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Relative Entropy and Efficiency Measure for diffusion-mediated transport processes
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We propose an efficiency measure for diffusion-mediated transport processes including molecular-
scale engines such as Brownian motors (BMot) moving in ratchet potentials acting as mechanical
”rectifiers”. The efficiency measure is based on the concept of “minimal energy required to complete
a task” and is defined via a class of stochastic optimal control problems. The underlying objective
function depends on both the external force field (i.e. the fluctuation rectifier in the case of BMot)
and the amplitude of the environmental noise. Ultimately, the efficiency measure can be directly
interpreted as the relative entropy between two probability distributions, namely: the distribution of
the particles in presence of the external rectifying force field and a reference distribution describing
the behavior in absence of the rectifier.

PACS numbers: 05.70.-a, 05.40.-a, 05.10.Gg

I. INTRODUCTION

Despite to an already vast available literature, the fact
that micro-particles immersed in a noisy environment can
be transported by an ad-hoc rectification of the fluctua-
tions, continue to attract attention directed towards ap-
plications [1]. The operations of these diffusion-mediated
devices which essentially act as mechanical diodes, re-
quire basically i) a fluctuating environment and ii) a
fluctuation rectifier which is driven by an external energy
input. This mechanism is able to generate a net particles
current which can be sustained even in the presence of
an opposing force (i.e. an external load). It is therefore
possible to extract a net useful work from these devices, a
property appealing for applications in the molecular and
microscopic size ranges. The possibility to extract work
legitimates to use the word motors and also suggests
that a suitable efficiency measure, namely the motor

efficiency (ME), should be defined for these devices –
this is the goal of the present contribution.

Yet, the issue of efficiency of molecular motors has been
and remains an important topic of its own (see e.g., [1]
Chapt.6.9 and [2, 3]). The main difficulty here is that
on the microscopic scale the fluctuations do, simultane-
ously, favor and hinder the transport process. The exter-
nal energy injected into the system is indeed dissipated
via two mechanisms, i) the driving energy itself respon-
sible for the transport process and ii) the heating of the
medium which hinders the directed transport thanks to
the fluctuation-dissipation relation.

In view of the conjugate actions played by the fluctu-
ations, the study of energetics requires a precise formu-
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lation of what the energy output of the system really is.
Here we essentially adopt the point of view of I. Dérenyi
et al. [4] which identifies the energy output with the
minimum energy input Emin

in required to accomplish the
same task as the molecular motor. Following [4], the
generalized efficiency η is defined as:

η = Emin
in /Ein, (1)

where Ein is the external energy input.
The aim of this paper is to derive a new systematic

method, to characterize the efficiency of the molecular
motor. This will be achieved via a stochastic optimal
control approach in which the objective function com-
bines the conjugate actions of transport and dissipation.
Formally, assume that a molecular motor operates ac-
cording to the Langevin dynamics:

γdXt = (−V ′(Xt, t) − F )dt + σ(Xt, t)dBt, (2)

which describes a Brownian particle in an overdamped
regime (i.e. inertia is neglected). The stochastic equa-
tion is interpreted in the Stratonovich sense (see [5] for
an account of Itô-Stratonovich modelling in the context
of molecular motors) and models the so-called Brownian
motor (BMot). Here dBt stands for 1D standard Brown-

ian motion, σ(x, t) =
√

2γkBT (x, t) controls the diffusion
process with kB being Boltzmann’s constant, T (x, t) the
absolute temperature field and γ is the viscous friction
coefficient. F is a constant force modelling an external
load and V (x, t) is the “ratchet” potential through which
the fluctuations are “rectified”.
The net effect of the rectifying force given by −V ′(Xt, t)
is to drive an initial probability distribution δx0

at time
t = 0 to a final distribution µτ at time τ > 0. In practice,
there is a great freedom in choosing rectifying forces able
to complete this task. Hence the natural idea behind the
efficiency concept is to compare −V ′(x, t) to an optimal
drift field u(x, t) which operates a similar task (namely
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transporting δx0
to µτ within a time τ) and simultane-

ously minimizes the objective functional:

u 7→ Jτ (u) =
1

2
Ex0

∫ τ

0

(u(Xu
t , t)

σ(Xu
t , t)

)2
dt, (3)

where Xu
t is evolving as:

γdXu
t = (u(Xu

t , t) − F )dt + σ(Xu
t , t)dBt. (4)

Note that the objective functional (sometimes called cost
functional) depends on the stochastic dynamics via both
the drift u and the diffusion σ fields. Due to the struc-
ture of the cost functional, transport with small diffusion
is very costly – a property which reflects the diffusion-
mediated transport processes where fluctuations directly
participate to the driving of particles. Define now the
optimal rectifier u∗(x, t) force field to be the one, able
to achieve the transporting task, namely δx0

7→ µτ while
minimizing the global value function Jτ (u∗) given by Eq.
(3). With such an optimal rectifier at hand, the gen-
eralized efficiency of a BMot subject to a potential V
satisfying 0 < Jτ (V ′) < ∞, is now simply defined as:

η(τ) =
Jτ (u∗)

Jτ (V ′)
. (5)

The ME η(τ) compares the expected costs incurred by
both the optimal trajectories Xu∗

t and the actual motor
trajectories Xt and therefore takes fully into account the
probabilistic nature of the underlying process. This is,
we believe, the conceptual advantage of the present ap-
proach over the one proposed in [4] where the minimum
energy input is defined via a purely mechanical view not
explicitly invoking the underlying stochastic dynamics.

From a mathematical point of view, the efficiency pa-
rameter given by Eq. (5) is well defined. It directly relies
on the possibility to assign to given initial and final dis-
tributions (here δx0

and µτ ) a unique Markov process – a
problem first formulated by Schrödinger in [6]. A mathe-
matically rigorous exposition of this program is given by
P. Dai Pra [7]. The optimal control interpretation of the
stochastic dynamics is thereby realized by the concept
of logarithmic transformations introduced by Jamisson
[8] and Flemming [9]. Using this approach, the minimal
value Jτ (u∗) – entering the definition of η(τ) – coincides
with the relative entropy K(µτ , µτ ) between the distri-
butions µτ and µτ with µτ being the probability distri-
bution at time τ describing the position Xτ of a particle
evolving under the control free dynamics

γdXt = −Fdt + σ(Xt, t)dBt, X0 = x0 ∈ R. (6)

The efficiency of the Brownian motor then reads as

η(τ) = K(µτ , µτ )/Jτ (V ′). (7)

This way of writing the ME, which is equivalent to Eq.
(5), does not explicitly use the underlying control and is
therefore intrinsic. Its connection with the control prob-
lem relies on the remarkable property that both:

i) the quasi-free evolution, i.e. the evolution in
absence of an external potential given by Eq. (6)
and

ii) the evolution under the optimal control u∗

produce identical families of “most probable paths” [7].
The concept of “most probable path” is based on a
variational principle applicable for Langevin equations
driven by White Gaussian Noise. The associated transi-
tion probability measures (i.e. the solutions of the rel-
evant Fokker-Planck equations) can be expressed as the
weighted sum over random trajectories with given initial
and final conditions. The relative weights entering into
the summation directly depend upon the drift and the
diffusion coefficients and are expressed by the Onsager-
Machlup functional [10]. Intuition suggests that the more
probable a particular trajectory is, the more effectively it
will contribute to the global value function. The fact that
the most probable path under u∗ coincides with the most
probable path under the quasi-free dynamics physically
shows that the optimal control u∗ does in fact interfere
as little as possible with the most probable trajectory of
the quasi-free dynamics.

The paper is organized as follows. In section 2, we
specify the hypothesis of the BM-model, state the opti-
mal control problem and recall its solution. In section 3
we calculate the efficiency for a generic class of examples
and indicate how to construct optimal rectifiers.

II. PROBLEM FORMULATION

Consider the controlled diffusion process Xu(t) defined
on some probability space (Ω,F , P) that solves the fol-
lowing Stratonovich stochastic differential equation:

γdXu
t = (u(Xu

t , t) − F )dt + σ(Xu
t , t)dBt. (8)

Formally, the above Langevin equation is obtained by
replacing in Eq. (2) the force field −V ′(x, t) by a control
u(x, t). The efficiency measure to be constructed relies
on the following optimal control problem:

Problem (P ). Find an admissible control u∗(x, t)
such that:

(1) Xu∗

0 is distributed according to δx0
and Xu∗

τ ac-
cording to µτ ,

(2) between all admissible controls satisfying (1), the
control u∗ minimizes the energy cost functional:

u 7→ Jτ (u) =
1

2
E

∫ τ

0

(u(Xu
t , t)

σ(Xu
t , t)

)2
dt. (9)

Remarks.

a) In order for Eq. (8) to admit a unique, t-continuous
strong solution Xu(t), σ and u must satisfy the
following classical assumptions: σ and u are lin-
early bounded in x uniformly for t ∈ [0, τ ] and
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satisfy a Lipschitz condition in x for every fixed
t ∈ [0, τ ]. These conditions ensure the uniqueness
of Xu

t and are supposed to hold from now on. In the
autonomous case i.e., when both u and σ do not ex-
plicitly depend on time, existence and uniqueness of
the solution are already guaranteed for u, σ ∈ C1(R)
[11].

b) A control u(Xt(·), t) : Ω → R is admissible if: (i) u
satisfies the regularity conditions stated in a), (ii)
u is adapted to the filtration Ft = σ{Xu

t } and (iii)
Jτ (u) < ∞. The potential V entering into Eq. (2)
is supposed to be admissible and non trivial i.e.
Jτ (V ′) > 0.

c) A similar approach also holds for non-deterministic
initial distributions µ0. The only restriction on µ0

is the existence of a finite second moment, i.e.
∫

x2µ0(dx) < ∞. In this case, the problem (P)
does still have a well defined solution.

d) The Stratonovich stochastic differential equation
(8) – commonly encountered in physical modelling
where the White Gaussian Noise is viewed as the
limit of shortly correlated colored noises – is equiv-
alent to the Itô stochastic differential equation:

γdX
u
t =

[

u(Xu
t , t)−F +

1

2
σ
′(Xu

t , t)σ(Xu
t , t)

]

dt+σ(Xu
t , t)dBt

(10)

which, due to the fact that the noise term is a mar-
tingale, is more frequently used in control theory.

For 0 ≤ s < t ≤ τ and y, x ∈ R, denote by q(s, y, t, x)
the fundamental solution to the backward Fokker-Planck
equation of the Markov process Xt defined in Eq. (6):

∂

∂t
q(s, y, t, x) = Lq(s, y, t, x), 0 ≤ s < t ≤ τ (11)

q(s, y, s, x) = δx,y (12)

where the operator L(·) is:

L(·) = [−F +
1

2
σ′(x, t)σ(x, t)]

∂(·)
∂x

+
1

2
σ(x, t)2

∂2(·)
∂x∂x

.(13)

For µ and ν, two probability distributions on the real
line, write dν/dµ for the Radon-Nykodim derivative of
ν with respect to µ (i.e. ν is assumed to be absolutely
continuous with respect to µ). Introduce now the rela-
tive entropy (also known as the Kullback “distance” [12])
K(µ, ν) which quantifies the “discrepancy” between µ
and ν:

K(µ, ν) =

∫

R

log
(dµ

dν

)

dµ. (14)

The “distance” K(·, ·) is a commonly used for fitting and
classifying statistical models, hypothesis testing and risk
minimization. In the context of our minimization prob-
lem (P ), we have the following central result (Theorem
3.1 in [7]):

Theorem. Suppose that K(µτ , µτ ) < ∞ and define
h : R × [0, τ ] → R by

h(x, t) =

∫

R

q(t, x, τ, z)
dµτ

dµτ

(z)dz.

Then

a) u∗(x, t) = σ2(x, t) ∂
∂x log(h(x, t)) solves the control

problem (P ) and

b) Jτ (u∗) = K(µτ , µτ ).

This result has three implications of practical relevance
for the transport processes under study, namely:

1) It establishes that the ME η(τ) takes values be-
tween zero and one (remember that Jτ (u) is pos-
itive). Moreover, η(τ) takes its maximum value 1
exactly if the motor realizes its task (δx0

→ µτ ) in
the energetically most favorable way.

2) It allows an intrinsic (i.e. control free) definition of
the efficiency:

η(τ) = K(µτ , µτ )/Jτ (V ′), (15)

which relates the relative entropy between the dis-
tribution of the particle subject to V and the distri-
bution of the quasi-free particle with the expected
cumulated costs Jτ (V ′).

3) It furnishes an explicit formula for u∗ which can be
used as a theoretical guideline to physically realize
optimal motors.

III. APPLICATIONS FOR A GENERIC CLASS
OF BROWNIAN MOTORS

In the couple of examples which follow, we suppose
that the Brownian particle is released at time t = 0 from
X0 = 0 and evolves under the isothermal dynamics:

γdXt = (−V ′(Xt) − F )dt +
√

2D0dBt, (16)

with D0 = kBT
γ constant. The next example 3.1 deals

with a the potential V (x) – periodic in x with period L.
We calculate η in the central limit regime. In example
3.2, we impose the optimal efficiency η = 1 (i.e. the
BMot operates under optimal conditions) and derive the
associated optimal force field.

A. The efficiency for Brownian Motors in the
central limit regime

Consider now a Brownian particle on a coarse grained
space-scale (� L) such that the evolution can be approx-
imately viewed as the succession of single, independent
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and identically distributed hopping events ([1] p.88). In-
voking the central limit theorem, the distribution of the
particle for large τ approaches a Gaussian measure µτ

with density:

f(x, τ) =
1

√

4πDeffτ
exp

(

− [(aτ − x)2]

4Deffτ

)

. (17)

Here, a = limt→∞ Xt/t is the average particle current
and Deff = limt→∞

(

〈X2
t 〉 − 〈Xt〉2

)

/(2t) is the effective
diffusion coefficient. These two basic observables – mea-
surable in actual applications [13] – are analytically re-
lated to the modelling parameters entering into Eq. (16)
through [14]:

a = D0

1 − e−LF/kBT

1

L

∫ L

0
dxI+(x)

, (18)

Deff = D0

1

L

∫ L

0
dxI+(x)2I−(x)

(

1

L

∫ L

0
dxI+(x)

)3
(19)

with

I±(x) =

∫ L

0

dy exp(±V (x) ∓ V (x ∓ y) − yF )/(kBT ).

(20)
According to Eq. (6), the quasi-free particle evolves un-
der the dynamics:

Xt = −F

γ
t +

√

2D0Bt. (21)

Its distribution µτ at τ is therefore a Gaussian measure
with density:

f(x, τ) =
1√

4πD0τ
exp

(

−
[x − F

γ τ ]2

4D0τ

)

. (22)

The relative entropy of the two Gaussian measures Eqs.
(17) and (22) reads as:

K(µτ , µτ ) =

∫

R

ln
(

f(x, τ)/f(x, τ)
)

f(x, τ)dx

=
(F/γ − a)2

4D0

τ +

{1

2
ln

( D0

Deff

)

+
Deff − D0

2D0

}

. (23)

This expression, valid for large τ , enables to separately
appreciate the influence of the potential V on the parti-
cles current and on the rectifying process. The first term
describes the external energy input necessary to maintain
the particles current a. The symmetry in the difference
F/γ−a shows that exceeding or undergoing the quasi-free
current F/γ by the amount |F/γ − a| requires the same
energy input. The second contribution – non-negative as
the former one – is related to the part of the energy input
required to get an effective diffusion Deff . In contrast
to the current difference F/γ −a, the diffusion difference

D0 −Deff contributes non-symmetrically to the relative
entropy. Setting:

f(Deff ) := ln
( D0

Deff

)

+
Deff − D0

D0

, (24)

we indeed have:

f(D0 − ∆) > f(D0 + ∆), ∆ ∈ (0,D0). (25)

Hence, rectifying the diffusion to ensure that Deff =
D0 −∆ with ∆ ≥ 0 costs more than to let it increase by
the same amount (i.e. Deff = D0 + ∆). In the limiting
case where V “ties down” the effective diffusion to zero,
we have f(0) = ∞ and consequently, the relative entropy
K(µτ , µτ ) becomes infinite.

On the other hand, the cost functional for the given
potential is:

Jτ (V ′) =
1

4γkBT0

E

∫ τ

0

V ′(Xt)
2dt

=
τ

4γ2D0

E
1

τ

∫ τ

0

V ′(Xt)
2dt, (26)

which due to ergodicity behaves asymptotically as:

Jτ (V ′) ' τ

4γ2D0

〈V ′2〉. (27)

Here the ensemble mean 〈V ′2〉 is taken over one space
period of V . Using Eqs. (23) and (27), we have:

η(τ) =
K(µτ , µτ )

Jτ (V ′)
=

(F − γa)2

〈V ′2〉 + O(
1

τ
) (28)

where explicitly the O( 1

τ ) term is given by:

O(
1

τ
) =

1

τ

2γ2Deff

〈V ′2〉
(

1 +
D0

Deff

[

ln
( D0

Deff

)

− 1
])

.(29)

In the central limit regime, reached for τ → ∞, only the
part contributing to the transport process influences the
efficiency measure, namely:

η(τ) =
(F − γa)2

〈V ′2〉 , for τ → ∞. (30)

The parameters F, γ, V ′,D0 and Deff entering into Eqs.
(29) and (30) are experimentally measurable as it is dis-
cussed in [13]. Note in addition that the time series of
motor positions, measurable with the current bioengi-
neering experimental technology, allow to solve a reverse
problem, namely to reconstruct the rectifying potential V
[15]. Hence, the efficiency η(τ) is clearly not a mere the-
oretical concept but is available for actual applications.

B. Conceiving efficient Brownian Motors.

As stated by Derényi et al. in [4], it is only a matter of
time before the first man-made molecular motors will be
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manufactured. One therefore is potentially interested in
building highly efficient transport motors. Starting from
the quasi-free dynamics:

dXt = −F

γ
dt +

√

2D0dBt (31)

with F, γ and D0 constant, we now construct an opti-
mal force field u∗(x, t). The fundamental solution to the
associated backward evolution equation Eq. (12) is:

q(s, y, t, x) =
1

√

4πD0(t − s)
exp

(

−

[((x − y) − F

γ
(t − s))2]

2D0(t − s)

)

(32)

and µτ is Gaussian with density f(x, τ) =
∫

R
q(0, y, τ, x)δ0(dy) = q(0, 0, τ, x). The minimum energy

control u∗(x, t) is now:

u∗(x, t) = 2D0

∂

∂x
ln

(

∫

R

q(t, x, τ, z)
f(z, τ)

q(0, 0, τ, z)
dz

)

(33)
which after tedious but elementary calculations yields:

u∗(x, t) =
D0

(

F
γ t − x − T (a − F

γ )
)

D0(τ − t) + Deffτ
. (34)

Setting F
γ = a and Deff = D0 and prolonging u(x, t)

periodically in x resp. t with period L resp. τ to R×R+,

we find the optimal drift field:

u∗(x, t) =
at − x

2τ − t
, 0 ≤ x ≤ L, 0 ≤ t ≤ τ

u∗(x + L, t) = u∗(x, t), u∗(x, t + τ) = u∗(x, t).

As it stands, u∗(x, t) is linear in x and depends explicitly
on time. The time-dependent drift field u∗(x, t) derives
from the class of traveling potential ratchets (see e.g.,
[1] Chapt. 3.3 for a classification scheme for BMot) and
might serve as a simple guideline in the attempts to ac-
tually realize isothermal molecular motors.

IV. CONCLUSIONS

The stochastic optimal control formalism is well suited
to define an efficiency measure for diffusion-mediated
transport processes governed by the Langevin dynam-
ics. The objective function to be minimized combines,
in a single functional, the competing effects of the drift
and diffusion forces responsible for the transport process.
The explicit construction of the optimal force field that
minimizes the objective functional, offers a rigorous and
systematic way to conceive efficient diffusion-mediated
transport devices.
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