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Syphon dynamics - a soluble model of multi-agents cooperative behavior
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We consider the dynamics of a “one queue one server” feedback queueing system where the decision
of an agent to use the feedback loop is based upon its waiting time in the system. We investigate
the dynamics for very patient agents and quantify the emerging stable and almost deterministic
oscillations of the queue length. The resulting delay dynamics are due to the experience based
decisions of the agents and find a simple physical interpretation as an auto-siphoning hydrodynamic
device. Using the simplified syphon picture we discuss transport phenomenon in serial networks of
feedback queues including a purging effect of the system and noise induced transport.

PACS numbers: 02.50, 05.40

I. INTRODUCTION

Models able to capture the global behavior of interact-
ing agents attract a strong attention in science, technol-
ogy and in areas where human’s decisions are important
such as finance and management sciences. In this con-
text, Multi-Agents Systems (MAS), i.e. systems com-
posed by an assembly of interacting items responding to
individual decision mechanisms, are rightfully regarded
as prototypes for understanding the global behavior of
elementary societies formed by ”intelligent” members.
Computer simulations are widely used to study such sys-
tems involving a high number of degrees of freedom with
strong coupling nonlinearities and fluctuations. In par-
allel, relatively few models offer a balanced compromise
between the representativeness of the salient features of
the MAS mechanisms together with a sufficient simplic-
ity to allow for an analytical treatment. To focus on such
a solvable model is the goal of the present paper. Our
model involves an elementary decision mechanism based
on the past experience (i.e. the ”history”) lived by each
agent. As time evolves, this personal experience is, due
to his/her mutual interactions with other members of
the MAS, modified and so are the decisions he/she takes.
The present model, partly inspired from [1], describes the
dynamics of the population level of customers in a queue
line waiting for service. The arrival of new customers
and the required service times are i.i.d. random vari-
ables. Once a customer leaves the service, his decision to
return or to quit the system is based on the waiting time
he has spent into the line before service. This type of dy-
namical system belongs to the class of queueing system

with a state-dependent feedback [2]. Despite to its sim-
plicity, this model already offers several salient features
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of the general class of MAS described in [3]. Indeed the
waiting time of each agent (i.e. each customer) is the
internal degree of freedom on which the customers deci-
sions – return or leave the system – are taken. The re-
turn mechanism (i.e. the feedback feeding of the queue)
is intrinsically nonlinear. The customers perceive their
environment by measuring their individual waiting times
in the system and then, based on this measure, act au-
tonomously. They exhibit a proactive behavior as they
permanently auto-regulate the queue length to avoid ex-
plosion while trying to keep permanently the server in a
busy state. Our system exhibits an emergent dynamical

behavior materialized here by stable oscillations of pop-
ulation level in the waiting room. In the limiting regime
characterized by an assembly composed of very patient
customers, an analytical discussion of the dynamics is
possible. In this limit, the law of large numbers apply
and imply that the dynamics obeys to a deterministic,
nonlinear evolution. A similar reduction to determinis-
tic evolution has also been identified in [4] where a MAS
composed of ”bullish” and ”bearish” financial agents in-
teract. For the model to be presented here, the resulting
deterministic dynamical system can further be identified
with an auto-siphoning hydrodynamic device. We shall
refer to this dynamics by speaking of the siphon dynamic

model (SDM). This elementary representation enables to
intuitively guess most relevant features of the evolution of
the underlying highly non-linear system. In addition, the
simplicity of the basic model directly suggests to study
the collective behavior of several SDM coupled via a net-
work. Here, we shall focus on the flows travelling in a
cascade of coupled SDM.

II. BASIC MODEL

We consider a queuing system with feedback composed
of a waiting room W with infinite capacity, a server fa-
cility S and a feedback loop (Fig. 1). The inter-arrival
times of external agents (i.e. agents coming from outside
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FIG. 1: Sketch of the feedback queue. The routing of an agent
i leaving the server S depends on the time spent in W plus
the service time. If the time exceeds a patience threshold Pi

the agent leaves the system. Otherwise he uses the loop L.

and not from the feedback loop) into W are the outcomes
of independent drawings of a positive random variable A
distributed according to a given probability density a(t).
We suppose A to have finite mean and set:

1

λ
:=

∫
∞

0

ta(t)dt. (1)

Similarly, the inter-departure times from S, {dj}j∈N, are
the independent realizations of a positive random vari-
able D. We suppose D to be independent of A, to be
distributed according to a given probability density d(t)
with finite mean and set:

1

µ
:=

∫
∞

0

td(t)dt. (2)

We further assume the relation λ < µ to hold which
ensures stability of the queue. The queueing discipline
is “first in first out” such that the ith agent (coming
from outside or from the loop) lining up in the waiting
room is also the i outgoing agent. Immediately after
an agent i receives service at S, he compares his system
time Wi (i.e. the time spent in the waiting room plus the
service time) with his patience factor Pi, the ith outcome
of a positive random variable P with density p(t). We
suppose p(t) to be supported on an interval [Pmin, Pmax]
where 0 < Pmin ≤ Pmax < ∞ are two parameters of the
system dynamics.
Let us now fix the routing of agents in the feedback queue
and hence, the dynamics of the system. Immediately
upon finishing service, agent i adopts one of the two fol-
lowing alternatives:

(a) leave the system forever if Wi > Pi,

(b) line up once again and without delay in the queue
(by using the feedback loop) if Wi ≤ Pi.

We say that agent i is satisfied by the service if he adopts
decision (b) and is unsatisfied if he chooses (a). Note that
if agent i opts for decision (b) he joins the queue as agent
number j for some j > i (i.e. the agents memory is
cleared after every decision).
Despite its apparent simplicity, this feedback dynamic of-
fers a rich variety of behaviors including self-organization
of the traffic intensity and stable queue-length oscilla-
tions. The origin of these behaviors is due to the facts

that 1) the feedback routing induces correlations between
the input and output process of the queue and 2) the
routing decision ((a) or (b)) at time t of an agent i de-
pends on the systems history up to time t − Wi. The
key feature is that satisfied agents drive the system into
states where it produces unsatisfied agents and vice versa.
This generates clusters of unsatisfied agents decreasing
the waiting line followed by clusters of satisfied agents
crowding the waiting line. This behavior self-organizes
the traffic intensity of the server to oscillate around the
critical value 1 and is remarkably stable whenever

Pmin � 1/µ. (3)

This relation is supposed to be satisfied from now on.
The stability of the oscillations results from the law of
large numbers which reduces the relative fluctuations of
the waiting time Wi. To see this, let N(t) be the number
of agents in the system at time t (i.e. the agents in the
waiting room plus the one in service at time t). Observe
that the waiting time Wi of agent i entering at time t
into the waiting room satisfies:

1

N(t) − 1

N(t)−1
∑

j=1

dj ≤
Wi

N(t)
≤

1

N(t)

N(t)
∑

j=1

dj (4)

which, due to the law of large numbers, converges for
N(t) → ∞ almost surely to 1

µ
. Therefore, for large N(t)

we have:

Wi ≈
N(t)

µ
(5)

with high probability. Hence, for N(t) � Pmaxµ eq. (5)
applies and we have Wi > Pmax i.e., incoming agents
will, with high probability, take decision (a).
For fixed N(t) = n, one can alternatively write:

n∑

j=1

dj = Pmin

( 1

Pmin

Pmin∑

j=1

dj −
Pmin − n

Pmin

1

Pmin − n

Pmin∑

j=n+1

dj

)

.

Invoking the law of large numbers for Pmin → ∞, we
have for Pminµ � N(t):

Wi ≈ Pmin

( 1

µ
−

Pmin − N(t)

Pmin

1

µ

)

= N(t)
1

µ
(6)

with high probability. Hence for Pminµ � N(t) we have,
using (6), Wi < Pmin i.e., incoming agents will, with high
probability, take the decision (b). The simulation exper-
iment presented in Fig. 2 indeed exhibits for large Pmin

stable oscillations (i.e. a limit-cycle type of dynamics).

A. The syphon dynamics with deterministic

patience parameter

Here we focus on the simple case where all the agents
do have the same patience factor P := Pmin = Pmax.
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FIG. 2: Simulations of the queue length N(t) during more
than 14000 outflow events. A and D are exponentially dis-
tributed with parameter λ = 0.1 and µ = 1. The pa-
tience parameter P is uniformly distributed over the interval
[Pmin, Pmin + 10]. Parameters: Fig. (a) Pmin = 50, Fig. (b)
Pmin = 100, Fig. (c) Pmin = 200, Fig. (d) Pmin = 350. Note
the stabilization of the oscillations with increasing Pmin.

The following simple deterministic dynamics captures the
essence of the original queueing system (see Fig. 3.A):
starting with N(0) = 0 the queue length grows linearly
with speed λ up to N = Pµ + Pλ and decreases linearly
with speed µ−λ > 0 until N(t) reaches the value Pλ. The
amplitude ∆ of the oscillator is ∆ = Pµ and the period is
π = P

(
2+ λ

µ−λ
+ µ−λ

λ

)
. The switches between increasing

and decreasing states is triggered by the agents leaving
S which, at the moment of arrival, have seen exactly
Pµ agents ahead waiting in the queue. The resulting
delay dynamics admit a simple and enlightening physical
realization as an auto-syphoning system without feedback

sketched in Fig. 3.B. We call this system the syphon
dynamic model (SDM).

B. The syphon dynamics with individualized

patience parameter

Let us now focus on the more realistic case where the
agents patience factors Pi are individualized by fixing
them at random according to the outcomes of iid random
variables with values in [Pmin, Pmax]. We restrict however
the individual character by imposing η := Pmax−Pmin

Pmin

<

1/2, a restriction to become clear in eq. (8). The main
difference to the former case is that now the amplitudes
∆ of the oscillations (i.e. the cluster length of unsatisfied
agents) depend not only on µ but also on λ (see Fig. 4.A).
To see this, let i denote the first agent which upon arrival
into W sees exactly Pminµ agents ahead. Consider the
two following regimes of the external traffic parameter
ρ := λ/µ: (1) the low regime quantified by ρ < 1/(Pminµ)
and (2) the high regime quantified by η < ρ < 1. In
case (1), the queue length perceived upon arrival changes
slowly and when i leaves S the queue length is, with high

Fig. 3.B
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FIG. 3: A. The agent entering at t0 is the first one of a whole
cluster C of unsatisfied customers and triggers the switch of
N(t) from the increasing to the decreasing state at t0+P . The
last agent belonging to the cluster of unsatisfied customers C
is the one entering just before t1 and triggers the switch of
N(t) from the decreasing to the increasing state at t1+P. This
simple delay dynamic repeats and creates stable oscillations.
B. The syphon model. The queue length corresponds to the
water level N(t). The inflow and outflow rates are λ respec-
tively µ. The syphon leaves a water residue of hight Pλ due
to the constant inflow during P . The effective syphon length
is Pµ.

probability, still equal to Pminµ + 1. Therefore, in the
case (1) the mean number of unsatisfied agents is well
approximated by:

∆min =
(
Pminµ + 1

)
Prob

(
P < Pmin +

1

µ

)
. (7)

This corresponds to the minimal cluster length ∆ because
a single unsatisfied agent decreases the line to Pminµ ex-
cluding the creation of new unsatisfied agents (provided
meanwhile no external entrance occur).
If the external traffic is high, the queue length changes
rapidly and grows beyond Pmaxµ. Already after (Pmax −
Pmin)µ

λ
units of time measured from the moment agent

i entered into the system, the entering agents will see
more than Pmaxµ agents in the line. After another time
T := Pmin − (Pmax − Pmin)µ

λ
agent i reaches the server.

During this time only satisfied agents left the server and
∆T := T (λ + µ) agents entered into W . All of these ∆T

agents will certainly quit the system upon arrival at the
server. A direct calculation shows that:

ρ >
η +

√

η2 + 4η

2
⇒ ∆T > Pminµ. (8)

Therefore, in the high traffic case ρ > η, the cluster
length ∆(ρ) of unsatisfied agents is larger than Pminµ.

III. NETWORKS OF SYPHON STAGES

The simple syphon model allows to discuss transport phe-
nomenon in networks of feedback queues. Here we re-
strict ourself to feedback queues where the outflow from
system n is the inflow to system n + 1 (Fig. 5).
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FIG. 4: A. In contrast to the deterministic case, the ampli-
tude ∆ now depends on λ. ∆ increases monotonically with
the external traffic intensity λ

µ
from a mean minimal value

∆min to a mean maximal value ∆max = E(P )µ, a behavior
observed by simulations. B. The syphon model is still ad-
equate for Pmin large and (Pmax − Pmin)/Pmin small. The
value Pmax −Pmin plays the role of maximal water level fluc-
tuations and the condition (Pmax−Pmin)/Pmin � 1 says that
these fluctuations are small with respect to the syphon depth.

A. Serial coupling of syphons with deterministic

patience parameter
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FIG. 5: The serial coupling of identical feedback queues. For
large P = Pmin = Pmax, the analogy with the syphon model
applies and the linear network is seen to create a periodic
pumping of water with speed 1 syphon/P .

We suppose P := Pmin = Pmax. The first syphon is
filled at a rate λ and is periodically discharged during
P µ

µ−λ
at rate µ−λ according to Fig. 3.A. During such a

period, say πd, syphon 2 is filled at rate µ and starts to
overflow at time P – thereby stabilizing the water level
and wetting syphon 3. At the end of πd, syphon 2 is
during time π − πd not feeded anymore by syphon 1 and
starts to discharge all the water into syphon 3 at rate
µ. This scenario repeats at the next discharge of syphon
1. The so created water-clusters propagate with speed 1

syphon/P (Fig. 5).

B. Serial coupling of syphons with individualized

patience parameter

The random patience parameter P takes now values in
[Pmin, Pmax]. Syphon 1 is periodically discharged during
∆(ρ)
µ−λ

at rate µ−λ. Depending on the cluster length ∆(ρ)
(Fig. 4.A) two repeating outflow scenarios occur:

1. for ∆(ρ) ≤ Pminµ syphon 2 will not overflow
and the water remains in syphon 2 until another
avalanche triggers the overflow of syphon 2. When
this happens, the length of the coalesced clusters
is big enough to trigger overflows in every down-
stream syphon and hence purges the whole system
(i.e. residual water trapped in any downstream
syphon(s) is collected by the propagating cluster
which leaves behind nothing but dry syphons).

2. for ∆(ρ) > Pminµ syphon 2 is likely to overflow.
The cluster length ∆ ∈ [Pminµ, Pmaxµ] however is
critical as water may get trapped in syphon 2 and
syphon 3 can not overflow anymore. Generically for
∆(ρ) > Pminµ, the first cluster leaves droplets of
water (corresponding to patient agents) in the first
few syphons and is trapped as soon as its length
drops below Pminµ. As ρ > 0 succeeding travel-
ling clusters form. They produce, together with
the trapped water, an overflow of syphon 2 and
triggers the avalanche of a big cluster which purges
the whole system.

In both cases sufficiently large clusters which can prop-
agate downstream are formed. The propagation speed
is random between 1 syphon/Pmax and 1 syphon/Pmin

with mean 1/E(P ) and succeeding clusters can coalesce
to form bigger ones. As big clusters purge the system, the
following long run scenario is independent from any ini-
tial distribution of water clusters in the network: Away
from syphon 1, syphons always change between wet and
dry states and the wetting periods, which increases with
the cluster size, increase with the distance to syphon 1.
Besides this clearing effect of the initial condition let us
mention the possibility of noise induced transport. For
ρ = 0 and for a given quantity of water in syphon 1, the
fluctuations can indeed induce transport whenever the
noisy water level is able to trigger the syphoning effect.
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