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1 Introduction

It is already half a century that B. Zimmern [1] wrote a pioneering paper
devoted to the characterization of production flows in serial lines. This original
contribution has stimulated a strong research activity with the aim to calculate
the average throughput and other performance measures for failure prone flow-
and job-shop manufacturing systems (see [2,3] for recent and comprehensive
reviews devoted to this topic). Due to the tremendously growing role played by
computers in the seventies and eighties of the XXth century, it has long been
believed that the ultimate goal in manufacturing would consist in building
complete production plants without any human presence. According to this
“no-human presence” paradigm, most of the production flow research papers
have been oriented towards the study of shop floors equipped with automated
machines with rigid behavior (i.e. either the machine is “on” and it delivers
with maximal speed or it is “off” and nothing is produced). Today, this no-
human factory is widely questioned and one indeed realizes that the inherent
flexibility of human operators offers irreplaceable advantages at reasonable
costs. In a very recent address, [4], Chap.3, J. A. Buzacott emphasized this
point and delivers the view that the main challenge for future research in
production systems should be oriented towards the study of models which
incorporate key features like the people incentives and capabilities.

While cooperative dynamics does already occur in purely automated multi-
stages lines (via the starving and blocking mechanisms), the presence of human
operators introduces additional adaptability features. While in the purely au-
tomated case, the production rates of the work-cells are generically of the
“bang-bang type” (i.e produce at the maximal rate when “on” and no pro-
duction when “off”), human operators usually behave in a much more flexible
manner. It is for instance common for human operators to observe the content
of their up- and down-stream buffers and then, based on these observations,
to suitably regulate (i.e. increase or decrease) their processing rate in order
to avoid blocking and/or starving of the flows. This greater flexibility in their
dynamics behaviors obviously influences the overall production flows in either
a positive or sometimes also a negative way. An illustration is given by J.A.
Buzacott ([4] Chap. 3.7) of an automated guided vehicles (AGV) based assem-
bly line in which the operators freely decide when to launch their AGV. The
key point here is the possibility for the operators to themselves freely control
their idle time (and hence their production rate).

The aim of the present paper is i) to study how the production flows depend on
machines with flexible production rates typical in presence of human operators
and ii) to show how a synergetic approach can be used to study the production
flow dynamics. This is realised by means of a simple modeling framework. The
modeling is based on the close analogy which exists between the production
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flows and the flow of cars in highway traffic (see [5,6] for an up-to-date review
of traffic theory). The analogy enable us to study analytically some features of
the underlying cooperative dynamics. Cooperation gives rise to different flow
regimes (i.e. free-flows versus jamming flows) which are tuned according to
the values of external control parameters. The parameters range defining the
boundary between these flow regimes follow directly and analytically from our
synergetic approach.

While the transitions from the free to the jammed flow regimes are well known
in the car traffic domain, such transitions have so far received very little atten-
tion in the production literature. This is not surprising as, in manufacturing,
one usually focus on calculating (stationary) performance measures based on
ergodic measures. To study phenomena like transitions from free to jammed
flow regimes, one needs information regarding individual realisations of the
dynamics rather than the equilibrium statistical mechanical ensembles. When
a particular solution of the dynamics (i.e. a realisation) is known, the natural
question is to determine the range of control parameters for which it remains
stable. A given flow regime is thereby stable when the transient linear response
of the system to a time-localized perturbation is damped out. Applying this
method to our simple production line, we are able to draw a flow diagram
which exhibits transitions from a free to a jammed regime. The transitions
are tuned by external control parameters such as the buffer contents the reac-
tivity of the human operators or the sampling time at which the state of the
system is monitored.

Our paper is organised as follows: In section 2, we jointly present a production
flow shop model and a single lane model for cars in traffic. A direct correspon-
dence between the models is established and differences as well as similarities
of the dynamics are discussed. The stability of the flows is analysed in section
3 in the continuous and the discrete time framework. In the former case we
construct a dimensionless stability parameter which is recognised to play a
central role also in the calculation of the throughput via stationary probabil-
ity measures. For discrete time, the dynamics is expressed as a coupled-map
lattice for which a phase diagram for the flow is derived. Section 4 is devoted
to conclusions.

2 Models

2.1 Buffered Flow Shop

Let us consider a flow shop producing a single final product. The flow shop
is made up by N machines in tandem {Mk}k=1..N separated by N − 1 buffers
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{Bk}k=1..N−1 as showed in Fig. 1. We adopt here an hydrodynamic point of
view and assume that the buffer population can be modeled by a continuous
variable.

∞

Buffer Machine
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B1��
��

M2

v2-
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vN-
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Fig. 1. Sketch of a flow shop composed of N machines and N−1 buffers. We suppose
perfect supply such that M1 is never starved (there is always enough raw materials
stored in “+∞”) and a high demand rate such that MN is never blocked (i.e. all
the final goods are absorbed in “−∞”).

The buffer Bk is located between the machines Mk and Mk+1. The population
level of Bk at time t is yk(t) ∈ R. Hence, we shall have 0 ≤ yk(t) ≤ hk

where hk > 0 stands for the capacity of the buffer Bk. We assume a degree of
adaptability, to be defined below, of the production rate vk of machine Mk.
More specifically, we shall assume that vk can vary continuously in the interval
[0, Vmax,k], where Vmax,k is the maximal production rate of Mk.

The occasional breakdowns of random duration of the Mk’s are modeled by
independent Markov processes I1(t), ..., IN(t), where Ik(t) is an alternating
renewal process with exponential holding times in the two states {0, 1}. We
say that the machine Mk is up whenever Ik(t) = 1 and Mk is down when
Ik(t) = 0. The Ik’s are characterised by the mean up and the mean down
times λ−1

k respectively µ−1
k .

For simplicity, the rate of demand d(t) facing the system is from now on
assumed to be large enough to systematically absorb the production. Accord-
ingly and for notational ease, we set vN+1(t) = d(t) and IN+1(t) ≡ 1. In
addition the following assumptions are made:

A1) yk(t) = 0 ⇒ vk+1(t) ≤ vk(t), k = 1, ..., N − 1, which means that when
the downstream buffer of Mk is empty, Mk+1 is starved. In this case the
production rate of Mk+1 is slaved by the production rate of Mk.

A2) yk(t) = hk ⇒ vk(t) ≤ vk+1(t), k = 1, ..., N − 1, which means that when the
upstream buffer of Mk+1 is plain, Mk is blocked. In this case the production
rate of Mk is slaved by the production rate of Mk+1.

A3) Transport time of items from Mk to Bk and from Bk to Mk+1, k = 1, ..., N−
1, are assumed to be short and will be neglected.

A4) Machine M1 is never starved (enough raw material) and MN is not influ-
enced by the market (enough demand).

The assumption A4 simplifies the “boundary” conditions and the assumptions
A1-A3 can be summarised as follows: “while operating at time t and as long
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as Mk is neither starved nor blocked, Mk can produce continuously and inde-
pendently of the other machines with the production rate vk(t) and its output
is instantaneously stored in Bk.” The evolution of the inventories can then be
written as follows:

dyk(t)

dt
= vk(t)Ik(t) − vk+1(t)Ik+1(t), yk(0) = yk, k = 1, ..., N, (1)

where the yk’s are fixed initial conditions with yk ∈ [0, hk]. The inventories are
naturally subject to the state constraints

(

y1(t), ..., yN−1(t), yN(t)
)

∈ [0, h1] × ... × [0, hN−1] × R, (2)

which must be satisfied at every instant. To complete the dynamics of the flow
shop model one has to specify the production rates vk of the machines subject
to the constraints:

(

v1(t), ..., vN(t)
)

∈ [0, Vmax,1] × ... × [0, Vmax,N ]. (3)

This is customarily done (at least in automated systems literature) by ex-
pressing the production rates as being the solutions of a convex production
planning model which minimizes a specific cost functional (see e.g., [7]). Here
we are not dealing with such an optimisation problem but we are interested in
the dynamical response of a flow shop with state dependent production rates
to a perturbation. Therefore we fix the dynamics (i.e. the production rates) by
choosing a class of production rate functions which take into account (2) and
(3). For this purpose it is now time to introduce below the so called “optimal-
velocity” car traffic model first studied by M. Bando et al. [8] in analogy to
which we will derive the production rates.

2.2 Optimal-Velocity Car Traffic Model

We consider N cars {Mk}k=1..N traveling on a single lane as showed in Fig.
2. For k = 1, ..., N − 1, denote by xk(t) > 0 the headway between the cars

x1(t) x2(t)� � ����� x3(t) xN−1(t)e e
v2(t)

ZZ-e e
v1(t)

ZZ e e
v3(t)

ZZ- e e
vN(t)

ZZ-

Fig. 2. N cars on a single-lane.

Mk,Mk+1 and for k = 1, ..., N denote by vk(t) ∈ [0, Vmax,k] the speed of Mk,
where Vmax,k is the maximal velocity of Mk.

The Optimal Velocity (OV) traffic model [8] states the existence of an optimal
velocity function Vk which depends on the headways xk, xk−1 and the presence

5



of a response delay time τk, required for a driver of Mk to adjust its speed,
such that:

Vk(t)
not.
= Vk

(

xk−1(t), xk(t)
)

= vk(t + τk). (4)

Expanding Eq.(4) up to first order, adding the corresponding headway vari-
ations and specifying the optimal velocity yields the following class of OV-
models:















dxk(t)
dt

= vk+1(t) − vk(t), k = 1, . . . , N,

dvk(t)
dt

= αk

(

Vk(t) − vk(t)
)

, k = 1, . . . , N,
(5)

where αk = τ−1
k and where the optimal velocity of Mk at time t is of the form:

Vk(t) = Vmax,k · Fk

(

xk−1(t), xk(t)
)

. (6)

In writing Eqs.(5) and (6), the following set of control parameters and func-
tions are introduced:

a) The set of parameters αk > 0 which have the physical dimension of frequen-
cies. They represent the sensitivity of the control mechanisms acting on the
speed of the cars and are given by the inverse of the delay times τk introduced
in (4) (i.e. αk = τ−1

k ).

b) The set of functions Fk, associating to given up- and downstream headways

xk−1 and xk a dimensionless factor Fk

(

xk−1, xk

)

∈ [0, 1]. When multiplied by
the maximum speed Vmax,k of Mk, Fk yields the optimal velocity of Mk. The
functions Fk model directly the speed adaptability of Mk as a function of
the headway to its adjacent neighbors. The type of controls that the Fk’s
introduce, are similar to those considered in [9] to describe the psychological
effects of car drivers.

Note that the functions Fk are, and hence so are the OV-functions, of phe-
nomenological nature and have to be chosen by the model builder. Based
on common intuition the functions Fk(x, y) should be non-increasing in the
upstream variable x (no tendency to accelerate if the upstream headway in-
creases) and non-decreasing in the downstream variable y (no tendency to
brake down if the downstream headway increases). For calculation purposes
we shall assume, from now on, that the Fk’s are at least twice continuously
differentiable in x and y. Note that various explicit choices for OV-functions
are used in traffic theory. They are guided by criteria like simplicity and ex-
istence of explicit solutions, low number of control parameters, existence of
inflection points...[8–10].
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2.3 Correspondence between Flow Shops and Optimal-Velocity models

A glance at Figs. (1) and (2) and at Eqs. (1) and (5), suggests the following
correspondence:

machines in a flow shop ↔ cars in a single lane,

free buffer space hk − yk ↔ headway xk,

production rate ↔ car velocity,

from where we deduce, keeping failure prone machines, that an optimal pro-

duction rate flow shop model can be written as:















dyk(t)
dt

= vk(t)Ik(t) − vk+1(t)Ik+1(t), k = 1, . . . , N,

dvk(t)
dt

= αk

(

Vmax,k · φk

(

yk−1(t), yk(t)
)

− vk(t)Ik(t)
)

.
(7)

where the φk’s are directly related to the Fk’s by

φk(x, y) := Fk

(

hk−1 − x, hk − y
)

(8)

thereby realising the correspondence “free buffer space = headway”.

In this setting, the functions φk

(

x, y
)

represent for fixed x the influence of the
free downstream buffer space on the production rate of Mk and similarly for
fixed y, one gets the influence of the free upstream buffer space on the produc-
tion rate of Mk. In particular, the starving resp. the blocking mechanisms of
Mk are taken into account by imposing φk(hk−1, y) = Fk(0, hk − y) = 0 resp.
φk(x, 0) = Fk(hk−1 − x, hk) = 0. Indeed, when Mk is starved (resp. blocked)
the free upstream buffer space equals hk−1 (the free downstream buffer space
equals 0) and we have φk(hk−1, y) = 0 independent of the downstream buffer
variable y (resp. φk(xk−1, 0) = 0 independent of the upstream buffer variable
x). Eq.(7) therefore implies vk(t) = exp(−αkt). Hence, in both cases (starved
resp. blocked) the production rate of Mk decreases exponentially fast. For
α � 1, this behaviour closely approaches the assumption A1: vk(t) ≤ vk−1(t)
(resp. A2: vk(t) ≤ vk+1(t)). In the limit when αk → ∞ one effectively has
a “bang-bang” type of reaction and the velocity is immediately adjusted to
its optimum. In this limiting case the assumptions made on Fk takes auto-
matically into account the buffer level constraints expressed in Eq.(2) and

Eq.(3). Note that A4 can be satisfied by imposing φ1

(

x, x1

)

= φ1

(

x1

)

and

φN

(

xN−1, xN

)

= φN

(

xN−1

)

which reflects the facts that M1 is never starved

(independent of the supply) and that MN is never blocked (independent of
the market).
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Using the mentioned correspondence, the resulting optimal production rate

flow shop model can be summarised as follows: to each machine Mk and at
every time instant t, one can assign an optimal production rate Vk(t) which
depends on the up- and downstream buffers of Mk. This optimal production
rate will be reached within a time interval of length τk thanks to the adaptable
production rate of the operators.

Remarks.

a) Depending only on xk−1 and xk, the production rate of Mk is constantly
adjusted by an operator who monitors the population levels in the up- and
downstream buffers. It is better to produce with the optimal production rate
Vk but deviations may exist between the optimal- and the real production
rate. The operator tries to reduce the deviation ∆ = Vk − vk by initiating an
acceleration αk∆ of its production rate. This response mechanism replaces the
state constraints given by Eqs.(2) and (3).

b) The analogy between manufacturing- and traffic systems has its limits. In
particular, to breakdowns of machines will correspond sudden stops of vehicles.
Such “unitary crashes” are rather rare events on highways. In this sense the
OV-traffic model (5) is a special case of the optimal production rate model (7).
Indeed, setting Ik = 1 and removing the starving mechanism A1)– absent in
real traffic – we obtain exactly the OV-model (5) of Bando et al.. At first sight,
one could argue that focusing on Ik = 1 for production lines is not relevant.
Indeed for fully reliable machines, one barely sees the need for introducing
buffer places. This is however not so here. Indeed:

i) due to human presence, the production rates are not strictly constant but
may fluctuate around their averages. The very presence of these fluctua-
tions restore the importance of buffers as they increase the “compressibil-
ity” of the production flow. The transient response to a local fluctuation
of the production rate will be given by our model.

ii) In presence of adaptable production rates, the ability of the system to
respond to a non ideal production state which results after a failure is an
essential dynamic performance factor. Hence the study of the transient
response of the system to a state configuration out of the ideal one is
essential.

3 Linear stability analysis

Obviously, a steady state for cars in a line is given when all of them run orderly
with the same constant optimal velocity Vk = ve and with constant headway
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xe
k, such that:

Vmax,kFk

(

xe
k−1, x

e
k

)

= ve k = 1, ..., N − 1. (9)

Here, we focus on the dynamic response of the flow shop to a single, time-
localised perturbation of the free flow regime. We consider a time interval on
which Ik = 1, k = 1, . . . , N i.e., on which all machines are operational. During
such time intervals a steady state (xe

1, ..., x
e
N−1, v

e) satisfying eq.(9), corre-
sponds to a flow shop configuration where all stages have constant production
rates ve and where the buffers maintain the constant levels (h1−xe

1, ..., hN−1−
xe

N−1) (recall that xi = hi − yi where yi is the buffer level). We shall call this
state a free flow production regime when localised perturbations are damped
out. To formalise this definition we set

rk(t) :=
k−1
∑

j=0

xj(t) k = 1, ..., N, x0 ≡ 0. (10)

for the ”absolute distance” of ”car” Mk from the first car M1 and undertake
the stability analysis of (5) which reads now:











drk(t)
dt

= vk(t), k=1,. . . ,N

dvk(t)
dt

= αk

(

Vmax,kFk

(

rk(t) − rk−1(t), rk+1(t) − rk(t)
)

− vk(t)
)

.
(11)

3.1 Time-continuous Analysis

Assume that MN produces with a constant rate ve := min{Vmax,k | k =
1, ..., N}. The dynamics (11) has the following steady state:















re
k(t) =

∑k−1
j=1 xe

j + vet,

ve
k(t) = Vk(t) = ve,

(12)

where the xe
k’s satisfy eq.(9). To infer on the stability of the system we intro-

duce a small perturbation δrk(t) � re
k(t) :

δrk(t) := rk(t) − re
k(t).

Linearising (11) around the steady state, we obtain the dynamical response
equation:

d2δrk(t)

dt2
= αk

[

Vmax,k

(

δrk+1∂yFk + δrk

(

∂xFk − ∂yFk

)

− δrk−1∂xFk

)

−
dδrk

dt

]

(13)
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where

∂xFk :=
∂Fk(x, y)

∂x

∣

∣

∣

∣

x=xe
k−1

and ∂yFk :=
∂Fk(x, y)

∂y

∣

∣

∣

∣

y=xe
k

. (14)

In expanding in a discrete Fourier series:

δrk(t) :=
1

N

N−1
∑

j=0

cje
2πi·j k

N e

(

λ(j)−iω(j)

)

t
, k ∈ {1, ..., N}, (15)

where i2 = −1, the set of dynamical equations (13) yields for every j ∈
{0, ..., N − 1} the characteristic relation:

Pk(λ − iω)δrk + αkVmax,k

(

∂xFkδrk−1 − ∂yFkδrk+1

)

= 0, (16)

where we have omitted the j dependance of λ and ω and where

Pk(λ − iω) := (λ − iω)2 + αk(λ − iω) + αkVmax,k(∂yFk − ∂xFk).

Any solution λ(j)−iω(j) of (16) with λ(j) > 0 gives rise to a growing evolution
of the perturbation and hence the initial state is not stable. The stability is
given when λ(j) < 0, for j = 1, ..., N − 1, (j = 0 corresponds to the neutral
mode). This yields the condition (see also [9] and Chapt. III/A.2 in [6]):

Vmax,k · (∂xFk + ∂yFk)
2

αk · (∂yFk − ∂xFk)
<

1

1 + cos(2πj
N

)
. (17)

Thus, the most unstable mode is realised for j
N

→ 0. Accordingly stability
will be guaranteed provided:

αk(∂yFk − ∂xFk)

Vmax,k · (∂xFk + ∂yFk)2
> 2 ∀k ∈ {1, ..., N}. (18)

We can now directly transfer this dimensionless stability condition to the flow
shop model (note that ∂yφk(x, y) = −∂yFk(x, y) and ∂xφk(x, y) = −∂xFk(x, y)):

αk(∂xφk − ∂yφk)

Vmax,k · (∂xφk + ∂yφk)2
> 2 ∀k ∈ {1, ..., N}. (19)

Remarks

1) When (19) is satisfied for all k = 1, ..., N , the variation of velocity of the
upstream machine is damped out by the presence of the buffers and the flow
shop is running in a soft regime. When (19) fails for some k, the regime of
”jamming” or ”chattering” may occur. This jamming flows are characterised
by large fluctuations in the buffer population and hence the machines are likely
to be found in a starved or blocked state.
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2) In close analogy with fluid mechanics where the Reynolds’ number (deter-
mining whether a flow is laminar or turbulent) is used for design purpose, the
dimensionless stability criterion given in eq.(19) suggests that the number:

Z :=
α(∂xV − ∂yV)

(∂xV + ∂yV)2
(20)

is of direct interest for the modeling and design of serial production lines with
environment dependent optimal production rates.

3) For a ”symmetric” control (i.e., ∂xφk+∂yφk = 0) the fundamental inequality
(19) is always satisfied and hence the steady state (12) of system (11) is
unconditionally stable.

4) The stability of the steady state depends (implicitly) on the buffer capac-
ities via ∂xφk and ∂yφk. To further illustrate this point, let us investigate an
explicit case:

Example. Let us consider the case of a production line where in order to
minimize work in process, the famous just in time philosophy is applied. Just
in time advocates pull production control which says that inventories are not
processed until there is adequate space in the next downstream buffer. Hence
no upstream control is imposed (i.e. ∂xφk = 0). We further suppose that the
φk’s are independent of k and set:

φk

(

xk−1(t), xk(t)
)

= φ
(

xk(t)
)

=



























1 if xk(t) = 0,

1 − xk(t)
hk

if 0 < xk(t) < hk,

0 if xk(t) ≥ hk.

(21)

Using Eq.(21) , the relation (19) reduces to:

Zk :=
αkhk

Vmax,k

> 2 ∀k ∈ {1, ..., N}. (22)

or equivalently
1

2

hk

Vmax,k

>
1

αk

= τk ∀k ∈ {1, ..., N}. (23)

Hence for stability, the reaction time has to be shorter than twice the time
required to empty a filled buffer. Estimating the reaction time of the operators
the simple and intuitive condition eq.(23) can be used to determine the buffer
capacities.

At this stage, it is worthwhile to bridge, at least partially, the conceptual
gap between the stability relation (22) and the behaviour of the stationary
throughput 〈t〉 delivered by a production line. Remember that one method
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to estimate the average throughput of a flow shop relies on the aggregation
methods based on the throughput delivered by two stage production lines
(i.e. production dipoles). For a production dipole with identical and operation
dependent failure prone machines the stationary measure analysis yields (see
e.g., [11] p.71 and [12]):

〈t〉 = Vmax
1

1 + Ieff

, with I :=
µ

λ
≤ Ieff := I

[

1 +
2

2 + F(1 + I)

]

≤ 2I,

where λ (resp. µ) is the mean time to failure (resp. reparation), I (Ieff) the
(effective) unavailability factor of the dipole, Vmax the common production rate
and where F = µh

Vmax
is a dimensionless performance parameter introduced in

[11]. Note that one can write:

1/F =
1 + I

2

(

Ieff − I
)

/
(

2I − Ieff

)

, (24)

which is the expected effective unavailability decrease due to an increase of
the buffer capacity h (see Figure 3). The dimensionless parameter Zk given in

I=0.2

2I=0.4

F

1/F~(Ieff-I)/(2I-Ieff)

Ieff(F)

105

0.5

0

1

Fig. 3. Sketch of 1/F and Ieff (F). As F ∝ h, an increase of h reduces Ieff (F)
and hence enhances the average throughput 〈t〉. Note that the increase of 〈t〉 which
is very rapid for small h becomes very gradual for larger h and is therefore less
rewarding. By identifying the role played by µk (reparation rate in the failure prone
production lines) and αk (sensitivity in the human based lines), the stability condi-
tion given in Eq.(25) shows that the significant gain in production throughput are
achieved by avoiding the jamming regimes.

(22) is directly related to F via:

1

F
=

αk

µk

1

Zk

<
αk

µk

1

2
. (25)

Equation (25) relates the stationary (i.e. the expected) effective unavailabil-
ity decrease with the dimensionless number Zk which is derived on the basis
of a dynamical linear response analysis. Requiring stability for the transient
response to a perturbation Eq.(25) implies a lower (upper) bound for the pa-
rameter F , (1/F). Therefore in view of Eq.(25), we see that the increase of
the average throughput –which results when increasing F– can be interpreted
as the ability of the production system to quickly absorb local perturbations
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(the characteristic time is given by the parameter α). Hence Eq.(25) estab-
lishes an enlightening connection between the properties of a single realisation
of the dynamics (transient performance measures) with those resulting from
stationary statistical ensemble averages (stationary performance measure).

Taking F = 2 is common practice at the shopfloor level and with eq.(25) this
leads to:

αk

µ
> 1 ∀k ∈ {1, ..., N}. (26)

We therefore see that stability is ensured when the reaction time 1/α is smaller
than the mean time needed for machine reparation 1/µ.

3.2 Discrete time analysis

In practice it is likely that the state of the system will not be continuously
monitored in time but rather on a discrete basis. Due to this time sampling,
the production rate will itself be adapted only at discrete times. Let us now
study this situation by considering the discrete analog of the above analysis.
This is done by choosing a sampling time T > 0 and by updating the system
(5) at time-instants nT, n ∈ N. The resulting model has the form of a coupled
map lattice and reads for k = 1, . . . , N :















xk(n + 1) = xk(n) + [vk+1(n) − vk(n)] T,

vk(n + 1) = vk(n) + αk

[

Vmax,k · Fk

(

xk−1(n), xk(n)
)

− vk(n)
]

T,

(27)

where we write f(n) := f(nT ) with n ∈ N for an arbitrary function of time
f(t). As in the continues case, we derive from Eqs.(27) a stationary regime:

xk(n) = xe
k and vk(n) = ve k = 1, ..., N,

provided that xe
k and ve satisfies the relations eq.(9). Adding a perturbation

term δxk and linearising around the steady state gives:

δxk(n + 1) = δxk(n) + [δvk+1(n) − δvk(n)] T, (28)

δvk(n + 1) = (1 − αkT ) δvk(n) + αkVmax,k

[

∂xFk(x
e
k−1)δxk−1 + ∂yFk(x

e
k)δxk

]

T,

(29)
where ∂xFk(x

e
k−1) =: ∂xFk and ∂yFk(x

e
k) =: ∂yFk are defined as in Eq.(14).

To simplify the analysis of the above equations, we suppose ∂xFk ≡ 0; i.e.
there is no dependance of the production rate on the upstream buffer. Note
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that the inequalities

αk · (∂yFk − ∂xFk)

Vmax,k · (∂xFk + ∂yFk)2
≥

αk · (∂yFk − 0)

Vmax,k · (∂yFk + 0)2
≥ 2 (30)

imply that systems which are stable without upstream controls (∂xFk ≡ 0)
remain stable when a monotone upstream control (∂xFk(x, xk) ≤ 0) is added.
Therefore, the subsequent calculations, performed with the auxiliary assump-
tion ∂xFk ≡ 0, will still give relevant stability criterions.

Under this assumption, Eqs.(28) and (29) take the canonical form of a discrete
feedback system [13]:







δvk(n + 1)

δxk(n + 1)





 =







1 − αkT αkVmax,kT∂yFk

−T 1













δvk(n)

δxk(n)





 +







0

T





 δvk+1(n),

(31)

δvk(n) =
(

1 0

)







δvk(n)

δxk(n)





 . (32)

The behavior of the above discrete time linear system is analysed via the
transfer function Gk(z) from δvk+1(n) to δvk(n):

Gk(z) =
(

1 0

)

Hk(z)−1
(

0 T

)

, (33)

with the definition

Hk(z) :=







αkT + z − 1 −αkVmax,kT∂yFk

T z − 1





 . (34)

Stability condition. The stability of the steady state is achieved when the
roots of the characteristic equation

det (Hk(z)) = z2 + z(αkT − 2) +
[

1 − αkT + αkVmax,kT
2∂yFk

]

= 0 (35)

lie inside the unit circle. The use of the Schur-Cohn criterion for Eq.(35), (see
for instance pp. 56 in [14]) directly implies:

Stability ⇔







0 < Vmax,k|∂yFk|T < 1

0 < αkT < 4
2−Vmax,kT |∂yFk|

⇔







0 < Vmax,k|∂yFk| < 1/T

0 < αk < 4/T.

(36)
No-jamming condition. The global criterion attenuating velocity distur-
bances along the production line uses the so-called H∞-norm of the transfer
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matrixes Gk and is given by:

max
|z|=1

|Gk(z)| ≤ 1 ∀ k ∈ {1, . . . , N − 1}. (37)

Using Eqs.(33) and (36) together with lengthy algebra, the no-jamming con-
dition (37) can be rewritten as (see also, [13]):

max
(

0,
1

T

8 + αkT (αkT − 8)

αkT (αkT − 6)

)

≤ Vmax,k|∂yFk| ≤
αk

2 + αkT
. (38)

Using |∂yφk(x, y)| = |∂yFk(x, y)|, we can reformulate the no-jamming condi-
tion for the flow shop model (7):

max
(

0,
1

T

8 + αkT (αkT − 8)

αkT (αkT − 6)

)

≤ Vmax,k|∂yφk| ≤
αk

2 + αkT
(39)

or equivalently in terms of the dimensionless stability parameters Xk = αkT
and Zk := − αk

Vmax,k∂yφk
= αk

Vmax,k|∂yφk|
:

max
(

0,
1

Xk

8 + Xk(Xk − 8)

Xk(Xk − 6)

)

≤
1

Zk

≤
1

2 + Xk

. (40)

The region for a soft-running regime (i.e. a free-flow traffic) defined by con-
dition (39) is sketched in the flow diagram Fig. 4 for different sampling times
T = 4, 2 and 1.5. The x- and y- axes are resp. spanned by the control param-
eters α and Vmax,k|∂yφk|. The Figure (4) shows the influence of an increasing
sampling time T on the soft-running regime given by (39). It clearly exhibits
that when the state of the system is less frequently monitored the control pa-
rameters must be chosen more carefully to guarantee a soft-running production
flow (homogeneous flow). Note that for T → 0 (i.e continuous monitoring of
the system states) condition (39) consistently coincides with the time con-
tinuous stability relation (19) (remember that by assumption, ∂xφk = 0). A
dimensionless interpretation of the soft-running regime is sketched in the flow
diagram Fig.(5) which is based on the condition (40). Here the x- and y- axes
are resp. spanned by the dimensionless parameters αT and 1/Z. The figure
(5) illustrates that above a critical value for αT no homogeneous production
flow can be expected.

4 Conclusions

Among the numerous performance characteristics that modern production
systems have to fulfill, the ability to quickly react to sudden and often un-
expected changes of the environment is nowadays considered to be the most
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1.20.80.40

Fig. 4. Sketch of the free flow production regions enclosed by the x-axes and:
2/T+x(Tx−8)

Tx(Tx−6) ≤ y ≤ x
2+Tx , for T = 4, 2 and T = 1.5. The x- and y-axis repre-

sent respectively the sensitivity x = α and the parameter y = Vmax,k|∂yφk|. The
free-flow regions decrease with increasing sampling times T and vanish for T → ∞.

free flow region

alpha T

1/z
0.2

0.4

0
210

Fig. 5. Sketch of the free flow production region using the dimensionless quantities
αT (x-axis) and 1/Z (y-axis) delimited by the x-axis and the eq.(40). Note that no
free-flow can be expected if αT > 2. For αT = 0 the free-flow condition equals the
time continuous stability condition Z > 2.

crucial. It has been realized that his time dependant flexibility requirement
can often be achieved only at the expense of introducing human operators
in the production process. The presence of human operators together with
changing environments into a production line strongly complexifies the mod-
eling of the production flows. In particular, stationary performance measures
alone are not enough to suitably characterize the production flows and the
knowledge of the transient response of the system to fluctuations becomes
mandatory. The central role played by transient phenomena is obviously not
restricted to production. Indeed, since about a half of century, the ubiquitous
presence of transient regimes in vehicular traffic has stimulated an important
research activity which produces a wealth of methods and results developed
for their understanding. These methods were hardly so far being used in the
production flow context. In this paper, we have adopted a synergetic view to
explore some of the analogies between simple car traffic models and produc-
tion lines in which the production rates depend on the contents of adjacent
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buffers. Thanks to a suitable dictionary, we are able to identify production flow
regimes which are realised for definite ranges of external control parameters.
The present study offers a view complementary to the stationary performance
measures analysis and is based on specific realisations of the dynamics. Such
an approach is mandatory for the study of the time dependent response to per-
turbations around the ”laminar” production flow regimes and other transient
behaviors.
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