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Abstract— We study the Whittle’s relaxed version of the
continuous time, discrete and continuous states space Rest-
less Bandit problem under the discounted cost criterion. Ex-
plicit expressions for the priority indices, which generalize
the Gittins indices, are derived. This formalism is then used
in the context of flexible make-to-stock production manu-
facturing to construct dynamic scheduling rules. These an-
alytical results are finally compared with the numerically
derived optimal policy, obtained for a server delivering two
types of items. It is observed that the Whittle’s relaxed
version of the Restless Bandit model yields nearly optimal
dynamic scheduling rules.
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I. INTRODUCTION

Consider the following classical problem of a multiclass,
make-to-stock production system subject to breakdowns
and repairs:

A machine is able to produce N different types of items,
finished items are stored into IV different respective finished
good inventories (FGI). Write

X(t) = (X1(),..., Xp(®),...,. Xn@t) € QY cRY (1)

to describe the net inventory process characterizing the
population levels in the FGI’s at time ¢. The negative
values of X (t) describe the presence of backorder (i.e. de-
mands that cannot be immediately satisfied). Let us as-
sume that we can schedule the production facility by using
a “bang-bang” type control variable

a(t) = { (wn(),...,un(®) 5 un(t) € {0,1} }

i.e. for the machine in its operating state u(t) = 1, means
that the production of the items of type k is engaged and
ug(t) = 0 means that no item of type k is produced. Note
that ug(t) = 1 does not imply that the machine is actually
producing an item of type k, it can indeed be failed.

and

D(t) = (Dy(t),...,Di(t),..., Dn(t)). (3)

The Py (t) are independent random processes which model
the controlled production rate for the items of type k and
the Dy (t) are independent random processes which model
the demand for the items of type k. Moreover, the Py(t)
processes satisfy the constraints:

0 < Pi(t) <Cr(t), t>0, k=1,...N,

where Ci(t) € {0,c,} denote the stochastic total produc-
tion capacity processes of the failure prone machine. Here
we assume the Cg(t) to be alternating Markov renewal pro-
cesses (i.e. two states Markov processes). For an item of
type k the value Ci(t) = ¢ is its maximal instantaneous
production and Ci(t) = 0 represents the failure state of the
machine.

We impose the following conditions on the controlled pro-
duction process P(t):

a) The production is non-preemptive (i.e. the machine
must finish the item it is currently producing before start-
ing a new one).

b) The production facility has a limited capacity. Accord-
ingly it can engage, at each time, the production of only a
single item (i.e. at each time ¢t € RT, at most one of the N
controls u(t) equals to one).

In order to schedule the production, we introduce a
scheduling policy 7, which is a mapping;:
T QY

Xt

- {0,1}%
| ’[Z(t).

_ The function (t) defines which type of item the machine
Both, the instantaneous controlled production rate P(#$)engaged on at time 2.

and demand rate ﬁ(t) are supposed to be independent,

stationary Markovian random vector-processes defined ddefinition (Admissible policy):

a probability space (€, F,P). We shall respectively write:
P(t) = (Pu(t), ..., P(t),..., Pn(1)) (2)
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A policy 7(t) is admis-
sible if it depends only on the past and on the present state
of the random net inventory process X (t).

We shall only consider in the sequel admissible policies for
which P(t) and @(t) fulfill both conditions a) and b) above.
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The set of admissible policies will be denoted by U. needed to characterize the dynamic of the processes Xy (t).
We can indeed initially change the production engagement,
Given a policy m € U, let us denote the cumulated produsithout incurring setup penalties. The explicit mention of

tion up to time t by the initial state iy will hence be omitted in the sequel.

In absence of setup penalties, we will see that the formalism
given by the so called “Restless Bandit” problem (RBP) is
relevant to model the scheduling of flexible production sys-
tems (the RBP formalism was first discussed by P. Whittle
[21]). Finding the optimal scheduling rule for a flexible pro-
duction then essentially amounts to find the optimal policy
for the RBP. In section II, we will observe, that the absence
In terms of 73,T(t) and ﬁ(t), the net inventory process c&f setup penalties enables to approximately decouple the
therefore be expressed as: original N-armed RBP into N single-item make-to-stock
. . . production processes [21]:

X(t) = Px(t) = D(t), (4)

Pr(t) = /Ot P(t)dt

and the cumulated demand up to time ¢ by

D(t) = /Otﬁ(t) dt.

Xi(t) = Pr(t) — Di(t), k=1,...,N, (6)

with the initial conditions
for which the scheduling policy is much easier to determine.

In fact, the decoupling into single production processes en-
ables us to construct indices vg(zy), similar to those pro-
Let us further introduce the instantaneous running cogpesed by P. Whittle in [21], from which a so called “Priority

X(to) =Ty € o and ﬁ(to) = Up.

101

h(X (t),i(t)) associated with the global state of the nitdex policy” can be derived.

inventory X (¢) and the production engagement (¢):

b QN x {01}V - Rt

(X (). @) WX (1), (1)) = (h](z1),..., hiy(an)),

where § = a when the production of the k-type items is
engaged in the state x; (i.e. ug(t) = 1) and § = p when
the production is switched off (i.e. ug(t) = 0).

Assuming an infinite time horizon, we define, for an initial
condition (Zy, o), the total production cost J™(Zo, o) un-
der policy 7 by:

J7(Fo, o) = i, a0, / (R (), d0) dt, (5)
0

with EZ - denoting the expectation operator, conditional

to the initial condition (Zy,o). The term e~% > 0 is a
discounting factor. Clearly, the integral in Eq.(5) does not
converge for arbitrary cost functions h(Z, ). In the follow-
ing, we assume that h(Z, @) satisfies the required regulari-
ties conditions, to insure that Eq.(5) exists V& € U and all
initial conditions.

The optimal control problem is to determine the optimal
policy 7* minimizing the total production cost given in
Eq.(5). The value of the production cost under the optimal
policy 7* will be denoted by:

J*(Zo,do) = J™ (2o, o) = inf J™(Zo, @o).-
TeU

In the following, we shall focus our attention to problems
for which the set-up costs and/or time delays, often
needed to switch the production from one type to another,
are negligible. Hence, the initial condition g is not

Definition (Priority index policy)

A priority index
policy is a scheduling rule, based on the existence of indices
vi(zy), depending only on the inventory state X (t) = xi
of the items of type k. In terms of the vy (xy), the priority
index policy commands: “At each decision time, engage
the project exhibiting the smallest index value vy (xy)”.

Remark: For the scheduling production problem, an in-
dex vn41(z) will be be introduced to take into account the
fact that the machine can be idle. In the following, we will
call this index “the idle index”. When this idle index is
smaller than all the other indices, the machine does not
produce any item.

For the general k-items scheduling problems, similar de-
coupling approximation methods form the core of several
recent contributions such as [14], [17], [18], where priority
index policies are shown to provide suboptimal, but effi-
cient, scheduling rules. In particular, in [17], the authors
use the RBP to describe an heuristic scheduling rule for a
multiclass, make-to-stock M /M /1 queuing system working
with lost sale and under the time average cost criterion (i.e.
d=0).

Remember that priority index policies have been shown
to give optimal rules for the class of Static Bandit problem
(SBP, also called Classical Bandit problems), characterized
by the fact that when not engaged, the projects remain
“frozen” (i.e do not evolve in time) and are costless (i.e.
h{(z) = 0). A detailed account for the SBP can be found
in [2]. The “frozen” assumption is however not fulfilled for
the multi-class production systems we are dealing with. In-
deed, even unserved, the demands continue to accrue and
hence the global state of the system is in permanent evo-
lution (i.e. the net inventory of an item not currently pro-
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duced, evolves with time). In this case, the scheduling of
a flexible production naturally belongs to the class of the
RBP. Contrary to the static case, it is known that for the
RBP, any priority index policy yields only suboptimal, yet
often efficient, scheduling policies. Several basic difficulties
inherent to the RBP stimulate an ongoing research activity
([11] and [12]), in which basic questions such as:

« How to calculate the priority index, for specific produc-
tion and demand stochastic processes ?

« How far from the optimal solution is a priority index pol-
icy when RBP are considered 7

are addressed. Due to their simplicity, the scheduling rules
based on priority index policies are very appealing for ap-
plications at the shop-floor level. It is therefore important
to study explicitly some tractable situations. This is the
approach adopted in the present paper, where priority in-
dices are calculated to schedule allocation problems of the
RBP-type.

Qur paper is organized as follows: in section II, we present
the general theory of the continuous time, continuous states
space, Restless Bandit together with the Whittle’s relax-
ation principle. In section III, we perform explicit calcula-
tions of the priority indices for several underlying random
dynamics, including the diffusion processes in section IT1I-A
and the Markov chain processes in section ITI-B. We derive
new explicit expressions for the priority indices which com-
plete former results obtained in [7] and [5]. In section IV,
the results of section III are applied to the specific make-
to-stock production context. Finally, section V is devoted
to numerical illustrations.

II. THE WHITTLE RELAXATION FOR THE CONTINUOUS
TIME, CONTINUQOUS STATES, DISCOUNTED “RESTLESS
BANDIT” PROBLEM

First, we briefly present the basic formulation of the con-
tinuous time, continuous state space version of the multi-
armed Restless Bandit problem (RBP), along the lines pi-
oneered by P. Whittle [21].

Consider a collection of N projects (i.e. N dynamical sys-
tems):

Xi(t) €ER, k=1,2,...,N.

At each instant t € Rt exactly M < N projects must
be engaged (i.e. must be in their active phase). If at time
t, the project k is in state Xy (t) = z, and is engaged, then
an active running cost hj\(xy) is incurred and the project
evolves following an active transition probability. We sup-
pose in the following that the X}, (¢) are stationary Marko-
vian stochastic processes and we use the notation:

P (Xk(t +di) ‘ Xu(b), a)

to describe the transition probability, where a indicates
that the active action is selected. The running cost is dis-
counted over time by a factor e %. This means that the
present value of one unit of tax, equals e~% when received
t units of time in the future.

The other N — M projects remain disengaged (i.e. remain
in their passive phases). They generate passive running
costs h¥(z;) and evolve according to stationary Markovian
transition probabilities:

Py (X5t +dt) | X(0).p).

where p indicates that the passive action is taken. The
passive costs are discounted by the same factor e 9.

Projects are to be selected for operation according to an
scheduling policy m € U (U is the set of admissible policies).
We write .
X(t) = (Xu(8),..., XN (1))

for the state of the system at time ¢. As noted in section I,
the absence of switching penalties implies that the initial
condition iy € {a,p}” is not necessary to characterize the
evolution of X (¢). Then the general problem, for a given
initial condition

X(0) =7 = (29,...,2%),

is to compute, on a infinite time horizon, the optimal
scheduling policy 7* which minimizes the total expected
discounted cost

J* () = min EZ
(o) = min Ez,

oo N
| aee as| . ()
0 k=1

The index II(¢) € {a,p} denotes the operating state (i.e.
active, passive) of the project k at time ¢ when the policy
m is adopted. The operator EF ~denotes the expectation,
under policy 7, conditional to #y. Moreover, the optimiza-
tion of Eq.(7) has to be performed under the constraint
that exactly M projects are engaged at each time ¢.

Let us define the action function:
R = {

and

1 if the project k is active at time t,
0 otherwise

In(t) = 1 - I.(t).
In terms of I (t) and I;(t), we can rewrite the RBP as:

(J*(Zo) =
N
min E7 [ I >0 W (Xe () I (t)e~ % dt+
TEU 0 k=1

RBP = Ji° & G @)D (0e

subject to the constraint

N
S I(t) = M, Vi>0.
k=1

L
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The complexity of the RBP as exposed above has been
shown in [13] to be PSPACE-hard. To solve this type of
problems, one therefore relies, in general, on approxima-
tions. P. Whittle proposed in [21] an approximation scheme
know as the Whittle’s relazation problem (WR), which con-
sists in relaxing the requirement that exactly M projects
must be active at each time ¢, to the weaker requirement
that M projects must be active on average. Accord-
ingly, the WR reads as:

TV (&) =
N
mig 73, |15 & BOGO) T (0 dr+
7r k=1

J5 55 BOG Tt

WR

subject to the constraint

N
Bz, [fo ;Ii(t)e_étdt} 'y

(8)

From the definition of the action function Iy (t), we have:

N
® = - N-—M
/ > Ik(t)e_‘”dt] = )
0 6
k=1

Along the lines pioneered by P. Whittle, we use the La-
grangian multiplier formalism to solve the problem (8).
Accordingly, the Lagrange function J"W (Z,~) associated
with Eq.(8) reads as:

Ky
Efo

N
T (@) =Y S - (N =M ()
k=1
with
T = min [ 5 R OX () Tu(t)e e
' (10)

+ Jo S (W (X () + ) Ik (e~ dt .

Clearly the problem given in Eq.(8) is now decoupled into
N single-project subproblems J*(x,7) of the type given
in Eq.(10). Following [12], we interpret the multiplier v as
playing the economic role of a constant tax incurred when
not producing. Each single problem of the type arising in
Eq.(10) is known as a y-penalty problem.

The single armed RBP that results from the decoupling
belongs to the class of stationary Markovian decision prob-
lems [15]. It has been proved that, for these problems, the
optimal policy is stationary [15] (i.e. it only depend on
the state xy of project k). We can therefore define the set
Ok () C R containing all the states x € R for which it is
optimal to take the active action in the y-penalty problem
(10). In terms of the set Og(7), the following structural
property is essential:

Definition 2 (indexability): We say that problem (10)
is indexable if the set O (7) increases monotonically from
the empty set to the full state space as the tax  increases
from —oo to +oc.

Note that when the problem defined by Eq.(10) is index-
able, it follows from Definition 2, that indices vy (z},) exist,
for each z; € R The values vg(xy) correspond to the
smallest values of 7 for which z; € Og(y). The indices
vi(zg) can be used to characterize the optimal solution of
the y-penalty problems for each value of v € R as follows:

Take the active action in all states zy, for which v > v (xy),
and the passive action otherwise.

Hence, given the tax -y and being in the state ., vy (z) is
the unique breakpoint where both the active and the pas-
sive actions are optimal. In other words, the index v (xy)
is the smallest value of v that would make the active action
suboptimal in the state xy.

From now on, we shall focus on indexable RBP’s. Under
this assumption, we shall propose a derivation of the in-
dices vg(zy), k=1,..., N, for the decoupled single-armed
RBP and we will construct an associated heuristic schedul-
ing rule.

A dynamic programming argument (see [22]), implies that
the optimal cost function J*(29,~) fulfills the property:

inf

(11)
+ 28R 4 1(0,10).74 (29, 7)] =0,

where L(f,t9) is the infinitesimal generator of the con-
trolled process (see [22] chapter 4, p.177).

For notational ease, we define J}(22,v) to be the solution
of:

[ (Xa(t0)) = 6.7% (29, )+

BJ’C(ani?ca’Y) + L(e,tO)Jk(wg,’y) — 0,

i.e. J¥(29,7) stand for the minimum discounted cost, when
it is decided to take action @ for the project k, at time ¢.

As we assumed the indexability of the 7y-penalized prob-
lem, the index value vg(2?), for the project k in the state
X1,(0) = 29, will be the minimal value of v such that:

Ty (23, 7) = Ty (23, 7) & Jg (e, ve(a})) = Jf(ﬂfiﬂ/h(ﬂf(%)))-

12
By deriving the index value for each initial condition z; €
R, we get the index function of project k:

v, : R — R
T l/k(él?k)
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As a result, we set the generalized heuristic schedul-
ing rule proposed by Whittle for the multi-armed Restless
Bandit problem, as:

Definition (Whittle heuristic): Suppose that each
project £k = 1,...,N, of an RBP is indexable, then the
Whittle heuristic commands: engage at each time t the
M projects exhibiting the M smallest index values vy (zy)
where z, = X (t).

Note that when v is fixed, the optimal discounted cost
J¥(zk,7) is equal to J¥(z,v) for each z; € Op(y) and
is equal to J;f (zk,) elsewhere. In order to entirely define
the optimal discounted cost J*(z,~) in terms of J* (zy,~)
and J¥(xy,7), it remains to fit J* (zy,~) and J} (zy,) on
the active/passive boundary (i.e. the boundary of O(7)).
In the following, we shall use a “smooth-fit” principle:

Definition (Smooth-fit principle): Suppose that x is
on the active/passive boundary. Then the smooth-fit of
J¥(xk, ) and J¥(zk,7) reads as:

¥ (xr, ) = TE (2r, ),

d 7k _ d 7k

Ny =47

dz a(wa’)/) P dx p(zar)/) m::vka (13)
L Ii@)| =Tk,

dz? =z — dz2Yp Y =a

Remark: When the evolution of the Xi(¢) are given by
diffusion processes, the smooth-fit principle yields the op-
timum (see section 3.8 of [16]). This is not necessarily so for
cases where non-diffusive processes occur. We will, in this
paper, systematically use the smooth-fit principle to derive
the indices and we will verify a posteriori, (appendix D),
that this principle yields optimal results for the markov
chains dynamics considered in section IV-A.

III. EXPLICITLY SOLVED EXAMPLES

The explicit calculations of the priority index for an arbi-
trary underlying stochastic process, is generally an elabo-
rate exercise. Let us now explicitly calculate this index for
several simple types of dynamics. Some of the expressions
derived in this section will later be used in the production
engineering context.

For general processes X (t) and arbitrary cost functions
h(z), 6 € {a,p}, the indexability of the y-penalty prob-
lem (10) is not guaranteed. Accordingly, we shall proceed
in a first step by assuming that the processes X (t) and the
cost functions hf(z) possess the required properties to en-
sure the indexability. In a second step, we will verify that
indexability indeed holds for the particular choices made.

As an introductive illustration, we develop in appendix A
the derivation of the index for a deterministic RBP.

A. One-dimensional RBP with diffusion dynamics.

As only single-armed Bandits are considered in this section,
we will omit the item index k. Consider now the situation
where the project X(t) is a diffusion process solving the
stochastic differential equation:

dX (t) = p(X(@))dt + (X ())dW (2),

with dW (t) a White Gaussian noise process. The drift term
1(X (t)) and the variance o (X (t)) obey to:

(14)

(X (1) = le > 0 if the active action is chosen,
" | #p <0 if the passive action is chosen,
respectively:
| o, if the active action is chosen,
o(X(#) = { o, if the passive action is chosen.

Using the Ito formula, Eq.(11) can be written in the form
(see for example [6]):

1028 Jo(@, ) + fast Jo(2,7) — 8Ja(,7) + ha(z) =0,

'Y) - 6JP($77)+

hy(z) +

2
3024 Tp(@,7) + pp e Jp (a,

Due to the linearity of Eq.(15), its general solution is:

Ja(z,7) = Ce ™% 4 Oy €% ® + S, (z,7)

and

Ip(z,7) =

with the notations:

C’;'e_w;r”” +Cer* + Sp(x,7),

\/,u(, + 2609 + ,ug
3

3 2
s+ 2605 —
_ Hy Oy — Mo >0

2
Oy

and Sp(z) are the particular solutions of Eq.(15) corre-
sponding to engage [respectively disengage| the project Xy
forever [6]. We obtain:

z,7) fO

So(z,7) e thy(x(t)) dt =

— 2 —wta ery
_oz<w;+w;)[ ’ f ho(y) eV dy+

o ® f(ha(y) + vLo=p)

T

I = 1 if 8 =p,
I=r=1 0 ifd=a

and the C;' and C, are integration constants.

e~ve Vdy|,

with
(16)
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From the fact that pu, > 0, p, < 0, we can check that
w; > 0 and that w, < 0. Moreover, if 2o = +oo the
optimal discounted cost is reached by remaining passive
forever. Similarly, when xq = —oc the optimal discounted
cost is reached by remaining active forever. This implies:

Jim Jp(@,9) = Syl@,7) = € =0
and
lim Ju(z,7) = Sa(@,7) = C; =

Using the smooth-fit principle described in Eq.(13), we can
write, after straightforward but lengthy algebra, the index
v(z) in the compact form:

S ot
v(z) = 71”;11]}20202 [Ié’az 7(1”“1”;”") + I{o?2 7(%10;” Ly
hy(z)02 — ha(x)ag] .
(17)
where:

[ee]
A Z/ ho(z — iJr)fydy
0 Wy

and

oo
129:/ ho(z + —L) e~ Vdy.
0 Wy

Remark: When h,(z) = 0, yu, = 0 and for the limit
op — 0, the RBP converges to the static Bandit problem
for which the passive project remains “frozen” and does
not incur cost. In this limit, the index given by Eq.(17)
converges directly to the result derived by I. Karatzas [6],
for a static single-armed diffusive Bandit, which reads as:

1 [
Vclass(z) = g/o ha(.’E + %)e_y dy.

Wq

B. One-dimensional RBP with continuous time Markov
chains

Let us now consider the case where the processes X (t)
is a birth and death process (i.e. a continuous-time and
discrete state Markov chain for which Xy (t) € ZY). As-
sume that the holding time between the transitions from
the state x to x 4+ 1 is exponentially distributed with pa-
rameter p, when the active action is chosen and p, for
the passive action. Conversely, for the transitions from the
state x to z—1, the parameter is A\, for the active action and
Ap for the passive action. We impose that p1, > A, and that
tp < Ap. In other words, the time average of the process
X, (t) increases when active and decreases when passive.
The associated running costs rates are hg(z), 6 € {a, p}.

Lemma 1: Under the above assumptions and following the

optimal policy 7*, Eq.(11) takes the form:

(0Ja(2,77) = ha(z) + Aada(z — 1,7) + pada(z + 1,7)+

—(Aa + pa)Ja(z,7)

¢
6Jp(5l7a’)/) = hp(x) + )‘pJp(lU - 1,7)+ l‘pJp(lU +1,9)+
(Ap + pp)p(2,7) +
\ if 7*(X(0) =z) =p.

(18)
Proof Assume that 7*(X (0) = x) = a, then the first order
time expansion of Eq.(11) reads as:

Ja(ma/}/) = fha(l') + (1 - 66)

EXaa (0= 1,7) +Epta a2+ 1,7) + (L= €0 = ) Ja(2,7)]-

Neglecting the terms of order O(£?) in the above expansion
yields the required result. A similar expression can also be
directly derived when 7*(X(0) = z) = p.

O

Due to the linearity of Eq.(18), we have:

Jo(z,
Ip(z,

Y) = Cot (WH)* + Co= (wy )" + Sa(z,7),
7) = Cpt (w))* + Cp— (w,)* + Sp(z,7),

with Cy+ and Cy-, 8 € {a,p}, being integration constants,

wt = (5+>\9+uo)+\/(5+>\o+u9)2—4>\ouo
6 — 2pe

- (5+>\e+us)7\/(5+>\0+Hs)2*4>\0u0
Wy = 2

and Sg(z,7), Sp(z,7) being the particular solutions which
correspond to remain active [respectively passive] forever.
We derive S, (z,7) in the appendix B and obtain:

(wg)*

5 ha) @ 5 )

k=z+1
A calculation along the same lines yields:

Sp(x;’)/) = +1

wp(wp —wp )

{ i) 421+

z—1

w7) T (gl +)(u7) 4+
wp) S <hp<k>+w><w;)k}.
k=xz+1

For consistency, it is required that the total cost incurred,
when  — —o0, equals the cost incurred when engaging the
server forever. Respectively the total cost incurred, when
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x — 400 equals the cost incurred when letting the server
be idle forever. Using the property that

0<w, <1<wy,

which is straightforward to establish, these asymptotic be-
haviours imply:

ILm Jp(x,7) = Sp(z,7) = Cptr =0
and
lim Jo(2,7) = Sa(z,7) = Com = 0.

Again, the index v(z) is derived by fit both functions
Jo(z,7v) and Jy(x,7v). We use here a discrete version of
the smooth-fit principle, described in (13) by writing:

L Jo(zo,7) = Jo(z0,7) — Jo(zo — 1,7)

L Jo(0,7) = Jo (2o + 1,7) — 2Jg(x0,7) + Jo(wo — 1, 7).

Explicit expressions for v(z) will be given below for a spe-
cific form of the cost function hg(z).

IV. DYNAMIC SCHEDULING OF MULTICLASS
MAKE-TO-STOCK PRODUCTION.

Let us now apply the general framework of section II to
the production context. The make-to-stock problem can
be naturally formulated as a multi-armed RBP with N +1
projects as follows:

o Identify the positions of the N net inventories Xy/(t),
k=1,2,...N, with the first V projects of the RBP.

o Take the active and the passive cost functions identical
for each item (i.e. hf(z) = h}(z) = hi(z)).

e Add an extra project Xny1(t), called the idling project,
with “frozen” dynamics given by: Xny1(t) = 2., t € RT
Engaging the idling project represents the decision to be
idle.

e Impose, the idling project to incur no cost (i.e.
hN_H(CC)EO).

o Assume the cost vector function to have a piecewise lin-
ear form, namely:

hi ()

where 1t = max(z,0);

= Awzt + By, k=1,2,...N, (19)

2~ = max(—z,0) and Ay, By > 0.

By construction, the index of the idling project is
vny1(z.) = 0. Therefore, following the Whittle heuris-
tic, the machine is left idle (i.e. does not produce any
item) when all indices are positive (i.e. wvi(zx) > 0,
k = 1,...,N). Moreover, when all indices are strictly
increasing, the positions d; € R such that vi(dj) = 0
correspond to the hedging stocks for the type k items,
k=1,...,N.

A. Markovian queue dynamics

Assume that the net inventory process Eq.(4) is de-
scribed by a continuous-time discrete state Markov chain
with parameters Ay and pj. The resulting make-to-stock
problem is identical to the one studied in [4]. Note also
that the contribution [17] discusses a similar problem, but
the optimization is done under the average cost criterion.

Following [17], we apply the standard uniformization argu-
ment given in [9] and the dynamic programming equation,
Eq.(11) becomes:

JH(X) = 155 [h(}?) + k]z_vjl AT (X —ep)+
pJ*(X) + min {0 min (,ukAkJ*( )) }] ,

(20)
with ApJ*(X) = J*(X + e) — J*(X) and ey, is the unit
vector with the k-th component equal to unity,

N
= ml?x{uk} and A=p+ Z)‘i'

i=1

As stated in [17], the form of Eq.(20) suggests that the
optimal policy can be described with switching curves and
hedging stocks. We shall see that the priority index policies
lead to a similar structure and hence the Whittle relaxation
method is suitable to discuss the production problems.

Note first that the policy resulting from the Whittle re-
laxation is intrinsically preemptive, contrary to the make-
to-stock problem (i.e. the machine must complete its cur-
rently engaged item before starting a new one). Hence,
strictly speaking, a direct use of the multi-armed RBP is
not possible. To overcome this difficulty and to neverthe-
less use the RBP in the production context, we will suitably
renormalize the service time to approximately transform
our original problem into a preemptive one. The renormal-
ization process is done by imposing:

+ (1= p)pur, (21

N 1
NkHNk:Pklik‘*'(P_Pk)L_i_T

Hi

Pk = _a p= Pk-

0 Z
In writing Eq.(21), we have used the fact that when the
production priority (derived from the Whittle heuristic) is
to engage the type k production, three alternatives may
occur, namely:

a) The server is already engaged on the type k products
and the average service time is HLk

b) The server is engaged on a production type j # k and
the average service time is -~ 4T} where T} is the average
time needed to finish the productlon of the type j item.
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We denote by T' the average of the Tj.

¢) The server is idle and, as we consider only problems

without switching time, the average service time is Hik

For infinite time horizon, fi; is therefore a weighted aver-
age taking into account the relative contribution of a), b)
and c). The respective weights are determined as follows:

i) The average sojourn time in situation a) is proportional
to the partial traffic pj = 2—2

i1) The average sojourn time in situation b) is proportional
to the global traffic, minus the partial traffic of the k-type
items: (p — py).

i11) The average sojourn time in situation c) is proportional
to the percentage of idle time: (1 — p).

Note that the value of T is bounded:

0<T< (i) _1
Je{l, N} \ 145 1

max

From now on and for simplicity, we shall keep the notation
g for fig.

As we have seen, the application of the Whittle relaxation
enables us to focus on a single item problem, say item k.
Then the ~-penalty given by problem (10) reads here as:

Jk(z, ) = m [hi(z) + AN JF (z = 1)+

peJ* (z) + min{y, pe AJ* (2)}] . (22)

From now on, we can again suppress the index k as the
calculation involve only a single item. To make headway,
we assume that the indexability property holds (we will
verify, a posteriori, that this is indeed the case). Following
the derivation of section III-B, Eq.(11) reads as:

0Ja(z,7) = h(z) + AMa(z = 1,7) + pa(z + 1,7)
_(/\ + /J)Ja(x:’}/)
6Jp(;7) = h(@) + Ap(x = 1,7) = Ap(z,7) + 7
(23)
which is a special case of the system given by Eq.(18) with
pp =0.

From section III-B, we have:

Ja(,7) = Cf ()" + Cp (w-)* + Sa(,7)

24
To(,7) = Cyluo)” + Sy(z,7). 24
with CF, C, C), being integration constants,
_ (OAH )/ (A +p)2—4Mp
Wy = 2u )
(0EM) =/ (6 u)2 —4p (25)
_= 5 )
-
wo = 353

and S,(x,7), Sp(x,~y) are the relevant particular solutions.
Explicit calculations are given in Appendix B, where we
find:

u(07) = sy {1 + (w7 E AEw)

k=—o0

(w ) 3 h<k><w+>—k},

k=z+1

x wa)—*
e D e

k=—o0

Using the fact that 0 < w_ < wy < 1 < w4 and the
asymptotic behaviour of the solutions, we have:

lim_Jo(2,7) = Su(,7) = C; =0.

As before, the index v(z) is calculated with the smooth-fit
principle expressed in Eq.(13). For the piecewise linear cost
function h(x) given by Eq.(19), the corresponding explicit
expressions, derived in Appendix C, read:

( 2Ap—p(A+B)(witw_)(w_)"+u(A+B)(wy—w-)(w-)"
26(0+1) )
ifz>0
v(z) =
__Bu
6(6+1)
L if x <0.

(26)

Remarks:

i) Observe in Eq.(26) that, with the choice of h(z) given
by Eq.(19), the indexability property does indeed hold as
v(z) is monotonically increasing.

ii) When z < 0, the Restless priority index directly re-
duces to the well known Bp policy, which is optimal in
this case [4].

iii) As it is emphasized in [17], the index Eq.(26) does not
exist in the limit 6 — 0 (i.e. v(z) = —o0). In the contrary,
for § > 0, the scheduling policy does not need to serve
a fixed time-average number of classes. Accordingly, for
the relaxed version of the RBP, priority indices exist when
d > 0.

iv) Note that the random time look ahead policy (RTLA)
derived in [4] is also a priority index rules. There is however
no direct correspondence between the RTLA and the RBP
indices as, by the remark i), the underlying optimization
problem are structurally different for § = 0 and § > 0.

v) The asymptotic behaviour:

A
6(6J’:1) when z — +o0,
v(z) = (27)
% when z <0,
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exhibits the structure of the well known B/ Ap policy (see
section V-A below for a more detailed discussion devoted
to this policy).

vi) When the indexability property is fulfilled, the make-
to-stock single item production problem is optimally solved
by the Whittle relaxation. This can be proved as follows:
Consider the two-armed RBP formulation of the single item
production problem and remember that the idling project
does not incur cost. This two-armed RBP is equivalent
to the 7-penalized problem (22) with v = 0. The optimal
policy for this problem is to engage the production in all
states 2 € Z for which v(z) <y = 0. As the idle index is
vn+1(z) = 0, the optimal policy for the v = 0-penalized
problem is therefore equivalent to engage the project with
the smallest priority index. Hence the Whittle relaxation
indeed solves optimally the single item production problem.

vii) For a multi-item production machine, the priority in-
dex policy solves the scheduling production problem only
sub-optimally.

viii) The index v(z) given by Eq.(26) is monotonically in-
creasing. Hence the Whittle heuristic for the single item
problem coincides with a hedging stock policy (i.e. produce
only when the stock level is below the hedging stock), with
a hedging level d* defined as:
v(d*) =0. (28)
The hedging stock policy is known to be optimal for a
single-item production (this is consistent with the remarks
i) and vi) above). Solving Eq.(28) with Eq.(26), we find:

= o (558) w1

ix) Despite to the fact that the smooth-fit principle used to
derive Eq.(28) was not proven to yield the optimal solution,
it here does so. Indeed, the optimal hedging level d* can
be derived by using the approach as explained in [3]. This
alternative calculation, which is performed in Appendix D

yields:
. A 1
d-ﬂ@(z:5>a@jf

Clearly both hedging stocks Eqgs.(29) and (30) are identical.

(29)

(30)

Asymptotic regimes

e In the limit § — 0, we have that w_ — p := % and
therefore:

1 A
limd* =] ——In{——= 1.
330 me“<A+BM
This is the optimal hedging point for the single-item prob-
lem under the average cost criterion, derived in [17].

e When § — 0 and p — 1 (heavy traffic limit), the optimal
hedging stock tends to infinity (i.e. d* — o0). Note that,
such a behaviour does also follow from Eq.(3.7) of [8], when
c—0and y— 0.

B. Diffusive dynamics

Let us finally consider the case where we model the de-
mand respectively the production by diffusive processes fol-
lowing stochastic differential equations:

de(uk(t),t) = Uk(t) [Z/[kdt + Uk,Pde,P(t)] ,k=1,2,...N
(31)
respectively

dDy(t) = Vydt + o, pdWi,p(t), k=1,2,...N, (32)

where dWy p(t) and dWj, p(t) are independent White
Gaussian Noise processes (WGN), U, and Vy, are the drifts
and o}, p and o, p are the variances of the diffusion pro-
cesses.

Using Eq.(31) and Eq.(32), it is straightforward to write
the time evolution of the net inventory X (¢) given by
Eq.(4) in the form:

dXi(t) = Unur(t) — Vi) dt + ox(ur(t))dWi(t),  (33)

where dWj,(t) are standard independent WGN’s for k =
1,2...N, and the controlled variances oy (uy(t)) reads:

oi(u(t)) = (or.p)’ + (u(®)orp)’, k=1,2...N. (34)

Assume again that the running cost is piecewise linear, as
given in Eq.(19). Then for the Whittle relaxation problem,
the value of the index vy () follows from Eq.(17), provided
that the following relations hold:

Pak = (U — Vi) >0,

Hp.k = _vk < 07

2 9y _ 2 2
ook =0r(1) =0} p + 0% p,

Uz,k = 04(0) = UI%,D'

To further simplify the analysis, we will assume that only
the demand process D(t) fluctuates. Hence, we take g =
opk- In this case, we can establish:

Lemma 2: With the above assumptions, the problem is
indexable for every positive convex function hy(x) satisfy-
ing:

/m e 0 hy (X (1)) dt < oo.

Proof: With the above assumptions, the index Eq.(17)
simplifies and reads as (we drop the index k):

y(z):/c/oooe—y [h(ac%—%)—h(w—j—;r)
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with 5 05
K=—— (1— - +)>o.
Wq Wp 02 o2we wp
Hence
Lv(z) =

o _—y[d d
Kfyoem [h(o+ ) - dn (o - )] dv
This last expression is positive as all terms in the inte-

gral are positive. Then the index v (z) is monotonically
increasing and hence the problem is indexable.

O

Lemma 3: When B > A, the hedging stock level d* is
given by

d* = max {0,

A

o’ 1 [(A+B) {““_”P_\/Ng+2502+\/u§+2602}:| }

tip+/ 1242002 2(pra—pp)

(35)
Proof: For the cost function Eq.(19), the index can be ex-
plicitly written as:

if = is positive:

(
# <2A (Ma — Np) +

(hp+y/nZ+2802 )a

v = T 4 B) (o - ) +

L (A+ B)+\/pu2 + 2602 — (A+B),/u%+2502}>

(36)

and if z is strictly negative:

r #<_2B(MG_MP)+

(\/H(21+2502*Ha)2

YD) =) e A B) )+

(A+ B)\/p2 + 2002 — (A+ B) /113 +2502D

(37)
Now when B > A, solving v(z) = 0, with v(z) given by
Eq.(36), gives the required form.

L

O

Remarks:

i) When B = 0 and A > 0, the logarithm of the expres-
sion for d* given in Eq.(35) is smaller than unity and we
consistently conclude that the optimal hedging is located
at 0 (i.e.“just-in-time” production-rule).

ii) The expression form of the hedging point d* given by
Eq.(35) exhibits the same structural form as the one de-
rived by E.V. Krichagina, [8]. Nevertheless, both expres-
sions are not directly comparable. Indeed, the control rules
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considered in [8] are of “regulator” types while the class of
controls considered here are of “bang bang” types. Ac-
cordingly, the local time process on the hedging level are
different. This obviously implies different values of d*.

iii) As in section IV-A, if B # 0 and for a vanishing dis-
counting factor § — 0, the index v(z) does not exist (i.e.
tends to —oc).

iv) The hedging stock given by Eq.(36), in the limit 6 — 0,
is not directly comparable with the result given by L.M.
Wein (1992). Indeed, L. Wein considers the fluid approxi-
mation of the throughput delivered by a failure prone ma-
chine. In this limit, the dynamics converges to a diffusion
process with a reflecting boundary on the hedging point.
Although we do also have a diffusive dynamics, the be-
haviour on the hedging level is not purely reflecting. This
is due to the fact that the drift of our process is dynamically
controlled. We hence deal with a “bang-bang” regulated
diffusive process and the resulting local time process on the
barrier differs from a standard reflecting boundary. Note
however, that in the limit p — 1 and for 6 = 0 both hedg-
ing levels tend to infinity (see [19] page 731).

v) Observe from Eqs.(36) and (37) that we have the
asymptotic behaviours:

%(ua—up)zééu when z — oo
v(z) =
75_2B(/Ja — fp) = _5—231/1 when = — —oo,
(38)
which again corresponds to a BU /AU type scheduling pol-

icy.

V. NUMERICAL EXPERIMENTS

In this section the Restless Bandit heuristic will be com-
pared with the optimal policy calculated by A.Y. Ha [4] for
the two items problem. In a second group of experiments,
we study the case where the machine can produce more
than two different items. The discussion will be based on a
comparison between the RBP and other classical heuristic
policies which we shall briefly recall. In our simulations, the
production rates are all equal (i.e. uyp =p, k=1,...,N),
the discounting factor is § = 0.01, and the net inventory is
empty initially.

A. Review of some priority rules for make-to-stock produc-
tions

The three heuristics that we have studied in our numer-
ical experimentations are:

1) The static hyu/bxp rule (where by is the cost rate
for backorder type k products, hy the storage cost rate for
type k products and puy is the production rate of type k
product) which is as follows:

a) If demands are backordered: Produce the item
with the largest byu, among all products for which there
ezists backordered demands.
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b) If no demands are backordered: Produce the item
with the smallest hyur among all products for witch the
inventory levels are under their hedging stock dj,.

This heuristic is fully myopic as it directly minimizes the
instantaneous cost h(zx).

2) The switching rule which is obtained by modifying
the static hyu/bip rule as follows:

a) If demands are backordered: Produce the item
with the largest by, among all products for which there
exists backordered demands (similar to the static hyp/byp
rule).

b) If no demand is backordered: Produce the item

with the largest by (1 — x/d}) value if positive or let the
server be idle.
The quantity (1 —x/d}) can be interpreted as the propor-
tion of unfilled stock. The larger it is, the more probable a
product will be backordered. This heuristic implies the ex-
istence of a linear switching curve in the positive quadrant
of the state space that ends at the hedging point

-

4 = (d,....dY).

3) The priority index policy based on the RBP indices
given by Eq.(26). For this heuristic, we apply the renor-
malization procedure of p given by Eq.(21), with T' = %
Unlike the first two policies, this third one is not myopic,
as the priority indices fully take into account the infinite
time horizon.

B. Numerical results

In our experimentation, we have measured the total aver-
age discounted cost over 4000 simulation runs. The horizon
H is chosen to be large enough to guarantee that the results
become invariant on H (the presence of the discounting fac-
tor makes this possible). For the hu/bu policy and for the
switching rule, we have chosen the hedging stocks which
minimize the total discounted cost. To find them for a ma-
chine able to produce N types of items, we have used of
a N-dimensional search around the optimal hedging stock,
known for a single item problem.

Experiment 1):

The number of item types is: N = 2

The demand rates are: Ay = 0.4; Ay = 0.5

The production rate is: p =1

The costs are: By =30; B, =40; A, =1; A, =1

For § = 0.01, the optimal policy has been derived numeri-
cally in [4]. It is given by a switching curve and a hedging
point d* as follows: When z < 0, The optimal policy com-
mands to engage the item having the largest Brur. When
z > 0, the switching curve is almost equal to the strait line
y = x + 1 and ends at the hedging levels d* = (9,11) (i.e.
the hedging stock is df = 9 and d = 11).

Hedging | Cost | Percentage more

Ha (9,11) | 7401 optimal
Restless (5,8) 7437 | 0.5% > optimal
Switching (4,7) 7639 | 3.2% > optimal
hu/bu (1,8) 7838 | 5.9% > optimal

Experiment 2):

The number of item types is: N =3

The demand rate are: A\, =0.3; k€ {1, ..., 3}

The production rate is p =1

The cost are By = 80; B, = 90; B3 = 100; A1 = 3; Ay = 2;
A3 - 3

Hedging | Cost | Percentage more

Restless | (4,4 ,4) | 19706 Best
Switching | (4,5,4) | 20763 | 5.3% > Restless
hu/bu (0,1,8) | 24672 | 25.2% > Restless

Experiment 3):

The number of item types is: N =4

The demand rate are: 1/A; = 4; 1/A = 4.1; 1/A5 = 4.2;
1/A4 =43

The production rate is p =1

The cost are B; = 40; Bo = 30; Bs = 20; By = 10; Ay, =1,
ked{l,..., 4}

Hedging | Cost | Percentage more

Restless (2,3,3,3) | 7745 Best
Switching | (2,3,3,4) | 8366 | 10.4% > Restless
hu/bp (1,1,3,3) | 8983 | 18.6% > Restless

Remark: As remarked in [4], we do also find that, under
the hyu/bu policy, the optimal discounted cost is reached for
a strongly uneven distribution of the hedging stock levels.

VI. CONCLUSIONS

Using the relaxed version of the “Restless Bandit” prob-
lem, we are able to calculate explicitly the generalized Git-
tins’ priority indices for several underlying stochastic pro-
cess governing the arms dynamic. These explicit expres-
sions are then used in the context of production manufac-
turing to discuss the dynamic scheduling of jobs in a flexible
shop floor. A direct comparison with the optimal policy,
known for the two products case, shows that Restless pri-
ority indices yield a scheduling policy which is very closed
to the optimal one. In particular if backorder exists, the
priority index rule reduces to the scheduling policy which
produce the item with the largest bu over all backordered
items. This scheduling policy is known to be optimal in
this case. In all simulations experiments performed, we
observe that the Restless priority index rule is always bet-
ter or at least equivalent than previously studied scheduling
rules. In any case, the Restless priority index policy per-
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forms much better than any purely myopic allocation rules.
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APPENDIX
A. ONE-DIMENSIONAL DETERMINISTIC PROJECT

We derive here the index for the discounted version of
the deterministic problem presented in section 5 of [21].
Consider a continuous time project X (t) € R satisfying

d

EX(t) = focx ) (X (1)), (39)

where fy(x(+))(X (%)) equals fo (X ()), when the project is in
state X (¢) and is in its active phase, and equals to f,(X (t))
when the project is in the state X (¢) and is in its passive
phase. Let us also introduce the two instantaneous reward
rates hy(z), 0 € {a,p}.

To derive the index v(z) of this problem, we first solve the
corresponding deterministic y-penalty problem J*(zy, ):

Lemma 4: Following the optimal policy #* for the ~-
penalty problem, Eq.(11) read as:

( fa(m)%Ja(xa'Y) —6Ja(z,7) + ha(z) =0

if 7*(X(0) = z) = q,
< (40)
fo(@) g Tp(x, ) = 0Jy(2,7) + hy(z) +~ = 0.

if 7*(X(0) =z) =p.

\

Proof Assume that 7* (X (0) = z) = a, then the first order
time expansion of Eq.(11) reads as:

To(2,7) = €ha(@)+ (1-86) (e 7)+ € X(0) 7 Ta(2 ),

After neglecting the terms of order O(£2) in the above ex-
pansion, one gets the required result. A similar expression
can be directly derived when 7*(X(0) = z) = p.

(I
We solve Eq.(40) for %Jg(m,’y), 6 = a,p and obtain:

8Ja(2)—ha(z)  jp the active phase,

d fa(z)
%JQ (.’E, ’Y) =
W% in the passive phase.

Using the smooth-fit principle given in Eq.(13) and solving
for «v we obtain:

v(z) =

(fp() = fal@)) (fp (@)hy (@) = :
fo(@)(fo(x) = 6) = fa(2)(fp(z) = 9)
(41)
Observe that in the limit § — 0, Eq.(41) consistently re-
duces to the result given in the Proposition 8 of [21].

he(x) — hp(z) +

B. OPTIMAL COST FUNCTIONS

Here we derive the optimal cost functions J,(z,7),
Jp(z,7) for a single class make-to-stock server which dy-
namics is given by a Markov chain in continuous time.

We saw in section IV that the optimal cost functions for
the y-penalized problem obey to the Eq.(23):

6Ja(z,7) = h(z) + Aoz — 1,7) + pJa(z + 1,7)—
(A + ) Ja(z,7)
0Jp(x,y) = h(z) + ANJp(z — 1,7) = Ap(z,y) + 7.

This system is linear and the general solutions of the ho-
mogenous system are

Jo(@,7) = Cot (01)* + Cp- (w-)*,
Jp(@,7) = Cp(wo)”,

where C,+, C,-, C)p are integration constants and

(02 p) A/ (0 +p)2 —40p
+ — 2u )

(0 ) A (B A )2 —4p
_= om ,

(42)

A
Wo = X33+

The particular solutions correspond to engage or to let the
server be idle forever. Being active forever, we get:

Sa(z,7) = By [ [, e % h(X (s))ds] =
fooo e 08302 h(k)P{X(s) = k|X(0) = z}ds =

Jo ey e h(k)P{X(s) = k — 2| X (0) = 0}ds.
(43)
Let us now calculate now the transition probability density
P{X(s) = k—z|X(0) = 0}. Consider a space homogeneous
markov chain process X (t) with parameter A and p. Define
p= % and P,(t) = P{X(t) = n|X(0) = 0}. We know that
P,(t) follows the equation (see for example [15]):

d
dt
Define:

Pa(t) = —(A+ J)Pa(t) + 1Pas 1 () + APy 1 (1), (44)
Pa(t) = Qu(t)p~ Fe- Orm2vamt
in terms of which the Eq.(44) becomes:

d

%Qn(t) = \/E(QnJrl (t) + anl(t) - 2Qn(t))
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The solution of this last equation reads (see for example

[1]):
Qn(t) = e 2V 20/ Aut)
with I,,(z) being the modified Bessel function:

oo

e%m(t—i—l/s): Z tk]ln(:lf)

k=—o0

Hence, we obtain:

P, (t) = pigei(AJr”)tH‘m(Q\/ Aut)

Using the Laplace transform of P, (¢), which directly occurs
in Eq.(43), we end with:

& h(k)o~ T
Sa(l';’)/)_k:;oo /(5+>\+u)2—4>\u

[ (pHA+1) =/ (p+A+p)2—4p ] kel

2/ Ap

From Eq.(42) and the fact that wiw_ = % = p, we can
show that S,(x,~) takes the form:

Su(07) = gy {10 + (0o T o) +

k=—oc

(wy)® 3 hwxwuk}

k=z+1
(45)
Along the same lines, when the server is idle forever, we
obtain:

Sp(x,7) =

S22 eI Y (h(k) +7) (P{X(s) = k — 2| X(0) = 0}ds.

In this case P{X(s) = k—z|X (0) = 0} is a Poisson process
and we end with:

T w —k
Sp(@) = (wo)™™ Y (h(k)+z)( o)

k=—oc

(46)

C. INDEX OBTAINED FOR A PIECEWISE LINEAR RUNNING
COST

Here we calculate the index for the single class make-to-
stock server problem described in section IV-A when the
dynamics is a continuous time Markov chain and the cost
rate function h(z) is piecewise linear:

M@:{

We have shown in section IV-A that the cost functions
Jo(z) and J,(z) are:

Ja(xa')/) = Ca(w+)m + Sa(m,’y)
Ip(@,7) = Cp(wo)” + Sp(2,7),

where S,(z) and S,(z) are given by Eq.(45) and Eq.(46)
respectively.

A>0
B>0

+Ax
—Bzx

ifz>0
if z <O.
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Using the form of h(x), we derive the closed form of J, (z, )
and J,(z,7). For the region > 0, the summation formula
for geometric series implies:

Jo(@:7) = sy
{2-'”1 [(A + B) ((,\ — )+ oA+ u)) (Qw_)"+

p(wy —w-) (2””+1A(6:U — A+ p) + AN — p)Qw_ )"+

Bu—uxnjw+2aﬁﬁ@waﬁ]}
and
(BN (A5 AN+87)+(w0)” ((54+1) (0,62 +(A+B)N)+6%7)

Jp(ma’)/) - 52(6+N)
Similarly, for the region x < 0 region, we obtain:

To(®:7) = T =y
{2—96—1 [(A + B) ((A — )+ (A + u)) (2w )"+

u(wy — w,)( —2"TIB(0z — A + p) + (2C,+6%—

(4 B0 - ) 2w | |

and

Jy(x,7) = B(—5x+>\)+56(20p5(Wo)”+’v).

Using the smooth-fit principle given in Eq.(13) and the
definition Eq.(25), we can derive the index v(z) in the form
given by Eq.(26).

D. POSITION OF THE HEDGING STOCK

Here we calculate the optimal position of the hedging
level for a single class make-to-stock server with Markov
dynamics X ().

In section IV-A, we saw that the optimal policy for a sin-
gle item make-to-stock problem is a hedging stock policy.
Under such a policy, the stochastic process:

Y(t) = d* — X(¢)

is isomorphic to a M/M/1 queue [17]. Let us denote by
J% (), the cost incurred under policy 7. Optimality im-
plies that the discrete derivative with respect to d* van-
ishes, namely:

J¥(2) = JH(z) = 0. (47)

To solve Eq.(47) let us first recall that:

“(z) = ooe_‘st .
JT () &A (X (8))dt
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Let 7 be an exponentially distributed random variable with
mean 1/§ independent of X (¢) and h(z). Then

. 1

I (@) = SE B (X (7)) (48)

Permutating the expectation operators in Eq.(48), we have:

6J (z) = B,

"
> h(i)P(X(r) =i| X(0) :ac)] . (49)

1=—00
Letting Y (7) = d* — X (7) we obtain:

d*—1

0% (z) = B | A X:)O (@ —y)P(Y(7) =y |Y(0) = 0)+

B :i:H(y —d)P(Y(7) = y|Y(0) = 0)] .

From Eq.(47) we obtain:
0=0J"*(z) —6J% (z) =
P(Y (1) =y|Y(0) = o>) - B

(o]

(A+ B) (1— >

y=d*+1

E,

Calculating the expectation with respect to 7, we find that:

0=206J4 (z) = 6] (z) =

A—(A+B)6/Oo oot f: PY () =y|Y(0) = d* — z)dt.

y=d*+1

It is known that when z = d*, the Laplace transform f(,y)
of the transient probability density of the M/M/1 queue
P(Y(t) =y|Y(0) = d* — x) reads simply as (see [10] for
example):

(1—w )w?

f((s:y) = f_a

where:

(E+A+p) — VO +A+u)?2 -4
24 ’

w_ =

So we obtain:
’ / e S PV () =y|Y(0) = d —2)dt =l
0 y=d*+1

and we end with:

0=A—(A+Buw®* =

& = Ln(clu) n (AfB)J ‘
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