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The Resonant Retina: Exploiting Vibration Noise
to Optimally Detect Edges in an Image
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Abstract— We show that, far from being a drawback, the
ubiquitous presence of random vibrations in vision systems
operating from mobile devices can advantageously be used
as fundamental tool for edge detection. Directly inspired by
biology, the concept of dynamic retina uses the random spa-
tiotemporal path, traced by a moving receptor that samples
the image over time, as the basis for the edge detection op-
eration. We propose a simple mathematical formalization of
the dynamic retina concept which shows that the relevant
information needed for edge detection is contained in the
modulation of the variance of the output signal delivered by
the retina. Based on a sequence of observations, we then
use a variance estimator to determine the presence of the
image edges.

Following again a biological inspiration, more specifically
focusing on neuron dynamics, we introduce a threshold type
estimator and use its local asymptotic normality to opti-
mize, via the Cramer-Rao relation, the value of the thresh-
old. The optimal threshold value coincides with a maximum
of the associated Fisher information and the overall process
can therefore be directly interpreted as a stochastic reso-
nance. We end our contribution by reporting some simple
experimental illustrations.

Keywords— Edge detection, random vibration of the opti-
cal axis, microsaccades, threshold variance estimator, Fisher
information, Cramer-Rao inequality, stochastic resonance

I. INTRODUCTION
A. Motivation

ANY vision systems set on a mobile platform, such

as aerial and satellite cameras, mobile-robotics vi-
sion systems and of course biological vision systems, have
to deal with noise in the form of random vibrations around
their optical axis. This vibration noise is traditionally seen
as a nuisance. This paper intends to show that quite to the
contrary, this noise can be potentially exploited to extract
information that is pertinent enough for edge detection.

Let us consider an individual sensing element, a pixel, of
such a vision system, and analyze its output signal along
the temporal axis when the sensor is subject to small am-
plitude vibrations. If the system is viewing a featureless,
uniformly lit scene such as in a foggy day, the output is
not expected to change much. On the contrary, if the pixel
is ”seeing” a region of the scene where there is a transi-
tion from a dark to light area, such as on the boundary of
a dark object against light background, the output signal
will constantly vary from low to high levels. Intuitively,
higher contrast areas produce an output with higher vari-
ability, and the output temporal average is related to the
local average intensity. Since high contrast regions are of-

The authors are with the STI/IPR/LPM, Ecole Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland. E-mail:
max-olivier.hongler@epfl.ch, yuriQieee.org

ten associated with object boundaries, this approach pro-
vides quite a useful information. This observation was first
made by Prokopowicz and Cooper [1] and this contribution
mathematically formalizes their basic idea and proposes a
way to extract the contrast information.

B. State of the Art

Ever since vision systems have been mounted on mobile
platforms such as planes, satellites [2], cars or more recently
mobile robots, engineers have had to tackle the problem of
noise in the form of a randon jittering of the optical axis.
Until the 90s, the Computer Vision community considered
these vibrations of the optical axis as a mere nuisance and
developed a wealth of mechanical stabilization systems [2]
and filtering techniques [3] to eliminate this ubiquitous jit-
tering.

In parallel to this classical engineering approach, life sci-
entists devoted a strong research activity to the study bio-
logical vision systems. One of the interesting contributions
of theses studies, was the observation of the presence of
small-amplitude movements in the human eye. These ex-
citations are now well known under the name of microsac-
cades [4][5]. Today the ultimate conclusions concerning
the origin, the exact nature and the precise use of these
microsaccades are still lacking. Nevertheless, it is clearly
established that without these microscopic movements the
photoreceptors ’saturate’ and the retinal images disappear.

Fully aware of this phenomenon, P. N. Prokopowicz and
P. R. Cooper [1] proposed a new vision device, called the
Dynamic Retina (DR), that directly takes advantage of the
vibrating perturbations generated by mobile robots or any
similar, mobile platforms. The basic idea behind this pio-
neering work, lies in the fact that the spatiotemporal path,
traced by a moving photoreceptor that samples over time,
can be used as the basis for neighborhood style image com-
putations, i.e. purely spatial computations. The authors
[1] propose a phenomenological description of their DR de-
vice and present the results of tests which were performed
on an image sequence. There is however no formalization
or detailed statistical analysis of the system that would al-
low its tuning to particular situations. Such a more formal
description is one of the aims of the present paper.

The DR concept offers several advantages among others,
its massive parallelism and the simplicity of its architec-
ture. Besides applications in the field of mobile robotics
[6], the potential interest of the DR concept has been re-
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cently further confirmed by several new contributions de-
voted to biological visual systems. In particular, the stud-
ies devoted to the fly [7] and the jumping spider have es-
tablished the presence of a scanning movement in their
compound eyes. These results have further stimulated the
conception of several artificial retinas operating in pres-
ence of vibrations, [8] [9] [10]. These papers emphasize the
resolution-enhancement property that can be achieved by
such a scanning movement. This can be achieved if the
actual displacement is deterministically known. In partic-
ular, periodic motions were discussed in [10].

In the present paper, we offer a generalization which en-

ables to exploit random mechanical excitations of the vi-
sion devices. We propose a simple mathematical modeling
of the DR device in presence of a noise characterized by its
relevant statistical properties. We focus our attention on
the edge detection (ED) problem which is of fundamental
importance for many vision systems. Indeed, as ED pro-
vides a reduction in the amount of visual data, it is the
first processing stage common to numerous vision systems
ranging from computer vision [11], [12], [13] to biology [14],
[15]. Edge detection is particularly difficult in the presence
of noise and low light intensity. Our formal approach of the
DR in presence of noise clearly exhibits that the relevant
part of the information needed to detect the edges of an
image is contained in the modulation of the variance of the
output random signal. This makes clear that a powerful
and reliable inference of the output variance is mandatory
and has to be jointly considered.
Taking into account the limited resources of VLSI circuits
and also following the “bioinspired” work of [1], we intro-
duce a threshold estimator (TE) typical of spiking-neuron
dynamics [16], [17] and [18]. Indeed, the simplest model for
neural dynamics considers a single neuron as as a thresh-
old crossing detector in which a cell is stimulated by an
external input and if the membrane voltage exceeds a fixed
threshold, the cell fires and is reset. Accordingly, for in-
put signals below the threshold value, the neuron does not
respond. More precisely, in systems with a threshold, sub-
threshold signals may generate responses only if noise is
added to the original input. In the DR device under study,
the random shaking of the optical axis generates the noise
which will be added to the input. If the noise is too low, it
does not help to cross the threshold value of the detector
and nothing is learned from the signal. If, on the other
hand, the noise is too high, it will drown the signals and
all information will be lost. Intuitively, it is therefore clear
that in between, there will be one, (eventually several), op-
timal noise level(s) for which a maximum of the relevant
information regarding the input signal can be inferred. The
reliability of such an estimator does therefore intrinsically
depend on the suitable choice of the threshold value.

It is expected that the sensory system optimizes this
value in order to gather a significant amount of information
about the signal. In this paper, we formally implement this
optimization algorithm. First, we note that the TE trans-
forms the original DR output process into a binary process

(i.e. a Bernoulli process). This process is experimentally
characterized by sampling over time the output signal and
observe whether the process exceeds or not a given thresh-
old level. This threshold value is then optimized by maxi-
mizing the Fisher information that can be associated with
the estimation process. This procedure consists in fact in
tuning the threshold level in order to have a stochastic reso-
nance [16], [17] and [18] and thus we speak of the Resonant
Retina (RR) when referring to the DR model together with
its optimized TE.

Pioneered two decades ago in science [19], the concept of
stochastic resonance (SR) which occurs in the dynamic re-
sponse of nonlinear systems such as bistable devices [20]
and threshold detectors [18], seems to play a growing role
in the engineering context [21] and especially in neural dy-
namics [16]. Roughly speaking, Stochastic Resonance can
be viewed as a noise-induced enhancement of the response
of a nonlinear system to a weak, external input signal. SR
naturally appears in many neural dynamics processes and
hence it should not come as a surprise that SR does play
a role in vision. So far however, SR has deserved a mod-
erate attention in vision with the notable exception of the
dithering process which has recently being revisited from
that point of view [22].

The paper is organized as follows: in section II, we for-
mulate the DR concept in a simple mathematical setting.
We focus on small noise amplitudes which allow a descrip-
tion in terms of linear response theory and we demonstrate
that the relevant contrast information is present in the out-
put signal variance. In section III, we construct a simple
estimator (threshold-type estimator (TE)) for the variance
and calculate the associated expression for its Fisher infor-
mation, which affords a direct characterization of the de-
tector performance. The detector shows a stochastic res-
onance and the optimal threshold is shown to be at the
peak of the Fisher information. Section IV, illustrates the
DR and TE models for the particular case of Gaussian
vibration (colored noise process). In section V, we explic-
itly work out the general results developed in sections II,
IIT and IV and report experimental results to validate our
modeling.

II. FORMALIZATION OF THE DYNAMIC RETINA

In this introductory part, we focus, without loss of general-
ity, on one-dimensional, sampled images. Accordingly, we
shall model a grey level image by a function:

s:Z—K K=1{01,2,...,255}. (1)

At the position x € Z, we say that the image s(x) exhibits
a contour when the absolute value of the discrete gradient
exceeds a critical value m > 0, namely:

[As(x) [ = |s(z+1)=s@)[=m (2)
<= {3 a contour at position z}.

Note that, according to Eq.(1), the discrete derivative ful-
fills 0 <| As(x) |< kpax = 255.
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Let us now assume that we observe the image s(z) with
a camera having its optical axis driven by a noisy signal.
This shaking noise of the camera is modeled by a stochastic

process &(t):
E:RT -TCR. (3)

We focus our attention to cases for which the shaking
noise process £(t) is a stationary stochastic process with
vanishing odd stationary moments. According to Egs.(1)
and (3), the input signal in the photoreceptor array is
n:ZxRT — K:

n(z,t) = s(z +£(1). (4)

We define now the temporal low-pass filtered process
v(z,t) : Zx RY — Q =10, kpax] C R as:

v(z,t) = )\/0 e NE=)n(z, s)ds. (5)

Making use of the filtering mechanism described by Eq.(5),
the output signal O(x,t) : Z x Rt — [-Q,Q] C R will be
given by the highpass filter:

O(Iv t) =R [77(1"7 t) - V(I7 t)] ’ (6)
where R is a gain factor which will be taken as a positive
constant and € = Rkpyax. Due to the stationarity of £(t),
the output signal O(z,t) for t — oo is itself a stationary
stochastic process. Its statistical properties depend on i)
the process £(t), ii) the filtering process with its cutoff fre-
quency A in Eq.(5) and iii) the scene function s(x). For
future use, let us now introduce the stationary variance

o%(z):

0’3(1}) = <02(1"7t)>8 - <O(I,t>>§, (7)
where (-)s stands for the average operation in the station-
ary regime. Our goal is to detect the contours of the image
function s(z) by using, in an efficient way, the information
contained in the output process O(x,t). In particular, the
stationary variance given by Eq.(7) does play an essential

role. To show this, let us formally rewrite Eq.(4) in the
form:
i 8 (2m+1) f( )2m+1
o (2m + 1)!
= (2m)€
+ X_jos )! , 8)

where s(x)®) denotes the k-th discrete derivative of s(x).
For small noise amplitudes we can linearize its effect on the
signal n(z,t) by rewriting Eq.(8) in the form:

THE RESONANT RETINA

3
o0 o2m
W) =3 s )
+ Z s(z (2m CQWL)' (9)
m=0

where in Eq.(9), we have introduced the stationary mo-
ments of the shaking noise, namely:

mey ) ¢ m even
tmenwy={ g T o
Accordingly, we can now rewrite Eq.(9) as:
n(z,t) = A(x) + B(z) (1), (11)

Proposition 1

The magnitude of the image gradient is present in vari-
ance of the output signal O(x,t). Specifically, for any sta-
tionary vibration noise that follows Eq.(11), the output
signal shows:

o« B?*(z) (12)

Proof: From Egs.(5), (10) and (11) it follows that

(O(z,t))s (n—v)s = (n—mn%hp)s

= (n)s- (1= Hp(w=0)) =0,

where hy,(t) is the filter defined in Eq.(5) and H,(w) =
is its Fourier transform.

(13)

A
Jwt+A

Similarly we have

2002, = (= v = ()~ 20m) + ()
(n°) = 2Rpy (T = 0) + Ry, (1 = 0)
A2() + B (2)(€?)
5 [ Sml@)Hip(w) do

where S,,(w) stands for the Fourier transform of the au-
tocorrelation function R, (1) = (n(t)n(t + 7)). In our case
we have:

= F{Byy(1)} = A%(2) - 2m0(w) + B*(2) See (),
(15)

Snn (w)

with F{f(t)} = [7°_ f(t)e~9~tdt. Plugging Eq.(15) into

Eq.(14) we have
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(0% (@, 1)) = A(2) + B*(x)(€")s

[A%276(w) + B See(w)] Hip(w) dw
—i—2i / [A227T(5(w) + BQS&(W)] |Hlp(cu)|2 dw
= B@){(€): - 25 [ Scelw)Hip(w)do

joo
1 2
b [ Sectltp() s},

(16)
where once again we use the fact that H;,(0) =1. QED
]

An explicit model with a specific case of S¢¢ will be pre-
sented in section IV. It is now clear that an efficient contour
detection will be crucially dependent on the construction of
an efficient estimation of the variance o2(z) of the process

O(z,t).

III. THRESHOLD ESTIMATOR OF THE VARIANCE o2 (z)

There are several different possibilities to estimate the vari-
ance of the stochastic process O(z,t). Here, we shall focus
on a threshold estimator (TE), because it offers the follow-
ing properties:

i) Adaptability. The threshold D which characterizes the
TE can be easily tuned by feedback loops to match dras-
tic changes of the environment [23], such as nonuniform
lightning conditions or a dynamic scene.

ii) VLSI compatibility. =~ The TE avoids the squaring
present in the Mean Square Deviation (MSD) estimator.
Therefore it is easier to implement in resource-limited sys-
tems, such as VLSI circuits.

iii) Bioinspiration. The TEs are indeed a basic tool in
spiking-neuron dynamics [16] [18] [17] because the simplest
model for neural dynamics considers a single neuron as as a
threshold crossing detector stimulated by external inputs.

o5 (x);t) de-

Consider first the binary random variable x (D
fined by:

>
waen={y |0CNED
where D > 0 is a threshold parameter that remains to be
adjusted in order to get the maximum relevant information
needed to estimate o2(x). Note first that for D— oo, we
clearly expect that y(D,o?(x);t) = 0 and conversely for
D— 0, we will observe x(D,o?(x);t) = 1. Clearly, these
limiting values of D are not suitable for getting information
about o2(x) and hence to detect edges in s(z). In between
these two limiting values of D, it will exist one, (or eventu-
ally several), optimal value(s) D* for which the maximum

information characterizing o2 (x) can be extracted. Let us
now formalize this intuitive idea.

Let us first introduce the stationary probability distribu-
tion Fy2(,)(u) of the output process, namely:

Prob{—oco0 < O(z,t) < u} = Fy2(y)(u).

From the ergodicity property of the process O(z,t), we can
write:

(18)

dim Z X(D, o (x); kA1)

ngg (I) (u) =

= 2(1-Fo2()(D)) = p(D.02(x)) = P(2),

where At is a sampling period chosen larger than the typi-
cal correlation time of the shaking noise. With this choice
of At, the random variable x(D, 02(x); kAt) are approxi-
mately decorrelated. Note that Eq.(19) is in fact an illus-
tration of the Glivenko-Cantelli theorem [24].

(19)

From now on, we shall focus on the class of distribution
functions Fiz2(,)(u) that satisfy:

u

oo(2)

Foz(zy(u) = F( ) (20)

and therefore the probability density function f(x) associ-
ated with Eq.(20) satisfies:
U
()

d U 1
—F -
du (oo (:c)) oo(2)
Note in particular that the Gaussian probability distribu-
tions fulfill the properties given by Egs.(20) and (21).

(21)

From Eqgs. (19) and (20) we have the relationship:

D = oy(a)F (1 -2,

> (22)

We need now to construct an estimator to determine o2 (z),
via successive observations of the output signal O(z,t).

Let us fix an arbitrary position x and perform a sequence
of n observations of the signal O(z,t) at the successive
sampling times kAt, k = 1,2,...n. Based on these obser-
vations, we can define:

p(%) = Ug(x)vat)v (23)

>
3>
Il
3
=
-

where 7 is the number of times we have observed
X(D,02(z);kAt) =1 for k=1,2,...n
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For large n, the central limit theorem implies that the
standardized error \/n(p(z) — p(z)) will asymptotically ap-
proach a Normal random variable with variance p(z)(1 —
p(@) =4 [1- F (2)] [F () - 1.

Now we construct the empirical estimator of the variance
by writing:

D

pETCI (24)

Golx) =

The meaning of Eq.(24) is now clear. Indeed, knowing the
shaking noise distribution F'(x) and therefore its inverse
and measuring the values of p(z), we can infer the variance
62%(z) of the process O(z,t).

A. Optimization of the threshold parameter D

Proposition 2
With the above definitions, the random variable v/n(o, —
d,) asymptotically possesses the variance

.o @) -]

UOZDQ

1% (25)

Proof:
For a large number n of experiments, the value p(z) will
converge with p(x). Let us write:

2 = p(x) - p(w)

and using Eqs.(22) and (24), we can write:

V(oo — 65) =
S s

—1 —1
F1-%) FQO-%)

\/ﬁ D D

—1 - T
F(1-%) F(I*%)%%F‘l(y)ly:l_g

AP W)y
1— 6‘11—912]‘|
F(1-%)

Q

Q

|

P-4  F-%)

Vi [#%Fwynyﬂg] e« (0

[F(1-2))2

Hence, for asymptotically large n, the variance of the esti-
mator in equation (26) is

02, = ﬁ[%Fl(y)|yﬂgrn<62>
- ﬁ[j‘iﬁ“wz} -

(-+@IF@-3) o

5
Recall that:
d
LPFG) =1
d __ d
(5rw) B0l e
which, when plugged into equation (27) yields:
L e FR-FE)
CFG-r EO-B)
_ RDFER)1-F(2))
T PE (D)
oo =P (2)][F(2) -4
R P2 )
QED
|

Following the lines [18], we shall now introduce the con-
cept of Fisher information I,, and we use an asymptotic
optimality for our estimator together with its local asymp-
totic normality. Accordingly, the Cramer-Rao bound will
be attained in this limit and hence we have:

oL (We)r)a)

= T @]FE)

The optimal estimator at the position x will therefore be
determined by the value D} which minimizes the variance
Uf,o of the estimated parameter o,. This is precisely the
value for which, according to [18], a stochastic resonance
arises. Hence the optimal valueD}; will be determined by:

0 0
(9_D Itfo\D=D§3 = a_D Ig_DolD:D;

From Eq.(31), it is clear that the optimal threshold D does
explicitly depend on the position = in the image function
s(z). In case that the threshold D has to be chosen once
for all for the entire image s(z), we adjust it in order to
optimally detect the smoothest type of contours, namely
those for which the discrete gradient is m.

(30)

= 0. (31)

IV. EXPLICIT ILLUSTRATION FOR A (FAUSSIAN SHAKING

In this section, we shall perform an explicit analysis for
the RR model defined in section II under a particular class
of vibration noise, Gaussian noise, of particular relevance
in the common vision systems. To this aim, we shall as-
sume that the state space is continuous and kpax — +0o0.
In actual physical systems, the random vibrations will be
damped, producing a pink noise. Hence, the camera mo-
tion will be represented by an Ornstein-Uhlenbeck process
solving the linear stochastic differential equation [25]:

dg(t) = —&(t)dt + pydWe, (32)
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where dW; is the standard White Gaussian Noise (WGN)
process. We shall assume that the process £(t) is in its sta-
tionary regime and hence the initial conditions needed to
solve Eq.(32) will be drawn from a normal (Gaussian) dis-
tribution N(0, %) The shaking process £(t) is therefore
here modeled by a colored noise with a Lorentzian power
spectrum See(w), given by:

2y
Sff(w) - 72 + wg N (33)
Using Eq.(32), we can expand Eq.(4) to get:
n(z,1) s(z +£(1))
= s(z)+5'(@)E(t)
38" @E W) + oo @EW +.-. - (34)

As in section II, we now linearize the noise effect in Eq.(34)
which is done by writing:

n(x,t) = s(e + (1)) =

= s(z) + 5/ (2)&(t) + %s”(m)<§(t)>2 +

1

=" (@)(€@)%E) + ...

: (3)

The stationary variance of the process £(t) reads as [25]:

€0, = 7,

- (36)

In view of Eq.(36), we can rewrite Eq.(35) as:

U(ﬂf,t) =

s(x) + %s"(m)

2
s'(z) + il s"' ().

12 (38)

At this stage, we rewrite Eq.(5) in its differential form:

du(da;, t) “A[v(z,t) — 0z, )],

v(iz,t=0) = 0,

and consider now the set of stochastic differential equa-
tions defined by Egs. (32) and (40). The time evolution
of (&(t),v(x,t)) constitutes, for a given position z, a de-
generate two dimensional diffusion process on R x R. The

transition probability density P(u,v,t | ug,vo,to) obeys to
an associated Fokker-Planck (F-P) equation [25]:
%P(u7 v,t | Up, Vo, tO) = »CP(’LL, v,t | Up, Vo, t0)7
with P(u,v,t | ug,vg,to) being the conditional joint prob-
ability density to observe u < &(t) < (u + du) and
v < v(z,t) < (v+dv). According to Eqgs.(32) and (40),
the F-P operator reads as:

(41)

ILLQ,Y2 82

L) = o ]+ R
_8% [=A(v = A(z) = B(z)u)(")] . (42)

In terms of the above definitions, the output signal O(z,t)
is written as:

O(z,t) =R [A(z) + B(x)§(t) —v(z,t)].  (43)
Proposition 3
With the above definition:
O(z,t) = RO(x,t), (44)

where O(x,t) is the stationary stochastic process charac-
terized by:

N

<O(I7 t)>s =0
1122
20 +7)

(45)

(O (z,t)s = B*(x) (46)
Proof:
Let us solve the F-P Eq.(41) in the stationary state. This is
straightforward as the linearity of Egs.(32) and (40) implies
that the probability measure solving Eq.(41) is a Gaussian.
Using Eq.(42) and taking the left hand side of Eq.(41) to
be zero, a simple but lengthy algebra yields:
lim
t—o0

(U,’U,t | u07U07t0) = Ps(u7 U) =

— N—l ea‘u2+2bu(v—A(z))+c(v—A(z))27 (47)
with the coefficients:
a=— Aty b= Aty
2%’ 12y B(x)’
A +7)?
= 48
‘T T NEB(w) “8)

and N is the normalization factor.
Using Eq.(48), we obtain:
<O(1"v t))S =

7 7(U_A(x) — B(z)u) Ps(u,v) dudv =0

(49)
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and the variance:

<OAQ(I7 t)>s =

7 ]O(” — A(x) = B(x)u)?Ps(u,v) dudv =

_ﬂ 2
= 0 ) B*(x). (50)
QED
|

Note added in proof. Readers more familiar with signal
processing methods will find in appendix A an alternative
proof of proposition 3.

From Egs. (44) and (50), we finally have:

2 2 2 1>y 2
o2(z) = (O*(x,t))s = R* ——— B*(x). 51
H0) = () =R I B ). 61
It is explicit in Eq.(51) that only the odd derivatives of
s(z), namely the B(z) terms, modulates the variance of
the output process O(x,t). More precisely an ideal contour
detection at position z would be achieved if we have:

o2(xr) >0 = 3 a contour at position z, (52)

where in Eq.(52), the critical variance o2 is obtained by in-
troducing in the factor B(z) given by Eq.(38), the minimal
gradient value m, (see Eq.(2) for the condition implying
the existence of a contour). Neglecting the contribution
due to the third derivative and beyond, we end with:

R2u2~2

———m*~. 53
2(A+7) (53)
The Gaussian nature of the process O(z,t), implies that
Eq.(20) can be written as:

Il

2
¢

u —u2

o2 (a:)) = Nexp o p2y2 B2(x)
° 2(0+7)

Foz(a)(u) = F( (54)

In view of Eq.(30) and (54), the Fisher information reads
for this case as:

L1 RPPwe)
" 75 (F(z) - 31— F(2))
D2 —(2)?
= Wi’4 (UO)(D) ’ (55)

Fisher information

0.6
5 Threshold D
Output signal std. dev.a,

Fig. 1. For a Gaussian vibration the Fisher information, a measure
of the estimator quality, shows a resonance peak. The maximum lies
on the line given by D ~ 1.480,.

1400 0=025
1200

1000

Fisher information
©
&
8

2
8
8

400

Threshold D

Fig. 2. Fisher information as a function of the threshold D, for 4
different values of o,. There is an optimum threshold D* ~ 1.480,

The behavior of Egs.(55) is represented in Figs. 1, 2 and
3 as a function of the threshold D and the output signal
standard deviation o,, where we clearly see the stochastic
resonance effect. The Fisher information given by Eq.(55)
shows a peak for the ratio ’3—* = 1.48. Thus the opti-
mum estimator threshold D* is linearly dependent on the
standard deviation of the output signal of the DR. The DR
itself is linearly dependent on the standard deviation of the
vibration noise and the magnitude gradient of the scene.

V. EXPERIMENTS

A. Threshold estimator

The first group of experiments were conducted with the
purpose of studying the performance of the Threshold Es-
timator (TE). Since each pixel works independently from
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Position of the optimum D vs. output standard deviationa,

&

Optimum threshold D

035 L
02 025

03
Output Sid.Dev o,

Fig. 3.
variance with a linear relationship E— ~ 1.48

The optimum threshold D* depends on the output noise

its neighbors, a single pixel has been used in a MATLAB
simulation. To this end, a white Gaussian noise with stan-
dard deviation o = 2 was generated and fed to a TE. The
noise sample has 100 values. The resulting estimation of
the input standard deviation was averaged over 400 trials
(realizations) and compared to the Mean Square Deviation
(MSD) estimator.

TE vs Mean Std. Dev. estimation. Averaged over 400 trials
T S T T T T T

»
>
T

N
N
l
/
(
\
/
'
i
|
|
/

N
~
T

~

©
T

Estimated 6, and 68% Cl in dashed (TE) and dotted (MSE) lines
>
T

IS
IS
T

L Z L L L L L L L
0 10 20 30 40 50 60 70 80 % 100
Time [iterations]

Fig. 4. The threshold estimator (TE) asymptotically converges to
actual input standard deviation (o;, = 2). The results are averaged
over 400 trials and 68% confidence intervals are given in dashed and
dotted lines.

The results are shown in figure 4, plotting in solid
lines the average values estimated by a TE with thresh-
old D = 2.96 (the optimum, as shown at the end of section
IV) and D = 1.0. The dotted and dashed lines correspond
to the 68% confidence intervals for TE with D = 2.96 (-.-)
, D =1.0 (- -) and the MSD estimator (---).

The experiments show that the TE is an asymptotically
unbiased estimator. Furthermore, the confidence interval
is smallest for the MSD estimator, as it is considered the
best unbiased estimator for a Gaussian distribution. It can
also be seen that the optimum threshold D = 2.96 yields
a narrower confidence interval compared to the TE with
D = 1. This shows that the Fisher information is indeed
larger for the resonance value D = 2.96.

Estimated o for several thresholds D. Averaged over 400 trials

23

22

Estimated o,
~
T

19F

17

. . . . . . .
0 10 20 30 40 50 60 70 80 % 100
Time [iterations]

Fig. 5. TEs with different thresholds D. The near-optimum thresh-
old, working on the resonance peak, is D = 3.00.

The second experiment compares the estimating capabil-
ities of the TE for different threshold values. The thresh-
olds D =1,2,3 and 4 were chosen and the input standard
deviation estimated during 100 iterations for an input noise
of o = 2. The averages of 400 trials are shown in Fig 5. The
stochastic resonance effect can clearly be seen, since the es-
timators with threshold values clearly below (D = 1) and
above (D = 4) the optimum are the slowest to converge,
that is, they have the highest variability.

B. Edge detector

After convincing ourselves of the performance of the TE,
we proceed on to test the actual Resonant Retina (RR) al-
gorithm. Here we consider not a single pixel but an array
of Dynamic Retina pixels with their associated TEs, all
with a common threshold D. As before, we have limited
ourselves to 1-D images.

Fig. 6. A test image of linearly increasing gradient amplitude.

To this end we use a test image of varying spatial fre-
quency, so that the gradients increase linearly in magnitude
from left to right. Fig. 6 shows such an image, and Fig. 7
displays an intensity profile along the x-axis and the corre-
sponding magnitude of its gradient, which can be seen to

be linear |%| = kx except at discontinuities.

The test image, i.e. the scene in section II, was therefore
“shaken” in front of a RR, with a simulated vibration of
pink Gaussian distribution, of gain g = 1 and cutoff fre-
quency (inverse of correlation length) v =4 (cf. Eq. 33). A
realization of the input vibration noise £(¢) and the corre-
sponding output signal O(256,t) is shown in figure 8. The
noise amplification is dependent on the local gradient and
cutoff frequencies v and ), as indicated in Egs. 51 and 36.

For the first test the RR was tuned with A = 4 and 3
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Intensity profile of test image Gradient of test image

Intensity
Intensity gradient

0 100 200 300 400 500 0 100 200 300 400 500
Pixels Pixels

Fig. 7. On the left, the intensity profile of the test image (Fig. 6)
along the x-axis. On the right, the magnitude of the gradient along
the same axis, showing discontinuities at the peaks and troughs.
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Fig. 8. Input vibration noise and corresponding output signal for
pixel z = 256. The input vibration noise has a gain g = 1 and cutoff
frequency v = 4. The DR has a lowpass filter of A = 4.

different thresholds D = {1.5,1.75,2.0}. The stochastic
differential equation (32) was integrated during 60 s with
steps of 0.02 s using an Euler scheme, which happens to
be convergent of order 1.0 for constant coefficients [26]. A
single trial was used.

The output of the RR is shown in Fig. 9 and it can be
seen that it approximates very well the gradient of the in-
put scene, even at the discontinuities. The actual gradient
is shown in dashed linestyle.

Note that the optimal threshold D gives the smallest bias
for the estimator when only a limited number of samples
are available.

A second test, shown in Fig. 10 shows the results for the
same scene, with a noise of slightly lower correlation dis-
tance (i.e. higher cutoff frequency of the pink noise), specif-
ically, v = 8. As expected from Eq. (51), the output signal
standard deviation o, increases by a factor ﬁ = 1.66,
and therefore so must change the threshold D. Indeed,
Fig. 10 shows the results for the same 3 thresholds used
in Fig. 9 multiplied by this factor.

A third test was carried out to verify the influence of
the noise cutoff frequency -y, the inverse of its correla-
tion length. Figure 11 compares the estimated gradient
for three cutoff frequencies v = {4,8,16}, using the same
sampling rate At = 100 Hz. If the output signal O(x,t) is

Estimated image gradient for different D vs. actual gradient
12 T T T

100

©

Image gradient
>

!
[
N
|
o

!

|

|

I

0 100 200 300 400 500 600
Pixels

Fig. 9. Estimated gradient image for three different thresholds. The
input vibration noise has a variance y = 1 and cutoff frequency v = 4.
The DR has a lowpass filter of A = 4.

sampled with a period below the correlation distance the
samples are correlated an thus an estimator bias appears.
As correlation distance is decreased (7 increases) the esti-
mation improves but after a while it becomes faulty once
again, as there are more high-frequency contributions than
the DR lowpass filter can handle. Moreover, for large
the noise amplitude becomes too large (cf. Eq. 32) to al-
low the linearization procedure given by Eq. 35. All three
runs were executed with the threshold D set to the opti-
mum for the central pixel, and therefore low gradients to
the left of the image is poorly detected.

C. Conclusion

The Resonant Retina (RR), described and analyzed in
this paper, is an algorithm for edge detection in a vision sys-
tem subject to vibration noise. Each pixel of the RR con-
sists of a Dynamic Retina pixel [1] and a parametric vari-
ance estimator called Threshold Estimator (TE). A simple
mathematical formulation of the dynamic retina subject
to random perturbations shows that the information con-
cerning the image gradient (related to the local contrast)
is approximately carried by the variance modulation of the
output process. Thus, a TE is proposed to extract this gra-

Input Noise:pi=1,y=8 ; Dynamic Retina: A=4
18 T T T T

Estimated and theoretic output std. deviation

0 100 200 300 400 500 600
Pixels

Fig. 10. Estimated gradient image for three different thresholds for
a noise of slightly different correlation distance.
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Gradient estimation for different vibration-noise correlation lengths
T T T T

Estimated and theoretic output signal std. dev.o,

L L L
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Fig. 11. Estimated gradient image for three different input noise
cutoff frequencies ~.

dient information to be used in a subsequent edge detection
process. The nonlinear nature of the estimator produces a
stochastic resonance that provides an optimization proce-
dure to select the optimal threshold value of the estimator.

In contrast to other works in the field [8] [9] [10] the Res-
onant Retina works with purely stochastic input. This has
practical implications, since it avoids the complicated sens-
ing system required to measure the vibration. In the algo-
rithm described in this contribution, only the first and sec-
ond order statistics of the perturbation need to be known.

We have purposefully selected an algorithm that allows
the system to adapt itself, so that it can be rendered ro-
bust against a changing environment —lighting changes, a
dynamic scene or a different vibration noise. Three con-
trol parameters that can be freely tuned to match a wide
range of operating conditions. Namely, our explicit analy-
sis of the role played by the cutoff frequency A, the output
gain R and the threshold value D, can be used to tune the
system. Furthermore, we have shown the existence of an
optimum threshold value for a given input vibration noise,
and how the Fisher information of the estimator can be
used to find this optimum.

A promising contribution of this paper is the use of the
Threshold Estimator (TE) to compute the variance of a
signal, a tool also used in [18]. Note however that in [18§]
the TE is used to estimate the average of the signal. In our
case, it is the variance that is obtained by such a paramet-
ric estimator.

A key feature of the Resonant Retina is that each pixel
carries out a relatively simple computation, independently
from its neighbors. It is thus particularly advantageous for
VLSI implementations, both digital and analog [8]. In the
analog world this translates into a massively parallel system
—no communication is needed among pixels— of small-size
pixels. In the digital one it means less memory require-
ments, simplified routing (e.g, in FPGA implementations)
and, specifically for the TE, that it can be implemented in
fixed-point processors.

This massively parallel computation using simple units
is reminiscent of biological, neural systems. Although some
elements of the Resonant Retina —vibrating noise in form of
microsaccades [27] [5], temporal highpass processing on the
outer plexiform layer of the retina [15], the Threshold Es-
timator [16][17]- can be found in biological vision systems,
the RR lacks other elements, most notably spatial connec-
tions among 'neurons’; to be a real model of a biological
process. In this paper we rather speak of a “bioinspira-
tion”, since we apply some principles taken from biological
systems to solve or alleviate an engineering problem.

Finally, it should be clear that despite of the fact that
noise contributes to information gathering in the DR sys-
tem, obviously it does not add any additional information
that is not already present in the original, static scene.
Noise here merely plays the role of a “catalyst” in the
information-gathering process. Yet, the resulting informa-
tion is pertinent enough for the tasks that follow, namely
edge detection and object segmentation.

D. Perspectives

Not considering the ubiquitous presence of noise as a
nuisance but on the contrary, trying to use it as a tool in
a detection process, is a not-so-common paradigm in the
engineering methodology. This contribution inspired by
the pioneering work [1], where the idea of a dynamic retina
is presented, has formally examined the possibility to use
the ubiquitous mechanical noise affecting a camera sensing
on a mobile platform, to detect the edges of the received
images.

This contribution should be considered, from the point
of view of actual realizations, as in a preliminary stage.
Indeed our experimental approach was restricted to com-
puter simulations. Real environments are likely to generate
new difficulties that have not yet been explored. However
as long as the noise amplitude remains relatively small, the
overall procedure will certainly be robust.

ACKNOWLEDGMENTS

We are sincerely grateful to Roger Filliger for numerous
suggestions and critiques which enabled us to improve the
manuscript.

REFERENCES

[1] P. Propokopowicz and Cooper, “The Dynamic Retina,” In-
ternational Journal of Computer Vision, vol. 16, pp. 191-204,
1995.

[2] Ch. Oliver and S. Quegan, Understanding Synthetic Aperture
Radar Images, Artech House, London, 1998.

[38] A. Jazwinski, Stochastic Processes and Filtering Theory, Aca-
demic Press, 1970.

[4] A. Yarbus, FEye movements and Vision, Plenum Press, New
York, 1967.

[5] J. De Bie, The control properties of small eye movements, Ph.D.
thesis, Technische Universiteit Delft, 1986.

[6] O. Carmona and Y. Lopez de Meneses, “Etude des mouvements
oculaires humains : application & un oeil artificiel,” in Actes
des Journées des Jeunes Chercheurs en Robotique (JJCR’S),
Clermont-Ferrand, France, 1998.

[7] N. Franceschini and R. Chagneux, “Repetitive scanning in the
fly compund eye,” in 25th Goéttingen Neurobiology Conference,
Elsner and Wassle, Eds., 1997, p. 279.



HONGLER AND L. DE MENESES ET AL. : THE RESONANT RETINA

[8] O. Landolt, A. Mitros, and Koch C., “Visual Sensor with Reso-
lution Enhancement by Mechanical Vibrations,” in Proceedings
2001 Conference on Advanced Research in VLSI, 2001, pp. 249—

264.

O. Landolt and A. Mitros, “Visual sensor with resolution en-
hancement by mechanical vibrations,” Autonomous Robots, vol.
11, pp. 233239, 2001.

K. Hoshino, F. Mura, and I. Shimoyama, “A One-Chip Scan-
ning Retina With an Integrated Micromechanical Scanning Ac-
tuator,” Journal of Microelectromechanical Systems, vol. 10, no.
4, pp. 492-497, December 2001.

R. Deriche, “Using Canny’s criteria to derive a recursively im-
plemented optimal edge detector,” The International Journal
of Computer Vision, vol. 1, no. 2, pp. 167-187, May 1987.

J. Canny, “A computational approach to edge detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
8, no. 6, pp. 679697, November 1986.

D. Marr, Vision, W.H. Freeman and company, 1982.

[9]

(10]

11]

(12]

(13]
[14] D. Hubel, L’oeil, le cerveau et la vision, Pour la science. Diffu-

sion Belin, 1994.

W.H.A. Beaudot, Le traitement neuronal de l’information dans
la rétine des wvertébrés : Un creuset d’idées pour la wvision
artificielle, Ph.D. thesis, INPG, Laboratoire TIRF, Grenoble
(France), December 1994.

M. Stemmler, “A single spike suffices: The simplest form of
stochastic resonance in model neuron,” Network: Computations
in Neural Systems, vol. 61, no. 7, pp. 687716, 1996.

U. Miiller and L.M. Ward, “Stochastic resonance in a statistical
model of a time-integrating detector,” Physical Review FE, vol.
61, no. 4, pp. 4286—4294, April 2000.

P.E. Greenwood, L. M. Ward, and W. Wefelmeyer, “Statistical
analysis of stochastic resonance in a simple setting,” Physical
Review FE, vol. 60, pp. 4687-4696, 1999.

R. Benzi, A. Sutera, and A. Vulpiani, “The mechanism of
stochastic resonance,” Journal of Physics A: Mathematics and
General, vol. 14, pp. L453-1.457, 1981.

L. Gammaitoni, Hénggi P., P. Jung, and F. Marchesoni,
“Stochastic resonance,” Review of Modern Physics, vol. 70, no.
1, pp. 223-252, (1998.

B. Ando and S. Graziani, “Adding noise to improve measure-
ment,” IEEE Instrumentation & Measurement Magazine, vol.
4, no. 1, pp. 24-31, March 2001.

R.A. Wannamaker, S. Lipshitz, and J. Vanderkooy, “Stochastic
resonance as dithering,” Physical Review E, vol. 61, no. 1, pp.
233-236, January 2000.

A. Fairhall, G.D. Lewen, W. Bialek, and R. de Ruyter van
Steveninck, “Efficiency and ambiguity in an adaptive neural
code,” Nature, vol. 412, no. 6849, pp. 787792, Aug 2001.

P. Génssler and W. Stute, Wahrscheinlichtkeit Theorie,
Springer Verlag, 1977.

C.W. Gardiner, Handbook of Stochastic Methods for Physics,
Chemistry and the Natural sciences, Springer Verlag, 1983.

P. Kloeden and E. Platen, Numerical Solution of Stochastic Dif-
ferential Equations, Number 23 in Applications of Mathematics.
Springer, 1992.

(15]

[16]

(17]

(18]

(19]

20]

21]

(22]

(23]

(24]
25]

[26]

[27] F. Worgotter, “Bad design and good performance: Strategies of
the visual system fon enhanced scene analysis,” in International
Conference on Artificial Neural Networks 2001. 2001, number

2130 in LNCS, pp. 13-15, Springer.

A. Papoulis, Probability, Random Variables and Stochastic Pro-
cesses, McGraw-Hill, 3rd edition, 1991.

(28]

APPENDIX
I. ALTERNATIVE PROOF OF PROPOSITION 2
A single pixel of the dynamic retina is described by equa-

tions (32), (37), (5) or rather its differential equivalent (40),
and (6). The Laplace transform of these equations yields

3 = T s

i = Law (56)
i) = 2+ BEw) (5)
o) = ) (58)
Os) = RAils) ~ils)}- (59)

By replacing Egs. (56), (57) and (58) into Eq. (59) the
resulting equation is

“

The first term disappears in steady-state, and the transfer
function of a given pixel is shown to be:

A s
B
s—l—/\+

BT o(s) b
s+As+7vy

O(s) (60)

o}

(s
(s)

Each pixel is a linear, time-invariant system driven by a
stochastic signal, and thus the statistical properties of the
output signal O(t) can be obtained from the statistical
properties of the input w(t) and the transfer function of
the system heq(t) [28]. Here we obtain:

s
s+As+7

= Heq(s) = RBuy (61)

£

(O(t)) = (w(t))Heq(0) = 0 (62)
and
(O*(t))s = Roo(r =0)=F {Soo(w)} =0 (63)
_ % / Soo(w) dw, (64)
with
SOO(w) = SWH(W) 'Heq(w)He (—w) (65)
and R,0(T) is the autocorrelation function of O(¢t). Here
we have:
> 1 [ REBUAAWY
<O (t)>s - %_/ (w2+/\2)(w2+’72)
| R2Bu2y? joo 4 a4
B 27 /_joozlzjw +Pid » (66)

with the poles p; = —ps = A and p3 = —pgy = v. The
corresponding residues, a; = —ay =

b
77— X)

residues theorem on Eq. (66) we obtain:

—A
W and as =

—a4 = can be computed and using the Cauchy
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1 - (272 B2
(O0%(1)s = - R*B iy —— =R (67)

7+ A 2(A+7)
which yields Eq. (51).
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