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Abstract. Modern incremental and iterative software engineering pro-
cesses advocate to build software systems by first creating a highly simpli-
fied and abstract model of the system which is then moved by applying a
series of model improvements toward implementation. Models of software
systems at any level of abstraction should contain, besides structural in-
formation, a precise description of the expected system behavior. This
paper formalizes relations between models of the same system at differ-
ent levels of abstraction, classifies approaches for describing behavior of
system operations, and investigates how these system operation descrip-
tions can be kept synchronized with frequent changes of the system’s
structure.
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1 Introduction

In the Analysis phase of the software development lifecycle, the expected be-
havior of the system under development has to be described as clearly as pos-
sible. Many methodologies, e.g. Rational Unified Process [1], Catalysis [2], and
Fusion [3], propose to start with a high-level class model that represents only
coarsely the actual state space of the system. The system’s behavior is mod-
eled by operations attached to classes and precisely described by a contract
consisting of a pre- and postcondition [4,5] (see also the survey [6] in this vol-
ume). In practice, contracts are often given only informally. Formal contracts
– written in a formal specification language – have some obvious advantages
such as being a non-ambiguous criterion for the correctness of the implemented
system. After the Analysis phase has been finished, the developed class model
serves as a starting point for further design activities. In the Design phase,
the state space of the system is typically explored thoroughly in order to de-
fine the best possible way how the system can provide the behavior that has
been specified in the Analysis phase. This includes to iteratively refine the
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current class model until it can be implemented directly in a chosen program-
ming language.

Although the sketched development process can help to master the complexity
of software development and to implement provably correct systems, it has not
been widely adopted in industry yet. Many practitioners shy away from the
effort to annotate class diagrams with formal contracts and to apply formal
refinements when working on the system’s design. We see two main reasons for
the resistance to develop software by stepwise refinement. Firstly, the semantics
of a contract language does not always meet the needs of developers. It is much
more common to annotate a contract in an informal language such as English
than in a formal language. Secondly, there is no common understanding on what
refinement should mean and what it is good for in practice. Both problems are
amplified by the lack of tool support. The contract language for UML, the Object
Constraint Language (OCL), is not supported yet by any of the major UML tool
vendors. A useful support for a contract language has to include also support for
rewriting contracts when refining a (more) abstract class diagram to a (more)
concrete one.

Despite their rare usage in practice, formal contract languages offer many
advantages that fit well with recent trends in software engineering. Component-
based development [7] is based on the idea of assembling applications from pre-
fabricated modules (components). The functionality of a component is described
best by a formal contract. Ideally, a component would carry also a formal proof to
have implemented this contract correctly. Another motivation for using formal
contract languages is model-driven development [8], which puts the modeling
artifacts and not the implementation code to the forefront. The Model Driven
Architecture (MDA) initiative of the OMG [9] aims at a framework for defining
systems using a wide range of structural and behavioral views. The ultimate goal
of MDA is to raise the level of abstraction at which systems are developed.

This paper discusses the purpose and semantics of contract languages and
refinement steps. In Sect. 2, we divide existing formal contract languages into
two groups called restrictive and constructive languages. After giving in Sect. 3
some formal definitions on the syntax and semantics of contracts, it is shown in
Sect. 4 by example how a class diagram can be refined. Furthermore, the impact
of a refinement on the syntactical correctness of operation contracts is shown.
We make a proposal how refinement can be defined not as a syntactic transfor-
mation but based on the semantics of the involved class diagram. Based on this
notion of refinement, we introduce correctness criteria for rewritten contracts
in the refined diagram. For refactorings, which can be seen as a specific form
of refinement, we discuss how operation contracts can be rewritten fully auto-
matically without changing their semantics. In Sect. 5, constructive specification
languages are discussed in more detail. Sometimes, constructive languages only
allow to describe deterministic contracts. This shortcoming, however, can be
remedied by integrating some elements of restrictive languages into constructive
languages. Section 6 concludes the paper.



Definition and Correct Refinement of Operation Specifications 129

2 Restrictive vs. Constructive Languages

Formal languages for defining a contract, i.e. a pair of pre- and postcondition,
can be divided into two groups. The distinction is based on the technique of
formulating the postcondition of a contract. Restrictive languages focus in the
postcondition on Which properties must be satisfied in the post-state? The post-
condition is formalized as a predicate (a Boolean expression), which is evaluated
to true in all valid post-states. Otherwise stated, the postcondition restricts the
set of possible post-states. Well-known examples for restrictive languages are
Eiffel [10], OCL [11], JML [12], and Z [13]. Constructive languages, instead, fo-
cus in the postcondition on Which state transition is realized by the operation?
The contract prescribes how for a given pre-state the post-state is constructed.
Well-known examples for constructive languages are Abstract State Machines
(ASMs)[14], B [15], and UML’s Action Language [16].

If an operation would be specified both with a restrictive and a constructive
contract, then the properties of the post-state, which are given in the restrictive
contract, could be entailed from a constructive contract. Some special purpose
logics such as Hoare-Logic [17], Dynamic Logic [18] or even tools such as KeY
[19] could be used to formally show this entailment relationship. The fact that
restrictive contracts are comparably weak is also illustrated by the presence
of the well-known frame problem [20,21]. Constructive languages, on the other
hand, have the tendency to allow only deterministic specifications, which prevent
any variations among the implementations of the specified operation.

We illustrate here briefly the main problems faced by restrictive and construc-
tive specifications on a trivial example. A more detailed discussion on how the
frame problem can be handled in restrictive languages is found in [22].

Let class A have two integer attributes a1, a2 and one operation op(). The
intended behavior of op() is to double the value of attribute a1. A contract in
the restrictive language OCL typically looks as follows:
context A: : op ( )

post : s e l f . a1 = s e l f . a1@pre + s e l f . a1@pre
Since this contract has no precondition the predicate true is implicitly as-

sumed. The postcondition is given in form of a restriction on the post-state: a
post-state is valid as long as the value of attribute a1 on object self (which is the
object on which op() is invoked) is doubled compared to the value of a1 in the
pre-state (represented by a1@pre). Although it was intended, the OCL contract
does not imply that the change of attribute a1 is the only effect of operation op().
According to this contract, also implementations of op() are correct that change
the value of a2, or create new objects, or delete existing objects. A version of the
OCL contract that really captures completely the intended behavior would be
possible but its postcondition would be longwinded and had to mention explicitly
all properties of the underlying class diagram that are not affected by op() (e.g.
self.a2=self.a2@pre and A.allInstances()=A.allInstances()@pre).

The intended behavior could be given more easily and directly if a constructive
language is used for formulating the contract. Operation op() could be specified
in B by

op() � a1 := a1*2
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Here, the precondition is omitted as well (implicitly true) and the postcon-
dition is given in form of a pseudo-program which is ’executable’ on a given
pre-state. In difference to the restrictive contract, the semantics of the pseudo-
program assumes an additional ’and nothing else changed’ policy. Thus, imple-
mentations of op() that change, for instance, the value of attribute a2 would be
not correct according to this contract written in B.

As discussed more detailed in Sect. 5, constructive languages suffer from a
problem that is opposite to the frame problem. Whereas restrictive contracts can
hardly express which parts of the system state remain unchanged, constructive
contracts can hardly expressed that some parts of the system can arbitrarily
change.

3 A Formal Contract Language

This section formalizes a contract language, giving its syntax and semantics.
We have chosen the language of UML class diagrams (see [23,24] for a general
introduction) and the Object Constraint Language (OCL) [25,11] as a formal,
restrictive language to specify contracts for operations. Our formalization will be
the basis to define precisely our notion of refinement and correctness presented
in Sect. 4.

The first two definitions formally capture the notion of class and object di-
agrams in a mathematical way. The well-known graphical notation of these di-
agrams are intentionally ignored here, but can be added straightforwardly as
Fig. 1 illustrates.

Definition 1 (Class Diagram). A class diagram cd is a tuple (Class, Att,
Asso, Oper, owner, atttype, associates, mult, opsig, �) where

– Class, Att, Asso, Oper are disjunctive finite sets containing symbols for
classes, attributes, associations, and operations

– owner, atttype are total functions on Att yielding the owning class and the
type of attributes

– associates is a total function on Asso yielding the list of classes connected
by associations

– mult is a total function on Asso yielding the list of multiplicities (sets of
non-negative natural numbers) annotated on association ends

– opsig is a total function on Oper yielding the list of parameter types; we
assume the owning class of the operation to be always the first element of
the list

– � is a partial order on Class reflecting its generalization hierarchy

The information given in a class diagram can easily be converted into a signa-
ture Σ of a sorted, first-order predicate logic. Every class name C becomes a
sort symbol C, every attribute at becomes a function symbol at : owner(at) →
atttype(at), the generalization hierarchy � is embedded in the sort hierarchy �.
Furthermore, we assume signature Σ to contain also entries for all declarations
made in the standard OCL library. Thus, the set of sort symbols in Σ contains
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OCL’s standard types Integer, Real, String, Set(T). There are function sym-
bols in Σ for all pre-defined OCL operations such as includes: Collection(T)
× T → Boolean and the sort hierarchy � has entries for pre-defined types, e.g.
Integer � Real, etc.

The first-order predicate logic for Σ is semantically interpreted by usual first-
order structures. For the pre-defined symbols of the OCL library, a fixed interpre-
tation is assumed. For example, the standard sort Integer is always interpreted
as the set of natural numbers, the symbol includes is always interpreted as the
set-theoretical is-element-of relationship, etc.

In our context, it is useful and common to call interpretations also states.
That is the reason why the interpretations I of signature Σ are also denoted
as StateΣ. Two interpretations for Σ can differ only in the interpretation of
the symbols that stem from the class diagram. This part of interpretations can
be depicted by object diagrams. Consequently, object diagrams and states are
isomorphic structures. Object diagrams are denoted as a mathematical tuple in
the same style as class diagrams. Figure 1 shows a simple example of a class and
an object diagram both in the usual graphical notation and as mathematical
tuples.

Definition 2 (Object Diagram). Let cd=(Class, Att, Asso, Oper, owner,
atttype, associates, mult, opsig, �) be a given class diagram. An object diagram
od for cd is a tuple (Obj, Slot, Link) where

– Obj is a total function on Class. Obj(C) yields the finite set of all existing
objects (we also say all instances) of class C.
We also write ObjC instead of Obj(C).

– Slot is a total function on Att. Slot(at) yields a total function from
Obj(owner(at)) to Obj(atttype(at)).
We also write Slotat instead of Slot(at).

– Link is a total function on Asso. Link(as) yields a set of object lists where
the i-th object in each list must be an instance of the i-th element of accoci-
ates(as).
We also write Linkas instead of Link(as).

If as is a binary association (i.e. associates(as) is a list of length two), we
use oppas(o) as an abbreviation for {o′ | (o, o′) ∈ Linkas ∨ (o′, o) ∈ Linkas}.
Otherwise stated, oppas(o) denotes the set of opposite ends of links in which
object o is participating. If oppas(o) is a singleton set, we use oppas(o) also
to refer to the contained element, i.e. oppas(o) might also stand as an abbre-
viation for μo′ | (o, o′) ∈ Linkas ∨ (o′, o) ∈ Linkas.

– The cardinality of Linkas must satisfy the restrictions expressed by the mul-
tiplicities attached to as. More formally: Let as be an n-ary association and
i=1,...,n. The function prj(i, list) extracts the i-th element from list. Then,
for all i, for all tuple ∈ Linkas the following holds:
#{tuple′ |

∧
j=1..i−1,1+1,..,n prj(j, tuple′) = prj(j, tuple)} ∈ prj(i, mult(as))

– If C1 � C2 then ObjC1 ⊆ ObjC2.
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Food**Person

age:Integer
birthday()

likes

icecream:Food

anne:Person

age=12
likes

jon:Person

age=25

likes

Class = {Person, Food},
Att = {age}, Asso = {likes}, Oper = {birthday},
owner = {(age, Person)}, atttype = {(age, Integer)},
accociates = {(likes, (Person, Food))},
mult = {(likes, (N+, N

+))},
opsig = {(birthday, (Person))},
�= {}

ObjPerson = {anne, jon}, ObjFood = {icecream},
Slotage = {(anne, 12), (jon, 25)},
Linklikes = {(anne, icecream), (jon, icecream)}

Fig. 1. Class and object diagram in both graphical and textual notation

A contract for an operation op() is a pair (pre, post) where pre, post are pred-
icate formulas over Σ. Both formulas can contain variables that are declared
as formal parameters of op() (note, that the pre-defined OCL variable self is
handled in our formalism also as a formal parameter of op()). The precondition
pre is evaluated on a given pre-state s1 and a given binding argval of the for-
mal parameters. The evaluation is defined formally by structural induction on
all OCL expressions (see OCL’s language definition [11] for details). We write
(s1, argval) |=Σ pre iff pre is evaluated in s1 under the binding argval to true.
The postcondition post is similarly evaluated in a pre-state s1, an argument
binding argval, and a post-state s2. We write (s1, argval, s2) |=Σ post iff post
is evaluated to true.

Definition 3 (Semantics of Contract). Let cd be a given class diagram, Σ
the induced signature, op() an operation in cd, and (pre, post) a contract for
op().

A label transition system (LTS) for op() is a pair (StateΣ, ρ) where StateΣ

denotes all possible states for Σ and ρ is a subset of StateΣ ×Argval ×StateΣ.
Here, Argval denotes all bindings of the formal parameters of op() to concrete
values.

We say that lts1 = (StateΣ, ρ1) is larger then lts2 = (StateΣ, ρ2), denoted
by lts2 � lts1, iff ρ2 ⊆ ρ1.

The semantics of contract (pre, post) is the largest LTS semop = (StateΣ , ρ)
such that (s1, argval, s2) ∈ ρ implies that either (s1, argval) �|=Σ pre or
(s1, argval, s2) |=Σ post.

Informally stated, the semantics of a contract is a LTS where the relation ρ con-
tains exactly the state transitions which are possible according to the contract.

Definition 4 (Implementation, Partial/Total Correctness). Let cd be a
given class diagram, Σ the induced signature, op() an operation in cd, and
(pre, post) a contract for op().
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An implementation of operation op() is a deterministic LTS (StateΣ, ρ) on
all possible states and argument bindings. A LTS (StateΣ, ρ) is called deter-
ministic on state s1 and argument binding argval iff (s1, argval, s2) ∈ ρ and
(s1, argval, s2′) ∈ ρ implies s2 = s2′.

An implementation (StateΣ , ρ) of operation op() is called partially correct if
(State, ρ) � semop.

An implementation (StateΣ, ρ) of operation op() is called totally correct if it is
partially correct and ρ is total on all pre-states allowed by precondition pre. More
formally: If (s1, argval) |=Σ pre then there exists s2 such that (s1, argval, s2) ∈ ρ.

Definition 5 (Non-deterministic Contract). Let (pre, post) be a contract
for operation op(). We call this contract deterministic if semop is deterministic
on all allowed states s1 and argument bindings argval that satisfy the precondi-
tion: (s1, argval) |=Σ pre. Otherwise, the contract is called non-deterministic.

Note that deterministic contracts allow only one implementation on the allowed
pre-states.

4 Correct Refinement of OCL Contracts

This section proposes a refinement notion that is purely based on the semantics
of the involved class diagrams and does not impose any syntactical restrictions on
them. Our approach is motivated by a simple case study on developing software
to control a Drink Vending Machine (DVM). For some types of refinement,
called refactorings, we derive in Sect. 4.4 some automatic rewriting rules for the
contracts attached to the abstract class model.

4.1 Example: Drink Vending Machine (DVM)

A Drink Vending Machine (DVM) must be able to interact with both customers
and service persons. The main functionality offered to customers is selling a
drink. When a customer wants to buy a drink, s/he first has to select among
the different drink kinds the machine offers, then to insert sufficient money, and
finally to take the delivered drink from the drawer. A service person should be
able to replenish the DVM with new drinks, to empty the money box of the
DVM, to fix problems with the drawer, etc. For a realistic model of the DVM
(see [26] for details), all possible exceptional cases have to be taken into account,
e.g. that all drinks of a certain kind are sold out when a customer wants to buy
it or that the capacity of the moneybox has been exceeded.

In this paper, we concentrate only on the formal specification of system op-
eration sellDrink(). The operation sellDrink() is responsible for delivering
drinks and for maintaining the number of available drinks in the DVM. Infor-
mally, this operation (1) checks, if the money inserted by the customer, called
credit, is sufficient for buying the desired drink, (2) checks, if the desired drink
is available, and (3) decrements the counter of how many drinks of the selected
type are available in the system.
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DVM

sellDrink(drinkName, credit)

Drink

price: Integer
name: String
avUnits: Integer

*1

context DVM inv :
s e l f . dr ink−>f o rA l l (d1 , d2 | d1 . name=d2 . name implies d1=d2 )

Fig. 2. System description on abstract layer

An initial model for the DVM could look like the class diagram given in Fig. 2.
The operation sellDrink() declared on class DVM has two parameters. The
parameter drinkName (of type String, what has been suppressed in the diagram)
denotes the kind of drink the customer has selected, for instance tomato juice,
orange juice, cola, beer, etc. The parameter credit (of type Integer) represents
the amount of money inserted by the customer. The class Drink represents all
possible kinds of drinks offered by the DVM. The attributes name and price
are self-explaining, the attribute avUnits represents the number of units that
are still available within the DVM for sale. The invariant attached to the class
diagram ensures the uniqueness of drink names.

The intended behavior of sellDrink is deterministic. Whenever the selected
kind of drink is available and the inserted money is sufficient to buy the drink, the
value of attribute avUnits on the corresponding Drink object should be decre-
mented by 1 and nothing else should happen. Be aware that at the beginning of
a software development project, most operations are specified by deterministic
contracts. This is due to the fact that the system model is quite abstract and
hides most of the details that cause the complexity of the real system.

For the initial system model given in Fig. 2, a restrictive contract for operation
sellDrink() would typically look like the following OCL specification:

context DVM: : s e l lD r i nk ( drinkName : String , c r e d i t : Integer )
pre :

s e l f . dr ink−>s e l e c t (d | d . name=drinkName and
d . p r i c e<=c r ed i t and
d . avUnits>0)−> s i z e ( ) = 1

post :
s e l f . dr ink−>s e l e c t (d | d . name=drinkName )

−> f o rA l l ( d1 | d1 . avUnits=d1 . avUnits@pre −1)

The precondition formalizes the steps (1) and (2), which have been infor-
mally given above, and the postcondition decrements the attribute avUnits on
the selected Drink object by one. This contract written in OCL, however, does
not capture the intended behavior since it is not deterministic and would allow
within the execution of sellDrink(), for example, to change the name of the
drink, what is surely not intended. In other words, the semantics of the contract
language does not fit the needs of developers working on analysis documents.
Some restrictive languages have made provision to handle the frame problem by
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Shelf

unitsOnShelf: Integer

Drink

price: Integer

DrinkKind

name: String

DVM

sellDrink(drinkName, credit) 1

1

1

1

1

1

1

* sh1

sh2

dk

context DVM inv :
s e l f . dr ink . dk−>f o rA l l ( d1 , d2 | d1 . name=d2 . name implies d1=d2 )

Fig. 3. System description on concrete layer

adding to the two standard clauses of a contract, pre- and postcondition, a third
clause that is often called ’modifies’. The language OCL does not have such a
third clause, yet. Nevertheless, we will use, despite all its weaknesses, the above
shown contract for sellDrink() as the starting point for the next refinement of
the system model.

4.2 Refinement of Class Diagrams

The initial system model shown in Fig. 2 has some obvious drawbacks, also
known as design smells. The class Drink has three attributes, which all serve
different purposes. The name of a drink is something very static whereas the
price for one unit might be subject of very frequent changes. Furthermore, the
number of units currently available is rather an attribute of the DVM than one of
class Drink. Thus, all three attributes should be owned by different classes.

Let us assume that in addition to addressing these smells an improved model
should take into account a new detail on DVMs, namely that for each kind of
drinks a DVM has exactly two shelves. A new class diagram reflecting these
changes is shown in Fig. 3. In the remainder of the paper, we name this diagram
cdiag whereas the diagram in Fig. 2 is named adiag (for concrete and abstract
diagram).

The improvements of the new diagram cdiag are basically two changes. Firstly,
the attributes name and price were decoupled by (1) introducing a new class
DrinkKind, (2) connecting it with class Drink using an association with multi-
plicities 1-1, and (3) moving attribute name from Drink to DrinkKind. Secondly,
the new class Shelf became the owner of attribute avUnits (after renaming it
to unitsOnShelf). Moreover, the new detail of the state space that each kind of
drinks is stored on exactly two shelves is reflected by the two new associations
sh1 and sh2.
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This informal definition how adiag has been refined to cdiag is not enough
if one wants to argue formally on the correctness of such a step, e.g. in respect
of the expected behavior of both original and refined system. Thus, we present
now what refinement should mean in our context and how one can define the
refinement relationship between two given (potentially completely different) di-
agrams in a formal way. Unlike the types of refinement foreseen in the UML
(see [24]), our refinement definition does not map syntactical constructs from
the concrete diagram to the abstract diagram. Instead, the main idea is to give
a mapping from states of the concrete system to states of the abstract system.
This technique goes back to a proposal made by Hoare in [27]. Please note that,
unlike the refinement calculus presented in [28] for Eiffel, we do not aim here to
bridge the gap from a UML model of a system to its implementation written in
an implementation language such as Java.

Definition 6 (State Mapping). Let cda, cdc be two class diagrams, which
are called abstract and concrete class diagram, respectively. A refinement is a
relationship between them and is defined by a mapping function map for states
and a mapping function argmap for argument vectors of operations.

A state mapping is a total function map : StateΣcdc → StateΣcda . We will
consider only such refinements for which a surjective mapping function map can
be defined.

The function argmap is defined as a family of functions
argmapop : I(opsigc(op)) → I(opsiga(op)) where op ∈ Oper.

It is often possible to define for the same class diagrams cda, cdc more than
one mapping function. For example, let cda be the class diagram consisting of
only one class B and two attributes b1, b2 of type Integer, and cdc be the class
diagram consisting of class B and two attributes b3, b4 of type Integer. Then,
two possibilities of how map could be defined are:

1. Obj
a
B := Obj

c
B,

Slot
a
b1(o) := Slot

c
b3(o), Slot

a
b2(o) := Slot

c
b4(o) where o ∈ Obj

c
B = Obj

a
B

Link
a := Link

c = ∅
2. Obj

a
B := Obj

c
B,

Slot
a
b1(o) := Slot

c
b4(o), Slot

a
b2(o) := Slot

c
b3(o) where o ∈ Obj

c
B = Obj

a
B

Link
a := Link

c = ∅

In its first version, map assigns the value for attribute b3, b4 to the values
for the abstract attributes b1, b2. In the second version, it is vice versa, b3 is
mapped to b2 and b4 is mapped to b1. For the sake of brevity, we often omit in
the definition of map the assignment for those components in the abstract object
diagram that remain the same as in the concrete object diagram. For example,
the first refinement could also be given as Slot

a
b1(o) := Slot

c
b3(o),Slot

a
b2(o) :=

Slot
c
b4(o) since Obj

a
B ,Link

a are the same as Obj
c
B,Link

c. An even shorter
definition would be possible: Slot

a
b1 := Slot

c
b3,Slot

a
b2 := Slot

c
b4.

The second mapping function argmap maps the input parameters for the
operation of the concrete layer to input parameters for the operation of the
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abstract layer. Suppose, class B had an operation inc(Integer) in both cda and
cdc. The mapping function argmapop could be defined as follows:

argmapop((o, i)) = (o, i + 3)

The variable o represents the object on which op is invoked. An invocation
with parameter i at the concrete layer is mapped to an invocation on the same
object o with parameter i + 3 at the abstract layer. As for map, we will omit
the definition for argmap if it maps argument vectors of the concrete layer to
identical vectors on the abstract layer.

The intended mapping for the DVM example is:
Slot

a
name(oppdk(o)) = Slot

c
name(o)

Slot
a
avUnits(oppsh1(o)) = Slot

c
unitsOnShelf (o) + Slot

c
unitsOnShelf (oppsh2(oppsh1(o)))

4.3 Refinement of Contracts

It is obvious that the formal contract for sellDrink() in adiag cannot be simply
copied to cdiag. The copied contract would be neither syntactically nor seman-
tically correct. Contracts have to be adapted to the new class diagram, a new
version for sellDrink() could look like the following:

context DVM: : s e l lD r i nk ( drinkName : String , c r e d i t : Integer )
pre :

s e l f . dr ink−>s e l e c t (d | d . dk . name=drinkName and
d . p r i c e<=c r ed i t and

(d . sh1 . un it sOnShel f>0 or
d . sh2 . un it sOnShel f>0))−> s i z e ( ) = 1

post :
s e l f . dr ink−>s e l e c t (d | d . dk . name=drinkName )

−> f o rA l l ( d1 |
d1 . sh1 . un it sOnShel f+d1 . sh2 . un it sOnShel f=
d1 . sh1 . unitsOnShelf@pre+d1 . sh2 . unitsOnShelf@pre −1)

For the precondition, the attribute access d.name in the original contract
was changed to d.dk.name in order to reflect moving of attribute name from
Drink to DrinkKind. Furthermore, it must be tested now if at least one shelf
has units available. More interesting changes have been made in the postcondi-
tion. The original postcondition, which strived to describe a deterministic state
change, now became intentionally non-deterministic. Instead of decreasing at-
tribute avUnits, an implementation of sellDrink() could change attribute
unitsOnShelf either for the first or the second shelf (sh1, sh2). This is achieved
by the under-specified postcondition saying that the sum of unitsOnShelf for
both shelves is decreased by one.

Note that the new contract leaves the decision open which one of the shelves
decreases its number of units. In other words, an implementation of sellDrink()
that first makes the first shelf empty before selling drinks from the second shelf
should be possible as well as an implementation that sells units from the second
shelf before the ones from the first shelf or an implementation that alternates
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between both shelves. Of course, an implementation has to realize a concrete,
fixed algorithm but the decision which algorithm to take is deferred here to a
later phase of the software development project.

In the following, we want to answer the question whether the new version
of the OCL contract is correct in respect to the contract given for sellDrink
in adiag. A very basic criterion for correctness of the refined system is that
every state transition which the concrete system is allowed to make has its
’counterpart’ in the abstract system. Otherwise stated, whenever one can observe
a behavior on the concrete system, ’the corresponding behavior’ on the abstract
system is allowed as well. The, somehow, imprecise terms ’counterpart’ and
’corresponding behavior’ are made clear in the following formal definition as a
projection of behavior from the concrete layer to the abstract layer under the
state mapping, which is defined when the underlying class diagram is refined.

Definition 7 (Correct Contract Refinement). Let class diagrams cda,cdc

and refinement functions map, argmap be given. Furthermore, let op() be an
operation declared in both diagrams, and (prea, posta), (prec, postc) be its con-
tracts. The semantics of the contracts are the LTSs sema

op = (StateΣcda , ρa),
semc

op = (StateΣcdc , ρc).
The contract (prec, postc) for op() is called to be a correct refinement of the

abstract contract (prea, posta) if the following holds:
For all argument bindings argval for op() at the concrete layer, for all s1, s2 ∈

StateΣcdc : if (s1, argval, s2) ∈ ρc then (map(s1), argmapop(argval), map(s2))
∈ ρa

After giving a formal correctness criterion for the refinement of contracts, it is, of
course, interesting to discuss whether or not the refined contract for sellDrink()
shown above is correct according to this criterion. We do not answer this question
immediately but will describe in the next subsection a technique to ensure the
correctness of simple refinements. The same technique is powerful enough also
to argue on the correctness of more complicated refinements.

4.4 Refactorings as Simple Refinements

The refinement from adiag to cdiag was defined so far as a monolithic step.
One could also think to achieve the same by a concatenation of much smaller
refinements: 1) create class DrinkKind and connect it to Drink with 1-1 asso-
ciation 2) move attribute name from Drink to DrinkKind 3) create class Shelf
and connect it to Drink with 1-1 association 4) move attribute avUnits from
Drink to Shelf 5) rename attribute avUnits as unitsOnShelf 6) add a second
1-1 association between Drink and Shelf.

From these six steps, the first five steps do not change (up to isomorphism) the
state space of the system but just restructure the model. Such steps, called refac-
torings, are small improvements that lead to better design since they directly
address poor structures of the model (smells). A smell can be the duplication
of attributes or operations, a heavy class having too many responsibilities, too
many dependencies between classes, etc. Typical changes done by refactorings
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include moving attributes and operations up and down in the inheritance hier-
archy of the classes, moving attributes and operations to newly created classes,
giving attributes, operations, classes a new name, etc. The main characteristic
of these changes is that they do not make the system description closer to the
implementation level but keep it at the same level of abstraction.

In recent years, much research has been devoted to refactoring (see [29] for an
overview). Most of these works, however, have concentrated on the refactoring
of implementation code. Fowler gives in [30] a catalog of refactorings for Java
programs. A typical refactoring rule describes in a first step changes on the Java
declarations, e.g. moving a field to a new class to make the original class less
heavy, and in a second step, how the remaining Java program must be updated
in order to become consistent with the changed declaration, e.g. every access to
the original field must be forwarded to the new class.

In [31], we have formalized a catalog of basic refactorings for UML class
diagrams together with the necessary changes on attached OCL constraints.
The above given correctness criterion offers now the possibility to argue on the
semantical correctness of the refactorings. To do this, we have to assume that
every refactoring is associated with a unique mapping function. This mapping
function is not part of refactoring catalogs yet, but is in most cases obvious.

Changes on Class Diagram Changes on OCL Mapping

Source

a1

Target

Target

a1

Source

exp.a11 1

1 1

exp.target.a1

asso

asso
Slot

a
a1(oppasso(o)) :=

Slot
c
a1(o)

Fig. 4. Refactoring MoveAttribute

As an example we formalize in Fig. 4 the refactoring MoveAttribute, which
moves in a first step the attribute from the source class to a target class if both
classes are connected by an 1-1 association. Actually, there are even more side
conditions that must hold, e.g. that the target class has not already an attribute
with the same name as the moved attribute. These side conditions are dropped
here for the sake of brevity, the interested reader is referred to the formalized
version of this rule given in [31]. In a second step, all OCL constraints attached
to the class model must be updated by substituting each attribute access of form
exp.a1 with the new expression exp.target.a1. The expression exp.target is
a navigation from source to target class. Note that updating the attached OCL
constraints can be done automatically.

We finish this section with a theorem on the correctness of the defined
refactoring.
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Theorem 1 (Correctness of MoveAttribute). The refactoring Move-
Attribute refines contracts correctly.

Proof. Let cda, cdc be the original and refactored diagram, op() an operation,
and (prea, posta), (prec, postc) the original and the refactored contract for
op(). The two contracts induce the two LTSs sema

op = (Statea
Σ, ρa) and

semc
op = (Statec

Σ, ρc). According to the correctness criterion we have to
show that for every tuple (s1, argval, s2) ∈ ρc, there is a tuple
(map(s1), argmap(argval), map(s2)) ∈ ρa.
The condition (s1, argval, s2) ∈ ρc means (s1, argval) |=Σcdc prec and
(s1, argval, s2) |=Σcdc postc. The constraints prec, postc are by construction
only different from prea, posta at subexpressions of form exp.target.a1.
According to the semantics of OCL, this expression is evaluated in s to the
same value as exp.a1 in map(s). Thus, we have
(s1, argval) |=Σcdc prec if and only if (map(s1), map(argval)) |=Σcda prea

and, furthermore, (s1, argval, s2) |=Σcdc postc if and only if
(map(s1), argmap(argval), map(s2)) |=Σcda posta. �

5 Constructive Specifications

In the preceding section, we have discussed the problems related with refinement
of class diagrams and how contracts have to be updated accordingly. We have
seen, that a refinement sometimes requires to rewrite a deterministic contract
by a non-deterministic one.

For the DVM example we tried to capture the intended behavior of opera-
tion sellDrink() with a restrictive constraint in OCL. Due to the immanent
frame problem of restrictive languages, it is practically impossible to formalize
deterministic contracts, which, however, are often needed in the first phases of
a software development project.

In this section, we discuss how more appropriate contracts for sellDrink()
can be given using a constructive specification language. The specification lan-
guage of our choice is QVT [32], a special form of graph transformations.

5.1 Graph Transformations

Graph transformations (see [33] for an overview) were originally developed to
manage the manipulation of graphs. Since system states are easily representable
as graphs, they can also be used as a tool to describe state changes, i.e. the
intended behavior of operations.

A graph is manipulated by applying a graph transformation rule on it. Every
graph transformation rule consists of a Left Hand Side (LHS) pattern and a
Right Hand Side (RHS) pattern. Both patterns consist of labeled nodes and
links, which might occur in both patterns. The rule is applied by, firstly, searching
subgraphs in the given graph that match with LHS and, secondly, by rewriting
the matching subgraphs with new subgraphs derived from RHS. If a node/link
in the given graph matches with a node/link that occurs, according to its label,
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only in LHS then this node/link is removed from the given graph. If a node/link
occurs only in RHS then a corresponding element is created. Nodes can also
have slots for attribute values. These values are updated according to the allowed
values of variables occurring in the rule. Finally, a rule has a name (reflecting the
operation it specifies) and parameters (reflecting the signature of the operation).

sellDrink(self:DVM,drinkName:String, credit:Integer)

d:Drink

name=drinkName
price=x
avUnits=y-1

d:Drink

name=drinkName
price=x
avUnits=y

{when}
x<=credit and y > 0

self:DVMself:DVM

Fig. 5. Constructive contract for sellDrink() on abstract layer

As an example, we consider the specification of sellDrink() as shown in
Fig. 5. This rule has to be read – as an operation contract – as follows: Whenever
in a pre-state an object d of class Drink is linked with the object self on which
sellDrink() was invoked and the value of its attribute name matches with
parameter drinkName and the value for attribute price is less than or equal to
parameter credit and the value of attribute avUnits is greater than 0, then
the post-state is derived from the pre-state by decreasing the value of attribute
avUnits by 1.

Note that the post-state is constructed from the pre-state. This is despite
the fact that the specification is, unlike in B or ASM, not given in form of a
pseudo-program but by a pair of matching patterns. The given contract is truly
deterministic since it completely prescribes the update from the pre- to the post-
state. The semantics of the graph transformation rules stipulates that all parts
of the pre-state that do not match with LHS remain unchanged.

5.2 Graph Transformations for Non-deterministic Specifications

One common problem of constructive languages is the tendency to allow only
the formulation of deterministic contracts (due to the construction of a unique
post-state). Actually, many graph transformation systems, e.g. AGG [34], allow
only to describe deterministic rules because they insist on having an executable
specification. The formalism of our choice, QVT, is an exception and allows
to use variables that only occur in RHS. Consequently, these variables are not
bound after the first step of the rule application (the matching of a subgraph
with LHS). The value for the variables can freely be chosen in the second rule
application step, when the matching subgraph is rewritten with a new graph
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derived from RHS. The variable values, however, can be restricted by an OCL
constraint given in the when-clause of the rule.

The non-deterministic contract for sellDrink on the concrete layer is shown
in Fig. 6. There are two new variables y1’ and y2’ in RHS whose values can
be chosen non-deterministically as long as the restrictions imposed by the OCL
constraint in the when-clause are obeyed.

sellDrink(self:DVM,drinkName:String, credit:Integer)

sh1:Shelf

unitsOnShelf=y1

sh2:Shelf

unitsOnShelf=y2

d:Drink

price=x
sh1:Shelf

unitsOnShelf=y1'

d:Drink

price=x

sh1 sh1

sh2sh2

{when}
x<=credit and (y1>0 or y2>0) and y1+y2=(y1'+y2')-1 and  (y1=y1' or y2=y2')

sh2:Shelf

unitsOnShelf=y2'
dk:DrinkKind

name=drinkName

dk:DrinkKind

name=drinkName

self:DVM self:DVM

dk dk

Fig. 6. Constructive, non-deterministic contract for sellDrink on concrete layer

The integration of a when-clause into transformation rules can be seen as an
attempt to mix constructive with restrictive specification style. This idea is actu-
ally not new, also the constructive language B provides with ANY-WHERE and
the language ASM with its non-deterministic choices analogous constructs. These
non-deterministic constructs in turn have again inspired the language designers
of restrictive languages to include them. For instance offers OCL a construct
any() that should mimic the ANY-WHERE construct of B. The integration of
any() in OCL has caused, however, a lot of contradictions in the language seman-
tics as analyzed in [35]. This is another striking example for a mis-conception, if
the fundamental differences between restrictive and constructive specifications
languages are not sufficiently understood.

6 Conclusions

In this paper, we have formalized relations between models of the same software
system situated at different levels of abstraction. We assume the system to be
described by UML class diagrams with OCL constraints attached, but our results
can easily be applied also to other specification formalisms.

Moreover, we have given a classification of formal contract definition lan-
guages in respect to the underlying specification technique they offer. For graph
transformations, which can be seen as a constructive specification language, we
propose an approach to express non-determinism by enriching them with restric-
tive specification elements.
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Another contribution of this paper is the investigation how changes made on
structural part of a model can influence contracts for operations. In order to
cope with this problem, we have defined criteria for the correctness of contract
refinements. We were able to prove for a simple kind of standard refinement,
a well-known refactoring rule, that its application preserves the semantical cor-
rectness of contracts.
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