. The measurements were
made on a PZT thin film [126]. (Courtesy David V. Taylor).

[124], which, as shown in Fig. 4.39(a), changes the nonlinear characteristics
of the film. It can be easily shown that the second harmonic will appear if
the � coefficient in Eqn. (4.59) is not equal for increasing and decreasing
fields (the hysteresis is asymmetrical).

In the absence of a more rigorous theoretical treatment, we see that
the above approach can lead to interesting hints on the hysteretic and
nonlinear processes taking place in ferroelectric materials. It should be
emphasized, however, that the nonlinear and hysteresis parameters need
to be analyzed in their entirety. The linear dependence of the permittiv-
ity on the electric field amplitude (the Rayleigh relation (4.60)) has, for
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example, been observed in relaxor-ferroelectric Pb(Mg1/3Nb2/3)O3, but
with the phase angle of the third harmonic equal to 180◦ and not to 90◦.
In this case, therefore, the nonlinear component is not hysteretic in higher
harmonics, as required by the Rayleigh equations, and one has to invoke a
different model to explain the nonlinearity. The following procedure may
be proposed to establish whether a hysteretic, nonlinear material behaves
indeed as a Rayleigh system: (i) the material coefficient (piezoelectric coef-
ficient, permittivity) should be a linear function of the field amplitude, (ii)
the total hysteresis can be predicted from the nonlinear parameters of the
coefficient nonlinearity, (iii) the amplitude of all harmonics is a quadratic
function of the field, (iv) the phase angle of the third harmonic is 90◦, (v) the
fifth harmonic has the phase angle of −90◦, (vi) the ratio of the amplitude
of the first and the third harmonic should be five, and so on.

It can be concluded from the above discussion that pure Rayleigh be-
havior is difficult to find in a real material. Other processes can operate
concurrently with it, and the randomness of the energy landscape required
for the true Rayleigh behavior may never exist. The Rayleigh system is
thus an approximation, and should be treated as such. Its opposite is an
ordered system exhibiting nonlinear, but nonhysteretic behavior (see Sec-
tion 4.5). In such a system the phase angle of all harmonics is 0◦ or 180◦.
It is thus tempting to think of a departure from the Rayleigh behavior as
a measure of order in the system. A more rigorous theoretical treatment
[117,118] is obviously needed to make a definite and general claim along
these lines. As already mentioned, we shall rather arbitrarily call any non-
linear hysteretic system in which the hysteresis can be calculated from the
parameters describing the nonlinearity (and vice versa) a ‘quasi-Rayleigh
system’.

At high driving-field amplitudes, m(F0) is no longer a linear function
of the field amplitude, Fig. 4.35(a). We shall discuss a formal description
of such cases in Section 4.4.3. For the present purposes it is sufficient to
say that the corresponding hysteresis can be well approximated, Fig. 4.42,
by the modified Rayleigh equation:

m(F0) = minit + �F0 + �F2
0 + �F3

0 + . . . = minit + �′F0,
�′(F0) = � + �F0 + �F2

0 + ...,
R(F0) = (minit + �′F0)± �′

2
(F2

0 − F2).

(4.64)

Cubic and higher-order terms can be added if necessary to the hyster-
estic part of Eqn. (4.64).
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FIGURE 4.42 Charge density--pressure hysteresis (circles) measured in the pres-
sure range where the Rayleigh relations (4.59)--(4.60) are no longer valid. The
hysteresis can still be calculated (solid line) from the field dependence of the po-
larization using Eqn. (4.64).

Hysteresis Losses in Rayleigh-Like Systems

We next analyze the ‘losses’ associated with the Rayleigh loop. The total
energy dissipation per unit volume associated with the hysteresis is given
by its area A, which in the case of the Rayleigh loop can be calculated from
Eqn. (4.59):

AR =
∫

cycle

RdF = 4�mF3
0

3
. (4.65)

Note that AR does not possess energy units in the case of mixed pairs
of piezoelectrically related variables, e.g. (D,�) and (x, E), but does in the
case of dielectric (D, E) and mechanical (x,�) variables. If areas of exper-
imentally measured hystereses, Aexp, are compared with those predicted
by Eqn. (4.65) for a pure Rayleigh process, it is often found [57,127] that
Aexp > AR over the field range where the Rayleigh relation (4.60) holds.
This is illustrated in Fig. 4.43(a), which shows, for the same sample used to
generate the data shown in Fig. 4.35, the areas of experimental hystereses,
the areas predicted by Eqn. (4.65), and their difference. For the particular
case of hysteresis shown in Fig. 4.35, the difference Aexp − AR is about 14
per cent. The log--log plot of Aexp and Aexp-AR versus �0 (Fig. 4.43(b))
shows that Aexp ∝ �2.7

0 and Aexp − AR ∝ �2
0, while from Eqn. (4.65) we

see that AR ∝ �3
0. Since �2.7

0 can be obtained from the sum b�3
0 + c�2

0,
this indicates the presence of a non-Rayleigh hysteretic mechanism that is
a quadratic function of the field amplitude. For a linear system, in which
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FIGURE 4.43 (a) The piezoelectric phase angle � for a soft PZT ceramic measured
by an oscilloscope (full circles), determined from the areas of experimental loops
and Eqn. (4.68) (squares), and calculated from the Rayleigh parameters and Eqn.
(4.67) (diamonds). The difference between the experimental and calculated phase
angles is shown by the triangles. The error bars are equal to 0.005 rad. (b) The area
of experimental loops, Aexp, and the difference of Aexp and the area of Rayleigh
loops, AR, as a function of the driving-field amplitude. Aexp corresponds to full
circles in (a), AR corresponds to diamonds in (a) and Aexp − AR corresponds to
triangles in (a). Solid lines are linear fits on the double-logarithmic scales. Slopes
of the fitted lines are indicated for each curve.

F = F0 sin(�t) and R = R0 sin(�t− �), the surface of the R--F hysteresis is:

Alin =
∫

cycle
RdF = 
R0F0 sin � = 
m′′F2

0, (4.66)

where m′′ is the imaginary component of the generalized susceptibility.
We thus see that the area of the total measured nonlinear hysteresis can be
separated into the sum of the Rayleigh term, AR ∝ F3

0, Eqn. (4.65), and the
linear term, Alin ∝ F2

0, Eqn. (4.66).
Alternatively, we can compare the phase angles of the ideal Rayleigh

and experimental hystereses. Because of the orthogonality of sinusoidal
functions, only the fundamental harmonic in Eqn. (4.61) will contribute to
the integral in (4.65). The area of the Rayleigh hysteresis thus becomesAR =

R0F0 sin �R, the same as in the linear case, where �R now signifies the field-
dependent phase angle between the driving field and the fundamental
harmonic. Therefore, the expected phase angle of the Rayleigh expression
(4.61) can be obtained from (4.65) as:

�R ≈ sin �R = AR

R0F0

= 4�mF0

3
m
, (4.67)
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and the phase angle associated with the measured hysteresis as:

�exp ≈ Aexp


R0F0
. (4.68)

One obtains that �exp − �R ≈ constant, as is indeed observed experimen-
tally, see Fig. 4.43. This is again consistent with the presence of a linear,
hysteretic piezoelectric response, which operates in the background of the
dominating nonlinear Rayleigh behavior.

An ideal Rayleigh hysteresis is a rate-independent, zero-temperature
approximation [75]. We have seen, however, in Section 4.3 that the ther-
mally activated piezoelectric relaxation in linear systems may lead to strong
frequency dependence of the material complex coefficients. Thus, a lin-
ear relaxation process operating simultaneously with a nonlinear Rayleigh
process is expected to lead to the frequency-dependent parameters of the
Rayleigh hysteresis. Such a case is discussed in the next section.

4.4.2 FREQUENCY DEPENDENCE OF THE PIEZOELECTRIC
COEFFICIENTS

Figure 4.44(a) and (c) show the direct longitudinal piezoelectric coefficient
d33 of a soft PZT and the permittivity �33 of a PZT thin film as a function of
frequency at room temperature. At each frequency the nonlinear behavior
can be described well by the Rayleigh relations, (4.59)--(4.60), but, as seen
from Fig. 4.44(b) and (d), the nonlinear parameters minit and �m are now
frequency dependent. The phase angle and the area of the R--F hystereses
first increase and then become smaller as the frequency is increased, at-
least over the examined frequency range, as shown in Fig. 4.45 for the
piezoelectric charge--force hysteresis in a PZT ceramic.

It is possible [128] to effectively separate the linear, frequency-dependent
contribution to the measured hysteresis from the Rayleigh, rate-independent
contribution, by assuming the presence of a viscous process that can be de-
scribed by a Debye-like equation (4.24):

d∗ = d∞ + �d
1 + i���d

, (4.69)

where � represents apparent piezoelectric ‘viscosity’. Assuming that the
Rayleigh and viscous processes are independent, the total piezoelectric
charge density can be described by:

D = (dinit + �d + ��0)� ± �
2
(�2

0 − �2)+ ��d
�D
�t
. (4.70)

Equation (4.70) is obtained by assuming that the Rayleigh term, Eqn.
(4.59), is equal to the equilibrium term of the rate dependent equation
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FIGURE 4.44 Frequency dependence of (a) the direct piezoelectric coefficient d33
for different pressure amplitudes, and (b) dinit and �d in a soft PZT ceramic. Fre-
quency dependence of (c) permittivity �33 for different electric-field amplitudes,
and (d) �init and �� for a PZT thin film. (Thin film data courtesy of David V. Taylor).

(e.g. (4.21) or (4.26)). Note that in the general case � needs to be re-
placed by the field-dependent �′, as indicated by Eqn. (4.64). It follows
from Eqn. (4.69) that tan �lin = ���d, so that the Rayleigh parameter
� (or �′) and tan �lin can both be determined by fitting an experimen-
tal hysteresis with Eqn. (4.70). If the hysteresis fit is made using the
purely rate-independent quasi-Rayleigh equation (4.64), one should ob-
tain larger apparent �′ because the hysteresis contains the viscous con-
tribution. This is indeed observed, as shown in Fig. 4.46 for the direct
piezoelectric effect in a PZT sample, which compares �′s calculated by
fitting experimental hysteresis using Eqns. (4.64) and (4.70). The �′ eval-
uated by using corrected Eqn. (4.70) is in excellent agreement with the �′
determined from d(�0). Finally, the �lin calculated by fitting the experi-
mental hystereses with (4.70) is in good agreement, Fig. 4.46(d), with the
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FIGURE 4.45 Left: area of the charge density--pressure hysteresis of a soft PZT ce-
ramic as a function of the driving-field frequency, and right: example of hystereses
at two frequencies.

phase angle obtained by determining �exp − �R, as explained earlier in
Section 4.4.1.2.

Even though it may be useful from the practical point of view, the
above approach for hysteresis separation is clearly too simplified. Equa-
tion (4.69) is limited to cases exhibiting the simplest Debye-type frequency
dispersion. Strongly nonlinear ferroelectric systems, however, tend to ex-
hibit a broad dispersion in the dielectric and piezoelectric properties, as
shown in Fig. 4.44. Before developing a unified description of the fre-
quency dispersion and nonlinearity, it is necessary to have a clear physical
picture of the processes that lead to the broad frequency dependence of
the electromechanical response. The difficulty here does not lie only in the
theoretical modeling, but in having reliable experimental data on which to
base or verify the theoretical model. We shall illustrate these difficulties
below in a few examples.

Figure 4.44(a) and (c) suggest that, over the examined frequency range,
the permittivity � and the piezoelectric coefficient d decrease linearly with
log(�). This behavior is even more apparent in Fig. 4.47, where �∝ log(1/�)
over six orders of magnitude. Several models [129,130] treating the dynam-
ics of interfaces (e.g. domain walls, dislocations) in random/disordered
systems have obtained frequency dependence of the susceptibility in the
form [ln(1/�
eff)]

�, where the exponent � is related to the roughness of
the energy potential. That approach has been applied to interpret exper-
imental results in ferroelectric materials [57,131–134]. It turns out that,
while the real component of the generalized susceptibility may appear to
follow the linear-logarithmic dependence, the behavior of the imaginary
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FIGURE 4.46 (a) d33 as a function of the pressure amplitude; (b) � calculated
by fitting experimental hysteresis using modified Rayleigh equation (4.64) and its
correction (4.70), which includes rate-dependent contributions; (c) tangent of the
piezoelectric phase angle determined by fitting hystereses at different driving fields
with Eqn. (4.70); (d) calculation of the phase angle from the experimental loops
and from a purely Rayleigh relationship. The phase angles in (c) and the difference
shown in (d) are, within experimental error, equal. (Courtesy Gilles Robert).

component is not always consistent with this behavior. For a system with a
broad distribution of relaxation times, the real and imaginary components
of the permittivity should be approximately related by [69]:

m′′ ≈ −

2

�m′

� ln �
. (4.71)

For � ≈ 1, which is the case observed for m = d, � in PZT ceramics and
films (Fig. 4.44), it follows from m′ ∝ [ln(1/�
eff)] that m′′ ≈ const.
As we shall see below, the experimentally determined m′′ are in many
cases frequency dependent. Unfortunately, the exact m′′(�) function for a
given process is not always easy to verify experimentally in ferroelectric
materials, since several dispersive mechanisms may operate simultane-
ously and their separation becomes difficult. In dielectrics, such additional
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FIGURE 4.47 Complex dielectric permittivity of a PZT thin film suggesting log-
arithmic frequency dependence over six orders of magnitude. The increase of the
imaginary part at high frequencies is an experimental artifact. (Courtesy Bharad-
waja Srowthi).

contributions include conductivity for which �′′ = �/(��0), the piezoelec-
tric resonances, other, e.g. Debye-like, dispersive processes [132,133], and
possibly inductive resonances (see Fig. 4.47). A specific dispersion mech-
anism can often be observed only over a limited frequency range, and be-
comes distorted at the high and low limits where other process take over,
so that it becomes difficult to conclude whetherm′′ ≈ const holds (see Fig.
4.47). This behavior can sometimes be masked by competing mechanisms
and elaborate schemes need to be used for their separation [133]. Alterna-
tively, the logarithmic frequency dependence can be obtained by assuming
an exponentially broad distribution of the waiting times [26,135].

Another model that can lead, over a limited frequency range, to an
apparent linear-log dispersion of the generalized susceptibility is based
on the power law m ∝ 1/�� with � << 1. This behavior can be derived
phenomenologically in the following way [132,136]. Let us consider, for
simplicity only, the contribution of 180◦ domain walls to the dielectric
polarization of a ferroelectric. Assume that under the action of an external
field E(t), the domain wall displaces by �l(t). The contribution of the
moving domain wall to the polarization is then:

�P(t) = (2PS/d)�l(t), (4.72)

where d is the average width of a domain that, depending on its orientation,
carries polarization ±Ps. If the velocity v of the domain wall is a linear
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function of the field, ��l(t)/�t = �E, and the field E = E0ei�t is sinusoidal,
one obtains from (4.72) the following rate-dependent equation:

��P(t)

�t
= 2Ps

d

��l(t)

�t
= �E0ei�t. (4.73)

This is equivalent to assuming that the force per unit domain-wall area
exerted by external field is 2PsE(t) [136,137] and that in the general equation
of the balanced forces:

m
�2�l

�t2
+ k�l+ �

��l

�t
= 2PsE(t) (4.74)

the first, inertial term, and the second, restoring-force term, can be ne-
glected. The domain wall thus moves in an irreversible manner, by hop-
ping from one pinning center to another, not unlike the conduction process.

The solution of the reduced equation (4.74) or (4.73) is:

�P(t) = 2PS�
(i�)d

E, (4.75)

which gives for the permittivity:

�(�) = �∞ + 2PS�
(i�)d

= �∞ + �∞
i�
eff

, (4.76)

where �∞ represents instantaneous dielectric permittivity, and effective
relaxation time 
eff is the time necessary for the domain-wall contribution
to be equal to the instantaneous polarization, �P(t) = �∞E. As in the case
of the Debye relaxation (Section 4.3.1), one introduces phenomenologically
[132] exponent � < 1 into Eqn. (4.76) leading to:

�(�) = �∞ + �∞
i (�
eff)

�
. (4.77)

Equation (4.77) possesses particular properties that can be verified experi-
mentally. Before discussing these in some detail, we briefly mention some
limitations of Eqn. (4.74). The first limitation is clearly related to the choice
of the field dependence of the domain-wall velocity v(E) = �f(E). The data
available in the literature suggest that f(E) varies from f(E) = E, for dis-
placement of 180◦ domain walls [137], to f(E) = exp(−�/E) for 90◦ domain
walls in BaTiO3 [138] and tetragonal PZT [139]. However, since f(E) needs
to be modified, as suggested by Kleemann et al. [132], to take into account
polydispersivity, it is possible that for very small �, the different f(E) will
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give similar frequency dependences. The second comment is on the fact
that Eqn. (4.75) suggests that the domain-wall contribution leads to singu-
larity at low frequencies. This result is nonphysical, since any dissipation
mechanism should reduce to zero in the static case, i.e. for a constant field
[69]. Equations (4.75)--(4.76) thus represent a ‘high’ frequency limit of a
more complex behavior [82,84]. Indeed, at least in the case of piezoelectric
relaxation, a maximum in the imaginary part of d(�) is observed at low fre-
quencies. Equation (4.77) has recently been derived by Fedorenko, Mueller,
and Stepanow [140], considering stochastic motion of domain walls.

Some of the properties of Eqn. (4.76) are given below. By separating
the real and imaginary parts, and taking for the material coefficient the
most general case (m = m′ − im′′ = d, �, s) one obtains:

m′(�) = m∞ + m∞ cos(�

2 )

(�
eff)�
, (4.78)

m′′(�) = m∞ sin(�

2 )

(�
eff)�
. (4.79)

It follows from Eqns. (4.78)--(4.79) that m′ − m∞ and m′′ should have the
same slope � when presented as a function of log(�). Likewise, the slope
of the Cole--Cole plot (m′′(�) versus m′(�) − m∞) is now frequency inde-
pendent and is equal to tan(�
/2). Neglecting the behavior at very low
frequencies, where another functional dependence will need to be used
to bring m′′(� → 0) = 0, and any other processes that may control the
response at high frequencies, we make the following assumptions: (i) the
field-dependent mechanism described by the Rayleigh equation (4.61) is
the high-frequency limit of the purely rate-dependent process described
by (4.78)--(4.79); and (ii) the rate-dependent and rate-independent losses
couple, i.e. they are not simply additive. Taking into account assumptions
(i) and (ii), and keeping only the first harmonic term in Eqn. (4.61), we
obtain the following expression for the complex coefficients:

m′(F0,�) = minit + �mF0 + mRi cos
(
�


2

)
(�
)�

, (4.80)

m′′(F0,�) = 4�F0

3

+ mRi sin

(
�


2

)× f(F)
(�
)�

, (4.81)

where mRi = minit + �F0, and f(F) is the field-dependent factor that de-
scribes the coupling of the frequency-dependent and rate-independent
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losses. Clearly, it should hold that f(F) → 1 as F0 → 0. In addition, from
Eqns (4.80)--(4.81), one expects that the plot of m′′(�) − 4�mF0/3
 versus
m′(�)− (mi+�mF0) should give a straight line with slope tan

(
�
/2

)× f(F).
Both conditions hold fairly well for the permittivity in PZT thin films and
the longitudinal piezoelectric coefficient in ceramics. Figure 4.48, for exam-
ple, illustrates the validity of the linear relationship for the Cole--Cole plots
(m′′(�)versusm′(�)), which must now include field-dependent terms. The
value of � is very small, below 0.1, indicating why over the examined fre-
quency range the frequency dependence can be equally well described by
ln(1/�) and 1/�� behavior. Note that Eqns (4.80)--(4.81) account for the
frequency dependence of the measured (apparent) Rayleigh parameters
(Fig. 4.44) and the field dependence of the power-law parameters (not
shown). For example, rearrangement of terms in Eqns (4.80)--(4.81) gives:

m′(F0,�)=mi + �mF0 + mRi cos
(
�


2

)
(�
)�

=mi
[

1 + cos
(
�


2

)
(�
)�

]
+ �m

[
1 + cos

(
�


2

)
(�
)�

]
F0

=mmeas
i (�)+ �meas

m (�)F0, (4.82)

where now mmeas
i (�) ∝ 1/�� and �meas

m (�) ∝ 1/��, as seen in Fig. 4.44. It
should be noted that a similar grouping of terms may be made assuming
the linear-log behavior [57,131].

Measurements of a complex piezoelectric coefficient at ultralow fre-
quencies is particularly challenging. We present in Fig. 4.49 the piezo-
electric phase angle of a PZT ceramic with a broad frequency dispersion
(power-like or logarithmic) and of a PSmT ceramic with a quasi-Debye
dispersion (Section 4.3.3). We see that both materials present a peak that
clearly differs in broadness and strength. Thus, in the case of PZT, it is dif-
ficult to conclude which type of behavior is involved (power, logarithmic
above the peak, or a broad Debye-type) without covering a significantly
higher frequency range (many orders of magnitude). It has been suggested
by Metzler and Klafter [84] that the power-law dependence 1/�� is simply
a medium-to-low frequency approximation of the Davidson--Cole exten-
sion of the Debye-type relaxation (Section 4.3.3). They further suggest
that all types of modified (polydispersive) relaxations can be described by
a generalization of the classical exponential relaxation based on the frac-
tional Fokker--Planck equation. In this sense [75], it is thus not surprising
that the Rayleigh behavior, typical for disordered systems, is accompanied
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FIGURE 4.48 Cole--Cole plots for (a) the complex permittivity, and (b) the direct
piezoelectric coefficient, both of which apparently exhibit the power-law depen-
dence on the driving-field frequency. The permittivity was measured on a PZT
thin film and the piezoelectric data on a soft PZT ceramic. (Thin-film data courtesy
of Bharadwaja Srowthi).

FIGURE 4.49 (a) Relative direct longitudinal d33 piezoelectric coefficient, and (b)
its phase angle as a function of frequency for a soft PZT ceramic and the modified
lead-titanate (PSmT) sample.

by a dynamic, rate-dependent process characterized by a highly stretched
exponential function.

Finally, we discuss the temperature dependence of the Rayleigh-like
hysteresis, which, as we have seen, is modified by rate-dependent pro-
cesses. Figure 4.50 shows the hysteresis and nonlinearity for the permit-
tivity in a thin PZT film. Both the hysteresis and nonlinearity become
smaller with decreasing temperature. For a quasi-Rayleigh process this is
equivalent to having an �(T) that decreases with decreasing temperature.
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FIGURE 4.50 (a) Field dependence of the relative dielectric permittivity, and (b)
hystereses, at different temperatures, for a PZT thin film [126]. (Courtesy David V.
Taylor).

This change of the hysteresis may indicate evolution of the potential en-
ergy profile for domain walls with temperature. For example, it is known
that the domain-wall width increases [21] and, therefore, the pinning force
becomes weaker [141] with increasing temperature.

4.4.3 PREISACH APPROACH: PREISACH DISTRIBUTIONS AND
EFFECTS OF STATIC FIELDS ON NONLINEARITY

The first formal attempt to interpret the Rayleigh relations was developed
by Preisach [114]. As discussed elsewhere in this book and in other refer-
ences [10,75] this approach has eventually become one of the most powerful
tools to describe hysteretic phenomena in general. The Preisach model was
first applied to ferroelectric materials by Turik in the 1960s [119–121]. In
this section we shall show how this approach can be used to obtain analyt-
ical expressions of piezoelectric nonlinearity and hysteresis in cases when
the Rayleigh description is insufficient (the field dependence of the piezo-
electric coefficient is nonlinear, Eqn. (4.64)), and to describe the effects of
bias fields on piezoelectric nonlinearity and hysteresis.

In the Preisach approach, which we shall briefly present for the sake of
completeness, it is assumed that a hysteretic system contains a collection
of simple bistable units (e.g. a domain wall in a pinning field) where each
unit is characterized by two parameters: a bias (or internal) field (Fi) and
a coercive field (Fc). Each state of the unit is assumed to contribute to the
total response R by the same amount ±R0 (see Fig. 4.51).

The bias field can take any value from −∞ to +∞, while the coercive
field is defined as positive. The half-plane of possible values for Fi and Fc
is called the Preisach plane. In a given system, the bistable units exhibit a
statistical distribution of these parameters that can be characterized by the
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FIGURE 4.51 (left) Energy profile, and (right) square hysteresis of an elementary
bistable unit (from [75]). m is a generalized susceptibility.

distribution function f(Fi, Fc) defining the density of bistable units in the
plane. f(Fi, Fc) obeys the following normalization condition:

∫ ∞

0

∫ +∞

−∞
f(Fi, Fc)dFidFc = 1. (4.83)

The Preisach description holds only for a definite class of hysteretic
processes. It has been proven that the agreement of a given experimental
hysteretic system with this formalism is verified if and only if it exhibits so-
called wiping-out and congruency properties [10,75]. Both are considered
to be valid in ferroelectric materials [4,5].

The Preisach formalism is implemented as follows: let us consider
the Preisach plane for zero external field. It can be divided into three
regions (Fig. 4.52): region a, where Fi > Fc, hence a negative zero-field
state (−R0); region b, where Fc > |Fi|, hence an indefinite zero-field state,
which depends on history; and region c, where Fi < −Fc, hence a positive
zero-field state (+R0).

Once an external field, F, is applied, it acts in the same way as a ho-
mogeneous bias field. The b-region cone, Fi = F ± Fc, is thus moved
upward or downward accordingly and units crossing the limits between
the regions are, if necessary, switched to the stable state. Thus, for increas-
ing fields, the cone is shifted up and all bistable units where Fi + Fc < F
are switched to a positive state. For decreasing fields, the cone is shifted
down and all the units where Fi − Fc > F are switched to a negative state
contributing by ±2R0 to the total response. Clearly, this contribution will
depend on the number of switched units that are characterized by the dis-
tribution function, f(Fi, Fc). The Rayleigh case corresponds to a uniform
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FIGURE 4.52 State of the bistable units as a function of their position on the
Preisach plane at zero applied field (from [75]).

FIGURE 4.53 Flat Preisach distribution function corresponding to the Rayleigh
relations.

distribution function, Fig. 4.53, and associated contributions only depend
on the swept area of the Preisach plane [75].

The nonlinear part of the total response may be calculated in the fol-
lowing way [142]. For an alternating field with amplitude F0 and offset F=
(e.g. F = F=+F0 sin(�t)) the total nonlinear contributions are proportional
to the integral of the distribution function over the large triangle � defined
by the vertices (0; F= + F0), (0; F= − F0) and (F0; F=). The hysteresis equa-
tion can be obtained from the field-dependent integrals of the distribution
function over the growing gray regions (as shown in Fig. 4.54) taking into
account the sign of the applied field derivative F (i.e. considering increas-
ing or decreasing F). In the case of a uniform distribution f = const (the
Rayleigh case), the nonlinear contribution to the responseR is proportional
to the area A of the large triangle, A� = F2

0, which thus gives the linear
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FIGURE 4.54 Schematic view of the switched bistable units for an alternating ex-
ternal field without bias (F= = 0). Finc andFdec stand for increasing and decreasing
applied field F.

dependence of the general susceptibility (m = R/F0) on the amplitude of
the applied field.

For arbitrary fields, the nonlinear response can be obtained only when
the state of the units situated in the metastable cone (region b of Fig. 4.52) is
known. This is not the case when the initial state is obtained directly from
a temperature-dependent phase transition from the paraelectric phase.
However, if the sample has been prepared by applying some known field
profile, F(t), after the bistable units have appeared on cooling from the
paraelectric phase, the state line, b(Fc), representing the field history of the
sample, can be defined (see Fig. 4.55).

Turik [119–121] used this formalism to analyze the nonlinear dielectric
behavior of BaTiO3. He treatedFi as an effective field applied on a given do-
main, created by surrounding domains and free charges in the ferroelectric,
and Fc as the field at which polarization of the isolated domain switches,
without considering long-range electrostatic influence. Assuming that the
applied external electric field is homogeneous inside the ceramic, it is then
possible to introduce a function of the statistical distribution of domains
according to their coercive and internal field f(Fi, Fc). At weak fields (at
small Fi and Fc), f(Fi, Fc)may be expanded in a MacLaurin series, which is
symmetrical with respect to Fi [119]:

f(Fi, Fc) = f0 + gFc + hF2
c + kF2

i + · · · · (4.84)

At high fields, Eqn. (4.84) may be considered as an approximation.
In the case of ferroelectrics, the distribution function f(Fi, Fc) may change
with time at large fields (as depolarization occurs, for example), and from
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FIGURE 4.55 Definition of the state line b(Fc) as a function of the field history
since the application of a negative infinite field and subsequent series of local-field
extrema (from [75]).

experiments one can determine f(Fi, Fc) not in its initial state but at its
settled state, which depends on the amplitude of the alternating voltage.
At weak fields, typically in the Rayleigh range, where f(Fi, Fc) ≈ f0, such
problems do not arise, and f(Fi, Fc) permits description of both the initial
and the final state of the ceramic. Assuming that the distribution function
described in Eqn. (4.84) is valid for the dielectric and piezoelectric effects, it
is possible to obtain expressions for the descending and ascending branches
of the dielectric or piezoelectric hysteresis. Some examples of how this is
done as well as the limitations of function (4.84) will be discussed later in
this section.

In the case when an external bias field F= and an alternating field
with amplitude F0 are applied simultaneously on a ferroelectric ceramic
along the direction of remnant polarization, the region of the Preisach plane
within which reorientation of 180◦ and/or non-180◦ domains causes an ir-
reversible contribution to the general susceptibility has a triangular shape,
as shown in Fig. 4.56. This region is called the ‘working range’ area. An
increase in F0 leads to an increase of the ‘working range’, and causes a
monotonous increase in contributions of local domain switching to the
general susceptibility.

In the case of the piezoelectric effect in tetragonal materials where only
90◦ domain walls contribute to the response, and to reduce the problem
to the scalar form of the Preisach formalism, we assume that two-thirds
of the total number of domains can switch in the direction of the applied
field (the equivalent of 90◦ domain-wall movement). Then, according to
Fig. 4.56, the following result for the increasing (R+) and decreasing (R−)
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FIGURE 4.56 Portion of the Preisach plane reoriented by a field of amplitude F0
and offset (bias) F=.

branches of the hysteresis can be derived (see above and [119,143]) using
the totally switched-down state as the reference:

R−(F) = Rm − 4R0

3

∫ (F=+F0−F)/2

0

∫ F=+F0−Fc

F+Fc
f(Fi, Fc)dFidFc, (4.85)

R+(F) = 4R0

3

∫ (−F=+F0+F)/2

0

∫ F−Fc

F=−F0+Fc
f(Fi, Fc)dFidFc, (4.86)

with

Rm(F) = 4R0

3

∫ F0

0

∫ F=+F0−Fc

F=−F0+Fc
f(Fi, Fc)dFidFc. (4.87)

Rm corresponds to the total nonlinear contribution, which depends on the
amplitude of the alternating pressure F0 applied simultaneously with the
constant bias field F=. The above formulas are valid for any distribution
function, for instance, they describe effectively the observed Rayleigh hys-
teresis in the case of lead zirconate titanate for f(Fi, Fc) = f0. With the
help of Eqns (4.85)--(4.87), it is possible to determine the equation of the
final hysteresis corresponding to the distribution function f(Fi, Fc). For the
distribution function f(Fi, Fc) of Eqn. (4.84), the Rm is given by:

Rm = 4R0

3
F2

0

(
f0 + g

3
F0 + 1

6
(h+ k)F2

0 + kF2= + · · ·
)
, (4.88)

which finally corresponds to the following contribution to the piezoelectric
coefficient:

�d33(F0, F=) = Rm
2F0

= 2R0

3
F0

[
f0 + g

3
F0 + 1

6
(h+ k)F2

0 + kF2= + ...
]
. (4.89)
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FIGURE 4.57 Various types of d33 dependences on the amplitude of the applied
stress: (a) Nb-doped Bi4Ti3O12, (b) Pb(Zr0.53,Ti0.47)O3, (c) Sm-doped PbTiO3
(PSmT), and (d) 0.95Bi4Ti3O12-0.05Bi3TiNbO9 ceramics. Dots represent experi-
mental data, solid lines stand for Preisach-based fittings and the dashed line in
(d) was plotted to guide the eye along experimental values. (Courtesy Gilles
Robert).

We next examine several typical experimental examples of the non-
linearity of the direct piezoelectric coefficient and discuss it in terms of
the formalism developed above by using, in particular, Eqns (4.84) and
(4.89). Hence, stress � and charge displacement D will be equivalent to
the field F and response R, respectively. Note that for direct piezoelectric
measurements the sample is always in compression and hence the applied
bias stress �= is always greater than the applied amplitude �0; the swept
area is thus situated in one quadrant only of the Preisach plane (as shown
in Fig. 4.56).

The dependence of the piezoelectric coefficient on the field amplitude,
d33(�0), manifests itself qualitatively differently for piezoelectrics with
different ease of domain-wall motion. Various types of experimentally
observed dependences are illustrated in Fig. 4.57.

In the first approximation, the distribution of domains with respect to
�c and �i may be considered as uniform, i.e. f(Fi, Fc) ≈ f0. In this case
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no noticeable deviation of d33(�0) from the linear dependence would be
observed over a limited driving-field range. This yields the Rayleigh law
valid in the case of small stress amplitudes or for materials containing very
homogeneously distributed defects, as shown for Bi4Ti3O12 in Fig. 4.57(a).

In materials with high piezoelectric properties, such as soft PZT and
relaxor--ferroelectric ceramics, the defects appear not to be uniformly dis-
tributed. In these materials, �c and �i are small, i.e. the mobile domain
walls are concentrated near the origin of the Preisach coordinate system.
As �0 increases, regions with lower distribution densities are involved
in the reorientation process. The associated distribution function is then
given by:

f(�i,�c) ≈ f0 + g�c + · · · < f0(g < 0), (4.90)

leading to a decrease in the rate of increase of d33 with �0. The field de-
pendence of the piezoelectric coefficient thus becomes nonlinear, deviating
more and more from the Rayleigh law, as illustrated in Fig. 4.57(b) for lead
zirconate titanate at the morphotropic phase boundary. Note that if the
distribution function is given by the two explicitly written terms in Eqn.
(4.90), a quadratic dependence of the piezoelectric coefficient is expected
from Eqn. (4.89). Indeed, the fitted second-order polynomial in Fig. 4.57(b)
shows very good agreement with the experimental data.

This deviation from the linear dependence of d33(�0) can even lead
to a quasi-saturation of the nonlinear contribution (see Fig. 4.58) as the
swept area reaches Preisach plane regions where the number of contribut-
ing units goes to zero. This saturation can be reached both in very soft
materials where most of the domain walls are situated close to the origin
of the Preisach plane and in hard materials where very few domains may
be mobile with the exception of some units close to the origin (the case
illustrated in Fig. 4.58). If higher driving fields are considered, additional
terms need to be added to Eqn. (4.84). Some very hard ceramics may be
characterized with an almost complete absence of mobile domains in the
region of small �i and �c. This leads to the absence of or to a very weak
d33(�0) dependence as shown in Fig. 4.57(c) for samarium-doped lead
titanate.

The threshold field, i.e. the quasi-constant d33(�0) at small �0, can
be interpreted in the Preisach formalism as a depletion of moving domain
walls close to the (0;�=) point of the Preisach plane leading to no extrinsic
contributions at low �0. The threshold field can then be seen as the stress
corresponding to the presence of mobile domain walls having �c or �i

close to the value of the applied field. In this case the distribution function
may look like:

f(�i,�c) = g�c + · · · (g > 0). (4.91)
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FIGURE 4.58 Dependence of d33 on amplitude of the applied stress for
Pb(Zr0.40,Ti0.60)O3 ceramic. (Courtesy Gilles Robert).

The corresponding d33(�0) dependence may be close to what is displayed
in Fig. 4.57(d) for 0.95Bi4Ti3O12-0.05Bi3TiNbO9. Clearly, description of a
material exhibiting a threshold field accompanied by subsequent quadratic
behavior of the piezoelectric coefficient would require more terms in the
expansion of Eqn. (4.84).

The developed Preisach formalism can also be applied to describe the
dependence of the piezoelectric coefficient on bias stress d33(�=). First
of all, it should be noted that the triangular ‘working range’ in Fig. 4.56
displaces to the region of larger internal stresses �i as �= increases. This
requires the use of a larger number of terms in the expansion of Eqn. (4.84).
Only the minimal number of terms that takes into account dependence
of the electromechanical hysteresis loop and piezoelectric coefficient on
�i is indicated in Eqn. (4.84). A typical bias stress dependence of the
piezoelectric nonlinearity in tetragonal lead zirconate titanate is shown in
Fig. 4.59.

For a qualitative interpretation of d33(�0,�=) dependence presented
in Fig. 4.59, it is sufficient to assume that in Eqn. (4.89) coefficient k < 0,
i.e. the number of mobile domain walls decreases as �= increases. This
means that an increase in �= displaces the ‘working range’ in regions of the
Preisach plane where there are less switchable units per swept area. In such
a simple case, the d33(�0) dependence is preserved, and relative decrease
of d33 with �= is proportional to �0. The data displayed in Fig. 4.59 indeed
show this decrease of nonlinear contributions to d33 with increasing bias
stress �=. However, the comparison of the theoretical results presented
in Eqns (4.84) and (4.89) with experimental data from Fig. 4.59 shows
that, for a quantitative description (especially the saturating behavior at
low bias stress), it is necessary to increase the number of terms in the
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FIGURE 4.59 Dependence of the nonlinear behavior of the piezoelectric d33 co-
efficient for Pb(Zr0.40,Ti0.60)O3 on bias stress �=. Note that there is no depoling
of the sample as �= is changed. (Courtesy Gilles Robert).

expansion f(�i,�c) or to invoke a more rigorous method of determining
f(�i,�c) from the piezoelectric hysteresis loop. This quantitative point
is treated below, closely following the discussion presented in [144–146],
where additional details may be found.

In practice, a commonly observed nonlinearity of the piezoelectric co-
efficient nonlinearity is of the quadratic type illustrated in Fig. 4.60 (see,
e.g. [57,105,107]). Hence, in the following, the emphasis will be put on
the description of such nonlinearity and associated hysteresis loops. The
Preisach distribution function that yields a quadratic dependence on the
field amplitude is given by Eqn. (4.90). However, this function can only
be considered as a local approximation, as any distribution function valid
for the whole Preisach plane has to satisfy the normalization criteria (4.83),
which is not the case for Eqn. (4.90). It is, perhaps, instructive to follow
the reasoning [144,146] behind developing an expression for the Preisach
distribution, the field dependence of the piezoelectric coefficient and asso-
ciated hysteresis for this particular case of the quadratic field dependence
of the direct longitudinal piezoelectric coefficient, which can then be gen-
eralized for more complex cases and general susceptibilities.

Thus, looking for the quadratic field dependence of d33 in the form:

d33(�0) = dinit + ��0 + ��2
0, (4.92)
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FIGURE 4.60 Dependence of d33 piezoelectric coefficient on stress amplitude, �0
for a rhombohedral PZT. The solid line represents a quadratic fit to the data points.
(Courtesy Gilles Robert).

and using the method described above to compute the domain-wall con-
tribution �d33, Eqn. (4.89), to the piezoelectric coefficient, it was found that
the following distribution function is adequate:

f(�i,�c) = f0 + g�c + k |�i|. (4.93)

This distribution function is presented in Fig. 4.61 for negative values of
g and k parameters necessary to comply with the normalization criteria.
This nonanalytical form can be seen as a first-order linear approximation
of any distribution function symmetrical with respect to internal field. The
quadratic dependence on internal field was not chosen in Eqn. (4.93) be-
cause the nonlinearity associated with such an expression leads to cubic-
field dependence of the piezoelectric coefficient.

The corresponding contribution to the piezoelectric response for a
purely alternative field (bias field, �= = 0) is given by:

�d33(�0) ∝ f0�0 + 1
3
(g + k)�2

0, (4.94)

and by:

�d33(�0,�=) ∝ (f0 + k�=)�0 + 1
3
g�2

0, (4.95)

in the presence of a strong bias field �= > �0, which is always the case
in direct piezoelectric measurements. The fact that the second-order non-
linear coefficient is independent of bias field may be used to validate the
proposed expression. Details of the experimental procedure can be found
in [144,145].
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FIGURE 4.61 Roof-like distribution function based on Eqn. (4.93). The maximum
of this distribution is situated at the Preisach plane origin. Intersections of the dis-
tribution function with Fi and Fc axes correspond to ±f0/k and −f0/g, respectively.
(Courtesy Gilles Robert).

Typical dependence of d33(�0) on the bias stress �= is shown in Fig.
4.62. The obtained curves exhibit a quadratic behavior typical for measure-
ments at high stress amplitudes. After fitting these curves with Eqn. (4.92),
the intrinsic and reversible contributions are found to be independent of
�= with d0 ≈ 139 pC/N. The nonlinear parameters � and � are plotted in
Fig. 4.63 as a function the bias stress.

The dependence of � on the bias stress is close to linear as expected
from Eqn. (4.95). However, note that the verification is valid only for the
limited range of tested bias stresses (from 3 to 4 MPa), outside this range
the distribution function may very well have another shape than what is
proposed. In particular, observations of threshold fields and diverging
behavior of the piezoelectric coefficient in converse measurements [105]
might indicate the existence of a depression (and not a maximum as in
our expression) close to the origin of the Preisach plane. Concerning the
nonlinear parameter �, Fig. 4.63(b) shows that it is clearly not independent
of bias stress, contrary to what would be expected from Eqn. (4.95). This
means that the proposed distribution function in Eqn. (4.93) is not accurate
enough for the description of the effective bistable unit distribution. Actu-
ally, the quadratic nonlinear parameter, �, depends almost linearly on the
bias stress. Hence, the formula of the proposed distribution function has
to be refined in order to reflect this bias stress dependence. Therefore, an
extension consisting of a crossed nonanalytical term may be considered:

f(�i,�c) = f0 + g�c + k |�i| + j�c |�i|. (4.96)
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FIGURE 4.62 Dependence of the nonlinearity of the piezoelectric coefficient, d33,
on bias stress, �=, for a rhombohedral PZT 60/40 ceramic at high stress ampli-
tudes, �0. The solid lines were obtained by fitting the experimental points with
Eqn. (4.92). The arrow indicates growing values of bias stress in absolute value.
(Courtesy Gilles Robert).

FIGURE 4.63 (a) Bias stress, �=, dependence of the nonlinear parameter, �, for
the PZT 60/40 in Fig. 4.62. (b) Bias stress, �=, dependence of the quadratic
nonlinear parameter, �, for the PZT 60/40. The dashed lines represent linear fits to
the experimental data points. (Courtesy Gilles Robert).

Its associated piezoelectric stress dependence for �= > �0 is given by:

�d33 ∝ (f0 + k�=)�0 + 1
3
(g + j�=)�2

0. (4.97)



4.4 PIEZOELECTRIC AND DIELECTRIC HYSTERESIS IN NONLINEAR 423

FIGURE 4.64 Schematic view of the corrected roof-like distribution with the extra
�i−�c coupled term. The maximum of this distribution is situated at the Preisach
plane origin. Note that the introduced coupled term causes a curving of both side
planes. Intersections of the distribution functions with �i and �c correspond to
±f0/k and −f0/g, respectively. (Courtesy Gilles Robert).

Equation (4.97) correctly accounts for the experimentally observed bias
stress dependences of the nonlinear parameters � and �. The crossed term
j�c |�i| expresses accurately the dependence on bias stress of the � coeffi-
cient without interfering with the other stress dependences. The proposed
distribution function (4.96) can be fully characterized with the data pre-
sented in Fig. 4.63. The dependence of � on the bias stress will yield
effective f0 and k, while the dependence of � on bias stress will lead to
the effective g and j parameters. The sign of the j coefficient being clearly
positive, as may be concluded from Fig. 4.63(b), the distribution function
can be plotted considering negative g and k, as shown in Fig. 4.64. This
corrected roof-like distribution exhibits an intermediate topography be-
tween the original shape (Fig. 4.61) and a conical distribution. Moreover,
it is physically more probable as there is no reason for assuming linear
traces in the f(�i,�c) = 0. The maximum of this distribution is situated at
the Preisach plane origin. Note that the introduced coupled term causes a
curving of both side planes.

The distribution-function parameters were extracted above from the
bias stress dependence of the nonlinear piezoelectric coefficient. There is
another way to obtain those parameters since, in the Preisach formalism,
the loop expression is associated with the distribution function. If fitting
the experimental hysteresis with such an expression is possible, it should
give the corresponding distribution function parameters. The equation of
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the loop corresponding to the corrected roof distribution-function (Eqn.
(4.96)) was calculated using Eqns (4.85)--(4.87), resulting in the following
expression for the loop:

D= −k�3
0

4
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where + stands for the decreasing and−for the increasing field. A typical
hysteresis fitted with this function with the addition of the rate-dependent
term (Section 4.4.1.2) is presented in Fig. 4.65. As usual, the hysteresis is
plotted taking that the field is equal to � = �0 sin(�t), whereas the actual
driving field is always compressive � = �= + �0 sin(�t)(�= > �0).

The agreement of the experimental and calculated loop is very good.
The same parameters can be used to generate the d33(�0) for a given bias
stress, and, as shown in [144], excellent agreement is again found. Quanti-
tatively, the fitted parameters vary slightly with the stress level, especially
at low �0, because of the decreasing nonlinear character of the loops. For
high enough amplitudes (i.e. �0 > 0.8 MPa), their values were somewhat
dispersed but can be considered to be constant, as discussed in detail in
[144].

Note that the asymmetrical shape of the loop (observable by the differ-
ent points at which the loop crosses the axes) is very well described by the
model. This asymmetry and related even harmonics in the Fourier expan-
sion of Eqn. (4.98), appear naturally in the model, that is, their description
does not require special assumptions as are sometimes made in the litera-
ture [59]. As discussed earlier in this section, a true Rayleigh loop, which
corresponds to a perfectly random potential, contains only odd harmonics,
all of which are out of phase with the driving field. The loop given by Eqn.
(4.98) contains 1st, 2nd, 3rd, 4th,6th, 8th, ... harmonics in phase with the
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FIGURE 4.65 Example of charge density--pressure hystersis loop for the PZT
60/40 sample, fitted with Eqn. (4.98) and a viscous term. Values of D and �
where the loop intersects the axes are indicated to illustrate asymmetry of the loop.
(Courtesy Gilles Robert).

sinusoidal driving field (i.e. sin(n�t) terms), and 1st, 2nd, 3rd, 4th, 5th, 7th,
9th ... harmonics out-of-phase with the field (cos(n�t) terms). Neverthe-
less, the hysteresis and nonlinearity can be considered as quasi-Rayleigh,
since the nonlinearity can be calculated from the hysteresis and vice versa.

4.4.4 REDUCTION OF PIEZOELECTRIC HYSTERESIS IN
FERROELECTRIC MATERIALS

Dielectric, ferroelectric, piezoelectric and elastic hystereses are undesired
in nearly all applications. The control of electromechanical hystereses is
thus of a considerable practical, but also fundamental, interest, because
it can be used as a rather sensitive verification tool for theoretical models
of hysteresis. The methods for hysteresis reduction include modification
of the ferroelectric material with suitable dopants, choice of the driving
signal, domain-structure engineering, and control of the response using
open or closed loop control.

Hysteresis and nonlinearity in ferroelectric materials can be efficiently
reduced by suitable chemical and microstructural modifications of the ma-
terial. Electromechanical hysteresis in ferroelectrics is mostly caused by the
irreversible displacement of domain walls. Thus, an intervention aimed
at reducing the hysteresis is usually focused on inhibiting domain-wall
motion. Because the domain walls in ferroelectrics are relatively thin (Sec-
tion 4.2.4), they can be pinned by point (atomic) defects or charged species
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FIGURE 4.66 Left: the pressure, and right: frequency dependence, of d33 in a hard
(Pb(Zr0.58Ti0.42)0.99Fe0.01O3−0.005) and a soft (Pb0.99(Zr0.58Ti0.42)0.99Nb0.01O3)
ceramic. (Courtesy Maxim Morozov and Grégory Tornare).

such as electrons, which may diffuse into charged domain walls [147–
152]. Other pinning mechanisms are associated with the fields created
inside grains by electrical [153] and/or elastic dipole defects [154]. Move-
ment of domain walls can also be inhibited by imperfections at the grain
boundaries, and dislocations, or could be related to the grain-size-induced
internal stresses [39,155,156].

The best-known method for hysteresis control in ferroelectric materi-
als is by chemically modifying a material to render it ‘soft’ or ‘hard’. These
terms, borrowed, like the term ferroelectricity itself, from the field of mag-
netics, have not the same physical origin as their ferromagnetic counter-
parts. In ferroelectrics, the same base material, PZT, can be made either
hard or soft by adding suitable dopants in concentrations on the order of
1%at. In perovskite materials, in general, the donor dopants (e.g. Nb+5

on (Zr,Ti) sites) lead to so-called ‘soft’ materials (high compliance, permit-
tivity and piezoelectric coefficients) accompanied by strong hysteresis and
nonlinearity, Fig. 4.66. Acceptor dopants (e.g. Fe+3 on (Zr,Ti) sites) lead
to ‘hard’ materials with low values of coefficients but reduced hysteresis,
nonlinearity and frequency dispersion, Fig. 4.66. The soft and hard PZT
are the best-known examples of how materials engineering may be used
in reducing the electromechanical hysteresis [28]. Effects of softening and
hardening on ferroelectric hystersis and nonlinearity will be discussed in
more detail in Section 4.5. Interestingly, while the origins of hardening
are reasonably well understood, the reasons why PZT becomes soft with
respect to the pure composition are not well understood, even after more
than 50 years of intensive studies of this material [44].
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FIGURE 4.67 Left: longitudinal direct piezoelectric d33 coefficient for coarse-
grained (Bi4Ti3O12)0.95(Bi3TiNbO9)0.05 (filled circles), fine-grained (Bi4Ti3
O12)0.95(Bi3TiNbO9)0.05 (empty circles), and (Bi4Ti3O12)0.80(Bi3TiNbO9)0.20
ceramics (diamonds). Right: the charge versus pressure hysteresis for coarse-
grained (Bi4Ti3O12)0.95(Bi3TiNbO9)0.05 (broken line), fine-grained (Bi4Ti3
O12)0.95(Bi3TiNbO9)0.05 (thick line), and (Bi4Ti3O12)0.80(Bi3TiNbO9)0.20 ceram-
ics (thin line). For figure clarity, the charge for (Bi4Ti3O12)0.80(Bi3TiNbO9)0.20 is
reduced by a factor of five. (Courtesy Fan Chu).

It is widely accepted that the hardening and hysteresis inhibition in
acceptor-doped PZT is related to apparent internal electric fields created
by the presence of electrical dipoles. It has been suggested recently that in
layer-structure ferroelectrics, the piezoelectric hysteresis may be reduced,
Fig. 4.67, by introducing elastic defects into the crystal structures in the
form of stacking faults [154].

Hystereses shown in Figs 4.1(b) and 4.2 relate piezoelectrically induced
charge and pressure, and strain and electric field. If one chooses other sets
of variables, hysteretic response may, in general, change. Figure 4.68(a)
shows hysteretic transverse strain (corresponds to d31 coefficient) in a soft
PZT ceramic as a function of the subswitching field. When the same data
are plotted as a function of polarization, which was measured as a function
of the field under the same conditions as the strain, one obtains a nonhys-
teretic response. The strain--field relationship is related to the d coefficient
(Eqn. (4.4)), whereas the strain--polarization relationship is related to the
g coefficient, Eqn. (B16). Since d = ��g (Eqn. (4.B18)), it follows that the
hysteresis in the piezoelectric strain--field response (d coefficient) has its
origin in processes that contribute to both the strain and the polarization.
This is the case, for example, when non-180◦ domain walls move at weak
fields [157]. Their displacement will contribute to both the permittivity
and the strain. Under alternating fields, the displacement of 180◦ walls
contributes directly only to the polarization, not to the piezoelectric strain
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(except through the poling process). The important assumption here is
that in poled ceramics the residual 180◦ domain walls are too few and do
not contribute significantly to the material response. Thus, any hysteresis
from the moving non-180◦ domain walls in the polarization--field relation-
ship will reflect itself in the strain--field relationship, and consequently, the
strain--polarization relation will be anhysteretic. The hysteresis at switch-
ing fields may be explained by the additional contribution from the switch-
ing of 180◦ domain walls, which are now created and removed periodically
during the switching cycle. In this case, the strain--polarization relation-
ship becomes hysteretic, Fig. 4.68(b), since the polarization is controlled
by two hysteretic mechanisms, one (180◦ domain-wall displacement) that
contributes only to the polarization and the other (non-180◦ domain-wall
displacement) that affects strain and polarization, whereas the strain is still
controlled only by displacement of non-180◦ walls.

The fact that the strain--polarization relationship is nonhysteretic at
weak fields has been exploited in piezoelectric actuators. However, the
charge drive is much more complex to realize than the field drive [54], and
this way of minimizing the piezoelectric hysteresis is not widely used.

The third approach for hysteresis and nonlinearity control is by
engineering the domain structure in such a way that the only domains
present are those whose displacement does not contribute to the strain.
This method has been recently successfully used in obtaining exceptio-
nally large, hysteresis-free piezoelectric response in complex relaxor--
ferroelectric solid solutions (e.g. Pb(Mn1/3Nb2/3)O3-PbTiO3, Pb(Zn1/3
Nb2/3)O3-PbTiO3). It has been recognized recently that many perovskite
crystals exhibit enhanced piezoelectric properties when measured along
nonpolar directions [104,158–163]. In a tetragonal ferroelectric perovskite,
the spontaneous polarization is oriented along the [001] direction, whereas
in a rhombohedral crystal it lies along the [111] cubic direction, Fig. 4.4.
If certain conditions are satisfied [164], the largest longitudinal piezoelec-
tric response is observed approximately along the [111] cubic direction in
tetragonal crystals, and along the [001] pseudocubic direction in rhom-
bohedral crystals, Fig. 4.69(a). The reason for this enhancement of the
piezoelectric response along nonpolar directions is that the large shear
piezoelectric coefficient contributes to all transverse and longitudinal co-
efficients when measured along a general, nonpolar direction. The large
shear piezoelectric effect is closely related to the presence of phase transi-
tions in the crystal [165]. Since it is usually difficult to cut a monodomain
crystal along a nonpolar direction and preserve its monodomain state, crys-
tals are poled after cutting. When a crystal, cut along a nonpolar direc-
tion, is poled, it necessarily develops multidomain structures, so-called
‘engineered domain states’. In the particular case of the tetragonal and
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FIGURE 4.68 Polarization--electric field, strain--electric field, and strain--
polarization hystereses in a soft PZT ceramic at (a) weak, and (b) switching fields.
(From [59] (with kind permissions of L.E. Cross and Susann Brailey of the American
Institute of Physics)).

rhombohedral perovskite crystals cut and poled along [111] and [001] pseu-
docubic axes, the domain structure has the configuration shown in Fig.
4.69(b). The domain walls are ferroelastic but their switching will not
contribute to the strain, since, in this configuration, their displacement (re-
versal) preserves the shape of the crystal. Indeed, the strain--electric field
relationship for such a domain structure is anhysteretic, Fig. 4.70, and, in
the case of the relaxor--ferroelectrics, the generated strain is several times
larger than in classical PZT-based materials.
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FIGURE 4.69 (a) Dependence of the longitudinal d33 piezoelectric coefficient on
crystal orientation for a crystal belonging to point group 3m, such as rhombohedral
Pb(Zn1/2Nb2/3)O3-PbTiO3. (b) The four domain states in such a crystal poled
along pseudocubic [001] direction.

FIGURE 4.70 Nonhysteretic longitudinal piezoelectric strain measured at 0.1 Hz
in a 0.67 Pb(Mg1/2Nb2/3)O3 − 0.33PbTiO3 crystal poled along the pseudocubic
[001] direction. (Courtesy Matthew Davis).

The hysteresis reduction can also be realized by adjusting the input of
the piezoelectric actuator by open (without feedback) or closed (with feed-
back) loop control of the input signal. In the open-loop case, a model of the
actuator’s input--output relation is assumed. To obtain the desired linear
and nonhysteretic output, the actuator’s controller maintains an inverse
map of the uncorrected output, as shown schematically in Fig. 4.71.

The new input signal is calculated from the model. Using this
approach, an impressive improvement of the actuator output could be
obtained by simultaneously controlling creep and hysteresis [166]. It is
interesting to note that, since in principle the hysteresis phenomena can
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FIGURE 4.71 Inverse control process for piezoelectric actuator after Janocha and
Kuhnen [167]: (a) inverse control signal x versus the given control signal y; (b)
output signal y versus the inverse control signal x; (c) output signal y versus the
given control signal y.

be mathematically reduced to a limited number of classes, a mathematical
model can always be found to describe a particular case of the hysteresis.
This means that, over a limited range of fields or frequencies, even a phys-
ically inaccurate model can give a quantitatively satisfactory description
of the actuator output.

The closed-loop systems include one or more sensors that measure
the actual output of the actuator. The signal from the sensors is analyzed
and input adjusted using an appropriate model to give the desired out-
put. Systems with a feedback circuit give, in general, better control of
the actuator output with a smaller error between expected and actual re-
sponse than systems without feedback. The open-loop systems have an
additional disadvantage because they have to be calibrated for aging in the
actuator, whereas the closed-loop systems will self-adjust. In both closed-
and open-loop cases the number of calculations to achieve an optimal re-
sult may be large (sometimes in thousands) [4,5], somewhat limiting these
‘smart’ systems to operation at a maximum of several hundred Hz to low
kHz ranges. A typical application is in piezoelectric scanners for atomic
force microscopes [167].

4.5 FERROELECTRIC HYSTERESIS

The ferroelectric (polarization--electric field) hysteresis, Fig. 4.6, is a defin-
ing property of ferroelectric materials (Section 4.2.3). In the last fifteen years
it has become a subject of intensive studies due to potential applications
of ferroelectric thin films in nonvolatile memories [168]. In ferroelectric
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FIGURE 4.72 Illustration of polarization fatigue in a PZT thin film. (Courtesy
Enrico L. Colla).

memories the information is stored as positive or negative remanent polar-
ization state. Thus, the most widely studied characteristics of ferroelectric
hysteresis were those of interest for this particular application: the value of
the switchable polarization (the difference between the positive and nega-
tive remanent polarization, PR − (−PR)), dependence of the coercive field
Ec on sample thickness, decrease of remanent or switchable polarization
with number of switching cycles (so-called polarization fatigue, Fig. 4.72),
polarization imprint, endurance, and retention. The processes that con-
trol hysteresis properties and its switching characteristics are still not well
understood, partly because the switching involves many mechanisms and
depends on the nature of the ferroelectric material itself, types of electrodes
used, thickness of the ferroelectric, temperature, field profile, number of
field cycles, and many other parameters [168–171]. For example, fatigue
characteristics of ferroelectric films of PZT can be greatly improved by
choosing a different type of electrode [172].

The very process of switching has been for many years considered
mostly in the framework of the Kolgomorov--Avrami--Ishibashi (KAI)
model [173,174]. In this model, the switching is controlled by the nu-
cleation and growth of reversed domains, Fig. 4.73. The model has been
experimentally successfully verified in single crystals. Only recently [26]
has it been shown that this model cannot explain switching in ferroelectric
thin films (< 1�m thick), where it was found that the switching is controlled
primarily by the nucleation of reversed domains. The difference between
the two cases is that in the KAI model the switching current as a function of
time can be well fitted with a function that develops within one or two time
decades; in thin films, the switching current evolves over a much broader
time interval [175], basically indicating independent switching of many
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FIGURE 4.73 Schematic representation of switching process: (a) Kolgo-
morov--Avrami--Ishibashi model of nucleation and sideways motion of domains
with oppositely oriented polarization, and (b) switching controlled by nucleation
at many regions with broadly dispersed nucleation probabilities. (After [26]).

regions of the film, with different nucleation probabilities [26], Fig. 4.73(b).
Interestingly, the latter mechanism reduces to KAI at low temperatures
[176]. It thus appears that in polycrystalline materials the hystereses at
both switching and subswitching fields (see Section 4.4.1) are controlled
by processes that evolve over extremely broad time scales. Even though
the physical origins of the weak field (e.g. Rayleigh-like) and switching
hystereses are different, these results suggest an important role of disorder
in the origins of the hysteresis in ferroelectric materials.

We shall illustrate on a few selected samples how the study of ferro-
electric hysteresis (under both switching and subswitching fields) can be an
important source of information on the various processes and conditions
present in a ferroelectric material.

4.5.1 TILTED HYSTERESIS

The tilt of the loops, Fig. 4.74, can be explained by the presence of a di-
electric layer on the top of the ferroelectric [177,178]. This layer, which
has a lower dielectric constant than the ferroelectric material, separates
the bound charges that are due to the ferroelectric polarization from the
compensating charges on the electrodes. Because of the incompletely com-
pensated polarization charge, a field, called the depolarizing field, will
develop across the ferroelectric, even if the top and bottom electrodes are
shorted.

The depolarizing field is given by Ed = −Pd/(�dt) where d and �d are
the thickness and permittivity of the dielectric layer, and P and t are the
polarization and thickness of the ferroelectric layer [177]. It can be shown
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FIGURE 4.74 Comparison of ferroelectric hysteresis loops for two (111)-oriented
sol-gel Pb(Zr0.45Ti0.55)O3 thin films with different thicknesses. The tilted loop
(solid line) is observed in the thinner film that contains a dielectric pyrochlore
layer. (Film data: courtesy of D.V. Taylor).

that for d << t, the total field Ef across the ferroelectric is given by [177–
180]:

Ef = E− Pd

�dt
, (4.99)

where E is the applied field. The tilt of the loop, defined here as the slope
of the measured loop at coercive field Ec, may be found from (4.99) as:

(
�E
�P

)
EC

−
(

�Ef
�P

)
EC

= d

�dt
. (4.100)

Since, for the perfectly square loop of the ferroelectric layer, (�P/�Ef )EC →
∞, it follows that the slope of the measured loop (�E/�P)EC is equal to
d/(�dt), i.e. the loop becomes more tilted as the d/t ratio increases. The
tilt of the loops can thus be taken as an indication of the presence of a low
dielectric-constant (‘passive’) layer in series with the ferroelectric.

4.5.2 HYSTERESIS AND NONLINEARITY IN HARD AND SOFT
FERROELECTRICS

As already briefly discussed in Section 4.4.4, the concepts of hardening
and softening in ferroelectric materials are not well understood. On a
descriptive level, the hard materials possess lower susceptibilities (d, �, s),
conductivity and nonlinearity, while the opposite is the case for the soft
compositions [28]. Hardening and softening may be achieved by doping
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the same base materials, e.g. PZT, by suitable dopants. As illustrated in
Fig. 4.75, it is possible to continuously change the character of the material
from hard to soft by changing the concentration and nature of the dopants.
In practice, commercial soft and hard materials are not produced from the
same base composition, so their differences cannot be attributed solely to
the presence of the dopants, but also to the crystal structure, value of the
transition temperature, and other parameters.

When a ferroelectric is doped with an acceptor dopant (a lower valence
than the host atom, e.g. Fe+3 or Fe+2 on Ti+4 sites in PZT or BaTiO3), a
positively charged oxygen vacancy, V+2

O , is created, which neutralizes the
effective negative charge introduced by the acceptor dopant, Fe−1

Ti or Fe−2
Ti ,

Fig. 4.76(a). The number of oxygen vacancies depends on the acceptor
charge. In soft materials, replacement of Ti+4 with donors, such as Nb+5,
brings in additional electrons or creates lead vacancies,V−2

Pb , as the charge-
compensating defect. The electric dipoles are thus created between the
aliovalent substition and the associated vacancy [153,181]. Because of the
difference in size among the host and atoms and dopants on one side and
oxygen anions and empty oxygen sites on the other side, these dipoles will
at the same time behave as elastic dipoles. For simplicity, in the rest of the
text we shall mainly be concerned with the electrical nature of the defects.

At present, the most widely accepted explanation of the hardening
mechanism in ferroelectric ceramics is the following [153,181]. In the cu-
bic phase, the dipoles in a ceramic are randomly oriented. In a regular
perovskite, in which oxygen octahedra are not tilted, the dipoles within
an individual grain may lie along any one of the six equivalent 〈100〉 di-
rections that are defined by the positions of Ti and O ions (see Fig. 4.4).
When the sample is cooled through the paralelectric--ferroelectric phase
transition, the onset of spontaneous polarization and strain will tend to
reorient defect dipoles along the polarization direction, Fig. 4.77, in order
to reduce their potential energy.2 The polarization direction on each side
of a domain wall is fixed by the presence of defects, and the walls become
more difficult to move [1,153]. Thus the ceramic becomes hard for both the
large (global switching) and weak (subswitching) fields.

Preferential orientation of the defect dipoles is seen experimentally
as the presence of an effective internal bias field in the sample. If the
ceramic is polarized at a high temperature (but below Tc), and by fields
sufficiently high to reorient dipoles and domains, the whole hysteresis
loop, when measured by an alternating external field applied along the

2It is arbitrarily chosen that the dipoles are oriented in the same sense as the ferroelectric
polarization of the neighboring unit cells.
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FIGURE 4.75 Polarization--electric field loops at (a) switching, and (b) subswitch-
ing fields, for rhombohedral Pb(Zr0.58Ti0.42)O3 ceramics with different concentra-
tions of Fe and Nb dopants. Hardness decreases and softness of ceramics increases
from the top to the bottom. Vertical scales for all loops are the same and are indi-
cated for the sample with highest Nb concentration. (Courtesy Maxim Morozov).
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FIGURE 4.76 Illustration of defect dipoles created by an acceptor dopant in (a)
tetragonal, and (b) rhombohedral unit cell of a perovskite crystal.

FIGURE 4.77 Schematic representation of defect dipoles in the paraelectric cubic
and the ferroelectric tetragonal phases of a perovskite crystal. For simplicity only
180◦ walls are indicated. Defect dipoles are presented by small black arrows, and
polarization within domains with large gray arrows. The defect dipoles will align
with polarization, and the sense of orientation is taken arbitrarily to be the same
as that of polarization within the domain.

polar axis, appears to be shifted along the field axis, Fig. 4.78 (left). This
shift reveals the presence of an apparent internal (bias) field that originates
from the alignment of the dipoles (or another mechanism, see later in this
section) along the macroscopic polarization direction. In unpoled ceramics,
orientation of dipoles along each side of every domain wall will lead to so-
called constricted or pinched loops, Fig. 4.78 (right). The pinching appears
because some domains contain dipoles oriented along the positive and
some along the negative directions of the measuring field; one can think of
a pinched loop to be composed of two partial loops, one with a negative
and the other with a positive internal field. Both biased and pinched loops
have been studied in detail in single crystals of triglycine sulphate (TGS)
doped with alanine, where microscopic mechanisms of the pinching are
now rather well understood [1].
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FIGURE 4.78 Hysteresis loops in hard rhombohedral PZT ceramics. Left: a loop
with internal bias; right: symmetrical field relaxed loop and a pinched loop in aged
material. After [154]. Arrows are identified in Fig. 4.77.

Pinched loops can be relaxed in two ways: (i) by cycling the ceramic
hundreds of times with switching fields, Fig. 4.78 (right), or (ii) by heating
the sample over the transition temperature where dipoles will necessarily
be disordered, and then quenching the sample to room temperature, Fig.
4.79. After quenching, the aging process starts immediately and after some
time the loop becomes pinched again. The dipole reorientation process
evolves over many time decades following logarithmic law [153].

The dynamics of dipole reorientation in Fe-doped perovskites has been
studied by electron paramagnetic resonance (EPR) [150–152] giving di-
rect evidence that they reorient under external fields. Ordering of dipoles
within one domain during aging is not seen by this technique, since it
takes signals from all dipoles from a very large number of randomly ori-
ented grains and domains where, on average, the dipoles are oriented
randomly along all permissible crystallographic directions. The evidence
of microscopic ordering is, however, seen in the loop pinching, which is a
macroscopic property.

It is important to note that alignment of defect dipoles is not the
only mechanism that can cause hardening and apparent internal fields.
Diffusion of defects into charged or strained domain walls can lead to
domain-wall pinning and hardening while a concentration of defects at
grain boundaries can lead to internal fields and pinched loops
[147,149,153,182,183]. Recently, some authors have directly questioned the
possibility that the small amounts of dopants used (typically, on the level
of one per cent) could in fact explain the large coercive fields and the aging
process in hard materials [184]. However, the direct evidence of dipole re-
orientation presented by EPR experiments clearly shows that reorientation
of dipoles does occur under external fields. On the other hand, the macro-
scopically observed loop pinching and depinching give a clear indication
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FIGURE 4.79 Aged and thermally relaxed hysteresis loops of Pb(Zr0.58Ti0.42)O3
with one per cent Fe. Different degrees of thermal relaxation are achieved by
quenching samples from aboveTc into media with different thermal conductivities.
Measurements were made once the samples reached room temperature. (Courtesy
Maxim Morozov).

that some kind of order--disorder process takes place in hard materials and
that it is related to the hardening mechanisms. We shall thus base the rest
of the discussion on these experimental facts, without necessarily invoking
a specific microscopic mechanism of hardening.

Lets us first see how a pinched loop can be described by using the
Preisach approach [185]. We assume that there are two populations of do-
main walls, one in which the polarization is fixed by some type of defect
along the negative and the other along the positive direction of the applied
field. This is equivalent to assuming the presence of two well-defined pop-
ulations of Preiscah units, one dispersed around a negative and the other
around a positive bias field, Ei, in the Preisach plane. If, for simplicity, we
also assume that the Preisach distribution is constant as a function of the
coercive field Ec up to some arbitrary value E∗, and becomes zero above
this value, we can easily construct a polynomial of, for example, fourth
order that gives the Preisach distribution f(Ei, Ec) shown in Fig. 4.80(a).
Following the procedure in Section 4.4.3, the associated hysteresis can be
derived. As expected, and shown in Fig. 4.80(b), this type of double-peak



440 CHAPTER 4 Hysteresis in Piezoelectric and Ferroelectric Materials

FIGURE 4.80 (a) Plot of the proposed polynomial Preisach distribution function
for a ferroelectric material containing defect dipoles oriented along two preferred
directions. (b) The hysteresis loop calculated from the Preisach distribution in (a).
(Courtesy Gilles Robert).

distribution exhibits pinched hysteresis. Clearly, one can assume a physi-
cally more realistic Preisach distribution (e.g. double Gaussian) or derive
f(Ei, Ec) from the hysteresis-loop shapes.

Another approach to describe hard materials is to assume an appro-
priate energy profile for the domain walls. Robels and Arlt [181] have pro-
posed a V-shaped potential that is valid for an infinitely thin wall, where
the force exerted by aligned dipoles on both sides of the domain wall does
not change with the distance from the wall, Fig. 4.81(a) except by abruptly
changing its sign at the wall position. When a wall changes its position
by �l, defects in this region do not reorient immediately, and thus the free
energy of a wall increases by �G = �n(t)A

∣∣�l∣∣�We, whereA is the surface
of the wall, �n(t) is the concentration of dipoles in the shifted region, and
�We is the energy associated with a defect oriented against the polarization
(estimated to be 30 meV). By considering only displacements of domain
walls that are smaller than the domain-wall thickness, the clamping force
Fcl exerted on domain walls by the surrounding aligned dipoles can be
modified in the wall region by a force that linearly changes with the wall
displacement. In other words, the nonanalitical V-potential is replaced
by a parabolic potential so that Fcl ∝ n(t)�l, Fig. 4.81(b). As the sample
ages, n(t) increases as more dipoles become aligned with polarization on
each side of the domain wall. The corresponding clamping-force constant
then changes with time in proportion to the number of aligned defects,
kcl ∝ n(t), which is equivalent to changing the slope of the potential. An
additional force on domain walls in Robels and Arlt’s model comes from
a restoring force on the moving domain walls, which is present even in
the absence of defects (Section 4.3.1). The energy potential associated with
this restoring force is also assumed to be parabolic, with a force constant
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FIGURE 4.81 (a) Free energy, and (b) corresponding force for ‘V’ (top) and
parabolic (bottom) potentials. In (c) repartition of defect dipoles (small black ar-
rows) and polarization (large gray arrows) in the absence (top) and upon applica-
tion (bottom) of an external field. �l designates displacement of the wall. In the
displaced region, the dipoles and polarization are misaligned. (After [187]).

k. The total force constant in this model is therefore ktot = k + kcl(t) and
it evolves with time as n(t), leading to a steeper potential, i.e. the domain
walls become more difficult to move and the material becomes harder, as
the sample ages. Note that within this model the energy potential between
aged and relaxed (disordered) ceramics differs only quantitatively, i.e. in
the number of aligned dipoles.

While qualitatively explaining the aging process and hardening with
time, the model does not take into account nonlinearity of the polarization
or hysteresis that are observed at subswitching fields. The nonlinear ef-
fects can be included [186] by keeping the original V-shape potential that
describes the movement of domain walls beyond the wall region. To ac-
count for the linear, reversible movement of the domain walls in the wall
region, the sharp V-potential is smeared3 at the origin, Fig. 4.82(a). As in
the original model, an additional restoring force characterized by the force
constant k and a parabolic potential may be added to describe the move-
ment of the walls when the concentration of ordered dipoles approaches
zero. Finally, the free energy of the wall is modified by the presence of an
external field E. If a simple one-dimensional case is considered, the energy
change per unit domain-wall area caused by displacement of a domain
wall by a distance x (equal to �l in Robles and Arlt’s model) is given by
−2PSEx. In this very simplified case, the free energy of a domain wall in a

3Smearing of Robels and Arlt’s V-potential was proposed by A.K. Tagantsev.
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FIGURE 4.82 ModifiedV-potential for a domain wall, the force acting on the wall,
and the polarization caused by the domain-wall displacement in a hard material.
Top: at a large distance from the domain-wall position at rest. Bottom: in the
smeared region. The numbers (whose values are chosen arbitrarily) on the axes
are included to indicate order of magnitude and enable comparison of effects at
large distances and in the smeared region. Dashed lines indicate the case k �= 0 in
Eqn. (4.101).

very hard material is given by:

�G = 1
2
kx2 + kcl

(√
x2 + x2

0 − x0

)
− 2PSEx, (4.101)

where k describes the steepness of the additional harmonic potential and
can be neglected for small displacements; kcl describes the steepness of the
modified V potential, and x0 defines the width of the smearing region of
theV potential around x = 0. As in the original model, kcl can be related to
the time-dependent concentration of the aligned defects. The equilibrium
position of the wall is obtained from the stability condition:

��G/�x = 0 (4.102)

Since the polarization change is proportional to the domain-wall displace-
ment [47], �P ∝ Psx, the solution of Eqn. (4.102) gives both x(E) and
�P(E) ∝ x(E). In this model, the contribution of the dipolar reorientation
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FIGURE 4.83 (a) Solution of Eqn. (4.102) in the smeared region and its compar-
ison with (b), an actual polarization--field curve measured in a hard PZT ceramic.
(Experimental data courtesy of Maxim Morozov).

to the polarization change is neglected. Equation (4.102) can be solved
analytically [186], and one of its solutions is shown in Fig. 4.83, together
with an experimental polarization of a hard rhombohedral PZT sample
measured at a subswitching field.

The nonhysteretic, nonlinear behavior predicted by Eqn. (4.101) and
shown in Fig. 4.83(a), is only an approximation. Even in very hard ceram-
ics, a small pinched hysteresis is evident below macroscopical subswitch-
ing fields, Fig. 4.83(b). In addition, a strong double hysteresis occurs
at very large (global switching) fields, Fig. 4.75. The hysteresis at sub-
switching fields may be introduced in the model by assuming that the
V-potential is not smooth but contains local minima, Fig. 4.84(a), that may
be due to the distribution of coercive and internal fields associated with
inhomogeneous distribution and imperfect alignment of defect centers.
The strong hysteresis that appears at very large fields is due to global
ferroelectric switching of the sample, Fig. 4.85. The global switching
is still controlled by the presence of the internal fields as seen from the
comparison of the maximum polarization achieved in a double loop with
remanent polarization achieved in thermally relaxed loops, Fig. 4.79. Po-
larization in the aged double loop is half of that in the thermally relaxed
loop, suggesting that only part of the aged sample switches in each field
direction.

The strong double loop obtained under switching conditions can be
formally represented by deep local minima on each side of the modified
V-potential, as shown in Fig. 4.85. This presentation is formally similar
to the description of the double ferroelectric loops sometimes observed in
ferroelectric materials above the paraelectric phase-transition temperature
[14] or in antiferroelectric materials [1].
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FIGURE 4.84 Potential of a domain wall for (left) a very hard, (middle) a par-
tially depinched or weakly hard material, and (right) a relaxed field, thermally
relaxed field or soft sample. V-potential in the smeared region with introduced
roughness is given by the dashed line. (a) Energy profile of the domain wall;
(b) polarization--field hysteresis; (c) schematic representation of ordering of defect
centers within domains. Compare with Figs 4.82 and 4.83 and with Fig. 4.85 for
switching fields. Experiments have shown transition from (middle) to (right) after
relaxing with the field, and from (right) to (middle) after aging. Compare with Fig.
4.86.

In very hard materials the pinched hysteresis persists up to high fields.
In some cases, the loop cannot be completely relaxed even after a large
number of field cycles (> 300); however, the depinching can always be
achieved by thermal relaxation. In less hard materials, only weak pinch-
ing is sometimes observed, Fig. 4.84. The corresponding energy profile
can be qualitatively described by decreasing the steepness of the disor-
deredV-potential, Fig. 4.84. Such weakly pinched hystereses can be easily
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FIGURE 4.85 Illustration of the free-energy profile and associated hysteresis for
an unpoled hard ferroelectric, such as PZT, with internal bias field. In contrast to
Figs 4.81, 4.82, and 4.84, only global switching of the ferroelectric is considered
and any local roughness of the potential can be neglected on this scale. Only
formally, this description is analogous to that of double loops in ferroelectrics above
the ferroelectric--paraelectric phase-transition temperature or in antiferroelectric
materials. See [1,14].

FIGURE 4.86 (a) Polarization--field hysteresis measured in a well-aged PZT thick
film. (b) Switching hysteresis used to relax film in (a). (c) The polarization--field
hysteresis measured under the same conditions as in (a) after field relaxation.
(Courtesy Juliette Müller).

relaxed by strong fields, as illustrated in Fig. 4.86. After field relaxation,
the energy profile of the domain wall should resemble the one in Fig. 4.38,
typical for materials with Rayleigh-type behavior, and is shown in Fig.
4.84(c), together with the relaxed subswitching loop. When the field is
removed, the dipoles will start realigning, slowly building up the internal
field. Ordering of defects restores the sharpness of the V-potential, and
after a sufficient aging time, the pinched hysteresis appears. The time and
field thus have opposite effects on the energy profile of domain walls, as
illustrated schematically in Fig. 4.84.

It has been indicated in Section 4.4.1 that the Rayleigh behavior in a
material is closely linked to disorder. Macroscopic, experimentally observ-
able characteristics of a disordered system are hysteresis and nonlinearity,
which in Rayleigh-like systems are closely linked. In an ideal Rayleigh
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system, every nonlinear movement is hysteretic, as seen by the fact that
the phase angle of all harmonics is exactly out of phase with respect to the
driving field (�n = 90◦). This property of Rayleigh systems offers a con-
venient, although not absolute and rigorous, way to investigate evolution
of the free-energy profile suggested by the qualitative model discussed
above. Before presenting experimental results, let us first examine what
are the expected properties of the polarization response described by Eqn.
(4.101). It is possible, just from the form of the V-potential and polariza-
tion in Fig. 4.82, to state the following: (i) for a sinusoidal driving field,
�P(t) will be a function with a half-wave symmetry (Section 4.4.1) [123].
That means that, ideally, only odd harmonics will be present in expansion
of �P(t) into Fourier series; (ii) since in the absence of the field the free
energy profile (4.101) is symmetrical with the distance x, and since it has
no local minima, and rate-dependent processes are neglected, the funda-
mental and all higher harmonics of the polarization will, ideally, exhibit
a zero phase angle with respect to the driving field (Section 4.5.1, Eqns
(4.62)--(4.63)). Since, as discussed above, the real potential cannot be ide-
ally smooth, the phase angle cannot be exactly zero. However, as long as
the nonlinear component coming from the displacement of the walls in the
dominatingV-potential is much stronger than the nonlinearity due to small
irreversible displacements, the phase angle of the higher harmonics should
be close to zero (see Eqns (4.62)--(4.63)). These properties and their ana-
log for a Rayleigh-like system are experimentally verifiable macroscopic
properties.

We next look at the field and time dependence of the phase angle
of the third harmonic, �3, for the polarization response of a tetraganal
PZT thick film, in which the hardening is induced by a small amount of
Fe impurities present in the starting powders used to prepare the sam-
ples. Thus, the material is not too hard. An aged sample should exhibit
�3 ≈ 0◦, which, according to the above analysis, should ideally corre-
spond to a hard material with aligned defects. Figure 4.87(a) shows �3(E)
for such a sample in a well-aged state. The corresponding hysteresis is
illustrated in Fig. 4.86(a). The hysteresis is slightly pinched, indicating
a small number of ordered dipoles, which explains the nonzero value
of �3(E).

After the sample is cycled with a strong field, Fig. 4.86(b), the weak-
field hysteresis becomes depinched, Fig. 4.86(c), and �3(E) becomes close
to 90◦, Fig 4.87(b), in agreement with disordering of the pinning centers
and removal of the internal bias field. The effect of aging is shown in
Fig. 4.87(c) and (d), where it is seen that �3(E) slowly decreases with
time toward zero. One should note that in all cases shown in Fig. 4.87,
the measuring subswitching field may itself affect alignment of the defect
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FIGURE 4.87 The phase angle of the third harmonic of polarization, �3, for a 15�m
thick screen-printed PZT film: (a) well-aged film; (b) immediately after relaxation
with a switching field; (c) after aging the relaxed film for one hour; (d) after aging
the relaxed film for four days. Arrows show the direction (increasing or decreasing)
of the field amplitude. (Courtesy Juliette Müller).

centers. This is clearly shown in Fig. 4.88 that displays evolution of �3(E)
in a ceramic sample during three field cycles, possibly suggesting that
the roughness of the V-potential changes during measurements and with
time. The competing effects of time and field during the measurements
should thus be taken into account when interpreting the data. One can con-
clude that the main points of the very qualitative model presented above
for hard materials are in good agreement with the results of this simple
experiment.

The mechanisms of softening of the elastic, dielectric and piezoelectric
properties in soft materials are presently not understood, even on a sim-
ple phenomenological level. Soft materials also contain electric and elastic
dipoles, consisting of, for example, charged VPb-NbTi pairs. Depending
on the concentration of the donor dopant, the charge balance can also be
achieved with free electrons [28]. Considering presumably weak mobility
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FIGURE 4.88 Effect of field cycling on the phase angle of the third harmonic
polarization response, �3(E0), in a 0.58/0.42 PZT ceramic doped with 0.1 per cent
Fe. (Courtesy Maxim Morozov).

of heavy Pb ions, it is perhaps understandable why VPb-NbTi defects in soft
materials cannot align with polarization as easily as FeTi-VO pairs. How-
ever, why the presence of VPb-NbTi dipoles should lead to softening of the
properties with respect to a pure material is presently not understood. It is
not unlikely that the softening may be caused by processes unrelated to the
presence of defect dipoles. The hysteresis in soft materials can be success-
fully described at all subswitching fields by the quasi-Rayleigh relations,
as discussed in detail in Section 4.4.

APPENDIX A. TENSOR NOTATION

In Voigt convention, a pair of indices ii = 11, 22, 33 is replaced with the sin-
gle index m = 1, 2, 3, respectively, and the mixed pairs of indices (which
represent shear components of strain and stress tensors) ij = 23 or 32,
13 or 31, 12 or 21 are written as m = 4, 5, 6, respectively. In all tensor
relationships, summation over repeated indices is assumed. Tensor in-
dices are defined with respect to an orthogonal coordinate system, so that,
for example, P3 represents the component of electric polarization along
the z-direction of an (x, y, z) orthogonal coordinate system. Axes of the
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coordinate system are oriented either along crystallographic axes of a crys-
tal, or with the z-axis along the polarization direction of a ceramic.

APPENDIX B. THERMODYNAMIC DERIVATION OF THE
PIEZOELECTRIC EFFECT AND PIEZOELECTRIC
CONSTITUTIVE EQUATIONS

The coupling between the thermal, elastic and electrical parameters of a
material can be introduced formally using a thermodynamic approach.
The results are equations of state that give relations between material pa-
rameters measured under different experimental conditions. These rela-
tions are essential for modeling and understanding the response of piezo-
electric and pyroelectric devices. The approach is outlined below and a
more detailed discussion can be found in [1,11,14].

It follows from the first and second law of thermodynamics that the
reversible change dU in the internal energy U of an elastic dielectric that
is subjected to a small change of strain dx, electric displacement dD, and
entropy dS, is given by:

dU = TdS+ �ijdxij + EidDi, (B.1)

where T is the temperature of the material. Since, in most experimental
situations, one works under isothermal conditions, and uses electric field
and stress as independent variables, it is useful to change the set of inde-
pendent variables from (S, x,D) to (T,�, E). To change the independent
variables from the original set to the other we perform a Legendre trans-
formation of U by adding expression −TS− �x − ED to U. The resulting
free-energy function:

G = U − TS− �ijxij − EiDi (B.2)

is known as the Gibbs free energy. The differential of G gives, together
with (4.16):

dG = −SdT − xijd�ij −DidEi. (B.3)

From Eqn. (B.3) one obtains:

S = −
(

�G
�T

)
�,E

, xij = −
(

�G
��ij

)
T,E

,Di = −
(

�G
�Ei

)
T,�

(B.4)
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where the subscripts indicate variables kept constant. The total differen-
tials of S,� and D can be written as:

dS =
(

�S
�T

)
�,E

dT +
(

�S
��ij

)
T,E

d�ij +
(

�S
�Ei

)
T,�

dEi,

heat capacity piezocaloric effect electrocaloric effect

(B.5)

dxij =
(

�xij
�T

)
�,E

dT +
(

�xij
��kl

)
T,E

d�ij +
(

�xij
�Ek

)
T,�

dEk,

thermal expansion elastic compliance converse piezoelectricity
(B.6)

dDi =
(

�Di
�T

)
�,E

dT +
(

�Di
��jk

)
T,E

d�ij +
(

�Di
�Ej

)
T,�

dEj.

pyroelectric effect direct piezoelectricity dielectric permittivity
(B.7)

Each of the partial derivatives in Eqns (B.5)--(B.7) identifies a physical
effect [11] as indicated in the equations. Since the order in which derivatives
are taken is irrelevant, it follows from (B.3) and (B.5)--(B.6) that, for example:

dT,�ijk =
(

�xij
�Ek

)
T,�

= −
(

�2
G

�Ek��ij

)
= −

(
�2
G

��ij�Ek

)
=
(

�Dk
��ij

)
T,E

=dT,Ekij .
converse piezoelectric effect direct piezoelectric effect.

(B.8)
Equation (B.8) demonstrates the thermodynamic equivalence of the

direct and converse piezoelectric effect. Using other thermodynamic po-
tentials, which can be formed by taking Legendre transformations of the
internal energy, it is possible to write a total of 27 relationships like (B.8),
which are known as Maxwell relationships.

It is common to express Eqns (B.5)--(B.7) in the following integrated
form, assuming that dE and d� represent small deviations from the zero
initial stress and field [11]:

�S = cX,E

T
�T + �T,Eij �ij + pT,�i Ei, (B.9)

xij = ��,E
ij �T + sT,Eijkl �kl + dT,�kij Ek, (B.10)

Di = p�,Ei �T + dT,Eijk �jk + �T,�ij Ej. (B.11)

Superscripts in Eqns (B.8)--(B.11) denote variables held constant, �ij is the
thermal expansion tensor, and c is the heat capacity. Relations (B.5)--(B.7)
and (B.9)--(B.11) include only linear effects.
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The set of independent variables (E,�) chosen for the derivation of
Eqns (4.6)--(4.7) is arbitrary. Other thermodynamic potentials and combi-
nations of independent variables give six remaining isothermal piezoelec-
tric constitutive equations:

�m = cEmnxn − eximEi, (B.12)

Di = eEimxm + �xijEj, (B.13)

�m = cDmnxn − hximDi, (B.14)

Ei = −hDimxm + �xijDj, (B.15)

xm = sDmn�n + g�
imDi, (B.16)

Ei = −gDim�m + �xijDj, (B.17)

where superscripts again indicate variables held constant. e, g, and h are
piezoelectric tensors, and � is inverse dielectric susceptibility (= �−1). One
important result of the thermodynamics of piezoelectric materials is that
piezoelectric coefficients of the same type are thermodynamically equiv-
alent: d� = dE, gD = g�, ex = eE, and hD = hx, and the superscripts are
usually omitted.

Consider, as an illustration, the difference between g and d coefficients,
while omitting matrix indices for simplicity. RelationD = d� gives piezo-
electric charge measured on shorted samples, with free flow of the charge
into an external electric circuit. If the sample is open circuited, this charge
will accumulate on the sample surface and will generate an electric field
E across the sample. This field depends on capacitance (permittivity) of
the sample (charge = capacitance × voltage) and is related to the stress
by E = −g� where g = d/�. Which of relations (B.12)--(B.17) is to be
used in a particular problem depends on the elastic and electric boundary
conditions.

The coefficients of piezoelectric tensors are mutually related by the
following relationships:

dim = eins
E
nm = ��ij gjm (m/V or C/N), (B.18)

eim = dinc
E
nm = �xijhjm (C/m

2 or Vm/N), (B.19)

gim = hins
D
nm = ��

ij djm (m
2/C or N/(Vm)), (B.20)

him = ginc
D
nm = �xijejm (N/C or V/m). (B.21)

Because of the piezoelectric coupling between the electrical and elastic
fields, the values of the dielectric permittivity and elastic compliance (or
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stiffness) measured under different experimental conditions will not be the
same [187].
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