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Abstract

Orthopedic implant failures are often associated with peri-implant osteolysis. Particles generated from the wear process have been
suspected to play an important role in this situation. Indeed, the peri-implant osteolysis could be due to the presence of particles
stimulating the osteoclastogenesis process. We hypothesize then that the presence of a low particle concentration positively
influences osteoblasts to produce osteoclastogenesis factors. If true, this hypothesis would then support the idea that the particles
could be at the origin of the process leading to implant loosening. To check the validity of this hypothesis, we quantified in vitro the
production of different genes involved in the osteoclastogenesis process using primary isolated human osteoblasts treated or not
with particles. Results showed that low concentrations of particles might have a stimulating effect on osteoblasts to produce

osteoclastogenesis factors as demonstrated by the increase of RANKL and CSF-1 gene expression in the particle group.

© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Due to its mechanical design, an artificial joint is
inevitably subjected to a wear process that generates
particles. Depending on the materials used, large
amount of particles can be created at the different
interfaces of the implant [1]. These particles are in direct
contact to the cells located in the peri-implant bone.

The presence of wear particles can activate an
inflammatory cascade resulting in a bone resorption
process [2—4]. This process can finally lead to the aseptic
loosening of artificial joints, the major cause of implant
failures [1,5].

Recently, wear particles were also shown to have an
adverse effect on bone formation [6,7]. Titanium (Ti)
particles downregulated the gene expression of type I
collagen [8], while UHMWPE particles were shown to
affect osteoblast differentiation [9]. We showed that
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particles had a cytotoxic effect [10], modulated the
fibronectin gene expression [11], and decreased the
adhesion strength [12] of osteoblasts. Moreover, combi-
nation of particles and cytokines had a synergic effect on
the production of inflammatory factors [13]. Using
microarray techniques, it has been shown that particles
had a profound impact on genes coding for inflamma-
tory cytokines and genes controlling the nuclear
architecture [14]. Nevertheless, little information is
available regarding the effect of particles on osteoclas-
togenetic factors produced by osteoblasts. Moreover,
previous in vitro studies used relatively high concentra-
tions of particles that could correspond to an already
advanced situation in the loosening process of the
implant [15].

The peri-implant osteolysis is a degenerating process
that can start when low concentrations of particles are
present. Over years of wear process, an accumulation of
particles occurs [15]. It is still under debate if the peri-
implant osteolysis is due either to an initial mechanical
instability increasing the amount of generated particles
and leading to loosening [16] or to an initial biological
reaction of cells to particles leading to osteolysis and
then mechanical instability [17]. It is then of interest to
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determine if low concentrations of particles, represent-
ing an early post-operative situation, can affect the bone
remodeling process and more specifically the osteoclas-
togenesis factors produced by osteoblasts.

It has been recognized that wear particles debris are
potent stimuli for osteoclast differentiation and mature
osteoclast function [18]. However, only recently osteo-
blasts have been recognized to play a pivotal role in
osteoclastogenesis process through the production of
molecular factors such as RANKL, OPG, or CSF-1 [19-
23]. Based on this new information, it has been shown
that RANKL is essential to mediate the osteoclastogenic
effect of PMMA [24]. In another study, OPG inhibited
in vitro murine osteoclast formation induced by fluid
from failed total hip arthroplasties [25]. In peri-implant
tissues of patients with implant failure, high levels of
RANKL was found compared to healthy subjects [26].
Macrophages were shown to be responsible for this
increase.

The goal of this study is to simultaneously quantify
the levels of RANKL, OPG, CSF-1 when osteoblasts
are challenged with low concentrations of particles. This
information would then be useful to determine if
particles may be at the origin of the peri-implant
osteolysis through an induction of osteoclastogenesis.
The quantification of particles effect on the osteoclas-
togenesis process can be helpful in the search for
therapeutic treatments to control the bone remodeling
around orthopedic implants.

2. Materials and methods
2.1. Ti particles

The Ti particles were purchased from Johnson Mattey
company (Karlsruhe, Germany). The distribution of
particle size was performed with laser diffraction by
using Malvern MasterSizer equipment. The average
particle size was 4.5 pm and the surface area was 0.5 m?/
mg. The particles, autoclave at 135°C for 15min, were
mixed with the culture medium under sterile conditions.
Based on a particle weight to medium volume ratio, a
concentration of 0.01% Ti particles was prepared. One
milliliter of particles suspension of 0.01% contained
approximately 60,000 particles. The Ti suspensions were
sonicated for 30 min in sealed sterile container before
being added to the cell culture. Endotoxin contamina-
tion of particles was excluded by limulus assay (QCL-
1000 Chromogenic LAL, BioWhittaker, Emerainville,
France). When compared to previous in vitro studies
[8,10,27], the present particle concentration can be
considered as low. Comparison with in vivo situation
is difficult to perform. It can be estimated that the level
of 30 pg/ml of particles used in the present study is
relatively low in comparison to the mean titanium level

of 1616 ng/g of dry tissue obtained in the surrounding of
implant [15].

2.2. Cells

Primary human osteoblastic cells were isolated from
pieces of human trabecular bone obtained from a
patient (male 63-years-old) undergoing a total hip
arthroplasty as previously described [28]. The pieces of
bone were minced into 1 mm? pieces, washed three times
with sterile PBS, seeded into 25cm? tissue culture flasks
and finally cultured at 37°C and 5% CO, in Dulbecco’s
Modified Eagle Medium (Sigma, Buchs, Switzerland)
containing 10% of fetal bovine serum (Sigma), and 1%
of PSF (100 x, 10,000 U/ml penicillin, 10,000 pg/ml
strepzin, 25 ug/ml fungizone) (GibcoBRL, New York,
USA). The medium was changed twice weekly. A
confluent monolayer was obtained after 2-3 weeks.
The cells were then transferred by trypsinization to a
75cm? tissue culture flask defining the cell passage
number 2. These cells displayed typical phenotypes of
osteoblasts as the polygonal morphology, the formation
of calcium phosphate salts, the production of alkaline
phosphatase, or the increase of osteocalcin production
when these cells were cultured with 1,25(0OH),Dj3 [29,30].

2.3. Culture conditions

The isolated osteoblasts (passage 2-4) were seeded
onto six well plates at a concentration of 750,000 cells/
well and were incubated 4 h. The medium was removed
and new medium was added with 0.01% Ti particles
suspension or without particles (control). At 8, 24, 48,
and 72h, medium was removed, cells were rinsed twice
with PBS and the plates were frozen at —80°C until
RNA isolation.

2.4. Gene expression measurements

Total RNA was isolated and purified with Nucleo-
Spin columns (Macherey—Nagel, Diiren, Germany). The
isolated RNA was reverse transcripted with the Strat-
Script enzyme (Stratagene, San Diego, USA). Quanti-
tative real time RT-PCR (ABI Prism 7700, Applied
Biosystem, Foster City, USA) was performed using
Amplifluor Universal Detection System (Intergen, Pur-
chase, USA). We quantified the genes expression of
procollagen type I «1, procollagen type I 2, RANKL,
CSF-1 and OPG. The list of primers for the selected
genes is reported in Table 1. Preliminary experiments
allowed us to verify that RANKL and OPG were
upregulated when osteoblasts are cultured with osteo-
trophic factors such 1,25(OH),D; or dexamethasone
(data not shown) as described in the literature, e.g. [31].
We normalized the different samples by the geometric
mean of three housekeeping genes (Ubiquitin C,
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Table 1
Primers used for the selected human genes

Gene name (Acc)* Forward primer® (5'-3')

Reverse primer (5'-3)

Collagen type I al (Z74615)

Collagen type I o2 (J03464)

RANKL (AF053712)

CSF-1 (M37435)

OPG (NP_002537)

Ubiquitin C (NM_021009)

Ribosomal protein L13a (NM_012423)
GAPDH (NM_002046)

CTC CTC AAG GGC TCC AAC G

GAT TGA GAC CCT TCT TAC TCC TGA A
CCA AGT ATT GGT CAG GGA ATT CTG
GCA ACT TCC TCT CAG CAT CTT CTC
ATG CAA ACC CAG TGA CCA GAT C
ATT TGG GTC GCG GTT CTT G

ATC CCA CCG CCC TAC GA

CCA CCC ATG GCA AAT TCC

CAT CGA CAG TGA CGC TGT AGG T
TGG GTG GCT GAG TCT CAA GTC
GAG ACC TCG ATG CTG ATT TCC T
GCA AGG CTG TAG CAG TTA CAT CTG
AAG GTG TCT TGG TCG CCA TT

TGC CTT GAC ATT CTC GAT GGT

TTC AGA CGC ACG ACC TTG AG

TGG GAT TTC CAT TGA TGA CAA G

% Acc: Genebank accession number.

®Using Amplifluor Universal Detection System, a Z sequence (ACT GAA CCT GAC CGT ACA) has to be added to the 5" of each Forward
Primer. This technique furnishes a specific amplification without the need for a probe.

Ribosomal protein L13a, and GAPDH). The geometric
mean of at least three stable housekeeping genes was
shown to give an accurate normalization for real time
RT-PCR [32]. The determination of the three stable
housekeeping genes was performed in a preliminary
study (data not shown) where the gene expression
variation between control and Ti group of six potential
housekeeping genes was evaluated at the different time
points. As we were interested by the relative gene
expression between control and Ti group, the gene
expression was further normalized by the expression
of the control group. Each experiment was performed
three times with gene expression measurements in
duplicate.

2.5. Statistical analysis

A student f-test was used to analyze the mean
variance of the data. A 95% confidence level was
selected to define significance for all statistical tests.

3. Results

At ecach time point, RANKL gene expression by
osteoblasts was higher in the Ti group compared to
control, with statistical significances at 24 and 48h
(p<0.01) (Fig. 1). A steady increase was observed from
8 to 48 h followed by a decrease at 72 h. A similar trend
was found for the CSF-1 gene expression by osteoblasts
with a statistical significance at 48h (p<0.01). OPG
gene expression was slightly higher for the Ti group
compared to control until 48h, however without
statistical significance. The presence of low amount of
Ti particles seems then to favor the production of
osteoclastogenesis factors by osteoblasts.

Regarding the procollagen type I ol gene expression
by osteoblasts, there was a trend to a higher expression
for the Ti group compared to control until 48 h with a
statistical significances at 8 h (p<0.01). At 72h, the Ti

particles group had a downregulating effect on the
procollagen type I a1 genes. The procollagen type 1 o2
gene expression by osteoblasts followed the same trend
as for the procollagen type I ol gene except that
downregulation began at 48 h. Interestingly, the procol-
lagen type I o2 gene expression seems to be more
sensitive to the presence of particles than the procolla-
gen type I al gene.

4. Discussion

The peri-implant osteolysis is an important clinical
problem, which can lead to orthopedic implant failure.
In this study, we evaluated in vitro if the presence of a
low-particles concentration could be involved in this
problem by quantifying the production of osteoclasto-
genesis factors by osteoblasts.

Based on this study, low concentrations of Ti particles
might have an important role in the peri-implant
osteolysis as demonstrated by the increase of osteoblast
gene expression for RANKL and CSF-1, two important
factors in the osteoclastogenesis process [19,23]. More-
over Ti particles had no effect on the gene expression of
OPG which is a secreted regulator of bone density
that can act locally and systemically by negatively
regulating osteoclast maturation [21]. These results
might support the idea that the particles could be at
the origin of the process leading to implant loosening
through the process of peri-implant osteolysis. At
the concentration used in this study, no cytotoxic
effect has been demonstrated after 72h [10]. Particles
may then have an important potential to modulate
the production of osteoclatogenesis factors by osteo-
blasts.

Beside direct effect of Ti particles stimulating
osteoblast to produce osteoclastogenesis factors, several
other possibilities may be considered in the peri-implant
osteolysis problem. It has been recently shown that
TNF-o induces osteoclastogenesis by direct stimulation
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Fig. 1. Normalized gene expression of collagen type I al, a2, RANKL, CSF-1, OPG for control (open) and 0.01% Ti (plain) at 8, 24, 48, and 72h.
Statistical differences were found at 8 h for the collagen type I «1, at 24 h for RANKL, and at 48 h for RANKL and CSF-1 (n = 3, p<0.01, +StDev).

of macrophages [33]. Particles could then also induce involved in peri-implant osteolysis [34]. Indeed, it might
peri-implant osteolysis through this process. Enzymatic be possible that these different scenario (RANKL, CSF-
bone resorption through MMPs has been shown to be 1; TNF-a; MMPs) are simultaneously involved in the
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peri-implant osteolysis. Nevertheless, one of the im-
portant results of the present study was to show that low
concentration of Ti particles might stimulate osteoblast
to induce osteoclastogenesis and then be at the origin of
the peri-implant osteolysis.

Comparison with previous in vitro studies is difficult
because the particle concentrations used in the present
study was much lower than in other studies or the
culture conditions were different. Nevertheless, our
results on collagen type I gene expression at 72h is
similar to a previous study using MG-63 osteoblasts [8].
Upregulation of RANKL gene expression of bone
marrow cultures challenged with particles has previously
been found [24]. However bone marrow cultures were
maintained in osteoclastogenic conditions for several
days and then exposed to particles rendering the
interpretation of the particles effect on osteoclastogen-
esis difficult.

The results of the present study are in apparent
contradiction with the work of Nakano et al. [35]. In
their study, Nakano found that Ti particles inhibited
RANKL expression in bone marrow cells treated with
PGE,. The amount of Ti particles was similar with the
present study (10 pg/cm? in Nagano and 8 pg/cm? in the
present study), but the average size distribution was
different (10 um in Nagano and 4.5um in the present
study) which may explain the discrepancy in the results
as size of particles has been shown to be an important
parameter for cell behavior [36]. A major difference
between the two studies was the addition of PGE, in the
study of Nagano. The conclusion of their study was then
focused in the sense that Ti particles may alter the
osteoclastogenesis action of PGE,. Despite different
osteoblasts were used, the difference in culture condition
may then explain this apparent difference in the
expression of RANKL from osteoblasts challenged with
Ti particles.

Most studies usually used osteoblasts obtained from
cell lines [8,10,37-39], except some studies where
osteoblasts were isolated from human bone pieces
removed during orthopedic surgical treatment [40,41].
The use of osteoblasts isolated from human bone pieces,
especially at the hip or knee location, represents an
interesting in vitro model as it has been shown that the
reaction of osteoblasts to particles may depend on the
cell lines used [37].

In order to protect the peri-implant bone from
osteolysis, it would then be a reasonable approach to
control the osteoclastogenesis as RANKL seems to be
upregulated even at low-particles conditions. With this
strategy, it has been proposed to use OPG in order to
decrease the bone resorption when particles are present
[42,43]. The delivery of OPG could be done through
gene therapy [44] or could be locally delivered as it has
been recently proposed to use the orthopedic implant as
drug delivery system [45].

5. Conclusions

This study suggests that particles at low concentra-
tions could be involved in the osteoclastogenesis process
as shown by the upregulation of RANKL and CSF-1 in
ostoeblasts challenged with Ti particles. The Ti particles
may then be at the origin of the peri-implant osteolysis
and ecarly control of osteoclastogenesis could be a
potential solution to decrease this problem.
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