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DISCRETE DERIVATION OF RUIJGROK’S AND WU’S

NON-LINEAR TWO VELOCITY BOLTZMANN MODEL WITH AN

APPLICATION TO TRAFFIC-FLOW MODELLING∗

ROGER FILLIGER†

Abstract. A variant of the Trotter-Kato approximation theorem is used to derive from a space-
discrete model the non-linear Boltzmann-like equations introduced by Th.W. Ruijgrok and T.T. Wu.
The application include a micro-meso-macro link for cars in traffic.
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Introduction. The understanding of the collective dynamics of coupled elemen-
tary cells forming a complex (e.g., physical, biological and/or socio-ecological ) system
is a formidable interdisciplinary task. The ubiquity of such cooperative mechanism in
various fields generates a strong ongoing research activity in the basic sciences [1, 2, 3]
and the applied sciences [4, 5, 6].
The origin of “complex behaviour” is located in the interplay of the “microscopic”
(elementary) components of the system and their discrete character which give rise to
new collective properties qualitatively different from the microscopic properties. The
main steps toward a formal understanding of the collective dynamics are contained
in the micro-to-macro paradigm formulated in analogy to the kinetic theory of dilute
gases. On the microscopic level the evolution of the elementary cells is described ei-
ther deterministically following Newton-like dynamics or stochastically following the
dynamics of a specific particle hopping model. A reduced description is given by the
mesoscopic Boltzmann-like equation which describes the evolution of the probability
distribution of the components in the phase space [7]. When the mean free path
between the elementary cells goes to zero, the solution to the Boltzmann equation
relaxes to a Maxwellian distribution and the process yields a macroscopic descrip-
tion via fluid-dynamic-like equations. This ambitious micro-(meso)-macro program
of statistical physics is not at all achieved in general but has contributed to the un-
derstanding of micro and macro properties of systems with great practical interest
such as granular and self driven many particle systems [4, 8].
In this paper we like to pursue this generic program in a very simple one-dimensional
micro-meso context. Here the micro-meso link is realized by a discrete-space approx-
imation to a Boltzmann-type equation introduced in [9] describing the mesoscopic
regime. The space-discrete equations are recognized as the (nonlinear) master equa-
tions of interacting Markov-processes on a one-dimensional lattice describing the evo-
lution of a stochastic microscopic model (i.e. a particle hopping model).
The micro-meso link is applied to the domain of traffic engineering where it completes
the meso-macro link recently derived in [10]. The relevant stochastic microscopic
model is derived from phenomenological considerations and pays special attention to
the anisotropic character of traffic flow.
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The paper is organized as follows: In section 1 we derive the discrete Ruijgrok-Wu
(RW) model from stochastic microscopic considerations and recall the continuous RW
model. The solution of the later is given via a representation formula involving a cosine
operator function. In section 2 we apply a variant of the Trotter-Kato approximation
theorem to derive the space-continuous RW model. In section 3 we give an application
in the fields of traffic theory.

1. The models. This section follows closely section 1 of W.A. Rosenkrantz’ and
L.Z. Bings paper [11]. We consider interacting particles which are spatially distributed
over equally spaced cells C(j) = [jh, (j + 1)h[⊂ R of length h. Particles can move to
the left and to the right with constant velocities v± = ±1. We denote the number of
particles in C(j) with speed 1 resp. −1 at time t by N+

h (jh, t) resp. N−
h (jh, t).

The particles with speed 1 migrate from C(j) to C(j + 1) and those with speed −1
from C(j) to C(j − 1) both at rate |v±|/h = 1/h. Other migration rates are zero.
More precisely we assume that for a time interval of length ∆t < h the (non zero)
migration probabilities are:

∆t
h + o(∆t) = probability that a single particle with speed 1 moves

within ∆t from C(j) to C(j + 1)
= probability that a single particle with speed -1 moves

within ∆t from C(j) to C(j − 1).

where o(∆t) is a quantity verifying lim∆t↓0 o(∆t)/∆t = 0. Without interactions, each
particle travels on the set {C(j) | j ∈ Z} which we identify with Ih = {jh ∈ R |
0,±1,±2, ...} according to a continuous time Markov chain with infinitesimal gener-
ator matrix Qi

h = (Qi
h(j, k))j,k∈Z, i = ± given by:

Q−
h (j, k) =















0 for |j − k| > 1
0 for k = j + 1
1/h for k = j − 1
−1/h for j = k.

Q+

h (j, k) =















0 for |j − k| > 1
1/h for k = j + 1
0 for k = j − 1
−1/h for j = k.

The quantities N i
h(jh, t) satisfy the Kolmogorov forward equations:















∂tN
−
h (jh, t) =

∑

k N−
h (kh, t)Q−

h (k, j) = AhN−
h (jh, t)

∂tN
+

h (jh, t) =
∑

k N+

h (kh, t)Q+

h (k, j) = −AhN+

h ((j − 1)h, t)

N±
h (jh, 0) = initial distribution of particles with speed ± 1

(1.1)

where Ahf(jh) := 1

h

[

f(jh+h)−f(jh)
]

is the difference operator acting on the Banach

space Xh := C0(Ih); the space of all functions f : Ih → R with lim|jh|→∞ f(jh) = 0
endowed with the sup norm: ‖f‖h := supj |f(jh)|.
In addition to the migration rules we assume that particles react as follows: In the
small interval of time [t, t+∆t[ the number of particles in C(j) with speed +1 increase
due to spontaneous transitions of −1 particles in C(j) to +1 particles at rate α > 0
by the amount

αN−
h (jh, t)∆t + o(∆t) (1.2)

and decrease by the amount

βN+

h (jh, t)∆t + o(∆t) (1.3)
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due to spontaneous transitions of +1 particles in C(j) to −1 particles at rate β > 0.
Similarly, the number of particles in C(j) with speed −1 decrease by the amount
αN−

h (jh, t)∆t + o(∆t) and increase by βN+

h (jh, t)∆t + o(∆t).
Moreover, particles in C(j) of different speed can collide thereby giving rise to −1
particles in C(j). This collision rule decrease the number of +1 particles and increase
the number of −1 particles in C(j) according to:

µ

h
N−

h (jh, t)N+

h (jh, t)∆t + o(∆t). (1.4)

The term µ
h reflects the fact that the rate of interactions not only depends on the

number of particles in each cell but also on its length i.e. the same number of particles
crowded into an interval of smaller length will interact at a proportionally higher rate.
Denoting −1 particles by (−) and +1 particles by (+), the migration and the inter-
action (reaction and collision) mechanisms can by summarized as follows:

migration: (−) −→ C(j − 1), (+) −→ C(j + 1),
reaction: (−) −→ (+), (+) −→ (−),
collision: (+,−) −→ (−,−),

and the interactions are taken to be of mass action type. This means that the rate of
each interaction is proportional to the concentration of each type of particles entering
the interaction. Under this assumptions and when ∆t → 0, the functions N±

h (jh, t)
satisfy the nonlinear forward equation:

∂tN
−
h (jh, t) = AhN−

h (jh, t) − αN−
h (jh, t) + βN+

h (jh, t) + µ

h
N−

h (jh, t)N+

h (jh, t)

∂tN
+

h (jh, t) =−AhN+

h ((j − 1)h, t) + αN−
h (jh, t) − βN+

h (jh, t) − µ

h
N−

h (jh, t)N+

h (jh, t)

N±
h (jh, 0) = g±

h (jh)
(1.5)

with g±h ∈ Xh some given (positive) initial distribution of the interacting particles.

If in addition, we assume the existence of functions g± ∈ C1
0(R) and ρ± ∈ C2,1

0 (R×R
+)

satisfying for all j ∈ Z and all h > 0:

g±h (jh) = g±(jh) + o(h) (1.6)

1

h
N±

h (jh, t) = ρ±(jh, t) (1.7)

then ρ−(x, t)and ρ+(x, t) satisfy the nonlinear two-velocity Boltzmann equation of
Ruijgrok and Wu introduced in [9]:















∂tρ
−(x, t) = Aρ−(x, t) − αρ−(x, t) + βρ+(x, t) + µρ−(x, t)ρ+(x, t)

∂tρ
+(x, t) = −Aρ+(x, t) + αρ−(x, t) − βρ+(x, t) − µρ−(x, t)ρ+(x, t)

ρ±(x, 0) = g±(x)

(1.8)

where A = ∂
∂x

is the differential operator on the Banach space X := C0(R) (endowed
with the supremum norm ‖f‖ := supx |f(x)|) with domain:

D(A) = {f ∈ X | f absolutely continuous, f ′ ∈ X}. (1.9)

The physical content of the system (1.8) is discussed in the application of section 3 and
for the mathematical discussion of the explicit solutions recalled below, we refer to
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[9]. Our concern here is to derive the “mesoscopic equations” (1.8) from the discrete
equations (1.5) without the assumption eq.(1.7) by showing that for all x ∈ R and
uniformly for t in compact subsets of R

+ the limit

lim
h↘0, jh→x

1

h
N±

h (jh, t) (1.10)

exists and that the pointwise defined functions

ρ±(x, t) := lim
h↘0, jh→x

1

h
N±

h (jh, t) (1.11)

solve the equations (1.8).

2. Micro-meso link. Before we derive eq.(1.11) recall that the RW-model (1.8)
can be linearized by means of the logarithmic transformation:











ρ+(x, t) = 2

µ (∂t − A)
(

ln
(

u(x, t)
)

+ β+α
2

t − β−α
2

x
)

ρ−(x, t) = − 2

µ (∂t + A)
(

ln
(

u(x, t)
)

+ β+α
2

t + β−α
2

x
)

(2.1)

where the strictly positive function u := u(x, t) > 0 satisfies the hyperbolic equation:

∂2
t u(x, t) =

(

A2 + αβI
)

u(x, t) (2.2)

with I the identity operator. The above linear PDE, equivalent to the telegraphist
equation, has to be solved with the initial conditions:

u0(y) = u(y, 0) = exp
{1

2

∫ y

dx[µ(g−(x) + g+(x)) + α − β]
}

, (2.3)

u0
t (y) = ut(y, 0) =

1

2
u(y, 0)

(

µ(g−(y) − g+(y)) + β + α
)

. (2.4)

It is well known ([12] Chapt.2.8) that the solution to the above Cauchy problem
eqs.(2.2,2.3,2.4) is formally given by:

u(x, t) := C(t)u0(x) +

∫ t

0

C(s)u0
t (x)ds (2.5)

where C(t) is the strongly continuous cosine operator function associated to the in-
finitesimal generator B = A2 + αβI with domain:

D(B) := {f ∈ X | C(·)f ∈ C2(R,X)}. (2.6)

The (strong) solution to (2.2) is explicitly given by eq.(2.5) via the representation
formula (see e.g., [12] p.121):

C(t)f =
1

2

[

T (t) + T (−t)
]

f +
αβ

2
t

∫ t

0

(t2 − s2)−1/2I1

(

(t2 − s2)1/2
)[

T (t) + T (−t)
]

fds

(2.7)
for f ∈ X. Therein I1 is the modified Bessel function and T = {T (t) | t ∈ R} is the
(C0) group of isometries on X associated to the generator A = ∂

∂x

given by

[

T (t)f
]

(x) = f(x + t). (2.8)
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The fact that the (strong) solution to eq.(2.2) is given by a strongly continuous co-
sine operator function C(t) gives us – besides existence, uniqueness and continuous
dependance on the initial data – the continuous dependance on A. It is this bonus
– exploited in a version of the Trotter-Kato approximation theorem [13] – together
with the obvious regularity properties of the explicit solution eq.(2.5) which enables
the rigourous derivation of the limit eq.(1.11). To this end we rewrite eq.(2.1) as an
abstract inhomogeneous Cauchy problem in the Banach space Y := X ×X equipped
with the norm ‖(f1, f2)‖ = ‖f1‖ + ‖f2‖ and set:

ρ(x, t) :=
(

ρ−(x, t), ρ+(x, t)
)

(2.9)

ρ̇(t) :=
(

∂tρ
−(x, t), ∂tρ

+(x, t)
)

(2.10)

F
(

ρ(x, t)
)

:=
(

− αρ−(x, t) + βρ+(x, t) + µρ−(x, t)ρ+(x, t), (2.11)

αρ−(x, t) − βρ+(x, t) − µρ−(x, t)ρ+(x, t)
)

Aρ(x, t) :=
(

Aρ−(x, t),−Aρ+(x, t)
)

. (2.12)

Clearly, F (Y ) ⊂ Y but F is otherwise nonlinear and unbounded. An elementary
estimation for arbitrary ρ, ξ ∈ Y yields:

‖F
(

ρ(x, t)
)

− F
(

ξ(x, t)
)

‖ ≤
(

2max(β, α) + 2µmax(‖ξ+‖, ‖ρ−‖)
)

‖ρ − ξ‖ (2.13)

establishing that F is locally Lipschitz continuous in the sense that for all ρ, ξ in the
set {ρ ∈ Y | ‖ρ‖ ≤ M} where M > 0 is fixed we have:

‖F
(

ρ(x, t)
)

− F
(

ξ(x, t)
)

‖ ≤
(

2max(β, α) + 2µM
)

‖ρ − ξ‖ =: M̃‖ρ − ξ‖. (2.14)

Using this notations, eq.(2.1) takes the form of an abstract semilinear Cauchy problem
namely:

ρ̇(t) = Aρ(t) + F
(

ρ(t)
)

(2.15)

ρ(0) = g(0) =
(

g−, g+
)

. (2.16)

It is clear from eqs.(2.1, 2.5) and the representation formula eq.(2.7) that the initial
value problem eqs.(2.15, 2.16) has a strong solution ρ ∈ D(A) × D(A) whenever g−

and g+ are sufficiently regular; typically g± ∈ C2(R). Indeed using the representation
formula eq.(2.7) it is immediate to check that for all fixed T > 0, the following
implication hold:

(g−, g+) ∈ C2(R) × C2(R) ⇒ (ρ−(t), ρ+(t)) ∈ C1(R) × C1(R), t ∈ [0, T ], (2.17)

and sup
0≤t≤T

∣

∣

∂ρ±(x, t)

∂x

∣

∣ < ∞.

Clearly the strong solution u is also a mild one i.e., u is continues and satisfy the
integral equation (see e.g., [14] p.183):

ρ(t) = G(t)ρ(0) +

∫ t

0

G(t − s)F (ρ(s))ds (2.18)

where the (C0) contraction semigroup G(t) is given by:

G(t)
(

f1(x), f2(x)
)

=
(

T (t)f1(x), T (t)f2(x)
)

=
(

f1(x + t), f2(x + t)
)

.
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Similarly, equation (1.5) takes the form:

ρ̇h(t) = Ahρh(t) + F
(

ρh(t)
)

(2.19)

ρh(0) = gh(0) (2.20)

where

ρh(jh, t) :=
(

h−1N−
h (jh, t), h−1N+

h (jh, t)
)

Ahρh(t) :=
(

Ahh−1N−
h (jh, t),−Ahh−1N+

h (jh, t)
)

.

Note that the Cauchy problem eqs.(2.19, 2.20) has to be solved in the Banach space
Yh := Xh × Xh equipped with the norm ‖(f1, f2)‖h = ‖f1‖h + ‖f2‖h. The existence
of a unique mild solution ρh of (2.19, 2.20) on some maximal interval [0, T [ where
T > 0 depends on the Lipschitz constant M̃ and on the initial conditions g± relies
on the local Lipschitz property established in (2.14) (see e.g., Thm. 1.4 in [14]). For
t ∈ [0, T [ this solution satisfies:

ρh(t) = Gh(t)ρh(0) +

∫ t

0

Gh(t − s)F (ρh(s))ds (2.21)

where Gh(t) is the (C0) contraction semigroup on Yh given by:

Gh(t)
(

f1(jh), f2(jh)
)

=
(

Th(t)f1(jh), Th(t)f2(jh)
)

.

Here Th(t) = exp(tAh) means the (C0) contraction semigroup generated by the finite
difference operator Ah (with domain D(Ah) = Xh) explicitly given by (see e.g., [12]
p.23):

Th(t)f(j) = e−t/h
∞
∑

k=0

(t/h)k

k!
f(j + hk). (2.22)

Following [11] we define the bounded linear mappings

Ph : Y → Yh

(ρ−, ρ+) 7→ Ph(ρ−, ρ+) : R → R × R

x 7→ (ρ−(jh), ρ+(jh)) for jh ≤ x < (j + 1)h

joining the evident properties:
1) ‖Phf‖h ≤ ‖f‖
2) limh→0 ‖Phf‖h = ‖f‖
3) for any fh ∈ Yh there exists a f ∈ Y such that fh = Phf and ‖fh‖h ≤ ‖f‖.

It follows (by definition) that the sequence of Banach spaces Yh with the sequence of
bounded linear maps Ph approximate the Banach space Y for h → 0.
The convergence of the “linear” part Gh(t)ρh(0) of ρh given in the integral represen-
tation (2.21) to G(t)ρ(0) follows from a variant of the Trotter-Kato approximation
theorem due to Kurtz (see e.g., [15] Thm 2.6). The theorem assures that for every
fixed s ∈ [0,∞[ and for every ρ ∈ D(A) ×D(A) ⊂ C2

0(R) × C2
0(R) we have:

lim
h↘0

sup
0≤t≤s

‖Gh(t)Phρ − PhG(t)ρ‖h = 0. (2.23)

In particular for the initial condition ρ(0) we have:

PhG(t)ρ(0) = Gh(t)Phρ(0) + o(h). (2.24)
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To treat the inhomogeneous part within the time horizon T > 0, we apply Ph to the
integral representation eq.(2.18) and use eq.(2.24) to obtain:

Phρ(t) = PhG(t)ρ(0) +

∫ t

0

PhG(t − s)F (ρ(s))ds (2.25)

= Gh(t)Phρ(0) + o(h) +

∫ t

0

(

Gh(t − s)PhF (ρ(s)) + o(h)
)

ds

= Gh(t)Phρ(0) +

∫ t

0

Gh(t − s)F (Phρ(s))ds + o(h)

for t ∈ [0, T ]. Therefore,

Phρ(t) − ρh(t) = Gh(t)
(

Phρ(0) − ρh(0)
)

+ o(h) (2.26)

+

∫ t

0

Gh(t − s)
(

F (Phρ(s)) − F (ρh(s))
)

ds. (2.27)

Set

φh(t) := ‖Phρ(t) − ρh(t)‖h (2.28)

and note that by assumption (1.6) we have:

φh(0) = o(h). (2.29)

Applying the local Lipschitz property established in eq.(2.14) and using the fact that
‖Gh(t)f‖h ≤ ‖f‖h one concludes on the existence of a constant K depending on T
(and M̃) such that:

φh(t) ≤ Kh + K

∫ t

0

φh(s)ds. (2.30)

Using Gronwall’s inequality, the above directly implies that φh(t) ≤ Kh exp(Kt) for
t ∈ [0, T ] and therefore:

lim
h↘0

φh(t) = lim
h↘0

‖Phρ(t) − ρh(t)‖h = 0, for t ∈ [0, T ]. (2.31)

which proves eqs.(1.10) and (1.11).

3. Application. The RW-model eq.(1.8) was originally motivated by practical
considerations in connection with controlled thermonuclear fusion. The interesting
feature for applications in general is that the eq.(1.8) can be solved explicitly for a
large class of initial conditions in terms of modified Bessel functions. Consequently,
shock waves and approach to equilibrium can be investigated analytically. Here we
extend the fields of applications to a non-linear transport phenomena encountered in
vehicular traffic flow (see e.g., [4, 16] for comprehensive reviews). At the proposed level
of description, the main ingredients for non-linearity comes from a certain anisotropic
collision behaviour (a fast driver behind a slow one has to slow down or to overtake if
he can). This is taken into account by the RW-model. Indeed, it is seen from section
1 that there is one binary collision of the form (+,−) → (−,−). The presence of this
collision mechanism together with the absence of the inverse collision (−,−) → (+,−)
means the violation of the detailed balance of momentum which is the mentioned
desired anisotropic collision feature encountered in vehicular traffic flow.
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Traffic flow modelling. A traffic system, comprised of drivers, vehicles and
roadways, exhibits extremely complex behaviour including congestion formation, stop-
and-go traffic and hysteresis due to the heterogeneous drivers behaviour, the highly
nonlinear group dynamics and large system dimensions. Traffic theory proposes math-
ematical descriptions of the processes in order to understand the dynamics of traffic
flow. Two complementary approaches have dominated traffic flow modelling:

i) a purely microscopic approach in which the individual vehicular interactions
are taken into account (see [16, 17] and the references therein), and

ii) a macroscopic approach which is based on fluid dynamical equations describ-
ing the behaviour of a compressible fluid (see [4, 18, 19] and the references
therein).

Even within the microscopic approach there are different types of mathematical de-
scriptions. The so-called car-following theory for example provides a deterministic,
Newton-like description of the motion of individual vehicles. In contrast, particle
hopping modelling (also stochastic microscopic modelling) describe traffic in terms of
a stochastic dynamics of individual vehicles and will be the point of view adopted in
this application.
The macroscopic description, is always based on a continuity equation,

∂tρ(x, t) + ∂xJ(x, t) = 0 (3.1)

and completed by a relation between the current J(x, t) and the vehicle density ρ(x, t),
which is known in traffic engineering as the fundamental diagram. This relation con-
tains all the dynamic information specific to a particular macroscopic model. Among
the various fundamental diagrams which have been explored a very simple and pop-
ular one is the Lighthill-Whitham (LW) equation [18] assuming that there exists an
equilibrium flow-density relationship of the form:

J(x, t) = j(ρ(x, t)). (3.2)

Moreover, on the basis of experimental observations, B.D. Greenshields [20] proposed
the choice:

j(ρ(x, t)) = Vmaxρ(x, t)
(

1 − ρ(x, t)
)

(3.3)

where the phenomenological parameter Vmax is the maximum average speed for ρ → 0.
The nonlinear model can explain the formation of shock waves which corresponds to
congestion formation in traffic flow [18]. Despite this success in describing congestion
formation in traffic flow the LW theory fails in describing more complicated traffic
flow phenomena such as stop-and-go traffic or hysteresis (see e.g., [21]). This is due
to the unrealistic assumption that the traffic flow is always in equilibrium. In reality,
the dynamics is a result of the retarded response of drivers to various (mostly) frontal
stimuli [22]. Among different non-equilibrium models [19, 22, 23] we proposed in
[10] the exactly solvable two velocity RW-model eq.(1.8) which takes into account
acceleration behaviour and anisotropic interactions of vehicles with different speed in
the most simple manner. Despite its simplicity, it is shown in [10] that the RW-model
relaxes in a diffusive limit to the viscous LW model specified by the Greenshields
flux relation eq.(3.3). This meso-macro link explains the importance of the empirical
density-flux relation eq.(3.3) and reciprocally, corroborates the relevance of the RW-
model in traffic theoretical contexts. Moreover, the RW-model shows the signature
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of hysteretic behaviour for a specific range of parameters. Indeed, for α > β there
exists a class of spatially inhomogeneous equilibrium distributions of the RW-model
indexed by two continuous real parameters x0 ∈ R and C, 0 ≤ C ≤ (

√
α−

√
β)2 given

by (see [9] Section 5):

ρ+
x (x) =

µC + α − β

2µ
+

r

2µ
tanh((x − x0)r/2)

ρ−x (x) =
−µC + α − β

2µ
+

r

2µ
tanh((x − x0)r/2)

with r depending on the parameters α, β, µ and C only. The parameter C corresponds
to the equilibrium flow C = ρ+(x)−ρ−(x) and is determined by the initial conditions
g± of eq.(1.8). The equilibrium density ρ at x0, is simply ρ(x0) = ρ+(x0) + ρ+(x0) =
α−β

µ and hence independent of the flow C. Therefore, without changing the equilib-

rium density ρ(x0), different initial conditions lead to different equilibrium flow states
at x0 which is a typical signature for hysteresis (see e.g., [16] p. 264).
The two-velocity RW-model however is too simple to explain stop and go waves. In
this sense the model can not compete with more sophisticated models such as the
non-local gas-kinetic based traffic models presented in [23].
We complete now the meso-macro picture by a micro-meso link based on the limit
result of section 2. The stochastic microscopic description (i.e. the particle hopping
model) is specified by the following considerations:
We observe cars on a long highway without on/off ramps. We further suppose that
at any instant of time t, the heterogeneous drivers behaviour can be classified into
“slow” resp. “fast” drivers corresponding to cars with speed v1 (slow) resp. cars with
speed v2 (fast). Informally, the basic modelling assumptions are:

A1) The fairly diverse driving habits of the people is modelled by spontaneous
(Markovian) transitions from one behaviour to the other.

A2) The interactions are typically short ranged in the sense that only consecutive
cars (with different speed) can interact. The rate of interactions within a
short region is proportional to the number of drivers of each type in this
region.

A3) The anisotropic character of traffic flow is taken into account by saying that
vehicles from behind should not influence the actions of their leading vehicles.

A1) implies transitions of the form v1 → v2 and v2 → v1. A2) together with A3) states
that (only) consecutive cars can interact in the following way (v2, v1) → (v1, v1) or
(v1, v2) → (v2, v2) where (x, y) means an ordered couple of consecutive cars with
velocities x and y respectively. The former interaction is quite natural for highway
traffic, saying that a fast car behind a slow one has to slow down (or to overtake, if he
can). The latter interaction is somewhat special (nevertheless not completely lacking
in real traffic) and we will neglect them. Hence we extend the assumptions by:

A4) slow cars behind fast ones do not interact.
With the assumptions A1)-A4), which is our stochastic microscopic traffic model, we
are able to apply the convergence result of section 1. Indeed, describing the cars in a
moving framework which links the coordinates to the center of inertia:

(

x, t
)

7→
(

y, τ
)

:=
(

x − v1 + v2

2
t, t

)

, (3.4)

the velocities of the vehicles are transformed as

v1 7→ −v0, v2 7→ v0, (3.5)
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where v0 := (v2 − v1)/2. Partitioning the y-axes into equally spaced cells C(j) =
[jh, (j + 1)h[ of length h we see that in the moving coordinates cars migrate from
C(j) to C(j − 1) or C(j + 1) at the rate v0/h.
A1) implies that within a time interval [t, t + ∆t[, the number of particles N+

h (jh, t)
(resp. N−

h (jh, t)) in C(j) with speed v0 (resp. −v0) at time t increase by an amount
proportional to N−

h (jh, t)∆t + o(∆t) (resp. N+

h (jh, t)∆t + o(∆t)) and decrease by an
amount proportional to N+

h (jh, t)∆t + o(∆t) (resp. N−
h (jh, t)∆t + o(∆t)).

From A2)-A4) we infer the local collision rule (v0,−v0) → (−v0,−v0). By the second
part of assumption A2), this will increase (decrease) the number of slow (fast) cars
within the time interval [t, t + ∆t[ by the amount:

µ

h
N+

h (jh, t)N−
h (jh, t)∆t + o(∆t).

Hence using the convergence result of section 1, we see that under the stochastic
microscopic assumptions A1)-A4), the resulting mesoscopic description of the cars in
traffic is given by the RW-model:







∂tρ
−(x, t) − v0ρ

−(x, t) = −αρ−(x, t) + βρ+(x, t) + µρ−(x, t)ρ+(x, t)

∂tρ
+(x, t) + v0ρ

+(x, t) = +αρ−(x, t) − βρ+(x, t) − µρ−(x, t)ρ+(x, t).
(3.6)

It describes in a moving coordinate system the evolution of the distribution functions
of fast cars ρ+ and slow cars ρ−. An explicit solution of the traffic density ρ = ρ−+ρ+

is sketched in figure 3. The initial conditions reflect a situation where a platoon of
fast cars is behind a platoon of slow cars. When the fast cars ketch up with the slow
ones the collision mechanism (+,−) −→ (−,−) increase (decrease) the concentration
of slow (fast) cars and only a view fast cars passe the train of slow cars without
undergoing collisions.

-1

-0.5

0

0.5

1

SPACE

0

0.5

1

1.5

2

TIME

SLOW CARS

FAST CARS

COLLISIONS

Fig. 3.1. Sketch of the density profiles in a moving coordinate system for Gaussian initial
conditions. When the platoons meet (fast cars catch up with the slow ones), the collision term
will become important and decrease the amount of fast cars and increase the amount of slow cars.
Parameters: α = 50, β = 10, µ = 80 and v0 = 1.

Remark. It is worthwhile noting that part two of assumption A2) (i.e., collisions are
of mass action type) can be justified on the basis of simple kinetic considerations and a
uniformity assumption. Indeed, suppose that a cell of length h contains N = N++N−

particles (N+ of type + and N− of type −). Divide the cell in N boxes of length
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+ + − + − − + − + −

Fig. 3.2. Uniform distribution of N = N+ + N− particles (N+ of type + and N− of type −)
in a cell with N boxes. A collision-configuration is of the form (+,−).

h and suppose that the particles are uniformly distributed over the boxes such that
every box contains exactly one particle (see figure 3). The configurations contributing
eventually to collisions are of the form (+,−) and it is an easy combinatorial exercise
to show that the probability of having exactly r-configurations of the form (+,−) in
the cell is:

P (r-config.) =

(

N+

r

)(

N− − 1

r − 1

)

/

(

N

N+

)

and that the expected number of collision-configurations is (N+)2N−/((N − 1)N). A
collision-configuration (+,−) turns into a real collision when it remains stable during
the mean free time h/(N∆v) where ∆v = v − (−v) = 2v is the velocity difference
between + and − particles. The stability however is inversely proportional to the
“total temperature” α + β and therefore the frequency of collision 2vN/h multiplied
by the expected collision configurations which remain stable yields the mass type
hypotheses:

2vN

h

1

α + β

(N+)2N−

(N − 1)N
=

2v/(α + β)

h

N+

(N − 1)
N+N−.

Supposing further that the number of + particles and the number of − particles in
the cell are proportional (i.e. N+/(N − 1) = const.) we have:

(+,−) → (−,−), with rate
µ

h
N+N−

for some constant µ.

4. Conclusion. We established the convergence of a space discrete approxima-
tion for the nonlinear two-velocity Boltzmann model of Ruijgrok and Wu. The deriva-
tion shows the main kinetic features of the equations which are besides the migration
term a reaction and a collision mechanism of mass action type.
An application within traffic theory is considered which joins on a minimal level
of detailed knowledge the above kinetic features. The convergence scheme com-
pletes a micro-meso-macro link for the popular macroscopic traffic model of Lighthill,
Whitham and Greenshields.
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