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Abstract. We discuss the dynamics of a controlled failure prone two-machine

tandem production system (i.e. two machines separated by one buffer). The
production rates of the machines are controlled by the buffer population level.

The proposed control is shown to be the optimal policy of a simple convex pro-

duction control problem taking into account the costly effects due to the star-
vation and blocking mechanism. In a fluid modeling framework, we explicitly

calculate the stationary probability measure governing the buffer population.
Analytical and explicit results for the average throughput and its variance are
then derived.

1. Introduction

The presence of a buffer stock located between two failure prone machines M1 and
M2, (see Figure 1) enhances the global “throughput” and the relevant quantitative
analysis of this situation is thoroughly exposed and reviewed in numerous con-
tributions from which we non-exhaustively mention [?, ?, ?, ?, ?, ?, ?, ?]. This
performance improvement is obviously due to the ability of the buffer population to
partly absorb the random interruptions of the production flow delivered by the ma-
chines. The presence of a buffer does not however eliminate all interruptions of the
production flow even when both machines are potentially able to produce. Indeed
starving interruptions of M2 which arise when the buffer is empty and blocking in-
terruptions of M1 occurring when the buffer is filled up do actually occur. Besides
reducing the overall throughput, the blocking and starving interruptions often gen-
erate additional nuisances. To illustrate this point let us mention a few situations:

i) in fluid installations as those typically encountered in chemical and food
industries, overflows and/or dry states of a tank (playing here the role of
the buffer) placed between pumps have clearly to be avoided.

ii) in the Internet which consists of links and buffers in order to transfer data
from a source to a destination, data overflows of a buffer in front of a link
results in information loss.

iii) in very high production flows as those arising in tobacco industries, the
stopping and the rise to the nominal production regime of the machines,
cannot be instantaneous. This can generate large overflow losses as buffer
boundaries are reached with maximal production rate. Such overflow losses
are in particular likely to be important when uncertainties exists on the
actual physical population level.
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To reduce the probability of occurrences of starving or blocking states, one obviously
can increase the buffer capacity (called H thereafter) but this solution is not always
feasible as it usually leads to prohibitive costs (presence of large size installations
incompatible with the available layout and creation of large work-in processes). If
one is limited to a fixed buffer capacity, an alternative solution is to introduce a
control mechanism tuned by the buffer population process X(t) ∈ [0,H] with the
goal of reducing the sojourn times spent in the filled or empty buffer states.
In this paper, we study the production flow dynamics resulting from the introduc-
tion of a very elementary control characterized by two inventory thresholds z and
Z, (0 ≤ z ≤ Z ≤ H). When the buffer population X(t) approaches one of the
buffer boundaries, namely when X(t) ≤ z or when X(t) ≥ Z, an average drift
directed opposite to the buffer boundary point is switched on. This drift is created
by an ad-hoc reduction of the production rate of M1 when X(t) ≥ Z and similarly
by a reduction of the production rate of M2 when X(t) ≤ z.
While the possibility of tuning the rate of production installations is not the com-
mon rule in actual production systems, let us illustrate how they are naturally
realized:

i) A common engineering response to overflow losses in fluid installations con-
sists in introducing backoffs’ replacing hard constraints ( here full buffer or
empty buffer) by soft constraints (buffer level high or low). This means
that the hard buffer constraints are virtually shifted towards the interior of
the buffer boundaries by slowing down the corresponding machine before
reaching the real boundaries.

ii) A common response to data overflows of a buffer in the Internet is to run
a Transmission Control Protocol TCP which regulates the traffic rate of
the source. The TCP controls the transfer rate roughly as follows: During
overflow, the buffer sends negative feedback signals to the sources to reduce
the sending rate. Otherwise the buffer sends negative feedback signals to
the sources to reduce the sending rate [?].

iii) Similar as in i) a common remedy for large buffer overflows when very
high production flows are involved consists in reducing in discrete steps
the production rate when approaching a hard constraint (i.e. a fully filled
buffer or an empty buffer).

iv) A tuning of the rate of production installations occurs naturally when the
flexible behavior of human operators is investigated. Indeed, in an adapta-
tive production strategy, the operators move from a production cell with a
highly populated upstream buffer to a cell with a low populated downstream
buffer and reciprocally. This is precisely the type of dynamics realized when
a two-threshold policy as the one studied in this paper is operating. This
situation can be viewed as a caricature of a class of more general workforce
allocation problems as considered in [?].

Clearly, any rate reduction mechanism will ultimately reduce the average through-
put. Therefore increasing the throughput on one hand and reducing the sojourn
on the buffer boundaries on the other hand are two competing advantages and
an optimal tradeoff has to be found for each specific application. The competing
advantages can also be viewed by using a complementary light. Indeed, the two-
thresholds control enables in parallel to reduce the variability of the throughput
delivered by the TS. While this is obviously a definite advantage - it enables for
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example to reduce the optimal hedging level in make-to-stock production systems
[?, ?] - one should however not forget that in parallel the average throughput will
itself be reduced. Hence the global benefit of the introduction of a two-thresholds
policy must be appreciated from case to case.
The above observations suggest that the two thresholds control policy can be viewed
as the optimal solution of an associated control problem in which the instantaneous
cost criterion includes two terms namely: i) a term which takes its minimum value
for half-filled buffer states and ii) a term which is minimized when M2 reaches
its maximal production rate. The relative importance attributed to each term is
tuned by a weighting factor and will ultimately the control thresholds z and Z via
the gradient of the associated value function. The corresponding Hamilton-Jacobi-
Bellmann equation is discussed by using the same lines of arguments as those given
in [?]. The resulting optimal policy is seen to be of the elementary form as the one
considered here. Such a control policy has also been investigated numerically for
longer transfer lines in [?].
The aim of the present paper is to analyze this simple two threshold control by
means of an analytically solvable model. To get analytical results, we make use of
a fluid modeling approach which avoids the combinatorial complexity inherent to
every Markov chain model with large state spaces. Fluid queues reduce the problem
to solve a system of linear partial differential equations (the Chapman-Kolmogorov
equations) with their appropriated boundary conditions.
The paper is organized as follows: In section 2 we introduce the controlled tandem
system and show that the proposed control is – within a restricted class of controls –
optimal. The corresponding Chapmann-Kolmogorov equation governing the buffer
population dynamics is given in section 3. The stationary probability measures are
derived in section 4. Performance measures and numerical simulations are discussed
in section 5. Finally, section 6 is devoted to conclusions and perspectives.

2. The Model

We consider a single product transfer-line composed of two machines in tandem
M1 and M2 separated by a buffer B with fixed finite capacity H > 0 as showed in
Figure 1.
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Figure 1. Sketch of a two-stage transfer-line with a permanent
supply of raw material and a permanent absorbing demand.

The population level in B at time t is denoted as X(t) ∈ R. Machine M1, when
operating at time t, can produce continuously with rate v1

(
X(t)

)
. The continu-

ous flow of products is immediately stored in B as long as X(t) ≤ H, otherwise
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v1

(
X(t)

)
= 0 in which case M1 is blocked. Machine M2, when operating at time

t, can produce continuously with rate v2

(
X(t)

)
whenever X(t) > 0. For X(t) ≤ 0,

M2 is starved and we set v2

(
X(t)

)
= 0. Starving and blocking mechanisms ensure

that 0 ≤ X(t) ≤ H. We assume in this paper that the dynamics of the TS is neither
influenced by the demand nor by the supply shortage. In other words, M2 is never
blocked and M1 is never starved.
When Mk is in its operating state, the buffer controlled production rate vk

(
X(t)

)
can be either zero, v (fast) or rv (slow), where v > 0 is the maximal production
rate and where 0 < r < 1 is a fixed dimensionless parameter. Now we introduce a
Threshold type production Rate Control (in the following short: TRC) as follows:

(1)
(
v1(X(t)), v2(X(t))

)
=


(rv, v) when Z < X(t) < H

(v, v) when z ≤ X(t) ≤ Z

(v, rv) when 0 < X(t) < z

 (TRC)

Therefore, when the buffer level is larger than Z := H/2+∆, where 0 < ∆ < H/2 is
a space-parameter, the production of M1 is less than that of M2, hence reducing the
buffer level. Conversely when the buffer level is below the threshold z := H/2−∆,
the production rate of M1 is greater than the rate of M2, hence increasing the buffer
level.
M1 and M2 are failure prone giving rise to occasional breakdowns and repairs with
random durations. These random events will be modeled by two Markov processes
I1(t) and I2(t), defined on a common probability space (Ω,F , P) such that the
resulting failure processes are operation dependent rather than time dependent.
This means that machines fail only while processing workpieces. Thus, if Machine
Mi, i = 1 (resp. i = 2) is operational but blocked (resp. starved), it cannot fail (see
e.g., [?] p.72). The failure processes are chosen to be Markovian alternating renewal
processes taking values in {0, 1}. They are characterised by the first moments λ−1

i

resp. µ−1
i of their exponentially distributed holding times in the states {1} resp.

{0}. Here, we assume for simplicity that λ−1
1 = λ−1

2 = λ−1 and µ−1
1 = µ−1

2 = µ−1.
Note that other situations can be studied by using the same formalism. In this
notation the storage process X(t) reads:

(2) X(t) = X(0) +
∫ t

0

(
I1(s)v1(X(s))− I2(s)v2(X(s))

)
ds.

Our main goal is to determine the stationary distribution function governing the
buffer level X(t). To this aim, we shall consider the mixed discrete-continuous
Markov process

(
X(t), I1(t), I2(t)

)
and solve the corresponding set of Chapman-

Kolmogorov-equations in the stationary state.

2.1. TRC rule viewed as an optimal policy. As mentioned in the introduction,
the above threshold control can be seen as the optimal policy of an infinite time
horizon optimal control problem minimizing a discounted cost criterion. Indeed,
suppose that our aim is to control the two possible production rates (slow rv or fast
v) of the operational machines in order to produce as much as possible respecting
the costly effects of blocking and starvation. To this end we have to find a feedback
policy

(
v1(X), v2(X)

)
taking values in

(3)
(
v1(X), v2(X)

)
∈ U := {(rv, rv); (rv, v); (v, rv); (v, v)},
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subject to the constraints v1(x) = 0 for x ≥ H and v2(x) = 0 for x ≤ 0, which
minimizes the cost functional J(x0, i), x0 ∈ [0,H], i ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}
defined by:

(4) J(x0, i) = Ex0,i

[ ∫ ∞

0

((
X(t)−H/2

)2 + α
(
v − v2(X(s))

))
e−βs

]
.

Here, β > 0 is a discount parameter, Ex0,i is the expectation operator subject
to the initial conditions X(0) = x0 and (I1, I2) = i and α > 0 is a parameter
which controls the trade off between “producing as much as possible” (minimizing
the term b − v2) and “avoid the boundaries of the buffer” (minimizing the term
(X−H/2)2). Note that so far considerable attention has been given to formulate two
stage production/inventory systems with controllable production rates as optimal
control problems (see e.g., [?] and especially [?, ?] which are closely connected with
the present study). These works however focus on minimizing inventory holding
and backordering costs and penalizing the starvation or the blocking mechanism via
the cost functional is far less investigated (see however the decomposition method
of Hu in [?] where starving costs naturally enters into the cost functional).
Let now x 7→ φ(x, i) = min(v1,v2)∈U J(x, i) be the value function defined on the
whole line R of the above minimization problem which is not yet subject to the
blocking and starving constraints (v1(x) = 0 for x ≥ H and v2(x) = 0 for x ≤
0). For notational ease we identify the four possible operating states (I1, I2) =
(0, 0), (0, 1), (1, 0), (1, 1) with i = 1, 2, 3, 4 respectively. Then x 7→ φ(x, i), seen
as a function defined on R, is the unique viscosity solution of the HJB dynamic
programing equations (see e.g., [?] Chapt. III eq.(9.4)):

(5)


minα(v − v2)

minα(v − v2)− v2φx(x, 2)
minα(v − v2) + v1φx(x, 3)

minα(v − v2) + (v1 − v2)φx(x, 4)

 = A


φ(x, 1)
φ(x, 2)
φ(x, 3)
φ(x, 4)

− (x− H

2
)2


1
1
1
1


where the minimum “min” is taken over the couples (v1, v2) ∈ U and where the
matrix A is given by:

A =


β + 2µ −µ −µ 0
−λ β + µ + λ 0 −µ
−λ 0 β + µ + λ −µ
0 −λ −λ β + 2λ

 .

Interested in the optimal feedback policy
(
v1(x), v2(x)

)
when both machines are

operational at time t = 0 (i.e. i = 4) we have to investigate the following minimum:

(6) min
(v1,v2)∈U

α(v − v2) + (v1 − v2)φx(x, 4).

The strict convexity of φ(x, i) considered as a function on R (see [?] p.149 and also
[?] p.380) guarantees the existence of Z ∈ R such that:

φx(x, 4)
{
≥ 0 for x ≥ Z,
≤ 0 for x ≤ Z.

Setting I(v1, v2) := α(v − v2) + (v1 − v2)φx(x, 4), we see from eq.(6) that:

(
v1(x), v2(x)

)
=

 (rv, v) minimizes I(v1, v2) for x ≥ Z,
(v, v) minimizes I(v1, v2) for x ≤ Z and α + φx(x, 4) ≥ 0,
(v, rv) minimizes I(v1, v2) for x ≤ Z and α + φx(x, 4) ≤ 0.
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By invoking again the strict convexity of φ(x, i), we conclude that there exists
z ∈ [−∞, Z] such that:

α + φx(x, 4)
{
≥ 0 for x ≥ z,
≤ 0 for x ≤ z.

Hence, the generic form of the optimal control policy will be:

(
v1(x), v2(x)

)
=

 (rv, v) for x ≥ Z
(v, v) for z ≤ x ≤ Z
(v, rv) for x ≤ z

which is precisely the TRC policy given by eq.(1). Note however that we have
not yet taken into account the presence of blocking and starving states due to the
finite buffer capacity. This will however be irrelevant provided it exists a range of
α values such that the following condition (c) holds:

(c) 0 < z(α) < Z(α) < H.

Indeed when (c) is realized the policy is not sensitive to the presence of buffer
boundaries. The following technical points addressed in detail in the appendix
show clearly that such a range of α-values exists:

a) The functions z(α), Z(α) are well defined.
b) z(0) = Z(0) = H/2.
c) Z(α) is constant.
d) z(α) is continuous and decreasing.

Remark. Note that when we “symmetrize” the control by adding to the cost
functional eq.(4) the term α(v − v1) we can replace point c) above by c′):

c’) Z(α) is continuous and increasing.
The thresholds z and Z of the resulting optimal control would be “symmetric” i.e.,
of the form z = H/2−∆(α) and Z + ∆(α) exactly as analysed below.

3. Associated Chapman-Kolmogorov-equations

From the fact that Ik(t), k = 1, 2 are alternating Markov renewal processes,(
X(t), I1(t), I2(t)

)
is a mixed discrete-continuous state Markov process in continu-

ous time with state space:

(7) S =
{
(x, i, j) | 0 ≤ x ≤ H; i, j = 0, 1

}
.

We now adopt the following notations:
(8)

Li,j(t) = P
(
X(t) = 0, I1(t) = i, I2(t) = j

)
, i, j ∈ {0, 1},

Fi,j(x, t) = P
(
0 < X(t) ≤ x, I1(t) = i, I2(t) = j

)
, i, j ∈ {0, 1}, x ∈]0, z[,

zi,j(t) = P
(
X(t) = z, I1(t) = i, I2(t) = j

)
, i, j ∈ {0, 1},

F i,j(x, t) = P
(
z < X(t) ≤ x, I1(t) = i, I2(t) = j

)
, i, j ∈ {0, 1}, x ∈]z, Z[,

Zi,j(t) = P
(
X(t) = Z, I1(t) = i, I2(t) = j

)
, i, j ∈ {0, 1},

F i,j(x, t) = P
(
Z < X(t) ≤ x, I1(t) = i, I2(t) = j

)
, i, j ∈ {0, 1}, x ∈]Z,H[,

Hi,j(t) = P
(
X(t) = H, I1(t) = i, I2(t) = j

)
, i, j ∈ {0, 1}.


