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We show that in RuO2–glass composites the nonuniversal resistivity exponent can be modulated by
an applied mechanical strain, signaled by a logarithmic divergence of the piezoresistive response at
the percolation threshold. We interpret this phenomenon as being due to a tunneling-distance
dependence of the transport exponent, supporting therefore a theory of transport nonuniversality
proposed some years ago. ©2004 American Institute of Physics. [DOI: 10.1063/1.1835996]

The study of transport properties of thick-film resistors
(TFRs) is of crucial interest for the improvement of sensor
devices based on thick-film technology.1 In particular, the
understanding of the interplay between microscopic proper-
ties, dc transport, and the piezoresistive response have im-
portant implications in the fabrication of robust force and
pressure sensor devices.

The most common thick-film piezoresistors are com-
posed by submicron conducting RuO2 grains (or also
Pb2Ru2O6 and Bi2Ru2O7) dispersed in an insulating host
usually given by a lead-borosilicate glass.2 The transport
properties of TFRs are governed by two main ingredients.
On the microscopic level, electron transport is via quantum
tunneling through nanometer-thick films of glass separating
two neighboring conducting particles,3–5 while on macro-
scopic scale transport displays percolation-like behavior,6,7

with resistivity r following a power-law of the form:

r . r0sx − xcd−t, s1d

wherer0 is a material-dependent prefactor,xc is the percola-
tion critical volume fraction below whichr goes to infinity,
and t is the dc transport critical exponent. According to the
standard theory of transport percolation,8,9 the microscopic
properties, such as the intergrain tunneling in TFRs, do affect
the values ofr0 andxc, but should leave the critical exponent
t unaltered and equal to the universal valuet0.2.0 valid for
three-dimensional disordered composites.10

In contrast to this view, the critical exponent of TFRs has
been often found to be larger thant0,

7,11 up to aboutt.7.0.6

Despite the fact that such universality breakdown has been
repeatedly reported for decades, and that it has been ob-
served also for systems different from TFRs,9 a common
view regarding its origin is still lacking.12 We show in this
letter that breakdown of universalityst. t0d in RuO2-based
TFRs is accompanied by a logarithmic divergence of the
piezoresistive response at the percolation thresholdxc, pro-
viding evidence that the transport critical exponentt depends
upon the mean intergrain tunneling distance, as proposed a
few years ago in Ref. 13.

Our samples were prepared starting with a lead-
borosilicate glass powderfPbOs75 wt %d-B2O3s10 wt %d–

SiO2s15 wt % wtdg+2% of Al2O3 of 1–5 µm grain sizes.
Differential scanning calorimetry measurements indicated a
glass softening temperature of about 430 °C and absence of
crystallization. TFRs were then fabricated by mixing two
series of RuO2 powders with 40 and 400 nm grain sizes with
the glass particles together with a vehicle of terpineol and
ethyl cellulose. The pastes were screen printed on Al2O3 sub-
strates with gold electrical contacts and fired for 15 min at
temperaturesTf (see Table I) higher than the glass softening
temperature. The resulting films were about 10µm thick and
appeared dense and compact. The quality of the films were
confirmed by scanning electron microscope analyses and
x-ray measurements did not reveal other peaks in addition to
those of RuO2, confirming the absence of devitrification.
Several resistivity measurements were taken over eight dif-
ferent samples for each RuO2 volume fraction value.

In Fig. 1(a) we report the ln–ln plot of the room tem-
perature resistivityr measured for four different series of
TFRs(see Table I) as functions of the RuO2 volume concen-
tration x. The solid lines are fits to Eq.(1) and the best-fit
parametersr0, xc, andt are reported in Table I. The resistiv-
ity data follow the power law behavior of Eq.(1) with expo-
nent t close to the universal valuet0.2.0 for the A1 series
st=2.15±0.06d or markedly nonuniversal as for the A2, B1,
and B2 seriesst.3d.

The effect of an applied strain« on transport is obtained
by recording the piezoresistive response, i.e., the relative re-
sistivity changeDr /r upon applied mechanical strain, by
cantilever bar measurements. The RuO2–glass pastes were
screen printed on Al2O3 cantilever bars clamped at one end.
Substrate tensile strains«.0 along the main cantilever axis
were induced by applying different known weights on the
free end of the cantilever. Compressive strainss«,0d were
obtained by weights applied on the opposite face of the can-
tilever. In the whole range of applied strains(up to about
u«u=4.5310−4), Dr /r changed linearly and symmetrically
with « [see inset of Fig. 1(b)], indicating the absence of false
strain responses due to elastic faults of the resistive films.14

The corresponding piezoresistive factorsG=d lnsrd /d« ex-
tracted from the slopes of the linear fits ofDr /r vs « are
plotted in Fig. 1(b) for the four TFRs series of Fig. 1(a) as a
function of x. With the exception of the A1 series, whose
piezoresistive response is almost constant,G displays aa)Electronic mail: claudio.grimaldi@epfl.ch
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strong dependence uponx and tends to diverge asx ap-
proaches to the same critical concentrationsxc at which r
goes to infinity(see Table I), confirming an earlier finding.11

In order to clarify the origin of the piezoresistive diver-
gence, let us consider Eq.(1) and differentiate it with respect
to «:

d lnsrd
d«

= G = G0 −
d

d«
ft lnsx − xcdg. s2d

SinceG0=d lnsr0d /d« is a constant independent ofx, all the
x dependence ofG must come from the last term of Eq.(2).
Let us assume for the moment thatt is independent of«.
According to Ref. 11, the divergence ofG at xc stems from
dx/d« being nonzero. This has been argued to be trigged by
the different values of the elastic moduli of RuO2, BRuO2

,
and of the embedding glass,Bglass, which lead todx/d«
.−Ax where A~1−Bglass/BRuO2

. Since BRuO2
.270 GPa

and Bglass.40−80 GPa,A is expected to be different from
zero and positive. If this reasoning held true, Eq.(2) would
then reduce to11

G = G0 + At
x

x − xc
= K1 +

K2

x − xc
, s3d

where we have definedK1=G0+At andK2=Atxc. In Fig. 2(a)
we have replotted theG values of Fig. 1(b) as a function of
1/sx−xcd with the same values of the critical concentrations
xc extracted from the resistivity data. According to Eq.(3), G
should then follow a straight line as a function of 1/sx−xcd
which, although being rather correct for the A2 series, is
manifestly not true for the B1 and B2 series. In addition, the
A1 series remains almost constant, implying thatA=0 for

this case, contrary to the premises of Ref. 11.
Let us stress that, actually,x is just as an operative esti-

mate of the concentrationp of intergrain tunneling junctions
with finite resistances present in the sample.8,9 Hence, in-
stead of following the arguments of Ref. 11, one could argue
more correctly thatdx/d«.sdx/dpdsdp/d«d. Also in this
case however one would expect a 1/sx−xcd divergence
which we have seen to lead to poor fits for our data. Further-
more, the values of the applied strains in our measurements
are so smallsu«u,4.5310−4d that their effect is that of
changing the value of the tunneling resistances without af-
fecting their concentrationp, so that one realistically expects
that dp/d«=0.

Let us reconsider now Eq.(2). If dp/d«=0, then the only
way to have anx dependence ofG is to allow the transport
exponentt to have nonvanishing derivative. In this way Eq.
(2) reduces to

G = G0 +
dt

d«
lnsx − xcd, s4d

which predicts alogarithmic divergence ofG at xc. In Fig.
2(b) we plot the piezoresistive data of Fig. 1(b) as a function
of lnsx−xcd. Now, contrary to the previous fit with the 1/sx
−xcd divergence[Fig. 2(a)], all the series A1,…,B2 follow
the logarithmic fit with rather good agreement in the entire
range ofx values. The fitting values with Eq.(4), solid lines,
are reported in Table I. Furthermore, thex-independence of
the A1 series can now be explained by noticing that A1 is the
only series whose transport exponent displays universal-like
value st.2.15±0.06d, leading us to infer thatdt/d«=0 be-
cause in this caset= t0.

Let us discuss now what this finding implies in terms of
the microscopic origin of nonuniversality. The main effect of

TABLE I. Label legend of the various samples used in this work with fitting parameters of Eqs.(1) and (4).

Label RuO2 grain size(nm) Tf °C xc lnsr0/V md t G0 dt/d«

A1 400 525 0.0745 −11.1±0.3 2.15±0.06 5.5±1.5 −0.2±0.4
A2 400 600 0.0670 −14.2±0.2 3.84±0.06 −8.8±1.6 5.4±0.5
B1 40 550 0.0626 −14.3±0.5 3.17±0.16 −15.3±3 8.7±0.9
B2 40 600 0.0525 −13.7±0.7 3.15±0.17 −19.3±2.4 11.0±0.7

FIG. 1. (a) ln–ln plot of resistivityr as a function of RuO2 volume concen-
trationx for four different series of TFRs with fits to Eq.(1) shown by solid
lines. The corresponding values ofr0, xc, andt are reported in Table I. The
dashed line has slopet0=2 corresponding to universal behavior of transport.
(b) Isotropic piezoresistivity responseG=d lnsrd /d« as a function ofx for
the TFRs series of(a). Inset: resistivity variationDr /r of the A2 series as a
function of strain« and for different RuO2 volume concentrations.

FIG. 2. (a) Piezoresistive factorG plotted as a function of 1/sx−xcd (sym-
bols) with fits to Eq.(3) (lines). For clarity, the data of different series have
been shifted vertically by the amounts reported in brackets.(b) G–G0 as a
function of lnsx−xcd and fits(solid lines) to Eq.(4). The fit parametersdt/d«
andG0 are reported in Table I.

5620 Appl. Phys. Lett., Vol. 85, No. 23, 6 December 2004 Vionnet-Menot et al.

Downloaded 10 Dec 2004 to 128.178.104.36. Redistribution subject to AIP license or copyright, see http://apl.aip.org/apl/copyright.jsp



the applied strain on the microscopic properties of
RuO2–glass composites is that of changing the mean inter-
grain tunneling distancea, a→as1+«d, leading to a varia-
tion of the microscopic tunneling resistances. Hence, in order
to havedt/d«Þ0, the transport exponent itself must depend
on a. A scenario of this kind was proposed by Balberg a few
years ago in his tunneling-percolation theory of nonuniver-
sality in carbon-black–polymer composites,13 recently
adapted to TFRs.15 According to this theory, when the distri-
bution function of the tunneling distanced between two
neighboring grains decays withd much slower than the tun-
neling decay exps−2d/jd, wherej is the localization length,
then the distribution functionhsrd of the intergrain tunneling
resistancesr develops a power-law tail such thathsrd
~ r−1−j/2a for r →`. It is well known16 that such power-law
diverging distribution functions lead to a breakdown of trans-
port universality with critical exponent given by17

t = Ht0 if n + 2/j , t0
n + 2a/j if n + 2a/j . t0,

J s5d

where t0.2.0 is the universal transport exponent andn
.0.88 is the three-dimensional correlation-length exponent.
In view of Eq.(5), the term which multiplies the logarithm in
Eq. (4) is dt/d«=2a/j.0 whent is given by the second line
of Eq. (5) or dt/d«=0 when t= t0. Note however that in
RuO2-based TFRs the large difference between the bulk
moduli of RuO2 and of the glass leads to local strain varia-
tions so that thedt/d« values of A2, B1, and B2 reported in
Table I are not simply equal to 2a/j but incorporate also the
effect of the strain heterogeneity.

The tunneling-percolation picture is able to explain also
the change of sign ofG0 which from positive for the univer-
sal series A1 becomes negative for the nonuniversal ones
(A2,B1 and B2, see Table I). In fact an effective medium
calculation with the tunneling-percolation distribution func-
tion hsrd~ r−1−j/2a leads toG0.0 whent= t0 andG0,0 when
t. t0,

18 in agreement with the experimental results(see Table
I).

In summary, we have shown that the piezoresistive re-
sponse of disordered RuO2–glass composites has a logarith-
mic divergence at the percolation threshold when dc trans-
port is nonuniversal. A coherent interpretation of this result
calls into play a mean tunneling distance dependence of the
resistivity exponent, in agreement with a tunneling-
percolation origin of nonuniversality proposed some time
ago.13 Such mechanism of universality breakdown could ap-
ply also to other materials for which transport is governed by
tunneling such as carbon-black–polymer composites, and ex-
periments on their piezoresistive response could confirm
such conjecture.
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