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Abstract 

 

This study describes the development and validation of a Radiance model for a  

translucent panel. Using goniophotometer data combined with integrating sphere 

measurements, optical properties of the panel were derived and converted into a 

Radiance model using the trans and transdata material types. The Radiance model was 

validated in a full scale test room with a facade featuring the translucent panel material. 

Over 120,000 desktop and ceiling illuminances under 24,000 sky conditions were 

measured and compared to simulation results using the Perez sky model and a 

Radiance-based daylight coefficient approach. Overall mean bias errors (MBE) below 9% 

and root mean square errors (RMSE) below 19% demonstrate that translucent materials 

can be modeled in Radiance with an even higher accuracy than was demonstrated in 

earlier validation studies for the plastic, metal, and glass material types. Further analysis 

of results suggests that the accuracy of around ±20% currently reached by dynamic 

Radiance/Perez/daylight coefficient calculations for many material types is sufficient for 

practical design considerations. A procedure is described showing how goniophotometer 
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and integrating sphere measurements can be used to accurately model arbitrary 

translucent materials in Radiance using transdata function files. 

 

keywords: Radiance/Daysim validation, translucent glazings, complex fenestration systems, 

goniophotometer, BTDF, BRDF, integrating sphere 

 

1 Introduction 

Daylight simulations are computer-based calculations of interior lighting conditions 

due to daylight. Such calculations can be used during building design to quantitatively 

compare different design options. A recent online survey of 185 designers, engineers and 

researchers from 27 countries on the ”use of daylight simulation during building design” 

established that (a) a growing number of design practitioners nowadays routinely uses 

daylight simulations to predict daylight factor and interior illuminance distributions and (b) 

that trust in the reliability of daylighting tools has risen compared to earlier surveys1. 

While survey participants named over forty different daylight simulation programs that 

they routinely used, over 50% of all program selections were for tools that use the 

Radiance simulation engine2. Radiance is a backward raytracer that was originally 

developed by Ward at Lawrence Berkeley National Laboratories. Ongoing developments 

involve a network of individuals and institutions worldwide (http://www.radiance-

online.org/). 

What is the attraction of Radiance over competing daylight simulation engines? 

One often cited quality of Radiance is that it is physically based and capable of simulating 

complex geometries with flexible reflection and transmittance material properties using a 

mixed stochastic, deterministic backward raytracing algorithm3. The ability to model 

specular components constitutes an advantage over radiosity based simulation 
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approaches which treat all surfaces as Lambertian diffusers. Radiance’s scientific 

reputation is further founded on a series of independent validation studies. 

A rigorous validation study of a simulation algorithm should quantify how closely 

simulation predictions resemble physical measurements. Accordingly, a number of 

previous Radiance validation studies compared measurements of interior daylight 

illuminances under multiple sky conditions to illuminances simulated with Radiance. The 

results of these studies largely depended on whether exterior sky conditions were 

measured using a sky scanner or modeled based on a sky model.  

 

Between 1995 and 2000 Mardaljevic published a series of three papers4-6 that 

used measurements of interior illuminances and compared them with Radiance 

simulations based on sky scanner data that had been collected synchronously. The data 

set, collected by Aizlewood7 at the Building Research Establishment (BRE), was chosen 

so that “simulation errors that are solely caused by the Radiance lighting algorithm 

without being further compromised by errors in the representation of the sky”4 could be 

determined.  

In his first study, Mardaljevic4 considered a facade with a clear single pane glazing 

with and without an internal lightshelf. The window pane was modeled as a Radiance 

glass material. Diffuse and specular lightshelves were modeled as plastic and mirror 

materials, respectively. Mardaljevic found that Radiance was capable of reliably modeling 

interior illuminances for clear and overcast sky conditions.  

In 1997, Mardaljevic5 presented further validation data from the BRE data set for 

the facade with a clear glazing under over 700 sky conditions. Again, he found “that 

Radiance could predict internal illuminances to a high degree of accuracy for a wide 

range of actual sky conditions” based on sky scanner data.  
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In 2000, Mardaljevic6 presented a third Radiance validation study using the same 

data as in 1997 but combining Radiance with a daylight coefficient8 approach to simulate 

indoor illuminance more effectively. He found that daylight coefficient based Radiance 

simulations “should be considered almost equivalent in accuracy to the standard [time-

step by time-step] calculation”6.  

 

Sky scanner data are rare and generally not publicly available. This scarcity of sky 

scanner data forces most daylight simulators to use a sky model as a starting point for 

their simulations. Frequent choices for a sky model are the “old” CIE overcast and clear 

skies9. The CIE overcast sky is particularly popular as it serves as the reference sky for 

daylight factor calculations. A limitation of CIE overcast is that its input is limited to a 

single scaling factor on a fixed distribution. This limitation is the reason why in a study 

conducted in 2000, that compared different dynamic Radiance-based daylight simulation 

methods, the ones based on the CIE sky model performed consistently worse than 

methods based on the all weather Perez sky model10. 

In 2001, Ng11 used the CIE overcast sky for a Radiance and Lightscape validation 

study of outside facade illuminances in a dense urban setting in Hong Kong. The study’s 

underlying assumption was that “the relative error between a cloudy sky in Hong Kong 

and the CIE overcast sky is small”11. Ng found that both investigated simulation programs 

overestimated the daylit illuminance on a highly obstructed facade by over 50% – a 

modest result given the performance attested to Radiance in earlier validation studies. 

As a follow up to Ng’s work, Mardaljevic12 wrote a discussion on “assumptions 

commonly made in validation studies for lighting simulation programs”. The paper 

revealed substantial discrepancies between the luminous distribution of most measured, 

seemingly overcast sky conditions in the BRE-IDMP data set and the CIE overcast sky. 
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When reproducing the filtering criteria used by Ng to decide whether a sky condition was 

cloudy, stable, and sufficiently bright, most remaining BRE-IDMP overcast skies were still 

not closely matching the CIE overcast sky. Much more stringent filtering criteria were 

required to ensure similarity between measured skies and CIE overcast. The second part 

of the paper explored simulation errors arising from choosing incorrect reflectance values 

for obstructing facades. The paper concluded with a compelling argument, that the poor 

performance of Radiance in the Hong Kong study probably resulted from errors in the 

simulation model (CIE overcast sky condition and uncertainty in the effective reflectivity of 

textured building surfaces) rather than the intrinsic accuracy of Radiance12. The study 

concluded that one has to carefully watch external overcast sky conditions during 

measurements when using the CIE overcast sky for program validation.  

 

What about dynamic sky models –such as Perez13– that require direct and diffuse 

irradiances as input? The “charm” of the Perez model from the practitioner’s point of view 

is that all inputs including hourly time series of direct and diffuse irradiances are available 

free-of-charge for multiple sites on earth as they form part of standard climate files14. This 

makes it tempting to use Perez combined with Radiance both in design practice as well 

as for validation studies. Given the unsatisfactory experiences that have been made with 

the CIE/Radiance combination, the question is whether Perez/Radiance can deliver 

better results. 

Reinhart and Walkenhorst15 measured internal illuminances and external direct 

and diffuse irradiances under over 10,000 sky conditions measured in 30 second  

intervals to validate a Radiance-based daylight coefficient approach combined with the 

Perez model. Internal illuminances were collected in a full scale test room with a SSW 

facing facade. The facade was fully glazed above the balustrade and featured an 
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external, partly specular venetian blind system. Three blind settings were considered. 

The researchers found that daylight autonomies for the investigated sky conditions could 

be predicted with a relative error below two percentage points and that simulation errors 

could be attributed to about equal parts to the Radiance algorithm and the Perez sky 

model. Mean bias errors were less than 6% for work plane sensors compared to 20% for 

ceiling sensors. The reason for this discrepancy between upward facing desktop sensors 

and downward facing ceiling sensors was that the latter are strongly influenced by the 

building’s surroundings landscape and neighboring buildings. This finding went hand in 

hand with Mardaljevic’s observation12, that the ability to correctly model external ground 

and obstruction reflectances has a strong impact on the resulting simulation accuracy.  

 

Which type of Radiance validation is more relevant: Radiance by itself or in 

combination with a reliable sky model such as Perez? The obvious fundamental limitation 

of the latter is that differences between measured and simulated interior illuminances 

stem from the compound error of the sky model and the lighting simulation algorithm. 

Therefore, one could rightfully argue, that a validation study starting with a sky model 

cannot quantify the intrinsic accuracy of the lighting simulation algorithm, as simulation 

results are partly corrupted by sky model errors, the size of which varies for different sky 

conditions. A contra-argument is that the compound error is ultimately what is of interest 

to a design practitioner, who wants to carry out an annual daylight simulation but who 

does not have sky scanner data to work with. Both positions are valid and have been 

presented here to sensitize the reader to the particular attention required to how the sky  

was modeled in any given daylight simulation study (research or design practice).  
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Summing up, the above described research makes a compelling case, that 

Radiance is capable of modeling interior illuminances due to daylight for a wide range of 

sky conditions and complex facade geometries (including venetian blinds). Radiance is 

further able to model a range of diffuse and specular reflecting real world materials and 

standard glazings. The Perez/Radiance combination leads to satisfying results in the 

absence of sky scanner data for a particular building site. If multiple sky conditions are to 

be considered, Radiance can be combined with a daylight coefficient approach to speed 

up the calculation without any significant penalty in the accuracy of the simulation. 

 

This paper adds to the above described suite of Radiance validation studies by 

exploring the Radiance material types trans and transdata. All above described studies 

relied exclusively on the plastic, metal, and glass material types to model all surfaces in 

the investigated scenes. Plastic and metal model ideal Lambertian reflectors with a fixed 

specular component. Glass describes a thin glass surface and can be used to model 

standard single and double glazings. For materials that do not fall in any of these 

categories, Radiance offers a suite of further material types that characterize reflectance 

and transmittance properties with various degrees of detail. E.g. the trans model has 

been used in the past to approximate the optical properties of materials such as 

translucent panels* or thermotropic glazings16. The trans model treats a material as an 

ideally diffusing light transmitter with a fixed specular component. The light flux passing 

through a trans material as a function of incident angle is constant. Since the transmitted 

light flux of some real world materials decreases for rising incident angles, Radiance 

offers two more advanced material types, transdata or transfunc, which allow one to 

adjust the transmittance properties of the material according to measured data. To date, 

                                                 
* for example see: http://www.advancedglazings.com/expSolera/radiance.php 

version:8/22/2007 page 7



 

no rigorous validation study has been carried out for either of the three translucent 

Radiance material types, trans, transfunc, or transdata. To close this gap the objectives 

of this study are:  

(a) to increase the number of validated Radiance material types, 

(b) present a methodology of how to derive a Radiance material model of a 

translucent panel based on goniophotometer and integrating sphere 

measurements,  

(c) to validate the resulting Radiance model in a full scale test room, and 

(d) to explore how significant remaining simulation errors are for practical design 

considerations   

 

2 Methodology 

To address the study’s objectives, the following four steps were carried out: 

 Optical measurements: A series of goniophotometer and integrating sphere 

measurements were performed to fully characterize the optical properties of a 

commercially available translucent sandwiched panel, illustrated in Figure 1. The 

translucent panel system consisted of two 300 mm x 300 mm UV-stabilized 

Fiberglass reinforced Polyester facesheets and was filled with a 78 mm thick 

white glass wool type of insulation17. 

 Development of a Radiance model: The resulting bidirectional reflection and 

transmission distribution functions (BRDF and BTDF i.e. ratio of the luminance 

emerging from the sample after either reflection or transmission and incident 

illuminance on the sample plane) were used together with angle-dependent direct 

hemispherical transmittances to deduce two basic trans models and a more 

advanced transdata Radiance model of the translucent panel. 
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 Test-room measurements: In parallel, measurements of internal illuminances in a 

full scale test room equipped with the same type of translucent panel were 

collected together with external direct and diffuse irradiances. 

 Radiance/Perez validation: Daylight simulations using the formerly developed 

Radiance material models combined with the Perez sky model were compared to 

the test room measurements. 

The rest of this section describes these individual steps in detail. 

 

2.1 Optical measurements  

2.1.1 Goniophotometer Measurements 

To develop a Radiance material that reproduces the optical properties of the 

selected translucent sample faithfully, its bidirectional light distribution function must first 

be determined in transmission (BTDF) and reflection (BRDF), so that the spatial 

distribution of emerging light can be identified for varying incident directions. 

Goniophotometer measurements were carried out for this purpose at the Solar Energy 

and Building Physics Laboratory (LESO-PB) of the Swiss Federal Institute of Technology 

in Lausanne (EPFL) with an instrument based on digital imaging techniques, comprising 

a rotating diffusing screen on which the emerging light flux is collected and reflected 

towards a digital video-camera (CCD), used as a multiple-points luminance-meter18.  

The objectives of these measurements were two-fold. On one hand, they aimed at 

defining the overall light transmission distribution for different incident directions. More 

specifically, the goal was to either verify that light transmission was sufficiently diffuse so 

that variations in transmitted luminance could not be easily detected by the human eye 

or, if this proved not to be the case, to find what transmission function would be able to 
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simulate the measured behavior in Radiance. The second objective was to determine the 

directional-hemispherical transmittance and reflectance for different incident angles, 

based on an integration of BTDFs and BRDFs over the full collection hemisphere, and 

adjust the corresponding Radiance material description accordingly.  

Bidirectional measurements were taken in both transmission (BTDF) and reflection 

(BRDF) modes. Preliminary BTDF and BRDF measurements were conducted with an 

illuminated area of diameter 150 mm on the exterior side of the system and a second 

diaphragm of diameter 280 mm on the interior side to minimize the corners’ effect. They 

revealed a rotationally invariant transmission pattern but also a low directional-

hemispherical transmittance (around 20%) and hence extremely low BTDF values even 

at normal incidence (< 0.09 cd m-2 lux-1). It was therefore decided to use a larger 

illuminated area of diameter 280 mm for transmission measurements to keep a 

reasonable signal to noise ratio despite the fact that stronger edge effects would be likely 

to occur, the material sample being only slightly larger (300 mm by 300 mm) than this 

area. However, as the sample is highly volume-scattering due to the ‘angel-hair’ filling 

within the two fiberglass layers and mounted in a brushed metal (reflective) enclosure, 

these effects were expected to be at least partially compensated and light loss reduced.  

For reflection measurements, the smaller sample area, preferable for directional 

accuracy reasons as explained below, could be kept because detected luminance values 

were much higher (> 2 cd m-2 lux-1). Reflection measurements were used to (a) estimate 

the direct-hemispherical reflectance of the material, required for a complete description of 

the material for the Radiance model, and (b) to detect any irregular reflectance features.  

From the BTDF or BRDF values determined for each pixel on the calibrated screen 

images, a finite bidirectional dataset was generated according to an averaging grid19 

presenting given angular intervals in altitude and azimuth. These intervals had to be 
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chosen consistently with the illuminated sample area: as light rays emerging from the 

sample and reaching a given pixel could potentially come from anywhere within the 

sample emitting area, there is a range of emerging directions associated with a pixel. To 

account for this, the averaging sectors had to be chosen so that they cover angular 

intervals of extent comparable to this range21, which makes directional accuracy inversely 

proportional to sample size.    

Although a larger sample area was necessary for transmission measurements 

because of the low luminance levels (280 mm, which led to angular intervals of 15° in 

altitude and 20° in azimuth), a finer angular resolution was preferred for the BRDF data 

(every 5° in altitude and 15° in azimuth) and hence a smaller sample area (150 mm in 

diameter) was chosen for these measurments. The results’ reliability could be maintained 

thanks to larger luminance values in reflection. The incident directions set for BTDF 

measurements consisted of altitude angles 0° (normal incidence), 15°, 20°, 30°, 40°, 45°, 

60° and 75° along azimuth planes C0 and C90 (15 incident directions in total); for BRDF 

measurements, only altitudes every 20° were considered (0°, 20°, 40°, 60°) for these two 

azimuth planes (C0 and C90), leading to 7 directions in reflection mode. 

 

Figure 2 displays the resulting BTDF and BRDF data as photometric solids and 

section views20, plotted in spherical coordinates for some of the investigated incident 

directions. Measurement errors are estimated to be of about 10% to 15%, based on an 

extensive validation study conducted for that particular goniophotometer21. 

As can be observed on Figures 2(a) to 2(e), light is transmitted in a diffuse way 

independently of the incident angle: BTDFs exhibit a rotational symmetry for normal 

incidence that is maintained along the normal emerging direction even for growing 

incident altitudes, with relative fluctuations of ±15%; furthermore, there is no difference 
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between BTDF values obtained along the C0 and C90 planes. Due to the particularly low 

BTDF values (ranging between 0.08 cd m-2 lux-1 for normal incidence down to 0.01 cd m-2 

lux-1 for grazing incidence (75° from normal), it was expected that experimental errors 

would be larger than the 10% predicted by the validation study, and the observed 15% 

error was still considered satisfactory given that slight manufacturing imperfections or 

mechanical adjustments also strongly influence the results.  

BRDF results (Fig. 2(f)) initially seemed to suggest that light is reflected mainly 

along the specular direction, with a small diffuse component around it due to the bulk 

scattering taking place within the central layer of the panel. A more careful analysis of the 

BRDF functions yielded a mean specular reflectance of about 8% (assuming a cone 

centered around the specular peak with an opening half-angle of 15°) and a mean diffuse 

reflectance of 21% (the measured direct-hemispherical reflectances ranged from 27% to 

31% for the different incident directions). This result was surprising to the authors given 

the visual impression one gets from Figure 2(f). The reason for this seeming discrepancy 

was that even very small reflectances along many directions can make up a significant 

sum. 

 

As far as the direct-hemispherical transmission is concerned, it was found to 

decrease consistently when the incident altitude increased, according to the curve shown 

in Figure 3. As a matter of fact, a hexagonal symmetry could be discerned when BTDF 

values start being lower than 0.04 cd m-2 lux-1, as in Figures 2(b), 2(d) and 2(e). This is a 

sign that detected light levels become close to the limit (minimal) luminances still 

accurately captured by the CCD camera (estimated at 0.015 cd m-2 emitted from the 

screen21): indeed, the assessment method itself, based on a combination of 6 adjacent 

projection screen positions18, then becomes faintly apparent, which means that the 

version:8/22/2007 page 12



 

correction and calibration factors applied to the detected screen luminances are not able 

to compensate fully for the device’s particular geometry anymore. This would have been 

exacerbated with the smaller (150 mm diameter) sample area, which, again, confirms the 

necessity for the chosen, larger illuminated area and therefore coarser measurement set. 

 

As direct-hemispherical transmittance values are critical in defining the 

corresponding material model in Radiance (section 2.2), and as the above described 

analysis of the transmission figures suggested that the experimental conditions were 

reaching the limits of the instrument’s measurement capabilities, a complimentary set of 

measurements was carried out with an integrating sphere, so that the transmittance data 

could be verified and accuracy could be ensured. 

 

2.1.2   Integrating Sphere Measurements 

Angle-dependent direct hemispherical light transmittances of the same sample 

were determined using an integrating sphere at the Fraunhofer Institute for Solar Energy 

Systems (ISE), Germany. The integrating sphere, of diameter 0.65 m, was coated with a 

10 mm thick, highly diffuse custom-made PTFE-layer (volume scattering). The light 

source was a 2.5 kW HMI lamp, whose beam was first collected by a CPC (Compound 

Parabolic Collector), the outlet of which was covered with a diffusing low-iron glass pane 

(sand-blasted). A series of diaphragms was then used to restrict the irradiated surface of 

the sample to about 500 mm in diameter. Light emerging on the other side of the sample 

was restricted to 100 mm, which corresponded to the diameter of the entrance port of the 

Ulbricht sphere. The photodetector consisted of a pyroelectric (pin-diode) radiometer and 

a diode-array spectrometer equipped with a V(λ)-correction filter. Based on previous 
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measurements conducted with scattering samples, an experimental error of 5% was 

reported by the Fraunhofer ISE for the integrating sphere data.  

The angle of incidence was varied from 0° to 75° in steps of 5°. The hemispherical 

reflectance of the back of the sample for incident diffuse radiation (originating from the 

integrating sphere) was determined for the sample with the Diffuse Radiation Source 

(DRS) using a sample port aperture of 10cm diameter. This value was needed for the 

second order correction stemming from the change of sphere throughput due to the 

sample at the measurement port.  

The results from the integrating sphere measurements are shown in Figure 3 

(solid line). As can be observed on this graph, goniophotometer-based direct-

hemispherical transmittances were consistently lower than integrating sphere results, but 

error bars generally overlapped each other except for incident angles of 60° and higher. 

Based on the lower error estimate for integrating sphere values and on the previously 

observed fact that the goniophotometer was likely reaching its limits in terms of accuracy, 

it was decided to use the sphere’s direct-hemispherical transmittance data for the 

Radiance model of this translucent panel. However, given the satisfactory agreement 

between both datasets, the conclusions drawn from the goniophotometer dataset 

describing the general behavior in transmission and reflection of this material were still 

considered valid, and were used in defining its simulated optical properties. 

 

     Summing up, the main conclusions that were drawn from the goniophotometer 

and integrating sphere measurements of the translucent sandwich system were: 

(a) The system is rotationally invariant (no variation with either the incident or the 

emerging azimuth angles). 
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(b) Given that the BTDF data exhibits no correlation with the incident direction and 

that its photometric solid approaches the shape of a hemisphere within an error 

margin of ±15% (Figures 2(a) to 2(e)), the investigated system can be treated for 

simulation purposes as an ideal diffuser. 

(c) The directional-hemispherical transmittance of the system decreases according to 

the solid line in Figure 3 when incidence moves closer to grazing angles, with a 

maximal transmittance at normal incidence equal to 0.24.   

(d) The panel has diffusing and specular reflectances of 0.21 and 0.08, respectively. 

 

2.2 Development of a Radiance model  

Based on the analysis of the previous section, three Radiance materials of varying 

complexity were developed for the translucent panel using the trans and transdata 

material models: 

trans24% model: According to page 325 of the Rendering with Radiance2 book the trans 

material is “...one of the most confusing material entities in the Radiance repertoire. 

However, it is the simplest material that will trace direct source rays through a 

semispecular surface in order to determine diffuse and specular transmitted 

components...”. Using trans, Radiance treats the translucent panel as a perfect 

Lambertian diffuser with diffusing and specular reflectances of 0.21 and 0.08, 

respectively. The trans model further assumes that the directional hemispherical 

transmittance is constant for different incidence angles, i.e. it approximates the solid line 

in Figure 3 with a constant. Which constant a simulationist chooses obviously depends on 

his or her knowledge of the curve in Figure 3. In the case that only direct normal 

hemispherical transmittance measurements were carried out, the curve in Figure 3 would 
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be approximated with a constant value of 0.24. This would result in the following material 

model: 

# RADIANCE “trans” model of a translucent panel assuming 
# only direct normal hemispherical transmittance is available 
# Rd = Cr = C = C = 0.21 = diffuse reflectance g b 
# Rs = A =0.08 = specular reflectance  4 
# Sr = 0.0 = surface roughness  
# Td = 0.24 = direct normal diffuse hemispherical transmittance  
# Ts = 0 = transmitted specularity (ideal diffuser) 
# A7 = T /(Ts s
# A

d+T ) = 0 
6 = (T +T )/(Rd+Td+Ts) = 0.5333 d s

# A5 = Sr = 0  
# A1 = A2 =A  = R3 s
# S  = A *A *(1-A )*A4 = 0  

d/((1-R )*(1-A6)) = 0.48913 
t 6 7 1

# resulting Radiance material: 
void trans PANEL   
0  
0  
7 0.48913 0.48913 0.48913 0.08 0  0.5333 0 
# A1      A2      A3      A4   A5 A6     A7 

  

trans16% model: A look at Figure 3 shows that approximating the solid line with a constant 

of 0.24 will lead to an overestimation of indoor illuminances. Given that diffuse daylight is 

usually incident onto a panel under all possible incident directions, it seems advisable to 

replace the 0.24 direct normal hemispherical transmittance with the diffuse-diffuse 

transmittance, Tdiffuse-diffuse, of the sample which is defined as22: 

∫
=

=
2

0
diffuse-diffuse )2sin()(T

π

θ

θθθ dT  

where θ is the incident angle. For the sample, the diffuse-diffuse transmittance 

corresponds to 0.1621. Following the same calculations as above but using 0.1621 

instead of the 0.24 for the total transmittance leads to the following Radiance model: 

# RADIANCE “trans” model of a translucent panel based on a  
# diffuse-diffuse transmittance of 0.1621. 
void trans PANEL   
0  
0  
7 0.40446 0.40446 0.40446 0.08 0  0.435635 0 
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# A1      A2      A3      A4   A5 A6       A7 
 

One should note that by using the diffuse-diffuse transmittance one is effectively weighing 

incident rays from all directions equally which is strictly speaking only valid for a uniform 

diffuse sky. 

transdata model: As discussed above, trans approximates the angle-dependant direct 

hemispherical transmittance with a constant. To overcome this limitation, the transdata 

model allows one to specify a custom tailored angular dependency for transmitted light. 

Unfortunately, this corrective function is only applied to direct ”light” sources, i.e. direct 

sunlight, whereas “glow” light sources –such as diffuse daylight– are still subject to a 

constant transmittance value. I.e. for diffuse daylight transdata and trans become 

identical. Using the solid curve from Figure 3 and a diffuse-diffuse transmittance of 

0.1621 leads to the following transdata Radiance material#: 

f a translucent panel 

6 0.40446 0.40446 0.40446 0.08 0.435635 1 
 

The function file "rang.cal" calculates the angle “rang” between the direction of the 

incident light  (dx,dy,dz) and the surface normal (Nx,Ny,Nz): 

 

rang(dx,dy,dz) = 180/PI*Acos(abs(Nx*dx+Ny*dy+Nz*dz)); 

 

“rang” is the coordinate index for the data file "refl.dat" which contains corrective values 

for “rang” values between 0 and 90 degrees%: 

# RADIANCE “transdata” model o
void transdata PANEL 
4 noop refl.dat rang.cal rang 
0 

{ Compute incident angle in degrees (from either side) } 

                                                 
# Thanks to Greg Ward for helping to put this function together. 
% As explained in the Radiance help files, function files such as refl.dat and rang.cal should be copied into the 
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# integrating sphere measurements 
##### HEADER ##### 
# one-dimensional data array 
1  
# irregularly spaced axis:  
# two zeros – number of divisions – division values 
0 0 17  
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 90  
##### Body ##### 
# Data values:  
0.4713 
0.4674 
0.4615 
0.4497 
0.4359 
0.4183 
0.3986 
0.3770 
0.3534 
0.3279 
0.3024 
0.2749 
0.2494 
0.2239 
0.1983 
0.1669 
0 
 

The data values in “refl.dat” were generated as the ratio of measured total 

transmittances. E.g. for 45o the panel had a total transmittance of 0.167 (see Figure 3) 

resulting in a correction factor of: 

 

0.3279
1621.0

167.0

ncetransmitta
ncetransmitta

constant

mea == π  

  

                                                                                                                                                
Radiance library directory. A description of Radiance data files can be found under 
http://radsite.lbl.gov/radiance/ Reference>> Documents >> File Formats (last accessed Feb 2006). 
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2.3 Test room measurements 

For the validation part of this study, a facade featuring a large sample of the 

translucent panel investigated above was installed in one of the two identical test rooms 

of the NRC daylighting laboratory in Ottawa, Canada (45.32oN, 75.67oW) (Figure 4). The 

facade of the test rooms is facing SSE (25.2o from due South). The two test rooms are 

both full scale (2.85m x 4,5m x 2.96m) and each is equipped with twelve Licor illuminance 

sensors that are mounted at identical positions in the rooms. The measurement error for 

the illuminance sensors was assumed to be 5%. For this study five of the illuminance 

sensors (two desktop and three ceiling) were considered (Figure 5). Outdoor direct and 

diffuse irradiances were synchronously collected every 30 seconds using a Yankee 

rotating shadowband radiometer. 

Figure 4(a) shows an interior view of the investigated facade. A small tinted 

double-glazed window was placed in the center of the facade to act as a visual link to the 

outside for a series of research participants that spent several working days in the test 

rooms. The results of the human subject studies were not related to the work presented 

in this study and will be reported elsewhere. The involvement of human subjects further 

necessitated that the immediate exterior vicinity exterior of the NRC daylighting laboratory 

was visually separated from the building surroundings using a hedge (Figure 4(b)). This 

hedge was introduced to give test subjects an enhanced feeling of privacy when working 

in the test rooms. For the duration of the validation measurement, the hedge was covered 

with a black cloth to reduce errors in the Radiance scene such as inaccurate reflectances 

from the ground and surrounding objects.  

Interior illuminances were continuously collected every 30 seconds over a period 

of nineteen days from May 4th 2004 until June 3rd 2004. During the nineteen days sky 

conditions ranged from overcast to partly cloudy and sunny. Measurements were only 
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considered for the validation study if the measured illuminance on the SSE facade of the 

test room was above 5000 lux. This selection criteria was used since the Perez sky 

model (or any other sky model) becomes extremely sensitive to measurement 

uncertainties of input direct irradiances just after sunrise or before sunset. This can 

translate into very large relative simulation errors at times which are not really significant 

for an annual daylight simulation since interior illuminances are only in the order of 50 to 

100 lux. The 5000 lux filtering procedure resulted in a total of 24,252 valid sky conditions 

and over 120,000 measured interior illuminances. 

 

2.4 Radiance/Perez validation 

Daylight simulations were carried out using the Radiance-based daylighting analysis 

program Daysim. Daysim uses the Radiance algorithm combined with a validated daylight 

coefficient approach and the Perez sky model to simulate time series of indoor 

illuminances/luminances15. A detailed three dimensional AutoCAD model of the NRC 

daylighting laboratory and the surrounding hedge was made and converted into Radiance 

format. Based on simple measurements using a luminance meter, an illuminance meter, 

and a reference reflector, the approximate reflectances of walls, ceiling and floor were 

determined (Table 1). The visual transmittance of the tinted glazing was provided through 

integrating sphere measurements. The translucent material was modeled using either of 

the three models developed in section 2.2. 

Table 2 presents a list of utilized Radiance simulation parameters. Only non default 

parameters are listed. 

 

version:8/22/2007 page 20



 

3 Results and Analysis 

In this section the results of the model validation are presented and analyzed.  

 

Cloudy Day 

Figure 6 compares measurements and simulation results for a partly cloudy day for the 

desk sensor Desk1 located near the facade (see Figure 5). Since trans16% and transdata 

yield identical results in the absence of direct sunlight, both simulation plots are shown as 

one. The figure shows that both Radiance models that assume a diffuse hemispherical 

transmittance of 0.1621 combined with the Perez sky model are capable of modeling the 

short time step development of indoor illuminances with a high degree of accuracy. In 

contrast, as one would expect, trans24% predictions lie up to 40% above the measured 

values.  

 

Sunny Day 

Figure 7 shows the same results as Figure 6 on a sunny day for (a) the facade 

sensor and (b) desktop sensor Desk1. For the external sensor simulation results for 

trans24%, trans16%, and transdata are identical whereas they are markedly different for the 

desktop sensor. Figure 7(a) reveals that outside facade illuminances could be predicted 

with a high degree of accuracy throughout the day with some errors occurring at around 

at around 10.00 and 15.00. This suggests that the simulation errors introduced by the 

Perez sky model and surrounding landscape were small for the investigated day.  

The results are markedly different for the desktop sensor (Figure 7(b)). At 10AM, 

trans24% overestimated the desk illuminance by 44% while trans16% and transdata both lie 

within a 5% error band with respect to the measured value. Why do the values for 
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trans16% and transdata lie so close together for most of that sunny day? At 10AM the 

incident angle of the sun with respect to the translucent panel was around 55o. According 

to Figure 3, the direct hemispherical transmittance at an incidence angle of 55% 

corresponds to 14% which is close but slightly under the diffuse-diffuse transmittance of 

0.1621. Accordingly, trans16% and transdata lie close together at this time with the former 

being slightly larger than the latter. The same argument explains why the trans24% value is 

around 1.5 (0.24/0.16) times larger than the measured value. 

Comparing the measurements with trans16% and transdata predictions, the values 

for the supposedly less detailed model (trans16%) lie slightly closer to the measurements 

than the more sophisticated model. The reason for this surprising finding might be 

coincidental: Given that at around 10AM the facade sensor simulation underestimated the 

measurement by 3%, suggests that errors related to the Perez sky model and 

surrounding landscape canceled themselves out with overpredictions caused by the 

trans16% model. 

 

MBE and RMSE 

In order to provide a more rigorous analysis of the errors introduced by all three 

Radiance material models, the relative mean bias error (MBE) and the relative root mean 

square error (RMSE) with respect to the measurements were calculated for all three 

simulation sets. The MBE and RMSE are statistical quantities to characterize the 

similarity/differences between two data series. The relative MBE indicates the tendency 

of one data series to be larger or smaller than the other. The RMSE indicates how far one 

data series “fluctuates” around the other.  

Table 3 shows MBEs and RMSEs for all three Radiance models  To be able to 

directly compare results with Mardaljevic’s validation study for a clear glazing5, 15 minute 
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averages of measured illuminances and exterior irradiances have been used as the basis 

for this table (see below). This reduced the overall number of sky conditions to 814. The 

table shows that for work plane and ceiling sensors the overall relative MBE and relative 

RMSE fall for rising model complexity, i.e. simulation results become more accurate as 

one progresses from trans24% via trans16% to transdata. As one would expect, the largest 

improvement comes from trans24% to trans16%, since the former model overestimates the 

direct hemispherical transmittance of the translucent panel for all incoming daylight with 

the exception of rays incident normal to the facade. As  in Reinhart’s and Walkenhorst’s15 

earlier study, errors are larger for the ceiling mounted sensor than for the work plane 

sensor. 

 

Figure 8 presents the frequency distribution of the relative error, MBE, and RMSE 

for the facade and the five indoor illuminance sensors for the transdata model. Figure 8 is 

divided into two columns: The left column shows unmodified Radiance simulations. As 

discussed above, the resulting relative errors are a combination of errors introduced by 

Radiance and the sky model. In the right column, simulation results from the left have 

been scaled with a correction factor that equaled the ratio of measured to simulated 

facade illuminance. The objective of the right column is to estimate the relative weight of 

simulation errors due to the sky model and surrounding landscape compared to errors 

from the raytracing.   

 The figure reveals that for the unmodified Radiance simulations, errors range from 

0% to 9% (MBE) and 14% to 19% (RMSE) which is even better than the 8% to 17% 

(MBE) and 24% to 30% (RMSE) found by Reinhart and Walkenhorst15 for a clear glazing. 

The remaining errors due to the raytracing alone (right column) ranged from 1% to -8% 

(MBE) and 8% to 10% (RMSE), respectively. Again, these values compare well with the 
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range of –3% to 12% (MBE) and 11% to 20% (RMSE) found by Mardaljevic5 for a clear 

glazing. 

Practical considerations 

The results from the previous sections indicate that one can expect state-of-the-

art daylight simulations of different facade geometries including translucent panels to 

roughly lie within a ±20% error band with respect to “reality”**. About half of this error can 

be attributed to the sky model and practical limitations as to how accurately the 

surrounding landscape can be modeled. At first sight, these errors might seem 

substantial. On the other hand, it is worthwhile to remember that the sensor that 

ultimately judges the appearance and brightness of a daylit space is the human eye, a 

logarithmic sensor. While a difference between 400lux and 500lux (20%) might not be 

obvious to the human eye, a difference between 400lux and 4000lux clearly is. The 

resolution of a daylight simulation is therefore sufficient as far as the human eye is 

concerned. To provide some further insight into how significant a 10% or 20% error in 

illuminance predictions is for design purposes, some key daylighting performance 

measures are calculated in the following based on these error margins. 

Figure 9 shows the error bars associated with a ±10% uncertainty in either 

direction for the daylight factor distribution in the test room used in this validation study 

(Figure 4). An error of 10% has been chosen, since the daylight factor is based on an 

idealized CIE overcast sky, which can be exactly modeled by Radiance, i.e. the concept 

of a sky model error does not apply for daylight factor simulations. For comparison’s 

sake, the daylight factor distribution for the translucent panel is plotted against the 

distribution for an identical room equipped with a standard tinted double-glazing of 30% 

                                                 
** 76% to 86% of all simulations in Figure 8 fall within a ±20% relative error band with respect to 
measurements.  
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transmittance. It becomes apparent, that even in a worst case scenario (translucent panel 

overestimated by 10%; tinted glazing underestimated by 10%) the differences between 

the two facades remains clear cut in the simulation. If one were to use the US Green 

Building Council’s LEED 8.1 criteria for daylighting (http://www.usgbc.org/) in order to 

evaluate how far into the room a daylight factor of 2% is maintained, one would find that 

the width of the daylit zone ranges from about 1.1 m to 1.4 m for the translucent facade 

and 1.8 m to 2.1 m for the tinted glazing. The uncertainty in the simulation results does 

not compromise the simulation’s ability to contribute to a more informed design decision. 

Figure 10 corresponds to the previous Figure except that the daylight autonomy in 

the two rooms is calculated instead. The daylight autonomy at a point of interest in a 

building is defined as the percentage of the occupied times per year when the minimum 

illuminance level can be maintained by daylight alone15. In case the building features a 

movable shading device, the daylight autonomy takes the occupant’s use of this shading 

device into account in order to provide an estimate of how much daylight will effectively 

be available within the space. It is therefore an holistic daylighting performance indicator 

that takes occupant needs and the annual dynamics of daylighting into account. In Figure 

10, the test reference year for Ottawa, Canada, has been used. The office is continuously 

occupied Monday through Friday from 8:30 to 16:30. It is assumed that the occupant 

performs a task that requires a minimum illuminance level of 450lux and is seated at 

about 2m distance from the facade. The room with the tinted glazing is equipped with 

perforated roller blinds with a transmission of 5%. Two manual control scenarios are 

considered for the roller blinds:  

• active user: a user who opens the blinds in the morning (upon arrival), and lowers 

them when direct sunlight above 50 Wm-2 hits the seating position (to avoid direct 

glare). The user further operates the electric lighting in relation to indoor daylight 
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levels and occupancy patterns based on a number of probability functions that 

were extracted from field study data23. 

• passive user: a user who keeps the blinds lowered throughout the year to avoid 

direct sunlight. The user further keeps the electric lighting switched on throughout 

the working day. 

The terms “active” and “passive” user have been taken from the Lightswitch user 

behavioral model which is based on field data collected in private and two person 

offices23.The assumed daylight simulation error from Perez/Radiance in Figure 10 is 20%.  

 

Figure 10 suggests that –if the use of a roller blind is taken into account – the 

annual daylight availability in the room with the translucent panel is actually larger than in 

the room with the tinted glazing for both user types. This finding contradicts the results 

from the daylight factor analysis and might initially seem surprising since the 

transmittance of the tinted glazing is 0.30 compared to the mean direct hemispherical 

transmittance of 0.16 for the translucent panel. The key assumption underlying Figure 10 

is that it is acceptable for office workers to work in the room with the translucent panel 

without the need for additional shades to mitigate glare. This assumption is supported by 

a human subject study that was carried out in the two test rooms24: During the experiment 

the rooms were furnished as 2-person shared offices with each occupant facing 45 

degrees left or right relative to the façade. “Lighting Quality and Bothersome Glare ratings 

[...] showed that the higher illuminances were not perceived to be problematic: For the 41 

participants in this counterbalanced repeated-measures design, the median overall 

Lighting Quality rating (scale of 0-4, higher scores indicate higher quality) for Room A 

was 3,0 and for Room B was 2,8; for Bothersome Glare, both medians were 0,5 (higher 

scores indicate more bothersome glare, range 0-4).”24  
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Same as for the daylight factor simulation, the simulation uncertainty is always 

smaller than the differences between the investigated two designs. 

 

Finally, Figure 11 predicts annual electric lighting use in the two rooms from 

Figure 10. The simulated electric lighting system has an installed lighting power density of 

10 Wm-2 and is manually controlled with an on/off switch. The dimming system has an 

ideally commissioned photosensor-control with a ballast loss factor of 10 percent. 

Simulation results are presented for both rooms for an active and a passive user. In the 

room with the tinted glazing, the occupant controls both, the light switch as well the blinds 

whereas in the room with the translucent panel the user only controls the light switch 

since there are no blinds. The error bars correspond to daylight simulation errors of 

±20%. Again, the manual control of the on/off light switch is modeled according to 

Lightswitch23. 

 As for the previous two figures, Figure 11 reveals that the uncertainty introduced 

through daylight simulation errors is small compared to occupant behavior and facade 

design. Note, that while the predicted electric lighting use is similar for both rooms for an 

active user, it is substantially higher for a passive user in the room with the tinted glazing. 

Since the difference is comparable to the error bars, the projected lighting energy use for 

active users for both rooms should be considered the same as far as the simulation is 

concerned. A key finding from Figure 11 is that a translucent panel combined with a 

photocell controlled dimming system is leading to low lighting energy use independent of 

occupant behavior. The reason is that no shading device can be permanently lowered to 

reduce the daylight in the room. This suggests that this combination yields more reliable 

energy savings than a photocell control combined with a standard window and blinds. 

Once again, this conclusion strongly depends on the assumption that no additional 
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shading device is needed at any time of the year to mitigate glare form the translucent 

panel. 

 

4 Discussion and Conclusion 

4.1 Radiance validation of a translucent panel 

The previous section clearly revealed that Radiance is fully capable of simulating 

the short time step dynamics of indoor illuminances due to daylight for a design that 

features translucent panels. Using a transdata model based on integrating sphere and 

goniophotometer measurements yielded MBEs below 9% and a RMSEs below 19% for 

all desktop and ceiling sensors considered. These simulation accuracies are superior to 

the 17% (MBE) and 30% (RMSE) that were earlier reported for standard glass, plastic, 

and metal material types15. One explanation why simulations of a translucent material are 

more accurate than those involving clear glass might be that sharp indoor illuminance 

gradients (e.g. shadows generated by direct sunlight) are mitigated through translucent 

panels.  

Scaling the simulation results of indoor illuminances with a ratio of measured to 

simulated facade illuminances reduced the errors to less than -8% (MBE) and 10% 

(RMSE), suggesting that parts of the simulation errors were introduced by the sky model 

and surrounding landscape. 

The analysis procedure of how to develop a Radiance model from direct 

hemispherical transmittance and BTDF data described in sections 2.1 and 2.2 can be 

used for all materials that can be treated as rotationally invariant, diffuse transmitters. In 

case a material is a diffuse transmitter but not rotationally invariant, the function files in 

section 2.2 for transdata would have to be modified accordingly. 
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4.2 Goniophotometer and/or integrating sphere measurements 

The goniophotometer measurements were useful to establish that the investigated 

translucent panel could indeed be treated as an ideal diffuser and to quantify diffuse and 

specular reflectances. Because of the low transmittance of the material and its highly 

diffusing optical properties, the values determined for the angular dependent direct-

hemispherical transmittance deduced from BTDF data had to be verified with additional 

integrating sphere measurements.  

These findings reveal the advantages offered by a combination of two assessment 

methods to ensure reliable data. Although goniophotometer measurements should a 

priori be able to provide both an insight into angle-dependent transmittance properties of 

a sample and integrative, direct-hemispherical measurements, these particular borderline 

conditions made it beneficial to conduct additional integrating sphere measurements so 

that integrated BTDF data could be scaled with integrating sphere measurements. 

4.3 Radiance material database 

A caveat of the findings in this study is that most design practitioners do not have 

access to the expertise and funding required to commission goniophotometer and 

integrating sphere measurements of a translucent building product or to develop a 

Radiance model based on such measurements. This might lead to situations in which a 

design team refrains from using a translucent panel or fritted glass because the 

performance of the product cannot be sufficiently well quantified compared to those of 

conventional glazings. It is therefore in the interest of manufacturers of translucent 

products to provide Radiance material models on their web site ready for download. An 

even more rigorous approach, that allows for some quality control, would be to store such 
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data centrally in a database. Such a database could be added to existing databases such 

as the “International Glazing Database” that forms part of the Window software*. Note 

that Window 5.2 already provides an export function for complex glazings (albeit not 

validated) to Radiance. 

 

4.4 Use of “transdata” to model photosensors 

Section 3 demonstrated that transdata is a flexible Radiance material type to 

adjust the angular transmittance properties of a material. It actually offers an alternative 

approach of how to model the spatial sensitivity distribution of real world photosensors 

within Radiance to the approach suggested by Ehrlich et al.25: Instead of folding a 

Radiance image of a room as “seen” by the photosensor with an image of the 

photosensor’s spatial sensitivity, this new approach would be to place a “filter” polygon in 

front of the photosensor. This filter, modeled with a function file material, could modify the 

angular sensitivity of the sensor from a cosine dependency to an arbitrary function. The 

advantage of this approach would be that the performance of photocell controls could be 

investigated on an annual basis using a daylight coefficient approach. 

 

Summing up, this study once more demonstrated the flexibility that a 

Perez/Radiance/daylight coefficient approach offers to model the annual daylight 

availability in a building. The results also show that careful BT(R)DF measurements 

combined with integrating sphere measurements are an excellent way to develop 

accurate but easy-to-use material models for daylight simulations. The simulation 

accuracy reached in this study translated into small error bands for daylight performance 

measures such as daylight factor and daylight autonomy that were derived from these 

                                                 
* http://windows.lbl.gov/software/window/window.html
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simulations. This suggests that the simulation accuracy that is currently reached by 

Radiance is sufficient for practical design considerations. A remaining task will be to 

provide a larger group of design professionals with the skills and data required to carry 

out such daylight simulations. A central material database could be one step towards this 

goal. Another challenge for the research community will be to help design professionals 

to translate detailed simulation results into compact and intuitive daylighting performance 

measures. This task will require further research on building occupants’ perception of and 

relationship with the indoor environment well as on the design decision process itself.  
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List of Table Captions  

Table 1: List of materials in Radiance scene. 

 

Table 2: List of Radiance simulation parameters. 

Table 3: Mean Bias Error (MBE) and Root mean Square Error (RMSE) for the three 
Radiance material models. 
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Table 1:  
material optical properties Radiance material description 
ceiling 86% diffuse reflectance void plastic ceiling 0 0  

5 0.86 0.86 0.86 0 0 
carpet dark patches 10% diffuse 

reflectance 
light patches 16% diffuse 
reflectance => 13% diffuse 
reflectance 

void plastic carpet 0 0 5 0.13 0.13 0.13 0 
0 
 

side walls 73% diffuse reflectance void plastic side_wall 0 0 5 0.73 0.73 0.73 
0 0 

mullions 
(unpainted 
aluminum)  

74% diffuse reflectance with a 
estimated 10% specular 
component  

void plastic moullion 0 0 5 0.74 0.74 0.74 
0.1 0 
 

outside gravel 22% diffuse reflectance void plastic gravel 0 0 5  0.22 0.22 0.22 0 
0 

external wall 40% diffuse reflectance void plastic ext_wall 0 0 5 0.4 0.4 0.4 0 0 
black cloth 
covering hedge 

~0% diffuse reflectance 
(approximated value) 

void plastic black_cloth 0 0 5 0 0 0 0 0 

tinted glazing 31% normal visible transmittance 
(based on integrating sphere 
measurements) 

# transmissivity in Radiance: 0.338117  
void glass tinted_glazing 0 0  
3 0.338117 0.338117 0.338117 

translucent panel BTDF measurements three Radiance models (see above) 

 

version:8/22/2007 page 36



 

Table 2:  

ambient 
bounces 

ambient 
division 

ambient 
sampling 

ambient 
accuracy 

ambient 
resolution 

direct 
threshold  

direct 
sampling 

7 1500 100 0.1 200 0  0 
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Table 3:  

sensor  trans24% trans16% transdata 
DESK1 MBE [%] 49.5 7.5 3.5 
 RMSE [%] 52.4 14.6 14.3 
CEIL1 MBE [%] 57.7 12.7 8.9 
 RMSE [%] 60.9 19.2 18.6 
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List of Figure Captions 

Figure 1: Exterior (a) and interior (b) sides of the analyzed translucent panel. 

Figure 2: Visualization of photometric solid20 examples and section views for various 

incident directions and characterization modes: (a) BTDF along θincident=45o, φ incident =0o, 

sample Ø = 280 mm; (b) BTDF along 60o, 0o, Ø = 280 mm; (c) BTDF along 45o, 0o 

(section view), Ø = 280 mm; (d) BTDF along 60o, 90o, Ø = 280 mm; (e) BTDF along 75°, 

0o, Ø = 280 mm; (f) BRDF along 20°, 0°, Ø = 150 mm. 

Figure 3: Comparison of the directional-hemispherical transmittance properties of the 

translucent panel measured with a goniophotometer (dotted line) and with an integrating 

sphere (solid line). The estimated, relative errors of both measurement setups were 15% 

for the goniophotometer and 5% for the integrating sphere. 

Figure 4: (a) Internal view of one of the two test rooms in the NRC Daylighting 

Laboratory. The tested facade was fitted with a large translucent sandwiched panel and a 

small view window. (b) External view of the daylighting laboratory and the surrounding 

“hedge” which was covered with black cloth. 

Figure 5: Section of the test room. All five illuminance sensors were positioned along the 

central axis of the room. 

Figure 6: Measured and simulated illuminances for desk sensor Desk 1 (see Figure 5) 

for a partly cloudy day. 

Figure 7: Measured and simulated illuminances on a sunny day for (a) a facade sensor 

and (b) desktop sensor Desk 1 (see Figure 5). For the facade sensor simulation, results 

for trans and transdata are identical. 
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Figure 8: Frequency distribution of relative error for illuminance predictions using the 

“transdata” model in Radiance. The left column shows unmodified simulation results. In 

the right column simulation results have been scaled with the ratio of measured to 

simulated facade illuminance. The spectra are based on 15 minute averages of 

measured indoor illuminances and external irradiances. 

Figure 9: Daylight factor distribution in the test room equipped with either a translucent 

panel or a tinted double glazing. The assumed of the underlying daylight simulation is 

±10%. 

Figure 10: Daylight autonomy distribution in the test room equipped with either a 

translucent panel or a tinted double glazing with roller blinds. The assumed error of the 

underlying dynamic daylight simulation is ±20%. (There is only one daylight autonomy 

distribution for the translucent panel variant, since it does not feature a roller blind.) 

Figure 11: Annual electric lighting use for an ideally commissioned photocell controlled 

dimmed lighting system in the test room equipped with a either translucent panel or a 

tinted double glazing combined with a roller blind, for an active and a passive user.  
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Figure 5: 
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Figure 7 (a): 
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Figure 7 (b): 
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Figure 8: 

unmodified Radiance simulation corrected Radiance simulation 

(a) facade illuminance 

  

 

(b) desk sensor near facade 

         

 

 
(c) desk height back of the room 

 

 

 
(d) ceiling sensor near facade       

 

 

 
(e) ceiling sensor back of the room 
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