
Comparing Atomic Broadcast Algorithms

in High Latency Networks

Richard Ekwall
nilsrichard.ekwall@epfl.ch

André Schiper
andre.schiper@epfl.ch

École Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland

Technical Report LSR-REPORT-2006-003

Abstract
Since the introduction of the concept of failure detectors, several consensus and atomic

broadcast algorithms based on these detectors have been published. The performance of
these algorithms is often affected by a trade-off between the number of communication steps
and the number of messages needed to reach a decision. Some algorithms reach decisions
in few communication steps but require more messages to do so. Others save messages at
the expense of an additional communication step to diffuse the decision to all processes in
the system. This trade-off is heavily influenced by the network latency and the message
processing times and therefore yields fundamentally different results in wide and local area
networks.

Performance evaluations of these algorithms, both in simulated or in real environments,
have been published. These evaluations often consider a symmetrical setup : all processes
are on the same network and have identical peer-to-peer latencies.

In this paper, we model and evaluate the performance of three consensus and atomic
broadcast algorithms using failure detectors in several wide area networks. We specifically
focus on the case of a system with three processes, located in two or three different locations.

Keywords: Atomic broadcast, wide area network, model, performance evaluation

1 Introduction

1.1 Context

Chandra and Toueg introduced the concept of failure detectors in [4]. Since then, several atomic
broadcast [7] and consensus [4, 13, 11] algorithms based on failure detectors have been published.

The performance of these algorithms is affected by a trade-off between the number of com-
munication steps and the number of messages needed to reach a decision. Some algorithms reach
decisions in few communication steps but require more messages to do so. Others save messages
at the expense of additional communication steps (to diffuse the decision to all processes in the
system for example). This trade-off is heavily influenced by the message transmission and pro-
cessing times. When deploying an atomic broadcast algorithm, the user must take these factors
into account to choose the algorithm that is best adapted for the given network environment.

The performance of these algorithms has been evaluated in several environments, both
real [7, 5] and simulated [18, 19]. However, these evaluations are limited to a symmetrical
setup: all processes are on the same local area network and have identical peer-to-peer round-
trip times. Furthermore, they only consider low round-trip times between processes (and thus
comparatively high message processing costs): a setting which is favorable to algorithms which
limit the number of sent messages, at the expense of additional communication steps.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147918772?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1.2 Contributions

In this paper, we evaluate the performance of three atomic broadcast algorithms using failure
detectors with three different communication patterns (the first based on reduction to a cen-
tralized consensus algorithm [4], the second based on reduction to a decentralized consensus
algorithm [13] and the third one, a ring based algorithm [7]) in wide area networks. We specifi-
cally focus on the case of a system with three processes, — i.e., supporting one failure — where
either (i) all three processes are on different locations and (ii) the three processes are on two
locations only (and thus one of the locations hosts two processes). The algorithms are evaluated
with a large variation in link latency (e.g., round-trip times ranging from 4 to 300 ms).

We propose a simple model of the wide area network to analytically predict the performance
of the three algorithms. The experimental evaluation confirms that the model correctly predicts
the performance for moderate system loads.

The experimental evaluation of the algorithms leads to the following conclusions. First,
the number of communication steps of the algorithms is the predominant factor in wide area
networks. Indeed, the performance ranking of the three algorithms is the same in all the wide
area networks considered, despite the difference in latency between the smallest (4 ms) and
largest (300 ms) round trip time, and is correlated to the number of communication steps.
Second, the performance of each of the algorithms heavily depends on setup issues that are
orthogonal to the algorithm (typically the choice of the process that starts each iteration of the
algorithm, which can be always the same process, or which can shift from one process to another
at each iteration). These setup issues also determine the maximum achievable throughput.
Finally, measures mentioned in the Appendix show, as expected, that the performance ranking
of the three algorithms is fundamentally different in a wide area network and in a local area
network. This is explained by the fact that, in a local area network, the predominant factor is
the number of messages, while in a wide area network it is the number of communication steps.

The paper is structured as follows. Section 2 discusses the motivation for evaluating the
atomic broadcast algorithms in wide area networks. Sections 3 and 4 present respectively the
system model and the performance metrics that are used. The evaluation of the algorithms
is then presented in Section 5 (analytical) and Section 6 (experimental). Finally, Section 7
concludes the paper.

2 Motivation and Related Work

2.1 Motivation

In [8], the authors show that consensus cannot be solved in an asynchronous system with a
single crash failure. Several extensions to the asynchronous model, such as failure detectors [4],
have circumvented this impossibility and agreement algorithms [4, 13, 7] have been developed
in this extended model.

The performance of these atomic broadcast algorithms is evaluated in different ways. Usu-
ally, the formal presentation of the agreement algorithms is accompanied by analytical bounds
on the number of messages and communication steps that are needed to solve the prob-
lem [4, 13, 20]. This coarse-grained evaluation of the performance of the algorithms is however
not sufficiently representative of the situation in a real environment.

To get a more accurate estimation of the performance of the atomic broadcast algorithms,
they have often been evaluated in local area networks [7, 5], simulated in a symmetrical envi-
ronment where all links between processes have identical round-trip times [18, 19] or evaluated
in hybrid models that introduce artificial delays to simulate wide area networks [20].

Although these performance evaluations do provide a representative estimate of the perfor-
mance of atomic broadcast on a local area network, they cannot be used to extrapolate the
performance of the algorithms on a wide area network, where the ratio between communication

2

and processing costs is completely different. Furthermore, evaluating the performance of atomic
broadcast on wide area networks is not only of theoretical interest. As [12] shows, it is feasible to
use atomic broadcast as a service to provide consistent data replication on wide area networks.

The following paragraph describes the central trade-off that explains the impact of network
latency on the performance of atomic broadcast algorithms.

The trade-off between number of messages and communication steps: The pro-
cesses executing the atomic broadcast algorithms that we consider in this paper communicate
with each other to agree on a common message delivery sequence. To do so, they need to
exchange a minimum number of messages in a number of communication steps. There is here
a trade-off on the number of communication steps and the number of sent messages. Usually,
a higher number of messages enables the algorithm to reach a decision in fewer communication
steps and vice-versa.

Each communication step has a cost. Indeed, each additional communication step induces a
delay on the solution to the problem (corresponding to half of the round-trip time between the
processes involved in the communication). This cost is typically low in a local area network,
whereas it increases with the latency in a wide area network.

Sending messages also has a cost. Additional messages mainly imply additional processing
costs. Indeed, whenever a message is sent, it has to be handled by the system. This handling
includes costs related to algorithmic computations on its content, serialization (i.e. transforming
the message to and from an array of bytes that is sent on the network) and bandwidth used for
the transmission.

These costs characterize the trade-off between the number of messages sent and communica-
tion steps needed by the algorithm. If a communication step costs nothing, then the algorithm
that sends the least number of messages performs the best. If, on the other hand, a commu-
nication step is very expensive, the algorithm that sends most messages (and thus saves on
the number of communication steps) has the best performance. In this paper, several network
latencies are studied to evaluate their impact on this trade-off.

2.2 Related work

In [1], the authors study the influence of network loss on the performance of two atomic broad-
cast algorithms in a wide area network. To do this, the authors combine experimental results
obtained on a real network with an emulation of the atomic broadcast algorithms. The scope
of the work in [1] is different from ours : they evaluate the impact that message loss has on the
performance of atomic broadcast algorithms whereas we evaluate the impact of network latency
on the relative performance of different algorithms. Furthermore, the performance evaluation in
[1] does not take the processing time of messages into account (the results are based on message
logs and emulated algorithms). Arguably, this processing time is negligible when a network
with large round-trip times is considered (as was the case in [1]), but its importance increases
as the round-trip times decrease.

Bakr and Keidar evaluate the duration of a communication round on the Internet in [2].
Their work focuses on the running time of four distributed algorithms with different message
exchange patterns, and in particular, the effect of message loss on these algorithms. Their
experiments are run on a large number of hosts (10) and the algorithms that they examine do
not allow messages to be lost (i.e. an algorithm waits until it has received all messages it is
expecting). The scope of [2] is similar to ours in that they analyze the relative performance
of algorithms with different communication patterns on a wide area network. However, their
algorithms are not representative of failure detector based atomic broadcast algorithms. Indeed,
in the three algorithms we consider, processes never need to wait for messages from all the
other processes. Thus, if messages from one process are delayed because of a high-latency link,
it does not necessarily affect the performance of the atomic broadcast algorithm (whereas it
would in [2]).

3

In [20], an atomic broadcast algorithm that is specifically targeted towards high latency
networks is presented. The authors also evaluate the performance of the algorithm in a local
area network with added artificial delays (to simulate the high latency links). The artificial
delay is however not sufficient to adequately represent the network links of a wide area network.
Indeed, such links are also characterized by a lower bandwidth than local area network links.
In our performance measurements, we show that in some cases, the low bandwidth of the wide
area links strongly limits the performance of the algorithms that are considered.

Several other papers such as [19, 18, 7, 5, 6, 15, 9] have studied the performance of atomic
broadcast algorithms that use failure detectors or properties related to the spontaneous ordering
of messages in local area networks. These papers however, either study the performance of the
algorithms in a local area network or through simulation. None of these evaluations adequately
models the impact of the high latency links in a wide area network on the performance trade-off
between the number of messages that are sent and the number of communication steps needed
by the agreement algorithm.

3 System model, consensus and atomic broadcast

We consider an asynchronous system of n processes p0, . . . , pn−1. The processes communicate
by message passing over reliable channels and at most f processes may fail by crashing (i.e. we
do not consider Byzantine faults). A process that never crashes is said to be correct, otherwise
it is faulty. The system is augmented with unreliable failure detectors [4, 7].

In the following paragraphs, we informally present reliable broadcast, consensus and atomic
broadcast (the formal definition of the three problems can be found in [10]). Reliable broadcast
and consensus are building blocks for solving atomic broadcast in two of the atomic broadcast
algorithms that we consider. In Sections 3.2 and 3.3, we shortly present the algorithms that are
evaluated later.

3.1 Reliable broadcast, consensus and atomic broadcast

In the reliable broadcast problem, defined by the primitives rbroadcast and rdeliver, all processes
need to agree on a common set of delivered messages. In this paper, we consider the reliable
broadcast algorithm presented in [4], which requires O(n2) messages and a single communication
step to rbroadcast and rdeliver a message m.

Informally, in the consensus problem, defined by the two primitives propose and decide, a
group of processes have to agree on a common decision. In this paper, we consider two consensus
algorithms that use the ♦S failure detector [4] (presented in Section 3.2).

In the atomic broadcast problem, defined by the two primitives abroadcast and adeliver, a
set of processes have to agree on a common total order delivery of a set of messages. It is a
generalization of the reliable broadcast problem with an additional ordering constraint. In this
paper, we consider two atomic broadcast algorithms which are described in Section 3.3.

3.2 Two consensus algorithms

Chandra-Toueg (CT) [4]: The first consensus algorithm, noted CT, is a centralized algorithm
that requires 3 communication steps, O(n) messages and 1 reliable broadcast for all processes
to reach a decision in good runs (i.e. runs without any crashes or wrong suspicions). In
good runs, the CT algorithm behaves as follows: one of the processes, called the coordinator,
sends its proposal to all processes (first communication step). The other processes reply by
sending an acknowledgment to the coordinator (second step). The coordinator waits for dn+1

2 e
acknowledgments (including its own) and reliably broadcasts the decided value to all processes
(third step). Whenever a process reliably delivers a decision message for the first time, it decides.

4

time

p0

p1

p2

diffusion

consensus
(CT or MR)

ordering

abcast(m)

adel(m)

adel(m)

adel(m)

wait

(a) Chandra-Toueg

time

p0

p1

p2

ordering

adel(m)

adel(m)

diffusion

abcast(m)

adel(m)

wait

(b) TokenFD

Figure 1: Communication pattern of the Chandra-Toueg and TokenFD atomic broadcast algo-
rithms in runs without failures or wrong suspicions.

Mostéfaoui-Raynal (MR) [13]: The second consensus algorithm, noted MR, is a decen-
tralized algorithm that requires 2 communication steps and O(n2) messages1 for all processes
to reach a decision in good runs. In good runs (and in a system with n = 3 processes), the
MR consensus algorithm behaves as follows: as in CT, one of the processes, called the coordi-
nator, sends its proposal to all processes (first communication step). The other processes reply
by sending an acknowledgment to all processes (second step). All processes wait for dn+1

2 e
acknowledgments (including their own). To guarantee the Termination property of consensus,
a process that decides sends its decided value to all processes. In the case of a system with
n = 3 processes, the non-coordinator processes can already decide after the first communication
step, since they have received the coordinator’s proposal and their own acknowledgment at that
point.

On the choice of a coordinator: Both the CT and MR consensus algorithms use a
coordinator that proposes the value that is to be decided upon. This coordinator can be any
process in the system, as long as it can be deterministically chosen by all processes (based only
on information that is locally held by each process). In the experimental evaluation of these
algorithms, we examine how the choice of the first coordinator influences the performance of
the algorithms. We also study the case where the first coordinator changes between instance
number k of consensus and the next instance k + 1.

3.3 Two atomic broadcast algorithms

Chandra-Toueg atomic broadcast [4]: Figure 1(a)2 shows the communication pattern of
Chandra and Toueg’s atomic broadcast algorithm. It requires at least one reliable broadcast
and a consensus execution for all processes to abroadcast and adeliver messages.

Whenever a message m is abroadcast, it is reliably broadcast to all processes (first com-
munication step). The processes then execute consensus on the messages that haven’t been
adelivered yet (using the CT or MR algorithm in our case). If m is in the decision of consensus,
then m is adelivered. The waiting period that is shown in Figure 1(a) happens if a consensus
execution is already in progress and therefore prevents m from being proposed at once for a
new consensus.

Token using an unreliable failure detector [7]: The token-based atomic broadcast
algorithm (noted TokenFD) solves atomic broadcast by using an unreliable failure detector
noted R and by passing a token among the processes in the system. It requires three communi-
cation steps in a system with n = 3 processes and O(n) messages for all processes to abroadcast
and adeliver messages. In runs without failures and suspicions, the TokenFD algorithm behaves
as in Figure 1(b).

Whenever a message m is abroadcast, it is sent to all processes (first communication step).
Message m is then added to the token that circulates among the processes (in Figure 1(b), the
token circulates between p2 and p3 in communication step 2). After the second communication
step, m is adelivered by the token-holder which sends an update to all other processes about this

1The MR consensus algorithm does not use reliable broadcast as a building block. Instead, reliable diffusion
of the decision is ensured by an ad-hoc protocol using n2 messages.

2Most figures use colors and are easier to understand when the paper is printed on a color printer.

5

delivery (third communication step). Again, the waiting period that is shown in Figure 1(b)
only happens if the token is already being sent on the network and therefore prevents m from
being ordered immediately.

4 Performance metrics and workloads

The following paragraphs describe the benchmarks (i.e., the performance metrics and the work-
loads) that were used to evaluate the performance of the three atomic broadcast algorithms
(reduction to CT consensus; reduction to MR consensus; TokenFD algorithm). The bench-
marks in [16, 19, 7] are similar to the ones we use here.

Performance metric – latency vs. throughput: The performance metric that was used
to evaluate the algorithms is the latency of atomic broadcast. For a single atomic broadcast, the
latency L is defined as follows. Let t0 be the time at which the abroadcast(m) event occurred
and let ti be the time at which adeliver(m) occurred on process pi, with i ∈ 1, . . . , n. The

latency L is then defined as L
def
= (1

n

∑n
i=1 ti) − t0. In our performance evaluation, the mean

for L is computed over many messages and for several executions. 95% confidence intervals are
shown for all the results.

Workloads: The latency L is measured for a certain workload, which specifies how the
abroadcast events are generated. We chose a simple symmetric workload where all processes
send atomic broadcast messages3 at the same constant rate and the abroadcast events follow a
Poisson distribution. The global rate of atomic broadcasts is called the throughput T . We then
evaluate the dependency between the latency L and the throughput T .

Furthermore, we only consider the system in a stationary state, when the rate of abroadcast
messages is equal to the rate of adelivered messages. This state can only be reached if the
throughput is below some maximum threshold Tmax. Beyond Tmax, some processes are left
behind. We ensure that the system stays in a stationary state by verifying that the latencies of
all processes stabilize over time.

Finally, we only evaluate the performance of the algorithms in good runs, i.e., without any
process failures or wrong suspicions. The latency of the algorithms is measured once the system
has reached a stationary state (at a sufficiently long time after the start up). The parameters
that influence the latency are n (the number of processes), the algorithm (TokenFD, Chandra-
Toueg atomic broadcast with CT or MR consensus) and the throughput.

In the next section, we start by presenting an analytical model for evaluating the average
latency of atomic broadcast algorithms in a wide area network. This model gives a first estimate
of the relative performance of the processes. The evaluation of the algorithms in real wide area
networks is then presented in Section 6. We specifically focus on the case of a system with three
processes, supporting up to one failure.

5 Analytical performance evaluation

This section discusses an analytical performance evaluation of the three atomic broadcast (and
consensus) algorithms in a wide area network. We start by describing the different phases that
are common to all three algorithms and then present the two wide area network models that are
considered. Due to lack of space, the derivation of the average latencies of the three algorithms
is not presented here, but can be found in Appendices B and C.

The three phases of atomic broadcast. Both atomic broadcast algorithms work in three
phases, as previously illustrated in Figure 1: upon abroadcasting a message m, (1) m is sent to all
processes and (2) waits to be ordered. (3) Its order is then decided (using consensus or directly
within the TokenFD atomic broadcast algorithm) and m is adelivered. The cost of the different

3The atomic broadcast messages do not contain any payload, in order to reach the maximum possible perfor-
mance when comparing the three atomic broadcast combinations.

6

d00
1

2 d1d2

(a) Sending a message between location i
and i + 1 takes di time units.

distant sitelocal site

D

(b) Sending a message between a local and
a distant location takes D time units.

Figure 2: Theoretical model of a wide area network with three locations (2(a)) or two locations
(2(b)). The processing times of messages are considered negligible.

phases (and thus the average latency) is of course directly related to the atomic broadcast and
consensus algorithms that are used. These costs are presented in detail in Appendix A. Below,
we present the two wide area network models that we consider.

Wide-area network with three locations. Figure 2(a) presents the model of a wide
area network system with three processes on three different locations. The network latency
between location i and location i + 1 is noted di. Without loss of generality, we assume that
d0 ≥ d1 ≥ d2. The model is simplified, in the sense that the processing costs of the messages
are considered negligible. This assumption is reasonable if the latencies di between locations
are much larger than the processing times of the messages on the critical path of the atomic
broadcast algorithms (which is reasonable in a wide area network, but does not hold in a local-
area network). Furthermore, the model does not take other factors into account, such as the
bandwidth of the links or message loss. The average latency of the three atomic broadcast
algorithms in this model can be found in Appendix B.

The performance of the algorithms in this model depends heavily on the relationship between
the values d0, d1 and d2. The analytical comparison between TokenFD, MR and CT with shifting
coordinators when d0, d1 and d2 can take any value is complex and omitted here. In the case
of a fixed initial coordinator (presented in Table 1 in Appendix B), MR always performs better
than CT, and for both algorithms, the best latency is achieved if the initial coordinator is on
location 2 (and the worst latencies occur when coordinator on location 1).

Wide-area network with two locations. The algorithms that are evaluated require
a system with at least three processes to tolerate one failure. These three processes can be
distributed on up to three different locations. The situation where three locations are used is
modeled above and the case where all three processes are on a single location is outside the
scope of this paper, since a wide area network is no longer necessary. The second case where
the processes are on two locations is however interesting: this setup limits the damage due to a
catastrophic event on one of the locations and offers the possibility of serving clients from two
separate locations (thus reducing the response latency in some circumstances). The model of
the two-location system is presented in the following paragraphs.

Figure 2(b) presents the model of a system with three processes, one of which is on a distant
location. The network latency between the distant location and the local location is noted D.
The two-location model is a special case of the previous model, with d0 = d1 = D and d2 = 0.

The relative performance of the three algorithms in the analytical model with two locations is
the following (see Appendix C for the details). The MR algorithm always achieves latencies that
are lower than (or equal to) the CT algorithm. If the initial coordinator of these algorithms is
on the distant location, then the TokenFD algorithm has a better performance than both. If the
initial coordinator shifts between locations at each new consensus execution, the TokenFD and
MR algorithms achieve similar performance results, whereas CT has a higher latency. Finally,
when the coordinator is on a local location, both CT and MR achieve more than two times
lower latencies than the TokenFD algorithm.

7

6 Experimental performance evaluation

In the following section, the experimental performance of the atomic broadcast algorithms
presented in Section 3 are compared. The next paragraph briefly discusses the framework in
which the algorithms were implemented. The evaluation environments that were used are then
presented and finally, the results that were obtained are presented, analyzed and compared to the
analytical evaluation of Section 5. The algorithms presented in this paper are all implemented
in Java, using the Neko framework [17]. The various algorithms are implemented as micro-
protocols and composed to form the final protocol stack. Every process in the system runs one
of these Neko protocol stacks. Furthermore, all processes are connected pair-wise through TCP
channels.

6.1 Evaluation environments

Four wide area network environments were used to evaluate the performance of the three atomic
broadcast and consensus algorithms. Figure 3 shows a schematic representation of these four en-
vironments. All machines run a Linux distribution (2.6.8 to 2.6.12 kernels) and a Sun Java 1.5.0
virtual machine. The following paragraphs describe the different wide area network environ-
ments in which the atomic broadcast algorithms are evaluated. The round-trip times between
locations are given by ping (in milliseconds), whereas the bandwidth of the links connecting the
locations are given by the iperf [14] utility (in Megabits per second).

Three-location wide area network: The first evaluation environment (noted WAN Three Lo-
cations) is a system with three locations (Figure 3(a)) on Grid’5000 [3], a French grid of inter-
connected clusters designed for the experimental evaluation of distributed and grid computing
applications. The round-trip times of the links between the three processes are respectively
2d0 = 17.2 ms, 2d1 = 12.5 ms and 2d2 = 10.6 ms. The observed bandwidth of the three links
are respectively 30.1 Mbits/s, 41.4 Mbits/s and 48.7 Mbits/s.

Two-location wide area networks: Three environments were used to evaluate the per-
formance of atomic broadcast on wide area networks with two different locations:

− WAN 295: The first two-location environment consists of one location in Switzerland and
one in Japan (Figure 3(b)). The round-trip time between the locations is 2D = 295 ms and the
bandwidth of the connecting link is 1.74 Mb/s.

− WAN 20.1 and WAN 3.9: The two following environments are systems with both locations
on Grid’5000. The WAN 20.1 system (Figure 3(c)) features a round-trip time between locations
of 2D = 20.1 ms and a link bandwidth of 32.8 Mb/s. The WAN 3.9 system (Figure 3(d))
features a round-trip time between locations of 2D = 3.9 ms and a link bandwidth of 152 Mb/s.

6.2 Comparing the experimental results with the model

The following paragraphs present the validation of the model presented in Section 5 by the
experimental evaluation of the three atomic broadcast algorithms. As mentioned in Section 4,
the performance graphs present the average latency as a function of the throughput in the
system. Furthermore, for the CT and MR consensus algorithms, the results are given for an

17.2 ms
Sophia

Bordeaux

(France, Grid’5000)

Nancy

12.5 ms10.6 ms

(a) WAN Three Locations

1.74 Mb/s
295 ms

JAISTEPFL
(Switzerland) (Japan)

(b) WAN 295

32.8 Mb/s
20.1 ms

GrenobleRennes
(France, Grid’5000)

(c) WAN 20.1

152 Mb/s
3.9 ms

BordeauxToulouse
(France, Grid’5000)

(d) WAN 3.9

Figure 3: Wide area network evaluation environments in decreasing order of round trip times.
The bandwidth and the round-trip time of the links between locations is shown for each envi-
ronment.

8

 15
 20
 25
 30
 35

 0 500 1000 1500 2000 2500av
er

ag
e

la
te

nc
y

[m
s]

throughput [1/s]

Latency of CT, MR (init. coord. on location 1)
and TokenFD, n = 3, WAN Three Locations

model

CT (site 0)
MR (site 0)

TokenFD

(a) Init. coord. on location 1.

 15
 20
 25
 30
 35

 0 500 1000 1500 2000 2500av
er

ag
e

la
te

nc
y

[m
s]

throughput [1/s]

Latency of CT, MR (shifting init. coord.)
and TokenFD, n = 3, WAN Three Locations

model

CT (shifting)
MR (shifting)

TokenFD

(b) Shifting init. coord.

 15
 20
 25
 30
 35

 0 500 1000 1500 2000 2500av
er

ag
e

la
te

nc
y

[m
s]

throughput [1/s]

Latency of CT, MR (init. coord. on location 2)
and TokenFD, n = 3, WAN Three Locations

model

CT (site 0)
TokenFD

MR (site 0)

(c) Init. coord. on location 2

Figure 4: Average latency of the three atomic broadcast and consensus algorithms as a function
of the throughput in the WAN Three Locations setting.

 250
 500
 750

 1000
 1250

 50 100 150 200 250 300av
er

ag
e

la
te

nc
y

[m
s]

throughput [1/s]

Latency of CT, MR (distant init. coord.)
and TokenFD n = 3, WAN 295 ms

model

CT (distant)
MR (distant)

TokenFD

(a) Distant init. coord.

 250
 500
 750

 1000
 1250

 50 100 150 200 250av
er

ag
e

la
te

nc
y

[m
s]

throughput [1/s]

Latency of CT, MR (shifting init. coord.)
and TokenFD, n = 3, WAN 295 ms

model

CT (shifting)
MR (shifting)

TokenFD

(b) Shifting init. coord.

 250

 500

 750

 1000

 50 100 150 200 250av
er

ag
e

la
te

nc
y

[m
s]

throughput [1/s]

Latency of CT, MR (local init. coord.)
and TokenFD, n = 3, WAN 295 ms

model

TokenFD
CT (local)
MR (local)

(c) Local init. coord.

Figure 5: Average latency of the three atomic broadcast and consensus algorithms as a function
of the throughput in the WAN 295 setting.

9

 25

 50

 75

 0 500 1000 1500 2000 2500av
er

ag
e

la
te

nc
y

[m
s]

throughput [1/s]

Latency of CT, MR (distant init. coord.)
and TokenFD n = 3, WAN 20.1 ms

model

CT (distant)
MR (distant)

TokenFD

(a) Distant coord.

 10

 20

 30

 40

 50

 0 500 1000 1500 2000 2500av
er

ag
e

la
te

nc
y

[m
s]

throughput [1/s]

Latency of CT, MR (shifting init. coord.)
and TokenFD, n = 3, WAN 20.1 ms

model

CT (shifting)
MR (shifting)

TokenFD

(b) Shifting coord.

 0
 10
 20
 30
 40
 50

 0 500 1000 1500 2000 2500av
er

ag
e

la
te

nc
y

[m
s]

throughput [1/s]

Latency of CT, MR (local init. coord.)
and TokenFD, n = 3, WAN 20.1 ms

model

TokenFD
MR (local)
CT (local)

(c) Local coord.

Figure 6: Average latency of the three atomic broadcast and consensus algorithms as a function
of the throughput in the WAN 20.1 setting.

initial coordinator that is fixed in one location or shifting with each new consensus execution.
The TokenFD algorithm has no concept of coordinator and its results are the same for all three
settings (they are repeated to give a point of comparison with respect to CT and MR). The
analytical performance of the algorithms in the model presented in Section 5 is shown on the
far-left of each graph (noted “model”).

In all experimental setups, the measurements confirm the estimations of the model (Figures 4
to 7), especially in the case of moderate throughputs. When the throughput increases, the load
on the processors and on the network (which is not modeled) affects the latency of the algorithms
(illustrated in Figures 5 and 6(c)), which increases the gap between the model’s estimation and
the actual measurements.

Furthermore, when the throughput is very low, as well as in the WAN 3.9 setting, the
measured latencies of CT and MR are lower than what the model predicts. Indeed, our analysis
assumes a load in which messages are abroadcast often enough that there is always a consensus
execution in progress. In the low throughput executions however, there is a pause between the
consensus executions. An unordered message that is received during this pause is immediately
proposed in a new consensus execution and thus, the waiting phase presented in Section 5
does not apply to that message. Similarly, in the WAN 3.9 setting, the consensus executions
terminate fast enough that the waiting phase for many abroadcast messages only becomes a
factor at higher throughputs, where the model is more accurate (Figures 7(a) and 7(b)).

Finally, the point that was not predicted by the analytical model is the result for high
throughputs when the initial coordinator of CT and MR is on a local location, illustrated by
Figures 5(c) and 6(c). Indeed, in this setting, the system never reaches a stationary state given
a sufficiently high throughput. The processes on the local location reach consensus decisions
very fast without needing any input from the distant location. The updates that are then sent
to the distant location saturate the link between both locations (its bandwidth is only 1.74
Mbits/s in WAN 295 and 32.8 Mbits/s in WAN 20.1). The process on the distant location thus
takes decisions at a slower rate than the two local processes and thus prevents the average
latency of atomic broadcast from stabilizing. This problem does not affect the settings with a
distant or shifting initial coordinator, since the distant location periodically acts as a consensus
coordinator, providing a natural flow control. Setup issues, such as the choice of the initial
coordinator, thus affect the maximum achievable throughput of the algorithms.

10

 2
 4
 6
 8

 10

 0 500 1000 1500 2000 2500av
er

ag
e

la
te

nc
y

[m
s]

throughput [1/s]

Latency of CT, MR (distant init. coord.)
and TokenFD n = 3, WAN 3.9 ms

model
CT (distant)
MR (distant)

TokenFD

(a) Distant coord.

 2
 3
 4
 5
 6
 7

 0 500 1000 1500 2000 2500av
er

ag
e

la
te

nc
y

[m
s]

throughput [1/s]

Latency of CT, MR (shifting init. coord.)
and TokenFD, n = 3, WAN 3.9 ms

model

CT (shifting)
TokenFD

MR (shifting)

(b) Shifting coord.

 0

 2

 4

 6

 8

 0 500 1000 1500 2000 2500av
er

ag
e

la
te

nc
y

[m
s]

throughput [1/s]

Latency of CT, MR (local init. coord.)
and TokenFD, n = 3, WAN 3.9 ms

model

TokenFD
MR (local)
CT (local)

(c) Local coord.

Figure 7: Average latency of the three atomic broadcast and consensus algorithms as a function
of the throughput in the WAN 3.9 setting.

6.3 Results of the performance evaluation

The following section discusses the performance ranking of the three atomic broadcast algo-
rithms.

WAN Three Locations: The average latency of the three algorithms in the WAN Three Loca-
tions environment is presented in Figure 4. TokenFD and MR outperform CT for all locations of
the initial coordinator and for all throughputs, due to the additional communication step that is
needed by CT. TokenFD and MR perform similarly when the initial MR coordinator is on site
1 (which is the worst-case scenario for MR), whereas MR achieves slightly lower latencies than
TokenFD for both other initial coordinator locations. Surprisingly enough, the result of using
a shifting initial coordinator in the CT and MR algorithms are opposite: in the case of MR,
the latency is lower using a shifting initial coordinator than a fixed initial coordinator on any
location, whereas in CT it is higher. The explanation is the following: MR and CT both start a
new consensus execution after two communication steps if the coordinator is on a fixed location.
If the coordinator shifts, a new execution can start as soon as the next non-coordinator process
decides. This is done after one communication step in MR (if n = 3), but after three steps in
CT, as explained in Section 3.2.

WAN 295, WAN 20.1 and WAN 3.9: The average latency of the three atomic broadcast and
consensus algorithms in the WAN 295, WAN 20.1 and WAN 3.9 environments are presented in
Figures 5 to 7. TokenFD has lower latencies than CT and MR when they use a distant initial
coordinator (Figures 5(a), 6(a) and 7(a)), whereas the situation is reversed when the coordinator
is initially on a local location (Figures 5(c), 6(c) and 7(c)). When the initial coordinator shifts
at each new consensus execution, MR and TokenFD have similar latencies while CT is slightly
slower. Finally, as mentioned earlier, the low bandwidth of the link between both locations
prevents MR and CT from stable average latencies when the initial coordinator is on the local
locations and the throughput is high.

Communication steps versus number of messages: As expected, the performance
results presented above show that communication steps have the largest impact on performance
in wide area networks, whereas the number of sent messages is a key to the performance in a
local area network (as shown in Appendix D). The validity of this statement however varies
with the round-trip time of the network that is considered. As the network latency decreases,
the impact of the additional messages that need to be sent and processed increases. In the case

11

of networks with 3.9 ms or even 20.1 ms round-trip times, this impact is clearly observable.
However, for a given set of parameters, the algorithm with the best performance is generally
the same, whether a wide area network with a 3.9 ms round-trip time is considered, or one with
a 295 ms round-trip time.

Finally, we also saw that choosing a CT and MR coordinator on the local location (with-
out implementing an additional flow control mechanism) is not necessarily the best solution
performance-wise, since the system cannot reach a stationary state as the total throughput
increases. Shifting the initial coordinator between locations at each new consensus execution
or choosing the TokenFD algorithm results in a natural flow control which enables the system
to remain in a stationary state even for high throughputs (at the expense of a higher average
adelivery latency).

7 Conclusion

The performance of atomic broadcast and consensus algorithms based on failure detectors has
been extensively studied in the context of local area networks.

In this paper, we presented an experimental evaluation in several wide area networks of
three atomic broadcast and consensus algorithms using failure detectors and with different
communication patterns. We also presented a simple analytical model of the performance of
the three algorithms and validated it with the experimental measurements. The evaluation was
performed in wide area networks with round-trip times ranging from about 4 to 300 milliseconds
to examine the impact on the trade-off between the number of sent messages and the number
of communication steps that the algorithms need to adeliver a message.

This study confirms that the relative performance between the algorithms is fundamentally
different between a local area network and a wide area network: in the former case, the number of
sent messages largely determines the performance of the algorithms, whereas the communication
steps have the most impact in the latter case.

Within wide area networks on the other hand, the performance ranking of the three algo-
rithms remains the same, despite the (two order of magnitude) difference in the round-trip time
between the smallest and largest wide area networks. Furthermore, this ranking is correctly
predicted by our model. The study also showed that algorithms or parameters which provide a
natural flow control (such as the TokenFD atomic broadcast algorithm or the Chandra-Toueg
and Mostéfaoui-Raynal consensus algorithms with an initial coordinator that shifts from site to
site at each new consensus) are effective in reaching higher throughputs in wide area networks.

References
[1] T. Anker, D. Dolev, G. Greenman, and I. Shnayderman. Evaluating total order algorithms in WAN. In Proc.

International Workshop on Large-Scale Group Communication, Florence, Italy, October 2003.
[2] O. Bakr and I. Keidar. Evaluating the running time of a communication round over the internet. In PODC ’02:

Proceedings of the twenty-first annual symposium on Principles of distributed computing, pages 243–252, New York,
NY, USA, 2002. ACM Press.

[3] F. Cappello, E. Caron, M. Dayde, F. Desprez, E. Jeannot, Y. Jegou, S. Lanteri, J. Leduc, N. Melab, G. Mornet,
R. Namyst, P. Primet, and O. Richard. Grid’5000: a large scale, reconfigurable, controlable and monitorable Grid
platform. In Grid’2005 Workshop, Seattle, USA, November 13-14 2005. IEEE/ACM.

[4] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal of ACM, 43(2):225–
267, 1996.

[5] A. Coccoli, P. Urbán, A. Bondavalli, and A. Schiper. Performance analysis of a consensus algorithm combining
Stochastic Activity Networks and measurements. In Proc. Int’l Performance and Dependability Symp., pages 551–
560, Washington, DC, USA, June 2002.

[6] R. Ekwall and A. Schiper. Solving Atomic Broadcast with Indirect Consensus. In IEEE International Conference on
Dependable Systems and Networks (DSN 2006), June 2006.

[7] R. Ekwall, A. Schiper, and P. Urbán. Token-based atomic broadcast using unreliable failure detectors. In Proceedings
of the 23rd Symposium on Reliable Distributed Systems (SRDS 2004), Florianópolis, Brazil, Oct. 2004.

[8] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty process. Journal
of ACM, 32(2):374–382, Apr. 1985.

[9] R. Guerraoui, R. R. Levy, B. Pochon, and V. Quéma. High Throughput Total Order Broadcast for Cluster Environ-
ments. In IEEE International Conference on Dependable Systems and Networks (DSN 2006), June 2006.

12

[10] V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant broadcasts and related problems. TR 94-1425,
Dept. of Computer Science, Cornell University, Ithaca, NY, USA, May 1994.

[11] L. Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16(2):133–169, 1998.
[12] Y. Lin, B. Kemme, M. Patiño-Mart́ınez, and R. Jiménez-Peris. Consistent data replication: Is it feasible in wans?. In

Proc. 11th International Euro-Par Conference, pages 633–643, Lisbon, Portugal, September 2005.
[13] A. Mostéfaoui and M. Raynal. Solving consensus using Chandra-Toueg’s unreliable failure detectors: A general

quorum-based approach. In Proceedings of the 13th International Symposium on Distributed Computing (DISC),
number 1693 in Lecture Notes in Computer Science, pages 49–63, Bratislava, Slovak Republic, Sept. 1999. Springer-
Verlag.

[14] National Laboratory for Applied Network Research. Iperf 2.0.2, 2006. http://dast.nlanr.net/Projects/Iperf/.
[15] A. Sousa, J. Pereira, F. Moura, and R. Oliveira. Optimistic Total Order in Wide Area Networks. In 21st IEEE Symp.

on Reliable Distributed Systems (SRDS-21), pages 190–199, Osaka, Japan, October 2002.
[16] P. Urbán. Evaluating the Performance of Distributed Agreement Algorithms: Tools, Methodology and Case Studies.

PhD thesis, École Polytechnique Fédérale de Lausanne, Switzerland, Aug. 2003. Number 2824.
[17] P. Urbán, X. Défago, and A. Schiper. Neko: A single environment to simulate and prototype distributed algorithms.

Journal of Information Science and Engineering, 18(6):981–997, Nov. 2002.
[18] P. Urbán, N. Hayashibara, A. Schiper, and T. Katayama. Performance comparison of a rotating coordinator and a

leader based consensus algorithm. In Proc. 23nd IEEE Int’l Symp. on Reliable Distributed Systems (SRDS), pages
4–17, Florianópolis, Brazil, October 2004.

[19] P. Urbán, I. Shnayderman, and A. Schiper. Comparison of failure detectors and group membership: Performance
study of two atomic broadcast algorithms. In Proc. of the Int’l Conf. on Dependable Systems and Networks (DSN),
pages 645–654, June 2003.

[20] P. Vicente and L. Rodrigues. An Indulgent Total Order Algorithm with Optimistic Delivery. In 21st IEEE Symp. on
Reliable Distributed Systems (SRDS-21), pages 92–101, Osaka, Japan, October 2002.

13

Appendix
A The three phases of atomic broadcast

The three algorithms that are considered all work in three phases: upon abroadcasting a message
m, (1) m is sent to all processes and (2) waits to be ordered. (3) Its order is then decided upon
(using consensus or directly within the atomic broadcast algorithm) and m is adelivered. The
cost of the different phases is of course directly related to the atomic broadcast and consensus
algorithms that are used. However, the similarities between the algorithms lead to the following
analysis.

We consider a message m abroadcast by a process pi and analyze the costs of each one of the
three phases. The cost of phases (1) and (2) depend on the cost of the third phase. Indeed, in
phase (3), the atomic broadcast algorithm decides on the order of m and in all three algorithms,
a “tutor” process pj decides which messages should be ordered during this phase. In the CT
and MR consensus algorithms, the tutor process is the coordinator whereas in the token-based
atomic broadcast algorithm, it is the token-holder. The cost of phase (1), which consists in
sending message m to all processes (and in particular to the tutor) depends on the choice of
the tutor. Furthermore, the cost of phase (2), which consists in waiting for a new phase (3) to
start, depends on the cost of the currently running phase (3).

For the phase (1), the cost of transmitting the message from pi to the tutor pj is noted
CostSend i,j . Similarly, the cost of phase (2) is noted CostWait i,j and the cost of ordering
message m in phase (3) is noted CostOrder j (and only depends on the tutor process pj). Thus,
the cost of pi abroadcasting a message m with pj as tutor process is

CostSend i,j + CostWait i,j + CostOrder j

Moreover, not all messages sent by a process pi are necessarily ordered by the same tutor pj .
We define Tutored i,j to represent the fraction of all messages in the system that are abroadcast
by pi and ordered by tutor pj (and we have

∑
i

∑
j Tutored i,j = 1). Thus, by taking into account

all sending processes pi in the system, we have the average cost of abroadcasting a message m :∑
i

∑
j

(CostSend i,j + CostWait i,j + CostOrder j) Tutored i,j

Deriving CostSend i,j , CostWait i,j , CostOrder j and Tutored i,j is done in Appendix B and C.

B Analytical performance in a wide area network with three
locations

The following section presents the performance analysis of CT, MR and TokenFD in the wide
area network model with three locations. The first part presents the derivation of the results of
CT and MR using a fixed initial coordinator. The slightly more complex case of TokenFD or
CT and MR using a shifting initial coordinator is then discussed.

B.1 Chandra-Toueg atomic broadcast

B.1.1 Fixed coordinator

Table 1 presents the average latency of Chandra-Toueg’s atomic broadcast algorithm using the
CT and MR consensus algorithms in a wide area network with three locations and a fixed
initial coordinator. In the following paragraphs, we show how to derive the results for an initial
coordinator that is always located on location p0. The results for an initial coordinator on
location p1 or p2 are derived similarly.

14

Phase (1): Message diffusion Let p0 be the initial coordinator of the CT or MR consensus
algorithm. Any process that abroadcasts a message, needs to send it to p0 in phase (1). The
cost of this diffusion is negligible if p0 abroadcasts a message and equal to d0 and d2, if p1,
respectively p2 are the abroadcasters of the message. On average (and since all three processes
abroadcast at the same rate), we have a diffusion cost of d0+d2

3 .

Phase (2): Waiting phase In phase (2), a message sent to the coordinator has to wait
until a new consensus execution can start (assuming that a consensus execution is already
underway). The coordinator p0 can decide after two communication steps (with any of the two
other processes) and thus starts a new consensus execution after that. The duration of these
two communication steps is either 2d0 or 2d2 and since d0 ≥ d2, the coordinator can decide after
2d2. Thus, a new consensus execution is started on average each 2d2 time units. Consequently,
the average waiting time for an abroadcast message is d2 time units.

Phase (3): Ordering (Consensus) Finally, the cost of phase (3) is the following. In the CT
consensus algorithm, as seen previously, the coordinator decides after 2d2 time units and sends
its decision to the two other processes. The process on location 1 thus decides d0 time units after
the coordinator whereas the process on location 2 decides d2 time units after the coordinator.
On average, this gives us a cost of phase (3) equal to (2d2)+(2d2+d0)+(2d2+d2)

3 = 7d2+d0
3 for the

CT consensus algorithm.
In the MR consensus algorithm, the coordinator also decides after 2d2 time units. However,

if n = 3, the two other processes p1 and p2 can decide as soon as they get the coordinator’s
initial proposal, after d0 and d2 time units respectively. On average, this gives us a cost of phase
(3) equal to (2d2)+(d0)+(d2)

3 = 3d2+d0
3 for the MR consensus algorithm.

The sum of the three phases, which is the average latency for abroadcasting a message
using Chandra-Toueg’s atomic broadcast algorithm is thus equal to 11d2+2d0

3 time units if CT’s
consensus algorithm is used and 7d2+2d0

3 if MR’s consensus algorithm is used.

B.1.2 Execution-based coordinator

The case of an initial coordinator that changes between consensus execution k and k+1 is slightly
more difficult to analyze. Tables 2 and 3 present the CostSend i,j , CostWait i,j , CostOrder j and
Tutored i,j matrices in a system where the CT, respectively the MR consensus algorithms are
used and the initial coordinator changes at each consensus execution. The average latency of
atomic broadcast is then easily derived following the results presented in Section A.

coord. location:
(1) diffusion:
(2) waiting:
(3) ordering:
Latency:

0 1 2
d0+d2

3
d0+d1

3
d2+d1

3

d2 d1 d2
7d2+d0

3
7d1+d0

3
7d2+d1

3
2d0+11d2

3
2d0+11d1

3
2d1+11d2

3
(a) CT consensus

0 1 2
d0+d2

3
d0+d1

3
d2+d1

3

d2 d1 d2
3d2+d0

3
3d1+d0

3
3d2+d1

3
2d0+7d2

3
2d0+7d1

3
2d1+7d2

3
(b) MR consensus

Table 1: Average latency to adeliver a message in the three-location wide area network model,
using Chandra-Toueg’s algorithm (with CT and MR’s consensus algorithm and a fixed initial
coordinator). Results are given for each phase of the algorithm and for a coordinator on each
location.

15

B.2 TokenFD atomic broadcast

Table 4 present the CostSend i,j , CostWait i,j , CostOrder j and Tutored i,j matrices in a system
with the TokenFD atomic broadcast algorithm. The average latency of atomic broadcast is
then easily derived following the results presented in Section A.

(0 d0 d2

d0 0 d1

d2 d1 0

)
(a) CostSend i,j

(2d2 max(3d2+d1−d0
2 , 0) d2

d2 2d2 + d0
2 + min(d0

2 , 3d2+d1
2) 3d2+d0−d1

2
d0+3d1−d2

2 d1 2d1

)
(b) CostWait i,j

(d0+7d2
3

d0+7d1
3

d1+7d2
3

)
(c) CostOrder j

1
3·(d0+3d1+5d2) ·

(4d2 max(3d2 + d1 − d0, 0) 2d2

2d2 2d2 + d0 + min(d0, 3d2 + d1) 3d2 + d0 − d1

d0 + 3d1 − d2 2d1 4d1

)
(d) Tutored i,j

Table 2: CostSend i,j , CostWait i,j , CostOrder j and Tutored i,j in the three-location wide area
network model, using Chandra-Toueg’s algorithm (with CT’s consensus algorithm and a shifting
initial coordinator).

16

(0 d0 d2

d0 0 d1

d2 d1 0

)
(a) CostSend i,j

(d2 max(d1+d2−d0
2 , 0) 0

0 min(d0,
d0+d1+d2

2) d0+d2−d1
2

d0+d1−d2
2 0 d1

)
(b) CostWait i,j

(d0+3d2
3

d0+3d1
3

d1+3d2
3

)
(c) CostOrder j

1
3·(d0+d1+d2) ·

(2d2 max(d2 + d1 − d0, 0) 0
0 d0 + min(d0, d1 + d2) d0 + d2 − d1

d0 + d1 − d2 0 2d1

)
(d) Tutored i,j

Table 3: CostSend i,j , CostWait i,j , CostOrder j and Tutored i,j in the three-location wide area
network model, using Chandra-Toueg’s algorithm (with MR’s consensus algorithm and a shifting
initial coordinator).

(0 d0 d2

d0 0 d1

d2 d1 0

)
(a) CostSend i,j

(d2 max(d1+d2−d0
2 , 0) 0

0 min(d0,
d0+d1+d2

2) d2+d0−d1
2

d0+d1−d2
2 0 d1

)
(b) CostWait i,j

(4d0+d1
3

4d1+d2
3

4d2+d0
3

)
(c) CostOrder j

1
3·(d0+d1+d2) ·

(2d2 max(d1 + d2 − d0, 0) 0
0 min(2d0, d0 + d1 + d2) d0 + d2 − d1

d0 + d1 − d2 0 2d1

)
(d) Tutored i,j

Table 4: CostSend i,j , CostWait i,j , CostOrder j and Tutored i,j in the three-location wide area
network model, using the TokenFD atomic broadcast algorithm.

17

C Analytical performance in a wide area network with two lo-
cations

The following paragraphs present the analytical performance of the TokenFD atomic broadcast
algorithm and the Chandra-Toueg atomic broadcast algorithm using either the CT or the MR
consensus algorithm. The results presented here can either be derived directly, or from the
results in Appendix B by replacing d0 and d1 by D and d2 by 0 (p0 and p2 are in the local
location and p1 is in the distant location). In the following paragraphs, we show how to derive
these results directly.

C.1 Chandra-Toueg atomic broadcast

As previously discussed in Section A, the cost of the three phases depends on the choice of the
tutor process in phase (3), i.e. the coordinator process in the CT and MR consensus algorithms.
Three cases are considered : the initial coordinator (1) is always on a local location, (2) is always
on the distant location or (3) shifts from location to location at each new consensus execution.
Table 5 summarizes the latency of abroadcast in all three cases, when the CT (Table 5(a)) and
MR (Table 5(b)) consensus algorithms are used. The analytical latencies of the cases where the
initial coordinator is on a fixed location or shifts at each consensus execution are derived in the
following paragraphs.

C.1.1 Fixed coordinator

Phase (1): Message diffusion The cost of the message diffusion phase is the following: (1)
if the initial coordinator is on a local location, it receives abroadcast messages from itself and its
local peer (with a negligible cost) and from the distant location (with a cost of D). The average
cost for diffusing the message to the local coordinator is therefore D

3 . (2) If the coordinator is
on the distant location, it receives messages from the local locations (both with a cost of D) and
from itself (with a negligible cost). The average cost for diffusing the message to the distant
initial coordinator is thus 2D

3 .

Phase (2): Waiting phase The duration of the waiting phase is the following. In the CT
consensus algorithm, the coordinator decides after 2 communication steps and atomic broad-
cast immediately starts a new consensus (if unordered messages are waiting), as illustrated in
Figures 8(a) and 8(b) (the consensus execution II starts before all processes have finished con-
sensus execution I). The cost of these two communication steps is negligible if the coordinator
is on the local location (thus, the waiting time for messages to be proposed in a consensus is
negligible). If the coordinator is distant, the two communication steps take 2D time units and
the messages wait on average D time units to be proposed in a consensus (since messages are
abroadcast following a Poisson process). The reasoning (and the average waiting times) for the
MR consensus algorithm is similar, since the coordinator again needs two communication steps
to reach a decision.

Phase (3): Ordering (Consensus) Finally, the cost of the CT consensus phase is illustrated
in Figures 8(a) and 8(b) and is the following. The coordinator can decide after two commu-
nication steps and all other processes after three steps. (1) If the coordinator is on the local
location, a decision is taken after two local communication steps (with a negligible cost) and is
received by the other local location one local communication step later (again, with a negligible
cost). The distant location receives the coordinator’s decision after one distant communication
step (with a cost of D). The average latency is thus D

3 . (2) If the coordinator is on the distant

18

time

p2
(coord.)

p0

p1

0 D

consensus executions

I II III

local
sites

distant
site

(a) Local coordinator

time

p2

p0

2 D D

consensus executions

I II III
p1

(coord.)
distant
site

local
sites

(b) Distant coordinator

time

p2

p0

p1

D

consensus executions (coordinator :)

I II III

local
sites

distant
site

2 D D
t1 t2 t3 t4

(c) Shifting coordinator

Figure 8: Execution pattern of the Chandra-Toueg consensus algorithm in the two-location
wide area network model and in the case of a coordinator on a local location, a distant location
or shifting between locations at each execution.

location, it needs 2 distant communication steps to decide (with a cost of 2D), whereas both
local locations decide one distant communication step later (with a total cost of 3D for both
local locations). The average decision latency with a distant coordinator is therefore 8D

3 .
The cost of the consensus phase using the MR algorithm is similar. The case of a local

coordinator gives the same result as CT with an average latency of D
3 . In the case of a distant

coordinator, both local locations decide as soon as they receive the coordinator’s proposal and
their own acknowledgment (resulting in a latency of D). The coordinator decides as soon as it
gets an acknowledgment from a local location, after a total time of 2D. The average latency
over all processes is therefore 4D

3 .

C.1.2 Execution-based coordinator:

When the initial coordinator changes at each new consensus execution, the analysis is slightly
more complex than in the case of an initial coordinator that remains on a single location (pre-
sented in Appendix C.1.1). Indeed, the consensus executions no longer have the same duration,
which in turn means that the messages that are abroadcast aren’t uniformly distributed among
the different consensus executions. For example, if short and long consensus executions alter-
nate, then more messages are ordered in the short consensus (since more unordered messages
are accumulated during the execution of the long consensus). A more precise end-to-end anal-
ysis of the latencies of the abroadcast messages is necessary and is presented in the following
paragraphs for the case of the CT consensus algorithm. The results with the MR consensus
algorithm have been derived similarly.

Phase (1): Message diffusion Figure 8(c) presents the sequence of CT consensus executions
when the initial coordinator changes each time. Two consensus executions with an initial
coordinator on the local location closely follow each other, followed by an execution with a
coordinator on the distant location. We start by analyzing which messages are ordered in which
consensus executions.

A message m abroadcast by p2 or p0 (the two processes on the local location) is (almost)
always proposed in consensus executions where p2 is the coordinator. Indeed, when m reaches p1,
either p1 has already started the consensus in which it is coordinator (and cannot add m to that
consensus) or m is being decided upon in a consensus where p2 is the coordinator. A message
m abroadcast by p1 between t1 and t3 (see Figure 8(c)) is ordered in a consensus execution
with p1 as a coordinator. Messages abroadcast by p1 between t3 and t3 + 2D are received by p2

and p0 before t4 and are thus ordered in a consensus execution with p2 as coordinator. Finally,
messages abroadcast between t3 + 2D and t4 do not reach p2 before t4 and are later ordered in

19

time

p2
p0
p1

D

consensus
coordinator

2 D D
t1 t3 t4

message
sender

p2
p0
p1

consensus containing the message

I
II

III

I

I

I IIIIII

Figure 9: Messages abroadcast by p0 or p2 are all ordered in consensus executions with p2 as
coordinator (noted I). Messages abroadcast by p1 are ordered in executions with p1 or p2 as
coordinator (noted III and I respectively).

a consensus execution with p1 as coordinator.
In total, 5

6 of all messages are ordered in consensus executions with p2 as coordinator and
the remaining 1

6 when p1 is coordinator (consensus executions with p0 as coordinator order only
a negligible amount of messages), as summarized in Figure 9. The sending time of 5

6 of the
messages is thus 0, whereas it is equal to D in 1

6 of the cases. The average sending time over
all messages is thus D

6 .

Phase (2): Waiting phase On average, the messages abroadcast by p0 and p2 (2
3 of the

messages) wait 2D time units before being proposed in a consensus (with p2 as a leader).
Among the messages abroadcast by p1 (1

3 of all messages), the waiting time is on average D.
The average waiting time over all messages is thus 5

3D.

Phase (3): Ordering (Consensus) As previously presented in Section C.1.1, the consensus
executions where p2 (on the local location) is the coordinator, the average latency is D

3 . These
executions order 5

6 of all messages. The remaining 1
6 of all messages are ordered in executions

with p1 (on the distant location) as coordinator, and thus with an average latency of 8D
3 . The

average consensus execution time over all messages is thus 13D
18 .

Summary Globally, this gives an average latency of 23D
9 for abroadcasting a message using

the Chandra-Toueg atomic broadcast and consensus algorithms if the coordinator changes at
each consensus execution.

A similar analysis gives an average latency of 5D
3 for abroadcasting a message using the

Chandra-Toueg atomic broadcast and Mostéfaoui-Raynal consensus algorithms if the coordina-
tor changes at each consensus execution.

C.2 TokenFD atomic broadcast

The following paragraphs present the analytical latency of the TokenFD atomic broadcast algo-
rithm. As previously shown in Figure 1(b), a token circulates among the three processes and the
set of messages in the token proposal is adelivered by each token holder (which then proposes
a new set of undelivered messages). The time needed to pass the token between processes is
not uniform : indeed, it is negligible when the token is passed between two processes on the
local location whereas it is equal to D when passed between a local and a distant location or
vice-versa. Due to this non-uniformity, the set of messages transported by the token is not the
same for all tokens, which in turn influences in the latency of atomic broadcast.

20

time

p2

p0

p1

D

processes

D
t1=t2 t3 t4

message
sender

p2
p0
p1

token containing
the message

I

II

III

token circulation

local
sites

distant
site

III
I
I

Figure 10: Token circulation (top) in the two-location wide area network model and a presen-
tation of which token contains the messages abroadcast by the three processes (bottom).

Figure 10 shows the token circulation (top part) and an analysis of which token contains
the messages abroadcast by the three processes (bottom part). (Almost) all messages sent by
p2 and p0 are later contained in token I sent by p2 : indeed, if a message is abroadcast between
t2 and t4, it does not reach p1 before t3 and is therefore not added to the token III sent by p1

(but later added to the token I sent by p2). Similarly, all messages sent by p1 are later ordered
in the token III sent by p1. Finally, token II, sent by p0 contains only the messages received by
the local hosts in the interval between t1 and t2 which is negligible in our model. To summarize,
two-thirds of the messages are later ordered in token I sent by p2, whereas the remaining third
is ordered in token III sent by p1.

Phase (1): Messages diffusion The latency of the message diffusion in the TokenFD atomic
broadcast algorithm is negligible. Indeed, messages sent by p2 and p1 are later contained in
tokens sent by p2 and p1 respectively, and therefore have no diffusion cost. Messages sent by
p0 are ordered in tokens sent by p2, resulting in a negligible diffusion cost, since p0 and p2 are
both on the local location.

Phase (2): Waiting phase The cost of the waiting phase in the TokenFD atomic broadcast
algorithm is the following. Messages sent by p0 and p2 need to wait until the token is held by
p2 to be ordered. On average, this translates into a waiting time of D. The cost of the waiting
phase for the messages sent by p1 is derived in the same way and also yields an average waiting
time of D.

Phase (3): Ordering phase There are only two tokens that contain (almost) all unordered
messages. Token I, sent by p2, reaches p0 after a negligible amount of time. Process p0 then
sends updates to p2 (negligible latency) and p1 (latency of D) about the ordered messages. The
average latency of the ordering phase over all processes of token I is thus D

3 .
Token III, sent by p1 reaches p2 after D time units. Process p0 receives an update from p2

shortly after, whereas p1 receives the update after D additional time units. The average latency
of the ordering phase over all processes of token III is thus 4D

3 .
Since 2

3 of the messages are ordered in token I and 1
3 in token III, the average ordering

latency over all messages is 2D
3 .

21

Summary By summing the latencies of the three phases, this gives an average latency of 5D
3

for abroadcasting a message using the TokenFD atomic broadcast algorithm. These results are
summarized in Table 7.

22

coord. loc.:
(1) diffusion:
(2) waiting:
(3) ordering:
Latency:

local distant shifting
D
3

2D
3

D
6

0 D 5D
3

D
3

8D
3

13D
18

2D
3

13D
3

23D
9

(a) CT consensus

local distant shifting
D
3

2D
3 0

0 D D
D
3

4D
3

2D
3

2D
3 3D 5D

3
(b) MR consensus

N/A
0
D
2D
3

5D
3

(c) TokenFD alg.

Table 5: Average latency to adeliver a message in the two-location wide area network model,
using Chandra-Toueg’s algorithm (with CT or MR’s consensus algorithm) or the TokenFD algo-
rithm. Results are given for each phase of the algorithm and, for the two consensus algorithms,
for an initial coordinator on a local location, on the distant location or that shifts at each new
consensus execution.

consensus algorithm : CT MR
diffusion latency: D

6 0
consensus latency: 13D

8
2D
3

waiting period: 5D
3 D

Total latency: 23D
9

5D
3

Table 6: Average latency to adeliver a message in the two-location wide area network model us-
ing Chandra-Toueg’s atomic broadcast algorithm coupled with Chandra-Toueg’s or Mostéfaoui-
Raynal’s consensus algorithm. The initial coordinator is on a different location for each new
consensus execution.

diffusion latency: 0
ordering latency: 2D

3

waiting period: D

Total latency: 5D
3

Table 7: Average latency to adeliver a message using the TokenFD atomic broadcast algorithm
in the two-location wide area network model.

23

D Performance of the three algorithms in a local area network

We now briefly present the evaluation of the CT, MR and TokenFD algorithms in a local area
network. Each local area node has a Pentium 4 processor at 3 GHz with 1GB of RAM. The
nodes are interconnected by Gigabit Ethernet and have a round-trip time of about 0.1 ms (given
by ping). The bandwidth of the link is about 942 Mbits/s (given by iperf).

Figure 11 shows the average latencies of the three algorithms in a local area network. This
time, the number of communication steps has seemingly no impact on the performance of the
algorithms. The main factor is the total processing time of the messages (which is influenced
by the number of messages and the complexity of the data handling in the algorithm itself).
CT consensus needs less messages than MR to reach a decision and logically achieves lower
latencies, especially as the throughput increases. TokenFD needs least messages of all to adeliver
a message, but also requires more processing time per message (at each token reception, for
example, the algorithm needs to perform sequence comparisons that neither CT, nor MR need
to do). As a consequence, TokenFD’s initial performance is between CT and MR, but later
worsens as the load on the processors increases with the throughput in the system.

Compared to the wide area network case presented in Section 6, (where CT performed worse
than MR in almost all scenarios and worse than Token in most scenarios), the performance
ranking between the algorithms is reversed this time.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 500 1000 1500 2000 2500av
er

ag
e

la
te

nc
y

[m
s]

throughput [1/s]

Latency of CT, MR and TokenFD
n = 3, Local Area Network

TokenFD
MR
CT

Figure 11: Average latency of the three atomic broadcast and consensus algorithms as a function
of the throughput in the LAN setting.

24

