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Abstract. This paper proposes a new method for re-
construction of star-shaped 3D surfaces from scattered
datasets, where such surfaces are considered as signals
living in the space of square integrable functions on
the unit sphere. We first propose a generalization of
the Fourier transform on the sphere. A practical re-
construction method is then presented, which interpo-
lates a spherical signal on an equiangular grid, from
non-uniformly sampled dataset representing a 3D point
cloud. The experiments show that the proposed interpo-
lation method results in smoother surfaces, and higher
reconstruction PSNRs than the nearest neighbor inter-
polation method.

1 Introduction

Compression of 3D models represents an important
and still open problem in communications, due to
the high amount of data needed for their render-
ing. Moreover, transmission of this data over lossy
networks requires multiresolutional representations
of 3D models and scalable coding methods. An in-
tuitive way to satisfy these requirements is to ap-
ply signal processing tools to a 3D model projected
on an appropriate signal space. The most natural
projection space for genus-zero closed 3D surfaces
is certainly the sphere. Recent development of sig-
nal processing tools in the spherical framework, like
the Fast Fourier Transform on the Sphere [1, 2] and
spherical wavelets [3], opened a way to a new class
of 3D model compression methods based on spheri-
cal parametrization. Most of these methods employ
the spherical wavelet transform, like the Progressive
Geometry Compression [4], or shape compression
using spherical geometry images [5]. An efficient al-
ternative for low bit-rate 3D coding is the Spheri-
cal Matching Pursuit based compression method [6].
However, mapping a 3D model on the signal space,
while keeping the signal properties, is not a trivial
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task and it surely influences the compression effi-
ciency.

In this paper, we propose a method that takes
the 3D point cloud of a star-shaped! model and
reconstructs the underlying spherical signal on the
equiangular spherical grid, without cutting or un-
folding the surface. We define this problem as an
interpolation problem on the sphere from non-
uniformly sampled datasets. Unfortunately, signal
interpolation on the sphere has not been much in-
vestigated; some theoretical frameworks have been
developed ([7, 8]), but none of these works actually
consider the practical implementation issues of sig-
nal reconstruction from scattered data points. On
the other hand, non-uniform sampling of signals
on 2D plane has been quite deeply investigated.
Grochenig et al. [9] showed that a 2D signal can
be reconstructed by a generalization of a Fourier
expansion. Using a similar approach, we propose
here a reconstruction method for signals defined on
a unit sphere, based on the spherical Fourier trans-
form. We show how a generalization of Fourier ex-
pansions can be applied on the sphere, and we pro-
pose a method for reconstruction of signals from
non-uniformly sampled datasets.

This paper is organized as follows: in the Section 2
we introduce a new method for spherical interpola-
tion from scattered data, while in the Section 3 we
explain how the complexity of the proposed method
can be reduced. Experimental results are given in
the Section 4. With Section 5 we conclude the pa-
per.

2 FST-based interpolation from
non-uniformly sampled datasets

The signal on the unit sphere is a two-dimensional
signal, described with two spherical coordinates 6

! Star-shaped 3D models are those models for which
every radial line originating from the center of the
point cloud has only one intersection point with the
surface of the model.



and ¢, ie., it is of a form f(0,p). Fast Spheri-
cal Fourier Transform (FST) [2] decomposes a sig-
nal that belongs to the Hilbert space of square-
integrable functions on the two-dimensional sphere
L?(S?,dw) into a series of spherical harmonics:

f(ev Lp) = Z Z f(l>m)}/}77L(9a 90)’ (1)

1EN |m|<l

where Fourier coefficients f(I,m) are given with:

f(l7 m) = - lem(ev p)dw, (2)
and dw(0,¢) = dcosfdy is the rotation invariant
Lebesgue measure on the sphere.

Spherical harmonics of order (I,m), i.e., ¥, are
given with the following expression:

TorUtm) P/ (cosh)e'™?,

3)
where P/"(costl) are the associated Legendre func-
tions (see [1] for more details on their construction).

Y0, ¢0) = (=)™

The sampling theorem for uniformly placed sam-
ples on the sphere has been established by Driscol
and Healy [2]. It states that if a signal on the sphere
is bandlimited, i.e., if f(l, m) =0 for I > N, then it
can be perfectly recovered from uniformly sampled
data 0; = mj /2N, = wk/N;j,k=0,..,2N — 1.

When the sampling is non-uniform, a similar
framework can be used. Let Pp; denote the space
of polynomials on the sphere, given by :

p0.0) =3 3 allmy6.p).  (4)
1=0 |m]<l

An arbitrary sampling problem can then be con-
sidered as a discretization of the here-above polyno-
mials on the sphere, and one can thus reconstruct
a bandlimited signal on the unit sphere from non-
uniformly sampled data points S = (r;,0;,¢;),j =
1,...,q. Using the formula (4), for each sample
(rj,05,¢5),7 =1,...,q we have:

N—-1
ri =100, = Y > al,m)Y™(6;,¢;). (5)
1=0 |m|<!

We can rewrite eq. (5) under a matrix form as:

(6)

V.-a=r,

with

V ={Y"(0;,0;) fqx N2
a={a(l,m)}n2x1

r= {Tj}qxl’
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where the subscripts denote the size of these matri-
ces.

By solving this linear system we obtain the values
for coefficients a(l, m), which are the approximates
of Fourier coefficients for the observed signal on the
sphere f:

fO,p)~a=V"".r. (10)

Since V' is not a square matrix, finding its inverse is
not an easy task. The pseudo-inverse will give a min-
imal norm solution, resulting in a stable reconstruc-
tion, but it is computationally very expensive. In-
stead of directly solving eq. (6), we propose to mul-
tiply each side of the relation with V* = conj(VT):
VvV -V.a=V".r, (11)

or equivalently:
T -a=R,

with T =V*-Vand R=V*.r.

As the matrix T is a square matrix of size N2,
solving the system of eq. (12) instead of eq. (6)
drastically decreases the computational complexity.
Note that since the system (12) is complex, the total
number of unknowns amounts to 2/N?2.

Finally, after the estimation of the Fourier coef-
ficients, we can substitute them in the equation (1)
and reconstruct the continuous function on the unit
sphere.

(12)

3 Symmetry-based system
complexity reduction

Due to the symmetric structure of associated Legen-
dre functions, spherical harmonics satisfy the fol-
lowing property:

Y= (-1)"y (13)

Combining this property and the equation (2),
we can express Fourier coeflicients f (I, —m) as func-

tions of f(I,m):

f(lv _m) = (_l)mf(lam)a

having in mind that we are considering real func-
tions on the sphere (f(0,¢) € R).

(14)



Since the solution of (12) is an approximated vec-
tor of Fourier coefficients, its values will satisfy a
similar relation, i.e.:

a(l,—m) = (=1)"a(l,m). (15)

Thus, we can rewrite the equation (5), for each
sample j = 1,..., ¢, in the following form:

i

= {a}Y(j) +2 ) [Re{a]"}Re{Y;"(j)}

m=1

+ Im{a* Y Im{Y;" (5)}},

where a]” = a(l,m) and Y;"(5) = Y,"(0;, ¢;), and
Re and I'm denote the real and the imaginary part
of a complex number, respectively.

Consider further a new matrix V, obtained from
the matrix V by replacing the spherical harmonics
Y, () for m = —1,..., =1 with 2Im{Y"(j)},m =
1,...,1 and similarly, replacing Y™ (j),m = 1,...,1
with 2Re{Y,"(j)},m = 1,...,1; for Vj. So, the ob-
tained matrix V,. is of the following form:

YP(1) 2Im{Y}'(1)} YP(1) 2Re{Y{ (1)} ...
YO(2) 2im{Y,(2)} Y0(2) 2Re{Y}(2)} ...

(16)

Y9(q) 20m{Yi(q)} Y2(q) 2Re{Yi ()} -

By solving the following real-valued linear system
of equations:

V,-a, =r, (17)

we obtain a vector a,, which is a modification of
the vector a in (5), where coefficients a(l,m) for
m = —I,...,—1 are substituted with Im{al,},m =
1,...,1 and coefficients a(l,m) for m = 1,...,1 are
substituted with Re{al,},m = 1,...,1; i.e., it is of
the form:

[a) Im{ai} af Re{ai} ..]. (18)

The equivalence of systems (5) and (17) follows
directly from the relation (16). Therefore, we can
solve the real system (17), instead of solving the
complex system (5), and thus reduce the number
of unknown variables from 2N? to NZ2. Similarly
to (11)-(12), we propose to multiply the system (17)
with VT and further reduce the problem to the
square real system:

T, -a.=R,, (19)

with 7, = VI .V, and R, = V7T . r.

Finally, from the obtained vector a, we can cal-
culate the complex values a;",l = 0,..., N —1;m =
1,....10 as:

a* = Re{a;"} + iIm{a;"}. (20)

The rest of the values a;* for m = —1, ..., —1 follow
from (15).

4 Experimental results

4.1 Preliminaries

Implementation A given 3D point cloud is first
mapped to spherical coordinates with the center in
the point mass, thus obtaining non-uniformly sam-
pled data on the sphere. Afterwards, the FST-based
interpolation scheme is used to reconstruct the un-
derlying spherical signal, evaluated on the equian-
gular spherical grid. This grid type is defined as
follows:

G={(0,0x) €5*:0; = %,% =51} (21)

with ke N ={neN:n<2N}.

Rendering The interpolated 3D point cloud, de-
fined as a spherical function, can be also adapted to
suite the existing rendering techniques. For this pur-
pose, the connectivity information of the obtained
model has to be defined. Using the fact that inter-
polated points lie on the equiangular spherical grid,
we can generate the connectivity by dividing the
spherical grid into rings limited with two successive
values of 6, and then triangulate each ring to pro-
duce a triangular strip.

4.2 Numerical results

The performance of the proposed scheme has been
evaluated on two datasets: the point cloud of 16258
points corresponding to the geometry information
of the Venus model, and the point cloud of 47763
points representing the Male model?. These two
point clouds are shown on the Figures 1 and 2 for
Venus and Male models, respectively.

Figures 3a and 4a display the reconstruction of
two observed models, using the FST-based interpo-

lation method on an equiangular grid, with N =

from
database

2 both models downloaded
the Cyberware models
(http://www.cyberware.com/samples/)

were



64. Reconstructed models were rendered using the
method described in 4.1. For comparison, on the
Figures 3b and 4b we have shown these two mod-
els reconstructed using the nearest neighbor method
with the same resolution. Value of the spherical
function at each point in the equiangular grid is
interpolated by averaging 4 nearest neighbors. As
mentioned in the introduction, no other practical
interpolation methods for spherical data exist, thus
we constrain our comparison to this simple nearest
neighbor method. We can see that in the in the case
of the proposed FST based method, visual qual-
ity of the reconstruction is better and the object
is smoother. This is because the FST based method
gives priority to the lower frequencies of the sig-
nal (I < N), while it cuts off the high frequencies
(I > N), unlike nearest neighbor method which does
not take into account the frequency characteristics
of the signal. As a result, models reconstructed us-
ing the nearest neighbor method have unpleasant
aliasing artifacts. Nevertheless, these artifacts can
be removed using a posteriori filtering, but at the
expense of smoothing other model features as well.
On the Figures 3c) and 4c) we have shown the re-
constructed models after nearest neighbor interpo-
lation and LF filtering, where we used the spher-
ical low-pass filter with a cutoff frequency N=64
(for details on this filter see [10]). The quantitative
comparison of these three methods is given in Ta-
ble 1 by means of the PSNR, which is simply given
by 20 log (%), where relative L? error is a ratio
of RMS - Root Mean Square Error (that measures
the squared symmetric distance between two sur-
faces averaged over the first surface) relative to a
bounding box diagonal. We can see that the PSNR
obtained by the FST scheme is 1.3dB (Venus) and
3.2dB (Male) higher than the PSNR for the near-
est neighbor scheme. Moreover, we notice that the
LF filtering after the nearest neighbor interpolation
drastically decreases the PSNR value.

Table 1. PSNR comparison of FST-based and
Nearest neighbor methods

PSNR|[dB]
Venus | Male
FST 63.3593 61.5904
Nearest neighbor 62.0576 58.3444
Nearest neighbor &|| 57.3411 51.1856
filtering

Fig. 1. Point Cloud of the model Venus

Fig. 2. Point Cloud of the model Male

Fig. 3. a) Venus reconstructed using the FST method,
with resolution 128x128 b) Venus reconstructed using
the nearest neighbor method, with resolution 128x128
¢) Filtered model of Venus from b)



Fig. 4. a) Male reconstructed using the FST method,
with resolution 128x128 b) Male reconstructed using the
nearest neighbor method, with resolution 128x128

c¢) Filtered model of Male from b)

5 Discussion and conclusions

In this paper we propose a method for reconstruc-
tion of star-shaped 3D models as functions defined
on a unit sphere, from 3D point clouds. The re-
construction problem is defined as an interpolation
problem from non-uniformly sampled data on the
sphere. Therefore, a practical method for recon-
struction of spherical signals from non-uniform sam-
ples is developed, which uses a spherical harmonics
base to evaluate the estimates of the Fourier coeffi-
cients on the sphere, and then reconstructs a signal
using an inverse FST. The complexity of the pro-
posed method is linear with respect to the number
of scattered points, so the size of the point cloud
does not influence the algorithm efficiency. However,
the reconstruction quality increases with the density
of the point cloud and with the number of estimated
Fourier coefficients, i.e. with the desired resolution
N. We have shown that the reconstruction quality
of the FST-based method outperforms the nearest
neighbor method, both visually and quantitatively.

Finally, the proposed reconstruction of 3D mod-
els as functions on the sphere offers a lot of flexi-
bility and freedom in design and implementation of
arbitrary 3D data processing tasks. Therefore, we
believe that the developed FST-based 3D model re-
construction method could be of great benefit to
applications like: various 3D model deformations,
representation of 3D models in a multiresolution
fashion, efficient compression of 3D models, etc.
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