
2 DISCRETE CHOICE METHODS
AND THEIR APPLICATIONS TO

SHORT TERM TRAVEL DECISIONS
Moshe Ben-Akiva and Michel Bierlaire

2.1 Introduction

Modeling travel behavior is a key aspect of demand analysis, where aggregate
demand is the accumulation of individuals’ decisions.  In this chapter, we focus on
“short-term” travel decisions.  The most important short-term travel decisions include
choice of destination for a non-work trip, choice of travel mode, choice of departure
time and choice of route.  It is important to note that short-term decisions are
conditional on long-term travel and mobility decisions such as car ownership and
residential and work locations.

The analysis of travel behavior is typically disaggregate, meaning that the models
represent the choice behavior of individual travelers.  Discrete choice analysis is the
methodology used to analyze and predict travel decisions.  Therefore, we begin this
chapter with a review of the theoretical and practical aspects of discrete choice
models.  After a brief discussion of general assumptions, we introduce the random
utility model, which is the most common theoretical basis of discrete choice models.
We then present the alternative discrete choice model forms such as Logit, Nested
Logit, Generalized Extreme Value and Probit, as well as more recent developments
such as Hybrid Logit and the Latent Class choice model. Finally, we elaborate on the
applications of these models to two specific short term travel decisions: route choice
and departure time choice.

2.2 Discrete Choice Models

We provide here a brief overview of the general framework of discrete choice
models. We refer the reader to Ben-Akiva and Lerman (1985) for the detailed
developments.
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General Modeling Assumptions

The framework for a discrete choice model can be presented by a set of general
assumptions. We distinguish among assumptions about the:

1. decision-maker -- defining the decision-making entity and its characteristics;

2. alternatives -- determining the options available to the decision-maker;

3. attributes -- measuring the benefits and costs of an alternative to the decision-
maker; and

4. decision rule -- describing the process used by the decision-maker to choose an
alternative.

Decision-maker  Discrete choice models are also referred to as disaggregate models,
meaning that the decision-maker is assumed to be an individual.  The “individual”
decision-making entity depends on the particular application. For instance, we may
consider that a group of persons (a household or an organization, for example) is the
decision-maker.  In doing so, we may ignore all internal interactions within the
group, and consider only the decisions of the group as a whole. We refer to
“decision-maker” and “individual” interchangeably throughout this chapter.  To
explain the heterogeneity of preferences among decision-makers, a disaggregate
model must include their characteristics such as the socio-economic variables of age,
gender, education and income.

Alternatives Analyzing individual decision making requires not only knowledge of
what has been chosen, but also of what has not been chosen. Therefore, assumptions
must be made about available options, or alternatives, that an individual considers
during a choice process. The set of considered alternatives is called the choice set.

A discrete choice set contains a finite number of alternatives that can be explicitly
listed.  The choice of a travel mode is a typical example of a choice from a discrete
choice set.  The identification of the list of alternatives is a complex process usually
referred to as choice set generation.  The most widely used method for choice set
generation uses deterministic criteria of alternative availability. For example, the
possession of a driver’s license determines the availability of the auto drive option.

The universal choice set contains all potential alternatives in the application’s
context. The choice set is the subset of the universal choice set considered by, or
available to, a particular individual.  Alternatives in the universal choice set that are
not available to the individual are therefore excluded from the choice set.

In addition to availability, the decision-maker’s awareness of the alternative could
also affect the choice set. The behavioral aspects of awareness introduce uncertainty
in modeling the choice set generation process and motivate the use of probabilistic
choice set generation models that predict the probability of each feasible choice set
within the universal set.  A discrete choice model with a probabilistic choice set
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generation model is described later in this chapter as a special case of the latent class
choice model.

Attributes  Each alternative in the choice set is characterized by a set of attributes.
Note that some attributes may be generic to all alternatives, and some may be
alternative-specific.

An attribute is not necessarily a directly measurable quantity. It can be any
function of available data.  For example, instead of considering travel time as an
attribute of a transportation mode, the logarithm of the travel time may be used, or
the effect of out-of-pocket cost may be represented by the ratio between the out-of-
pocket cost and the income of the individual.  Alternative definitions of attributes as
functions of available data must usually be tested to identify the most appropriate.

Decision Rule

The decision rule is the process used by the decision-maker to evaluate the attributes
of the alternatives in the choice set and determine a choice.  Most models used for
travel behavior applications are based on utility theory, which assumes that the
decision-maker’s preference for an alternative is captured by a value, called utility,
and the decision-maker selects the alternative in the choice set with the highest
utility.

This concept, employed by consumer theory of micro-economics, presents strong
limitations for practical applications.  The underlying assumptions of this approach
are often violated in decision-making experiments.  The complexity of human
behavior suggests that the decision rule should include a probabilistic dimension.

Some models assume that the decision rule is intrinsically probabilistic, and even
complete knowledge of the problem would not overcome the uncertainty.  Others
consider the individuals’ decision rules as deterministic, and motivate the uncertainty
from the limited capability of the analyst to observe and capture all the dimensions of
the choice process, due to its complexity.

Specific families of models can be derived depending on the assumptions about
the source of uncertainty. Models with probabilistic decision rules, like the model
proposed by Luce (1959), or the “elimination by aspects” approach proposed by
Tversky (1972), assume a deterministic utility and a probabilistic decision process.
Random utility models, used intensively in econometrics and in travel behavior
analysis, are based on deterministic decision rules, where utilities are represented by
random variables.

Random Utility Theory

Random utility models assume, as does the economic consumer theory, that the
decision-maker has a perfect discrimination capability. However, the analyst is
assumed to have incomplete information and, therefore, uncertainty must be taken
into account. Manski (1977) identifies four different sources of uncertainty:
unobserved alternative attributes; unobserved individual characteristics (also called
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“unobserved taste variations”); measurement errors; and proxy, or instrumental,
variables.

The utility is modeled as a random variable in order to reflect this uncertainty.
More specifically, the utility that individual n associates with alternative i in the
choice set Cn  is given by

Uin = Vin + εin,

where Vin is the deterministic (or systematic) part of the utility, and εin is the random
term, capturing the uncertainty. The alternative with the highest utility is chosen.
Therefore, the probability that alternative i is chosen by decision-maker n from
choice set Cn is

P(i| Cn) = P[ Uin ≥ Ujn ∀ j ∈ Cn] = P[Uin = max
j Cn∈

 Ujn].

In the following we introduce the assumptions necessary to make a random utility
model operational.

Location and scale parameters  Considering two arbitrary real numbers α and µ,
where µ > 0, we have that

P[ Uin ≥ Ujn  ∀ j ∈ Cn] =

 P[µUin+α ≥  µUjn+α  ∀ j ∈ Cn] =

 P[ Uin -Ujn ≥ 0 ∀ j ∈ Cn].

The above illustrates the fact that only the signs of the differences between utilities
are relevant here, and not utilities themselves. The concept of ordinal utility is
relative and not absolute. In order to estimate and use a specific model arbitrary
values have to be selected for α and µ. The selection of the scale parameter µ is
usually based on a convenient normalization of one of the variances of the random
terms.  The location parameter α is usually set to zero. See also the discussion below
of Alternative Specific Constants.

Alternative specific constants  The means of the random terms can be assumed to
be equal to any convenient value c (usually zero, or the Euler constant γ for Logit
models). This is not a restrictive assumption. If we denote the mean of the error term
of alternative i by mi = E[εin], we can define a new random variable ein = εin - mi+c
such that E[ein]=c.  We have

P[ Uin ≥ Ujn ∀ j ∈ Cn] = P[ Vin+ mi + ein ≥ Vjn+ mj + ejn ∀ j ∈ Cn],

a model in which the deterministic part of the utilities are Vin+ mi and the random
terms are ein (with mean c).  The terms mi are then included as Alternative Specific
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Constants (ASC) that capture the means of the random terms.  Therefore, we may
assume without loss of generality that the error terms of random utility models have a
constant mean c by including alternative specific constants in the deterministic part of
the utility functions.

As only differences between utilities are relevant, only differences between ASCs
are relevant as well. It is common practice to define the location parameter α as the
negative of one of the ASCs.  This is equivalent to constraining that ASC equal zero.
From a modeling viewpoint, the choice of the particular alternative whose ASC is
constrained is arbitrary.  However, Bierlaire, Lotan and Toint (1997) have shown that
the estimation process may be affected by this choice.  In the context of the
Multinomial Logit Model, they show that constraining the sum of ASCs to 1 is
optimal for the speed of convergence of the estimation process. This result is also
generalized for the Nested Logit Model.

The deterministic term of the utility The deterministic term Vin of each alternative
is a function of the attributes of the alternative itself and the characteristics of the
decision-maker. That is

Vin = V(zin, Sn)

where zin is the vector of attributes as perceived by individual n for alternative i, and
Sn is the vector of characteristics of individual n.
This formulation is simplified using any appropriate vector valued function h that
defines a new vector of attributes from both zin and Sn, that is

xin = h(zin, Sn).

The choice of h is very general, and several forms may be tested to identify the best
representation in a specific application.  It is usually assumed to be continuous and
monotonic in zin.  For a linear in the parameters utility specification, h must be a fully
determined function (meaning that is does not contain unknown parameters).  Then
we have

Vin = V(xin).

A linear in the parameters function is denoted as follows

V xin k ink
k

= ∑β .

The deterministic term of the utility is therefore fully specified by the vector of
parameters β.
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The random part of the utility Among the many potential models that can be
derived for the random parts of the utility functions, we describe below the most
popular. The models within the Logit family are based on a probability distribution
function of the maximum of a series of random variables, introduced by Gumbel
(1958). Probit and Probit-like models are based on the Normal distribution motivated
by the Central Limit Theorem.

The main advantage of the Probit model is its ability to capture all correlations
among alternatives. However, due to the high complexity of its formulation, very few
applications have been developed. The Logit model has been much more popular,
because of its tractability, but it imposes restrictions on the covariance structure.
They may be unrealistic in some contexts. The derivation of other models in the
“Logit family” is aimed at relaxing restrictions, while maintaining tractability.

We discuss here the specification and properties of the models from the Logit
family (the Multinomial Logit model, the Nested Logit model, the Cross-Nested
model and the Generalized Extreme Value model). After presenting the Probit model,
we introduce more advanced models. The Generalized Factor Analytical
Representation and the Hybrid Logit models are designed to bridge the gap between
Logit and Probit models. The Latent Class Choice model is a further extension
designed to explicitly include in the model discrete unobserved factors.

The LOGIT Family

Logit-based models have been widely used for travel demand analysis. Practitioners
and researchers have used, refined and extended the original Binary Logit Model to
obtain a class of models based on similar assumptions. We refer to this class as the
Logit-family.

Multinomial logit model  The Logistic Probability Unit, or the Logit Model, was
first introduced in the context of binary choice where the logistic distribution is used.
Its generalization to more than two alternatives is referred to as the Multinomial
Logit Model. The Multinomial Logit Model is derived from the assumption that the
error terms of the utility functions are independent and identically Gumbel distributed
(or Type I extreme value). That is, εin for all i,n is distributed as:

[ ]F e( ) exp ,( )ε µµ ε η= − >− −  0

[ ]f e e( ) exp( ) ( )ε µ µ ε η µ ε η= −− − − −

where η is a location parameter and µ is a strictly positive scale parameter. The mean
of this distribution is

η + γ / µ

where
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An important property of the Multinomial Logit Model is Independence from
Irrelevant Alternatives (IIA). This property can be stated as follows: The ratio of the
probabilities of any two alternatives is independent of the choice set. That is, for any
choice sets C1 and C2 such that  C1 ⊆ Cn and C2 ⊆ Cn, and for any alternatives i and j
in both C1 and C2, we have
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An equivalent definition of the IIA property is: The ratio of the choice probabilities
of any two alternatives is unaffected by the systematic utilities of any other
alternatives.

The IIA property of Multinomial Logit Models is a limitation for some practical
applications. This limitation is often illustrated by the red bus/blue bus paradox in the
modal choice context.  We use here instead the following path choice example.

Consider a commuter traveling from origin O to destination D.  He/she is
confronted with the path choice problem described in Figure 2-1, where the choice
set is {1,2a,2b} and the only attribute considered for the choice is travel time. We
assume furthermore that the travel time for any alternative is the same, that is V(1) =
V(2a) = V(2b) = T, and that the travel time on the small sections a and b is δ.
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O

Path 1

Path 2

a b

D

Figure 2-1.  Path Choice Problem

The probability of each alternative provided by the Multinomial Logit Model for
this example is

P a b P a a b P b a b
e

e

T

T

j a b

( |{ , , }) ( |{ , , }) ( |{ , , })

{ , , }

1 1 2 2 2 1 2 2 2 1 2 2
1
3

1 2 2

= = = =

∈
∑

µ

µ

Clearly, this result is independent of the value of δ. However, when δ is
significantly smaller than the total travel time T, we expect the probabilities to be
close to 50%/25%/25%. The Multinomial Logit Model is not consistent with this
intuitive result. This situation appears in choice problems with significantly
correlated random utilities, as it is clearly the case in the path choice example.
Indeed, alternatives 2a and 2b are so similar that their utilities share many
unobserved attributes of the path and, therefore, the assumption of independence of
the random parts is not valid in this context.

Nested logit model  The Nested Logit Model, first proposed by Ben-Akiva (1973
and 1974), is an extension of the Multinomial Logit Model designed to capture some
correlations among alternatives. It is based on the partitioning of the choice set Cn

into M nests Cmn such that

C Cn mn
m

M

=
=1
U

and

Cmn ∩ Cm’n = ∅  ∀ m≠m’.
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The utility function of each alternative is composed of a term specific to the
alternative and a term associated with the nest. If i is an alternative from nest Cmn, we
have

U V Vin in in C Cmn mn
= + + +~ ~ ~ ~ε ε .

The error terms ~εin  and ~εCmn
 are supposed to be independent. As in the Multinomial

Logit Model, the error terms ~εin  are assumed to be independent and identically

Gumbel distributed, with scale parameter  µm (it can be different for each nest). The

distribution of ~εCmn
 is such that the random variable 

jn
Cj

U
mn

max
∈

 is Gumbel distributed

with scale parameter  µ.  Each nest within the choice set is associated with a
composite utility

∑
∈

+=
mn

jnm

mnmn
Cj

V

m
CC eVV

~

ln
1

  ~ µ

µ
.

The second term is called expected maximum utility, LOGSUM, inclusive value or
accessibility in the literature. The probability for individual n to choose alternative i
within nest Cmn is given by

P i C P C C P i Cn mn n mn( | ) ( | ) ( | )=

where

∑
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M

l

V

V
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C
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1
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µ

µ
,

and

P i C
e

e
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V

V
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µ
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Parameters µ and µm reflect the correlation among alternatives within the nest Cmn.
The covariance between the utility of two alternatives i and j in nest Cmn is
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Therefore, as the correlation is non negative, we have

0 1≤ ≤
µ
µm

,

and

µ
µm

in jnU U= ⇔ =1 0 corr( , ) .

The parameters µ and µm are closely related in the model. Actually, only their
ratio is meaningful. It is not possible to identify them separately. A common practice
is to arbitrarily constrain one of them to a specific value (usually 1).

As an example, we apply now the Nested Logit Model to the route choice problem
described in Figure 1. We partition the choice set Cn={1,2a,2b} into C1n={1} and
C2n={2a,2b}. The probability of choosing path 1 is given by

221

1
})2,2,1{|1(

µ
µ

+

=baP ,

where µ2 is the scale parameter of the random term associated with C2n, and µ is the
scale parameter of the choice between C1n and C2n. Note that we require 0 ≤ µ/µ2 ≤ 1.
The probability of the two other paths is

2

2

21

2

2

1
)|2()|2(

µ
µ

µ
µ

+

== nn CbPCaP .

In this example, we need to normalize either µ or µ2 to 1. In the latter case we
have

P a b( |{ , , })1 1 2 2
1

1 2
=

+ µ

and

P a C P b Cn n( | ) ( | )2 2
1
2

2
1 2

= =
+









µ

µ

and we require that 0 ≤ µ ≤1. Note that for µ=1 we obtain the MNL result. For µ
approaching zero, we obtain the expected result when paths 2a and 2b fully overlap.
A model where the scale parameter µ is normalized to 1 is said to be “normalized
from the top.”
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 A model where one of the parameters µm is normalized to 1 is said to be
“normalized from the bottom.” The latter may produce a simpler formulation of the
model. We illustrate it using the following example.

In the context of a mode choice with Cn={bus, metro, car, bike}, we consider a
model with two nests: C1n={bus,metro} contains the public transportation modes and
C2n={car,bike} contains the private transportation modes. For the example’s sake, we
consider the following deterministic terms of the utility functions:

Vbus=β1 tbus; Vmetro=β1 tmetro; Vcar=β2 tcar; Vbike=β2 tbike

where ti is the travel time using mode i and β1 and β2 are parameters to be estimated.
Note that we have one parameter for private and one for public transportation, and
we have not included the alternative specific constants in order to keep the example
simple.

Applying the Nested Logit Model, we obtain
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Define θ1= µ/µ1, θ2= µ/µ2 , β1
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with 0≤θ1,θ2≤1.
This formulation simplifies the estimation process. For this reason, it has been

adopted by the Ben-Akiva and Lerman (1985) textbook and in estimation packages
like ALOGIT (Daly, 1987) and HieLoW (Bierlaire, 1995, Bierlaire and
Vandevyvere, 1995). We emphasize here that these packages should be used with
caution when the same parameters are present in more than one nest. Specific
techniques inspired from artificial trees proposed by Bradley and Daly (1991) must
be used to obtain a correct specification of the model. In the above example, if µ1=µ2,
then imposing the restriction β1=β2 is straightforward. However, for the case of µ1≠µ2

and β1=β2=β, we define β*=µ1µ2β and create artificial nodes below each alternative,
with a scale µ2 for the first nest and scale µ1 for the second. We refer the reader to
Koppelman and Chen (1998) for further discussion.

A direct extension of the Nested Logit Model consists in partitioning some or all
nests into sub-nests which can in turn, be divided into sub-nests. The model described
above is valid at every layer of the nesting, and the whole model is generated
recursively. Because of the complexity of these models, their structure is usually
represented as a tree. Clearly, the number of potential structures reflecting the



Handbook of Transportation Science

correlation among alternatives can be very large. No technique has been proposed
thus far to identify the most appropriate correlation structure directly from the data.

The Nested Logit Model is designed to capture choice problems where
alternatives within each nest are correlated. No correlation across nests can be
captured by the Nested Logit Model. When alternatives cannot be partitioned into
well separated nests to reflect their correlation, the Nested Logit Model is not
appropriate.

Cross-nested logit model  The Cross-Nested Logit Model is a direct extension of the
Nested Logit Model, where each alternative may belong to more than one nest.
Similar to the Nested Logit Model, the choice set Cn is partitioned into M nests Cmn.
Moreover, for each alternative i and each nest m, parameters αim (0≤αim≤1)
representing the degree of “membership” of alternative i in nest m are defined.  The
utility of alternative i is given by

U V Vimn in in C C immn mn
= + + + +~ ~ ~ ~ lnε ε α .

The error terms inε~ and 
mnCε~  are independent. The error terms inε~  are

independent and identically Gumbel distributed, with unit scale parameter (this
assumption is not the most general, but simplifies the derivation of the model). The

distribution of 
mnCε~  is such that the random variable 
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U
mn

max
∈
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distributed with scale parameter µ. The probability for individual n to choose
alternative i is given by
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This model was first presented by McFadden (1978) as a special case of the GEV
model that is presented below. It was applied by Small (1987) for departure time
choice and by Vovsha (1998) for route choice.

Generalized extreme value model The Generalized Extreme Value (GEV) model
has been derived from the random utility model by McFadden (1978). This general
model consists of a large family of models that include the Multinomial Logit and the
Nested Logit models. The probability of choosing alternative i within Cn is
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Jn is the number of alternatives in Cn and G is a non-negative differentiable

function defined on IR+
J n  with the following properties:

1. G is homogeneous of degree µ > 01,
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n

,...,1 ,),...,,...,(lim 1
i
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∞→

3. the kth partial derivative with respect to k distinct xi  is non-negative if k is odd,
and non-positive if k is even, that is, for any distinct i1,…ik ∈ {1,…Jn } we have
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The Multinomial Logit Model, the Nested Logit Model and the Cross-Nested Logit
Model are GEV models, with

G x xi
i
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for the Logit model,
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for the Nested Logit model and

                                                
1 McFadden’s original formulation with µ=1 was generalized to µ>0 by Ben-Akiva
and François (1983).
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for the Cross-nested Logit model.

Multinomial Probit Model

The Probability Unit (or Probit) model should have been called Normit, for Normal
Probability Unit model.  It is derived from the assumption that the error terms of the
utility functions are normally distributed. The Probit model captures explicitly the
correlation among all alternatives. Therefore, we adopt a vector notation for the
utility functions:

Un = Vn + εn,

where Un, Vn and εn are (Jn×1) vectors. The vector of error terms εn=[ε1n,ε2n,...,εJn]
T is

multivariate normal distributed with a vector of means 0 and a JnxJn variance-
covariance matrix Σn.

The probability that a given individual n chooses alternative i from the choice set
Cn is given by

P i C P U U j Cn jn in n( | ) ( )= − ≤ ∀ ∈0  .

Denoting ∆i the (Jn-1×Jn) matrix such that

∆iUn =[U1n-Uin,…,U(i-1)n-Uin,U(i+1)n-Uin,…, nJn
U  -U in]

T,

 we have that

∆iUn ~ N(∆iVn, ∆iΣn ∆i
T).

The density function is given by
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The matrix ∆i is such that the ith column contains -1 everywhere. If the ith column
is removed, the remaining (Jn−1×Jn−1) matrix is the identity matrix. For example, in
the case of a trinomial choice model, we have

∆2

1 1 0

0 1 1
=

−
−







 .

We note that he multifold integral becomes intractable even for a relatively low
number of alternatives. Moreover, the number of unknown parameters in the
variance-covariance matrix grows with the square of the number of alternatives. We
refer the reader to McFadden (1989) for a detailed discussion of multinomial Probit
models. We present below the Generalized Factor Analytic formulation designed to
decrease the degree of complexity of Probit models.

Generalized Factor Analytic Specification of the Random Utility

The general formulation of the factor analytic formulation is

Un = Vn + εn = Vn + Fn ζn,

where Un is a (Jn×1) vector of utilities, Vn is a (Jn×1) vector of deterministic utilities,
εn is a (Jn×1) vector of random terms, ζn is a (M×1) vector of factors which are IID
standard normal distributed, and Fn is a Jn × M matrix of loadings that map the
factors to the random utility vector. This specification is very general.  If M = J, the
number of alternatives in the universal set, we can define the matrix F as the
Cholesky factor of the variance-covariance matrix Σ, that is Σ=F FT. Fn is then
obtained by removing the rows associated with unavailable alternatives. We describe
here special cases of factor analytical representations. They are discussed in more
details by Ben-Akiva and Bolduc (1996).

Heteroscedasticity A heteroscedastic2 model is obtained when Fn is a Jn×Jn diagonal
matrix. Let T be a diagonal matrix containing the alternative specific standard
deviations σi. Fn is obtained by removing the rows and columns of the unavailable
alternatives. We obtain the following model, in scalar form:

Uin = Vin +  σiζin.

                                                
2 Heteroscedasticity here refers to different variances among the alternatives. We use
it in this context to refer to a diagonal variance-covariance matrix with potentially
different terms on the diagonal.
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Factor analytic  In this model, the general matrix Fn is divided into a matrix of
loadings Qn and a diagonal matrix T containing the factor specific standard
deviations. We obtain the following model,

Un =Vn + Qn T ζn.

Or, in scalar form:

U V qin in imn m mn
m

M

= +
=

∑ σ ζ
1

,

where qimn are the elements of Qn and σm are the diagonal elements of T. The matrix
Qn is normalized so that

qimn
i m

2 1
,
∑ = ∀   n .

When the matrix Qn is known and does not need to be estimated the model is
referred to as the Error Component Formulation.

General autoregressive process  We consider the case where the error term εn is
generated from a first-order autoregressive process:

εn = ρWnεn + T ζn,

where Wn is a  (Jn× Jn) matrix of weights describing the influence of each component
of the error terms on the others, and ζn~N(0,Ijn), as above. Then we have

εn = (I-ρWn)
-1 T ζn,

which is a special case of the factor analytic representation with

Qn = (I-ρWn)
-1.

Hybrid Logit Model

The Multinomial Probit with a Logit kernel, or Hybrid Logit3, model has been
introduced by Ben-Akiva and Bolduc (1996). It is intended to bridge the gap between
Logit and Probit models by combining the advantages of both of them. It is based on
the following utility functions:

Uin = Vin + ξin + υin,

where ξin are normally distributed and capture correlation between alternatives, and
υin are independent and identically distributed Gumbel variables.  If the ξin are given,
the model corresponds to a Multinomial Logit formulation:

                                                
3 Sometimes called mixed logit
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where ξn=[ξ1,..., ξJ]
T is the vector of unobserved random terms. Therefore, the

probability to choose alternative i is given by
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ξξξ
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where f(ξn) is the probability density function of ξn. This model is a generalization of
the Multinomial Probit Model when the distribution f(ξn) is a multivariate normal.
Other distributions may also be used. The earliest application of this model to capture
random coefficients in the Logit Model (see below) was by Cardell and Dunbar
(1980). More recent results highlighted the robustness of Hybrid Logit (see
McFadden and Train, 1997).

Hybrid logit with factor analytical representation The Hybrid Logit Model can be
combined with the factor analytical representation presented above to allow practical
estimation using a simulated maximum likelihood procedure (see Ben-Akiva and
Bolduc, 1996). The “Probit” error term is transformed using any appropriate factor
analytical representation to obtain the following choice probability:

P i C P i C N I dn n n M n
n

( | ) ( | , ) ( , )= ∫ ζ ζ
ζ

0 .

This formulation of the multinomial Probit is especially useful when the number of
alternatives is so high that the use of probability simulators is required.

Random coefficients  We conclude our discussion of the Hybrid Logit model with a
formulation of the Multinomial Logit Model with randomly distributed coefficients:

Un=Vn+υn = Xnβn+υn.

Assume that βn~N(β,Ω). If Γ is the Cholesky factor of Ω such that ΓΓT=Ω, we
replace βn by β+Γζn to obtain

Un= Xn β+ Xn Γζn+υn.

It is an Hybrid Logit model with a factor analytic representation with Fn= Xn Γ.

Latent Class Choice Model

Latent class choice models are also designed to capture unobserved heterogeneity.
The underlying assumption is that the heterogeneity is generated by discrete
constructs. These constructs are not directly observable and therefore are represented
by latent classes. For example, heterogeneity may be produced by taste variations
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across segments of the population, or when choice sets considered by individuals
vary (latent choice set).

The latent class choice model is given by:

P i X P i X C P s Xn n s s n
s

S

( | ) ( | ; , ) ( | ; )=
=

∑ β θ
1

where S is the number of latent classes, Xn is the vector of attributes of alternatives
and characteristics of decision-maker n, βs are the choice model parameters specific
to class s, Cs is the choice set specific to class s, and θ is an unknown parameter
vector.

The model

P s Xn( | ; )θ

is the class membership model, and

P i X Cn s s( | ; , )β

is the class-specific choice model.

Special case: latent choice sets  A special case is the choice model with latent
choice sets:

)()|(),( n
GC

n CPCiPniP
n

∑
∈

=

where G is the set of all non-empty subsets of the universal choice set M, and P(i|Cn)
is a choice model. We note here that the size of G grows exponentially with the size
of the universal choice set.

 The latent choice set can be modeled using the concept of alternative availability.
Then, a list of constraints or criteria are used to characterize the availability of
alternatives. For each alternative i, a binary random variable Ain is defined such that
Ain=1 if alternative i is available to individual n, and 0 otherwise. A list of Kin

constraints is defined as follows:

Ain = 1 if Hink ≥ 0, ∀k=1,…,Kin.

For example, in a path choice context, one may consider that a path is not available is
the ratio between its length and the shortest path length is above some threshold,
represented by a random variable. The associated constraint for path i would then be:

Li / L
* ≥ 2+ε

where L* is the length of the shortest path, Li is the length of path i and ε a random
variable with zero mean. It means that, on average, paths longer than twice the length
of the shortest path are rejected.

The probability for an alternative to be available is given by
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P(Ain = 1) = P(Hink ≥ 0 ∀k=1,…,Kin).

The latent choice set probability is then:
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If the availability criteria are assumed to be independent, we have
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Swait and Ben-Akiva (1987) estimate a latent choice set model of mode choice in a
Brazilian city.

2.3 Route Choice Applications

The route choice problem can be stated as follows. Given a transportation network
composed of nodes, links, origins and destinations; and given an origin o, a
destination d and a transportation mode m, what is the chosen route between o and d
on mode m. This discrete choice problem has specific characteristics. First, the
universal choice set is usually very large. Second, not all physically feasible
alternatives are considered by the decision-maker. Third, the alternatives are usually
correlated, due to overlapping paths.

We now describe typical assumptions associated with route choice models.

Decision-Maker

The traveler’s characteristics most often used for route choice applications are:

• Value-of-time. Obviously, travel time is a key attribute of alternative routes.
Its influence on behavior, however, may vary across individuals. A Wall
Street broker is likely to perceive and evaluate travel time differently from a
retired Floridian. The sensitivity of an individual to travel time is usually
referred to as the value-of-time. It can be represented by a continuous
variable (e.g., the dollar-value equivalent of a minute spent traveling) or by a
discrete variable identifying the decision-maker’s value-of-time as low,
medium or high.

• Access to information. Information about network conditions may
significantly influence route choice behavior. Therefore, it may be important
that a route choice model explicitly differentiates travelers with access to such
information from those without access. It may be modeled by a single binary
attribute (access/no access) or by several binary variables identifying the type
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of information available to the traveler (pre-trip information, on-board
computer, etc.)

• Trip purpose. The purpose of the trip may significantly influence the route
choice behavior. For example, a trip to work may be associated with a penalty
for late arrival, while a shopping trip would usually have no such penalty.
However, note that the trip purpose may be highly correlated with the value-
of-time.

Alternatives

Identifying the choice set in a route choice context is a difficult task. Two main
approaches can be considered.

First, it may be assumed that each individual can potentially choose any path
between her/his origin and destination. The choice set is easy to identify, but the
number of alternatives can be very large, causing operational problems in estimating
and applying the model. Moreover, this assumption is behaviorally unrealistic.

Second, a restricted number of paths may be considered in the choice set. The
choice set generation can be deterministic or stochastic, depending on the analyst’s
knowledge of the problem.

Dial (1971) proposes to include in the choice set “reasonable” paths composed of
links that would not move the traveler farther away from her/his destination.  The
labeling approach (proposed by Ben-Akiva et al., 1984) includes paths meeting
specific criteria, such as shortest paths, fastest paths, most scenic paths, paths with
fewest stop lights, paths with least congestion, paths with greatest portion of
freeways, paths with no left turns, etc.

An application of an implicit probabilistic choice set generation model has been
proposed by Cascetta and Papola (1998), where the utility function associated with
path i by individual n is defined as

Uin = Vin + ln qin + εin,

 where qin is a random variable with mean

∑
+

=
−

k

A
inkk Xin

e

q
γ

1

1
.

A
inkX  are the attributes for availability and perception of the path and γk are

parameters to be estimated.
Some recent models (Nguyen and Pallottino, 1987, Nguyen, Pallottino and

Gendreau, 1988) consider hyperpaths instead of paths as alternatives. An hyperpath
is a collection of paths with associated strategies at decision nodes. This technique is
particularly appropriate for a public transportation network.



Discrete Choice Methods and Their Application to Short-Term Travel Decisions

Attributes

In describing the attributes of the alternatives to be included in the utility function,
we need to distinguish between link-additive and non-link-additive attributes.

If i is a path composed of links a ∈ Γi, xi is a link-additive attribute of i if

∑
Γ∈

=
ia

ai xx ,

where xa is the corresponding attribute of link a. For example, the travel time on a
path is the sum of the travel times on links composing the path. Qualitative attributes
are in general non-link-additive. For example, a binary variable xi equal to one if the
path is an habitual path and 0 otherwise, is non-additive. In the context of public
transportation, variables like transfers and fares are usually not link-additive. The
distinction is important because some models, designed to avoid path enumeration,
use link attributes and not path attributes.

Among the many attributes that can potentially be included in a utility function,
travel time is probably the most important. But what does travel time mean for the
decision-maker? How does she/he perceive travel time? Many models are based on
the assumption that most travelers are sufficiently experienced and knowledgeable
about usual network conditions and, therefore, are able to estimate travel times
accurately. This assumption may be satisfactory for planning applications using static
models. With the emergence of Intelligent Transportation Systems, models that are
able to predict the impact of real-time information have been developed. In this
context, the "perfect knowledge" assumption is contradictory with the ITS services
that provide information. Several approaches can be used to capture perceptions of
travel times. One approach represents travel time as a random variable in the utility
function. This idea was introduced by Burrell (1968) and is captured by a random
utility model. Also, the uncertainty or the variability of travel time along a given path
can be explicitly included as an attribute of the path.

In addition to travel time, the following attributes are usually included.

• Path length. The length of the path is likely to influence the decision maker’s
choice. Also, this attribute is easy to measure. Note that it may be highly
correlated with travel time, especially in uncongested networks.

• Travel cost. In addition to the obvious behavioral motivation, including travel
cost in the utility function is necessary to forecast the impact of tolls and
congestion pricing, for example. It is common practice to distinguish the so-
called out-of-pocket costs (like tolls), which are directly associated with a
specific trip, from other general costs (like car operating costs).

• Transit specific. Attributes specific to route choice in transit networks include
number of transfers, waiting and walking time and service frequency.

• Others. Traffic conditions (e.g. level of congestion, volume of conflicting
traffic streams or pedestrian movements), obstacles (e.g. number of stop
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signs, number of traffic lights, number of left turns against traffic), road types
(e.g. dummy variable capturing preference for freeways) and road condition
(e.g. surface quality, number of lanes, safety, scenery) are some of the other
attributes that may be considered. Whether to include them in the utility
function depends on their behavioral pertinence in a specific context, and on
data availability.

Decision Rules

Shortest path  The simplest possible decision rule in the route choice context
assumes that each individual chooses the path with the highest utility. Models based
on deterministic utility maximization are supported by efficient algorithms to
compute shortest paths in a graph (e.g. Dijkstra, 1959, and Dial, 1969). However, the
behavioral limitations of this approach have motivated the development of stochastic
models based on the random utility model.

Logit route choice  A Multinomial Logit Model with an efficient algorithm for route
choice has been proposed by Dial (1971). Using the concept of “reasonable paths” to
define the choice set and assuming the paths attributes to be link-additive, this
algorithm avoids explicit path enumeration.

As described earlier, the IIA property of the Multinomial Logit Model is the major
weakness of Dial’s algorithm in the context of highly overlapping routes. Therefore,
its use is limited to networks with specific topologies. A Logit model may also be
used with a choice set generation model, such as the Labeling approach, that results
in a small size choice set with limited overlap.

Probit route choice  Given the shortcomings of the Logit route choice model, Probit
models have been proposed in the context of stochastic network loading by Burrell
(1968) and Daganzo and Sheffi (1977).  The two problems in this case are (i) the
complexity of the variance-covariance matrix and (ii) the lack of an analytical
formulation for the probabilities. The covariance structure can be simplified when
path utilities are link-additive, the variance of link utility is proportional to the utility
itself, and the covariance of utilities of two different links is zero. A Monte-Carlo
simulation is often used to circumvent the absence of a closed analytical form.

C-Logit  The C-Logit model, proposed by Cascetta et al. (1996) in the context of
route choice, is a Multinomial Logit Model which captures the correlation among
alternatives in a deterministic way. They add to the deterministic part of the utility
function a term, called “commonality factor”, that captures the degree of similarity
between the alternative and all other alternatives in the choice set.
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Cascetta et al. (1996) propose the following specification for the commonality factor
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where Lij is the length4 of links common to paths i and j, and Li and Lj are the overall
length of paths i and j, respectively. βCF is a coefficient to be estimated. The
parameter γ may be estimated or constrained to a convenient value, often 1 or 2.

Considering the path choice example in Figure 1, the commonality factor for path
1 is zero because it does not overlap with any other path. The commonality factor for
paths 2a and 2b is

βCF ln(1 + [(T-δ)/T]γ ).

Note that the commonality factor of an alternative is not one of its attributes.  It
can be viewed as a measure of how the alternative is perceived within a choice set.

PS-Logit  Path-Size Logit is an application of the notion of elemental alternatives
and size variables. See Ben-Akiva and Lerman (Chapter 9) for details about models
with elemental and aggregate alternatives. In the route choice context, we assume that
an overlapping path may not be perceived as a distinct alternative. Indeed, a path
contains links which may be shared by several paths. Hence, the size of a path with
one or more shared links may be less than one. We include a size variable in the
utility of a path to obtain the following model :
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and Γi is the set of links in path i; la and Li are the length of link a and path i,
respectively; δaj is the link-path incidence variable that is one if link a is on path j and

0 otherwise; and *

nCL  is the length of the shortest path in Cn.

Considering again the path choice problem from Figure 1, the size of path 1 is 1,
and the size of paths 2a and 2b is (T+δ)/2T. It is interesting to note that the size
variable formulation is equivalent to the commonality factor formulation for the

                                                
4 or any other link-additive attribute
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extreme cases where δ=0 or δ=T, assuming that βCF=1 and for any value of γ.
However, the two models are different for intermediary values.

2.4 Departure Choice Applications

Modeling the choice of departure time appears in the context of dynamic traffic
assignment as an extension of the route choice problem. It is important to distinguish
the departure time choice itself and the choice of changing departure time. The latter
appears usually in the context of Traveler Information Systems, where individuals
may revisit a previous choice using additional information. We now describe typical
modeling assumptions associated with the departure time choice model.

Decision-Maker

The relevant traveler’s socioeconomic characteristics are similar to those of route
choice models. Additional characteristics important for departure time choice are
desired arrival time and penalties for early and late arrival.

In the context of departure time change, the individual’s “habitual” or “historical”
departure time must also be known.

Alternatives

The choice set specification for departure time models is an intricate problem. First,
the continuous time must be discretized. A reasonable compromise must be found
between a fine temporal resolution and the model complexity. Indeed, there is a
potentially large number of alternatives, particularly for realistic dynamic traffic
applications. Second, the correlation among alternatives cannot be ignored,
especially when time intervals are short. Choosing between the 7:45-7:50 and 7:50-
7:55 time intervals differs from choosing between 7:45-7:50 and 8:45-8:50. In the
first case, the two alternatives are likely to share unobserved attributes. Third, the
perception of the alternatives depends on trip travel time. Most individuals round
time and the rounding may depend on the travel time and travel time variability. For
short trips, 7:52 may be rounded to 7:50, whereas for long trips it may be
approximated by 8:00.

The choice set generation consists of defining an acceptable range of departure
time intervals considered by an individual n. A common procedure is based on the
desired arrival time AT*n. Let [ATn,min; ATn,max] be the feasible arrival time interval,
and let [TTn,min; TTn,max] be the range of travel times. Then the interval of acceptable
departure times is [DTn,min; DTn,max] = [AT n,min-TTn,max; ATn,max-TTn,min]. Small
(1987) analyzed the impact of truncating the departure time choice set. He concluded
that there is no problem if the true model is a Multinomial Logit Model. Some
adjustments are needed if a Cross-Nested Logit with ordered alternatives is assumed.
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In the context of departure time change, the alternatives may be described in a
relative way. Antoniou et al. (1997) propose a choice set with five alternatives: do
not change, switch to an earlier or a later departure, by one or two time intervals.

Attributes

Travel time is a key attribute of departure time alternatives. Other important
attributes are the early and late schedule delays. Given a desired arrival time AT*

n, a
penalty-free interval is defined: [AT*

n,min;AT*
n,max]. It is assumed that the individual

suffers no penalty if the arrival times lies within the interval. The actual arrival time
ATn is equal to DTn+TT(DTn),where TT(DTn) is the travel time if the trip starts at
time DTn. The early schedule delay is defined as

Max [AT*
n.min–ATn , 0]

and the late schedule delay is defined as

Max [ATn–AT*
 n.max , 0].

In the context of departure time change, a penalty can also be associated with
departure times very different from the habitual choice, capturing the inertia
associated with habits.

Decision Rules

Small (1982) and Cascetta et al. (1992) use Multinomial Logit Models for departure
time choice. However, the intrinsic aforementioned correlation among alternatives is
not captured by such models. Small (1987) proposed an Ordered Generalized
Extreme Value model. It is a Cross-Nested Logit Model, where m adjacent departure
time intervals are nested together, capturing their intrinsic correlation. A single
departure time interval belongs to m different nests, source of the cross-nested
structure.

In the context of departure time change, Antoniou et al. (1997) propose a Nested
Logit Model for joint choice of departure time and route. Liu and Mahmassani
(1998) propose a Probit model where day-to-day correlation is assumed.

2.5 Conclusion

Discrete choice methods are constantly evolving to accommodate the requirements of
specific applications. This is an exciting field of research, where a deep
understanding of the underlying theoretical assumptions is necessary both to apply
the models and develop new ones. In this Chapter, we have summarized the
fundamental aspects of discrete choice theory, and we have introduced recent model
developments, illustrating their richness.  A discussion on route choice and departure
time choice applications have shown how specific aspects of real applications must
be addressed.
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