

VISION PRIMITIVES FOR THE INTUITIVE PROGRAMMING OF FLEXIBLE
MICROASSEMBLY CELLS

Yuri L. De Meneses¹, Cyrille Lebossé², Cédric Wulliens¹, J. Jacot¹, S. Koelemeijer¹

¹Laboratoire de Production Microtechnique (LPM-IPR)

Ecole Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland

yuri@ieee.org

²Ecole Nationale Supérieur de Physique de Strasbourg
Bd. Sébastien Brant

F-67412 Illkirch, France
Cyrille.lebosse@voila.fr

ABSTRACT
This paper describes the geometric image-analysis library being developed by LPM to guide a
flexible microassembly cell in vision-guided assembly tasks. The library is based on computer
vision primitives that have a mechanical interpretation (area, center of gravity), affording the
intuitive programming of the assembly cell. For more complex geometric relationships,
templates are provided. These are described, evaluated and shown in example assembly tasks.

INTRODUCTION
In spite of the increasing degree of monolithic integration in microsystem technologies
(MEMS, MOEMS, CMOS, etc), a microassembly step, whereby individual components are
positioned, attached, and finally packaged, is usually required. This step is necessary due to
manufacturing costs that may preclude a full integration, because of incompatible processes
or substrates or simply due to geometric constraints, since most processes are planar [1].

Currently, most microsystems that fall in the categories above are assembled in small batches,
either because they are in early-development stages or because market size does not justify
mass production [2]. Manual assembly is not possible for anything but the smallest batches,
because humans cannot maintain the required precision and yield over time. Therefore
microsystem manufacturers need flexible microassembly workstations capable of
accommodating to frequent product changes. To achieve this with low setup costs, flexible
workstations should be easily reprogrammed.

The Laboratoire de Production Microtechnique (LPM) of the Ecole Polytechnique Fédérale
de Lausanne (EPFL), Switzerland, is actively developing a flexible microassembly
workstation that can be easily, "intuitively", programmed (configured) by somebody who
does not need to be a programming specialist, allowing lab technicians or operators to set the
production up. The workstation, described in [3], is based on a high-precision robot (0.5 or 5
µm resolution) equipped with a computer-vision system and a graphic user interface for setup
and configuration. The operator can perform a step-by-step assembly by combining robot
actions and image-analysis primitives that identify and select the different assembly parts.
The sequence of operations is stored in a script and afterwards the workstation can
automatically go through it, in what is called automatic mode.

A key element in this "intuitive programming" paradigm are the image-analysis primitives
which are available in the assembly station. This paper describes the geometry-based, image
analysis library developed at the LPM, which provides these primitives. It then discusses their
performance (precision, speed) and shows how they can be combined to solve an assembly
task.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147918323?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:yuri@ieee.org

THE GEOMETRIC IMAGE-ANALYSIS LIBRARY
The main requirements of the geometric image-analysis library libgeom, as with most
computer-vision libraries, is that it should provide primitives that are invariant to
perturbations found in the vision system. In the case of robotic-assisted assembly, where
mostly rigid parts are manipulated, these perturbations are translation, rotation and scaling
(change in zoom). Furthermore, other perturbations such as blur, illumination changes or
quantization noise may appear, and they can be modeled as additive noise.
 An additional requirement stemming from the "intuitive programming" philosophy is that
the vision primitives should be easily understandable by a non-computer-vision specialist.
Since operators will most likely have some knowledge of mechanics, ideally the primitives
should have an easy physical or mechanical interpretation.

 To meet the above requirements libgeom exploits geometric features of the blobs present in
the images. Blobs, mathematically known as connected components, are connected sets of
pixels with the same properties, most typically intensity or color. Under the right conditions,
blobs can correspond to the actual objects or parts seen in the image. But it should be borne in
mind that virtual objects such as shadows may also appear as blobs. In the case of libgeom,
blobs are defined by the intensity on a binary image. To facilitate the generation of such an
image, libgeom provides an algorithm for optimal image-binarization according to geometric
criteria.

For each blob in the image, the operator can obtain a set of features, shown in table 1 together
with their degree of invariance. Because these features are of integral nature, being based on a
set of pixels, they are also robust in the face of additive noise that might affect the position of
the pixels.

Blob feature Invariance
 Translation Rotation Scale
Area X X
Perimeter X X
Center of Gravity X X
Compactness (“roundness”) X X X
Main axis of inertia (orientation) X X
Eccentricity X X X
Minimum enclosing circle
Bounding Box (rectangle)

Table 1: Blob features available in libgeom and their invariance.

Figure 1: Example of blobs detected during a watch-assembly task. Blobs do not necessarily

correspond to actual objects (gears); they might be only iconic objects (the holes in
the parts). Geometric criteria (size, roundness,...) help the operator to select only
pertinent blobs.

 Additionally, a series of SelectBy...() functions allow the user to select certain blobs based
on their features. Thus, for example, if the operator needs to pick a circular part, say a gear, he
can select the blob with the highest compactness ("roundness") and then determine its center
of gravity. Or else, if the operator knows the approximate size of a part, taken from a previous
measurement, SelectByArea(target) will identify the blobs or parts that most closely matches
it. These selection operations can be chained so that at the end the operator obtains the one
desired part.

TEMPLATES
The centers of gravity, although robust, do not provide sufficient positioning information for
all assembly tasks. The operator might need to place some glue somewhere else than in the
center of part, say at one of its ends. In other cases a new part should be placed at a precise
position that does not correspond to any blob, and this position should be given to the robot.
For these situations libgeom provides the operator with geometric models or templates that
determine a target point in the image relative to a set of points, called reference points, which
can stem from other blobs or geometric relationships.

The operator creates a template by 'teaching' the system on a reference part or by manual
operation (i.e. by mouse-clicking on the desired position.) To this end the operator provides a
target point and a list of reference points. This list is typically built with the centers of gravity
of other blobs or parts in the image, carefully sieved through a series of selection operations.
The template then stores the mathematical relationship between the target point and the
ordered set of points [4]. This relationship renders templates invariant to translation, rotation
and scaling. Moreover, because templates use several points, they are robust against noise.

Figure 2: Example of a template defining the position of a gear (target point) relative to the

blobs in a neighboring gear (reference points).

 An interesting feature of templates for "intuitive programming" is that, based on the
stability of the mathematical relationship of the points, the system can give the operator an
immediate feedback on the a priori attainable precision when using that particular template
(before it is even applied!), since some configurations (e.g. collinear points) are more error-
prone than others. When the operator is satisfied with the expected quality of the template, he
can store it for later.

To apply a template, in programming or automatic mode, the operator or the script provide a
set of points and indicate the template to be applied. The system then calculates the resulting
position and gives a feedback on the actual measurement error due to perturbations in
template points.

Implementation
Templates define a linear relationship between reference points and a target point. This
relationship can be implemented in several ways. The implementation currently available in
libgeom is based on N-1 lines (where N is the number of reference points) that stem from
the midpoint of the segments connecting the reference points. The target point is determined
by the intersection of these lines. For N > 3 this is an overdetermined system that is solved by
minimizing the least-square error.

Some templates are more robust than others, depending on the configuration of reference-
points. For instance, almost-collinear reference points will produce almost-parallel lines, with
very unstable solutions. The stability of the least-squares solution can be evaluated a priori,
that is, before actually solving the system, through the condition number of the associated
equation matrix [5]. The condition number provides a measure of the template quality. The
worst-case error is proportional to the square of the condition number. So a good rule of
thumb is to keep this number smaller than 10.

Templates also provide an a posteriori measure of quality. The residual mean square error of
the least-square algorithm gives the precision or confidence with which the solution, the target
point, has been determined.

Performance evaluation
The performance of the templates has been evaluated by studying the impact of noise in the
desired solution. To this end, the position of each reference points is modified with gaussian
noise with 0 mean and standard deviation σ. To provide a scale-invariant measure, the
standard deviation is defined as a percentage of the norm of the main inertial axis of the
reference pattern.

The error introduced by noise in the determination of the target point will be higher for targets
that are farther away from the reference points. To provide a measure of performance that can
be compared across all targets, the resulting positional error is decomposed into translation
error and rotation error. Thus, for a target point at a distance R from the center of gravity of
the reference points, the total error can be estimated as rotERtransE ⋅+ . Translation error is
due to the resultant translation of the reference points and it has, as expected, zero mean and
standard deviation equal to N/σ where N is the number of reference points in the template.
Rotational error is due to the difference in angle with respect to reference pattern. It also has
zero mean and its variance is proportional to the input noise variance, except for seriously
unstable templates (high condition number).

Figure 3 Translation and rotation error in determining the target position (white ball) from

a triangular reference (black balls)

Figure 4 shows rotational and translation errors averaged over randomly-chosen patterns.

Figure 4: Translation and rotation errors averaged over difference configurations of

reference points. The slope provides a measure of the robustness of the
implemented templates.

USE CASES IN ASSEMBLY TASKS

Task 1: To place and solder an SMD component on a PCB, the position of pin no. 1 has to be
verified. The pad corresponding to pin 1 can be recognized by its rounder shape.

Result Command

Original image

Threshold(90)
Dilate
Dilate
FindBlobs

Set to black all pixels below 90.
Apply morphological dilation
(erosion of back objects) to
eliminate copper wires and
isolate the pads.

SelectByCompact(0.8,1.0)
SortByArea();
SelectFirstN(0);
P=GetCenter(0);

Select only objects with
roundness above 0.8. This
leaves some small blobs in.
Sort in descending order of
surface. Compute the center of
the biggest blob. The position of
pin 1 is thus recovered.

Task 2: Suppose we want to depose some glue or soldering paste on pad no 4, which is
hidden by a thick wire (Vcc). To determine its expected position we can use a template
relating the hidden pad with the isolated --and hence easier to determine-- pads.

Result Command
Threshold(90)
FindBlobs
SelectByCompact(0.7,1.0)
SelectByArea(500,1500)

Binarize with a threshold of 90,
select blobs with a roundness
higher than 0.7 and an area
between 500 and 1500.

SetReference(4)
P = GetUserInput()
SetTarget(p)
C=ComputeModel

Add all 4 blobs as reference
points. Set the target point
to the position clicked by the user
(91,84). Compute template or
model. The template quality is
given in C = 15.99 Too high. The
template is abandoned.

ShuffleReference
P = GetUserInput()
SetTarget(p)
C=ComputeModel
SaveModel(“SO8-7_33.mod”)

Reorder the reference points. Set
the target point
to the position clicked by the user
(91,84). Compute template or
model. Template quality is now C
= 7.33 Save template to a file for
later use.

Task 3: Application of the saved template on another circuit board (e.g. in automatic mode)

Result Command

Load a new image

Threshold(90)
FindBlobs
SelectByCompactness(0.7,1.0)
SelectByArea(500,1500)
SetReference(4)
LoadModel(“SO8-7_33.mod”)
P,Q,E = GetTarget(model)

Binarize and detect blobs. Select
blobs with roundness above 0.7
Save the 4 blobs as reference
points. Load the saved model and
compute the corresponding target.
Quality (Q) is 7.27 and error (E)
0.00

CONCLUSION
The vision primitives of the geometric image-analysis library (libgeom) being developed at
the Laboratoire de Production Microtechnique (LPM) provide functionalities that can be
exploited to guide a flexible microassembly cell in vision-guided tasks. To allow non-
specialist operators to program the microassembly cell the vision primitives are based on
geometric properties of image objects or blobs, such as centers of gravity, area, axis of inertia,
etc. These properties have a clear mechanical interpretation.
To build more complicated operations, templates have been introduced, whereby the
geometric relationship between a target point and a set of points (reference points) can be
defined, learned and stored for reuse. Other functionalities, not discussed in this paper, are the
automatic segmentation (binarization) based on the optimization of geometric criteria such as
roundness or orientation.

Future work
To implement more complicated tasks (such as recognition of a given part) it is necessary to
build higher-level operations by combining vision primitives. This can be accomplished by a
scripting language, allowing the creation of libraries of routines for common tasks (e.g. gear
insertion, chip positioning, etc). This will add further flexibility to the assembly cell, since it
can be updated by installing additional routines.
Other developments concern the automated construction of templates and the detection of
reference points by their relative positions (in fact, an extended template.).

REFERENCES
[1] K.B. Yesin, G. Yang, J. Gaines, and B.J. Nelson, "Microassembly of silicon-based hybrid

microsystems," in Proceedings of International Precision Assembly Seminar (IPAS'03),
2003, pp. 199-204.

[2] S. Koelemeijer Chollet, F. Bourgeois, and J. Jacot, "Economical justification of flexible
 microassembly cells," in Proceedings of IEEE International Symposium on Assembly and
 Task Planning (ISATP03), Juillet 2003.
[3] S. Koelemeijer Chollet, F. Bourgeois, L. Benmayor, B. Moll, C. Wulliens, and J. Jacot, "A

Flexible Microassembly Cell for Small and Medium Sized Batches," in Proceedings of
33rd International Symposium on Robotics, 2002.

[4] T. Zimmerman, Capturing a-priori knowledge by training two-dimensional deformable
 templates, Ph.D. thesis, EPFL, Switzerland, September 2002.
[5] Gill, P.E. and Murray, W. and Wright, M.G., Numerical linear algebra and optimization,

Addison-Wesley,

	INTRODUCTION
	THE GEOMETRIC IMAGE-ANALYSIS LIBRARY
	
	Invariance

	TEMPLATES
	Implementation
	Performance evaluation

	USE CASES IN ASSEMBLY TASKS
	
	
	
	Original image

	CONCLUSION
	Future work

	REFERENCES

