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ABSTRACT

Evaluation is a central issue in the design, implementation,
and performance assessment of all systems. Recently, a
number of metrics have been proposed to assess the per-
formance of segmentation algorithms for image and video
data. This paper provides an overview of state of the art
metrics proposed so-far, and introduces a new and efficient
such metric. Doing so, subjective experiments are carried
out to derive a perceptual metric. As a result, it also pro-
vides a comparison of performance of segmentation assess-
ment metrics for different video object segmentation tech-
niques.

1. INTRODUCTION AND SURVEY

The performance of algorithms for subsequent image or video
processing often depends on a prior efficient segmentation.

Many researchers prefer to rely on qualitative human
judgment for evaluation. In fact, Pal and Pal [1] say that
a “human being is the best judge to evaluate the output of
any segmentation algorithm”. However, subjective evalua-
tion asks for a large panel of human observers, thus resulting
in a time-consuming and expensive process.

To avoid systematic subjective evaluation of segmenta-
tion, an automatic procedure is preferred. Empirical meth-
ods [2] are used to evaluate the segmentation algorithms
indirectly, through their results. Empirical methods are di-
vided into empirical discrepancy, metrics when the segmen-
tation result is compared to an ideally segmented reference
map (ground truth), and empirical goodness metrics, when
the quality of the segmentation result is based on intuitive
measures of goodness such as gray-level or color unifor-
mity, shape regularity or contrast between regions.

Although goodness evaluation methods can be very use-
ful for on-line evaluation, their results do not necessarily co-
incide with human perception of the goodness of segmenta-
tion. For this reason, when a reference mask is available or
can be generated, discrepancy evaluation methods are pre-
ferred.

Despite several quality metrics proposed for still image
segmentation [3, 4, 5, 6], they are not directly applicable to
video object segmentation. In this section we will start by

presenting the state of the art evaluation metrics for video
object segmentation [7, 8, 9, 10, 11, 12, 13, 14]. In particu-
lar, we will provide the details of three methods [12, 13, 15]
that will be used when assessing the performance of a new
metric which will be described in the next section.

Empirical goodness methods have been defined not only
for still image [3, 4] but also for video in [8, 9]. In [8], good-
ness metrics are developed and grouped into two classes:
intra-object homogeneity (shape regularity, spatial unifor-
mity, temporal stability and motion uniformity) and inter-
object disparity (local color and motion contrast with neigh-
bors). The goodness metrics are all combined in a com-
posite metric with weights differentiated according to the
type of content (stable or moving content). Erdem et al. [9]
utilized a spatial color contrast measure, color histograms
differences along the temporal axis and motion vector dif-
ferences along the boundaries of the segmented objects, all
combined in a single performance measure. Piroddi et al. [14]
improved Erdem’s goodness method in terms of sensitivity
as well as immunity to noise.

To evaluate a video scene with segmented moving ob-
jects by means of discrepancy methods, Erdem and Sankur [10]
combined three empirical discrepancy measures into an over-
all quality segmentation evaluation: mis-classification penalty,
shape penalty, and motion penalty. In [8], Correia and Pereira
first measured the individual segmentation quality through
four spatial accuracy criteria: shape fidelity, geometrical fi-
delity, edge and statistical content similarity and two tem-
poral criteria: temporal perceptual information and criti-
cality. Then, they computed the similarity factor between
the reference and the resulting segmentation. Furthermore,
the multiple-object case was addressed by using the criteria
of application-dependent “object relevance” [16] to provide
the weights for the quality metric of each object.

Another way to approach the problem is to consider it as
a particular case of shape similarity as proposed in [11] for
video object segmentation. In this method, the evaluation of
the spatial accuracy and the temporal coherence is based on
the mean and standard deviation of the 2-D shape estimation
errors.

We proposed to evaluate the quality of a segmented ob-
ject through spatial and temporal accuracy joined to yield
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a combined metric [7]. This work was based on two other
discrepancy methods [12, 17] described below.

During the standardization work of ISO/MPEG-4, within
the core experiments on automatic segmentation of moving
objects, it became necessary to compare the results of differ-
ent object segmentation algorithms, not only by subjective
evaluation, but also by objective evaluation. The proposal
for objective evaluation [12] agreed by the working group
uses a ground truth. This metric is adopted by the research
community due also to its simplicity. A refinement of this
metric has been proposed by Villegas et al. [17, 13]. These
metrics have been chosen as term of comparison for a new
metric proposed in this paper.

1.1. MPEG Evaluation Criteria

A moving object can be represented by a binary mask, called
object mask, where a pixel has object-label if it is inside the
object and background-label if it is outside the object. The
objective evaluation approach used in the MPEG-4 core-
experiments has two objective criteria: the spatial accuracy
and the temporal coherence. Spatial accuracy, Sqm, is esti-
mated through the amount of error pixels (both false positive
and false negative pixels) in the resulting mask deviating
from an ideal mask.

Temporal coherence is estimated by the difference of the
spatial accuracy of the mask, M , at the current and previous
frame k,

TqmM (k) = Sqm(k) − Sqm(k − 1). (1)

The two evaluation criteria can be combined in a single
MPEG quality measure, MPEGqm(k), through the sum:

MPEGqm(k) = Sqm(k) + TqmM (k). (2)

In this metric, the perceptual difference of different classes
of errors, false positive and false negative, is not considered
and they are all treated equally. In fact, different kinds of er-
rors should be combined in the metric in correct proportions
to match evaluation results produced by human observers.

1.2. Weighted Evaluation Criteria

Within the project COST 211 [18] the above approach has
been further developed by Villegas and Marichal [17, 13].
For the evaluation of the spatial accuracy, as opposed to the
previous method, two classes of pixels are distinguished:
those which have object-label in the resulting object mask,
but not in the reference mask (false positive) and vice versa
(false negative), and they are weighted differently. Further-
more, their metric takes into account the impact of these
two classes on the spatial accuracy, that is, the evaluation
worsens with pixel distance d to the reference object con-
tour. The spatial accuracy, qms, is normalized by the sum

of the areas of reference objects as follows:

qms(k) =
qms+(k) + qms−(k)

∑NR

i=1 Ri(k)

=

∑D
+

M

d=1 w+(d) · |Pd(k)| +
∑D

−

M

d=1 w−(d) · |Nd(k)|
∑NR

i=1 Ri(k)
, (3)

where D+
M and D−

M are the biggest distance d for, respec-
tively, false positives and false negatives; NR is the total

number of objects in the reference R;
∑NR

i=1 Ri(k) is the
sum of the area of all the objects i in the reference; Pd(k)
and Nd(k) are positive and negative pixels respectively; w+(d)
and w−(d) are the weights for positives and negatives re-
spectively, expressed as:

w+(d) = b1 +
b2

d + b3
, w−(d) = fS · d, (4)

where the parameters bi and fS are chosen empirically [13]:
b1 = 20, b2 = −178.125, b3 = 9.375 and fS = 2. These
functions represent the fact that the weights for false neg-
ative pixels increase linearly and they are larger than those
for false positives at the same distance from the border of the
object. In fact, as we move away from the border, missing
parts of objects become more important than added back-
ground.

Two criteria are used for estimating temporal coherence,
the temporal stability qmt(k) and the temporal drift qmd(k)
of the mask. First, the variation of spatial accuracy criterion
between successive frames is investigated as follows. The
temporal stability is equal to the normalized sum of the dif-
ferences of the spatial accuracy for two consecutive frames
for false positive and false negative pixels:

qmt(k) =
qms+(k, k − 1) + qms−(k, k − 1)

∑NR

i=1 Ri(k)
. (5)

where qms∗(k, k − 1) = |qms∗(k) − qms∗(k − 1)|.

Second, the displacement of the gravity center,
−→
G , of

the resulting object and the reference object mask is com-
puted for successive frames to estimate possible drifts of
the object mask,

−−→
qmd(k):

−−→
qmd(k) = [

−→
GE(k)−

−→
GR(k)]− [

−→
GE(k−1)−

−→
GR(k−1)]

(6)
that is displacement from time (k − 1) to time (k) of the
centers of gravity

−→
G , of the estimated E and reference R

masks. The value of drift is the norm of the displacement
vector divided by the sum of the reference object bounding
boxes,

qmd(k) =
||
−−→
qmd(k)||

1
NR

∑NR

i=1 BB
x,y
i (k)

, (7)



where BB
x,y
i (k) is the bounding box of the object i in the

reference mask R at time k. The authors proposed to de-
fine a single quality value by linearly combining all the
three presented measures as the weighted quality metric,
wqm(k):

wqm(k) = w1 ·qms(k)+w2 ·qmt(k)+w3 ·qmd(k). (8)

The values of the weights wi are very much application de-
pendent. If no application is specified, all three weights can
be assumed equal to 1

3 .

In this method, the perceptual difference between two
kinds of errors is taken into account. The drawback is that
the weighting functions defined in Eq. (4), that should be
‘perceptual’ weights of the evaluation criteria, are defined
by means of empirical tests. These empirical tests are not
generally sufficient. As well in all other proposed evaluation
criteria in the literature, the relevance and the corresponding
weight of different kinds of errors should be supported by
formal subjective experiments performed under clear and
well defined specifications.

1.3. Object Matching Evaluation Criteria

Nascimento and Marques [15] used several simple discrep-
ancy metrics to classify the errors into region splitting, merg-
ing or split-merge, detection failures and false alarms. In
this scenario, the most important thing is that all the ob-
jects have to be detected and tracked along time. Object
matching is performed by computing a binary correspon-
dence matrix between the segmented and the ground truth
images. The advantage of the method is that ambiguous
segmentations are considered (e.g., it is not always possible
to know if two close objects correspond to a single group or
a pair of disjoint regions: both interpretations are adopted
in such cases). In fact, by analyzing this correspondence
matrix, the following measures are computed: Correct De-
tection (CD): the detected region matches one and only one
region; False Alarm (FA): the detected region has no corre-
spondence; Detection Failure (DF ): the test region has no
correspondence; Merge Region (M ): the detected region is
associated to several test regions; Split Region (S): the test
region is associated to several detected regions; Split-Merge
Region (SM ): when the conditions M and S simultaneously
occur.

The normalized measures are obtained by normalizing
the amount of FA by the number of objects in the segmen-
tation, NC , all the others by the number of objects in the
reference, NR, and by multiplying the obtained numbers
by 100. The object matching quality metric at frame k,

mqm(k), is finally given by:

mqm(k) = w1 ·
CD(k)

NR

+ w2 ·
FA(k)

NC

+ w3 ·
DF (k)

NR

+ w4 ·
M(k)

NR

+ w5 ·
S(k)

NR

+ w6 ·
SM (k)

NR

(9)

where wi are the weights for the different discrepancy met-
rics. It is evident that this metric is able to describe quantita-
tively the correct number of detected objects and their corre-
spondence with the ground truth only, while the metrics de-
scribed in the previous sections are able to monitor intrinsic
properties of the segmented objects such as shape irregular-
ities and temporal instability of the mask along time.

2. PROPOSED PERCEPTUAL METRIC

The perceptual objective metric proposed here is defined
based on two types of errors, namely, objective errors and
perceptual errors. Objective metrics quantify the deviation
(objective error) of the segmentation under test from the
ground truth and are described in this section. Perceptual
metrics weight these deviations (perceptual errors) accord-
ing to human perception by means of subjective experiments
described in [19].

The proposed objective metric, as discussed in the next
section, will be compared to the MOS (Mean Opinion Score)
to provide the final perceptual objective assessment. The
novelty of our approach consists in classifying the different
clusters of error pixels according to the following character-
istics: If they do or do not modify the shape of the object
and afterward their size. Border holes, Hb, and added back-
grounds, Ab, modify the shape while inside holes, Hi, and
added regions, Ar preserve the segmented object shapes.

The relative spatial error SAr
(k), for all the j added re-

gions at frame k, Aj
r(k), is obtained by simply applying:

SAr
(k) =

∑NAr

j=1 |Aj
r(k)|

|n(k)|
, (10)

where | · | is the set cardinality operator; n(k) is the sum of
the reference and the resulted segmentation areas; NAr is
the total number of added regions.

Similarly, for all the j holes inside the segmented ob-
jects, Hj

i (k), the relative spatial error, SHi
(k), is given by:

SHi
(k) =

∑NHi

j=1 |Hj
i (k)|

|n(k)|
, (11)

where NHi is the total number of holes inside the objects.
The spatial error for added background and holes on the
border of the object is formulated in a different way. In
fact, both kinds of errors are located around the object con-
tours and have to be distinguished from the numerous de-
viations around the object boundary and a few but larger



deviation [11] by adding this weighting factor:

1 +
d + σd

dmax

, (12)

where d are the distance values1 of error pixels from the
correct object contour. The mean d and the standard devi-
ation σd are calculated and are normalized by the maximal
diameter, dmax, of the reference object to which the clus-
ter of errors belongs. By combining this last Eq. (12) and
Eq. (10), we obtain for the border artifacts the corrected rel-
ative spatial error SAb

(k), for j added backgrounds:

SAb
(k) =

( 1

|n(k)|
+

∑NAb

j=1 (d
j

Ab + σ
j
dAb) · |A

j
b(k)|

dmax · |n(k)|

)

, (13)

similarly for j holes on the border, Hj
b(k), the relative

spatial error SHb
(k) is:

SHb
(k) =

( 1

|n(k)|
+

∑NHb

j=1 (d
j

Hb + σ
j
dHb) · |H

j
b(k)|

dmax · |n(k)|

)

.

(14)
The temporal artifact caused by an abrupt variation of the
spatial errors between consecutive frames is called flicker-
ing. To take this phenomenon into account in the objective
metric, a measure of flickering is introduced, F(k) that can
be computed for each artifact Λ=[Ar, Ab, Hi, Hb ] as fol-
lows:

FΛ(k) =
|Λ(k)| − |Λ(k − 1)|

|Λ(k)| + |Λ(k − 1)|
, (15)

The difference of the amount of an artifact between two con-
secutive frames is normalized by the sum of the amount of
this artifact in the current frame k and the previous frame
k − 1. To model this effect, Eq. (15) is combined to the
relative spatial artifact measures to construct an objective
spatio-temporal error measure ST(k) for each artifact, and
finally the artifact is summed along the time axis to obtain
the overall objective spatio temporal metric ST for each ar-
tifact Λ:

STΛ(k) = SΛ(k) ·
1 + FΛ(k)

2
,

STΛ =
1

K

K
∑

k=1

wt(k)STΛ(k), (16)

where the temporal weights wt(k) that model the human
memory effect have been empirically defined [19] as:

wt(k) = (a · e
k−30

b + c) (17)

1For distance computation, 8-connectivity has been used.

with a = 0.02, b = 7.8, c = 0.0078, K = 60 (total number
of frames).

Synthetic artifacts have been used to study and to char-
acterize the perception of spatial and temporal artifacts pre-
viously described. The experimental protocol to carry out
the subjective experiments is described in [19] and the view-
ing conditions are defined by the ITU Recommendations [20,
21].

In the following, a brief description of the parameters
obtained for the perceptual metric is given and in the next
section, the proposed metric is tested and compared to the
state to the art metrics. The ST values of each artifact met-
ric were plotted versus the values of MOS and the best fit-
ting psychometric curves have been found to describe the
human perception of errors [19]. Four psychometric curves
have been derived through subjective experiments, one for
each artifact, to obtain four perceptual artifact metrics: PST.
The best fitting function for each artifact is the Weibull func-
tion, W . Thus the perceptual artifact metrics are described
by:

W (x, S, k) = 1 − e−(Sx)k

where x = STΛ

PSTΛ = W (STΛ, S, k) (18)

where the parameters S and k have been obtained in [19]
for general application scenarios: S = 0.014, k = 0.304
for PSTAr

; S = 0.026, k = 0.653 for PSTAb
; S = 0.331,

k = 0.2339 for PSTHi
; S = 0.771, k = 0.641 for PSTHb

.
The overall perceptual metric is given by the combina-

tion of all the four kinds of artifacts. The total annoyance
can be so estimated by a simple linear combination of arti-
facts [19]:

PST = a1 ·PSTAr
+a2 ·PSTAb

+a3 ·PSTHi
+a4 ·PSTHb

(19)
The perceptual weights were found by means of subjec-
tive experiments on combined errors: a1 = 2.86, a2 =
4.50, a3 = 4.77, a4 = 5.82. This equation can be fur-
ther extended and the predicted annoyance by the proposed
metric PST can be formulated by the following expression
(Minkowski metric)[22]:

PST =
∑

ai · (PSTp
Λ)

1
p (20)

To find the Minkowski coefficients and exponent, we per-
formed a nonlinear least-squares data fitting using the data
obtained from the subjective experiment of combined arti-
facts. In this case, the Minkowski coefficients are: p = 1.6,
a1 = 11.36, a2 = 19.54, a3 = 26.58, and a4 = 32.52. The
correlation coefficients and the Minkowski exponent are re-
ported in the 1st and 2nd rows of Tab. 1. The squared corre-
lation coefficient (r) is used, also called goodness of fit [19].

The linear model is simpler and the correlation slightly
decreases between the linear (r = 0.86) and the more generic



Table 1. Performance of the proposed metric PST and state
of the art metrics, MPEGqm, wqm and mqm: correlation
with Mean Opinion Score, MOS.

Metric Correlation

PST (p=1.6) 0.90
PST (p=1) 0.86
MPEGqm 0.71
wqm 0.56
mqm 0.21

Minkowski model (r = 0.90). Since there is not a signifi-
cant difference (by means of F -test) between the two mod-
els, the simpler linear model has been chosen for the pro-
posed metric (p = 1.6, r = 0.86).

3. PERFORMANCE COMPARISON

In the previous section, we presented several artifact met-
rics that measured the annoyance of four of the most com-
mon spatial and two temporal artifacts found in video object
segmentation.

Given the results of the subjective experiments carried
out on synthetic artifacts [19], we propose a ground truth
based perceptual objective metric that uses the metrics for
spatial artifacts: PSTAr

, PSTAb
, PSTHi

, and PSTHb
of

Eqs.(18)-(20); for temporal artifacts: the flickering metric
in Eq. (15) and the expectation effect of Eq. (17).

In order to compare the results of the proposed method
to the state of the art metrics, we ran the three metrics de-
scribed on the synthetically generated test sequences of the
combined artifact experiment. The state of the art met-
rics described in Secs. 1.1 -1.3 are: the MPEG metric,
MPEGqm, Villegas’ metric, wqm, and Nascimento’s met-
ric, mqm .

In the 3rd, 4th and 5th rows of Tab. 1 are presented
the correlation for respectively, MPEGqm, wqm and mqm
metrics. The correlations coefficients are respectively: r =
0.71, r = 0.56 and r = 0.21. Our proposed method with
a correlation of r = 0.86 outperforms the other state of the
art metrics.

MPEG metric is the second best metric in fitting the sub-
jective data. This result is surprising since no distinction be-
tween different kinds of error is applied in the MPEG metric
in contrast with Villegas’ and our metric. It has to be men-
tioned that all the weights for the Villegas’ metric in Eq. (8)
are set the same value and it is possible that by tuning a
better fit could have been obtained. However, if no specific
application is specified, as in these subjective experiments,
using equal weights seems to be a good compromise.

As predicted in Sec. 1.3, the Nascimento’s metric does
not provide a good fit with the subjective data. In fact this
metric is more suitable to predict object tracking quality

than object segmentation quality. In our subjective exper-
iments, subjects were told to judge in general the quality
of segmentation without specifically taking into special ac-
count the quality of object tracking.

4. CONCLUSIONS

First, video object segmentation evaluation is reviewed in
this paper. To this end, three state of the art metrics whose
performance are analyzed are described in details. The first
state of the art metric, MPEGqm is a simple sum of spatial
and temporal errors commonly used by the research com-
munity. The second metric, wqm is a refinement of the first
one where false positive and false negative errors are distin-
guished and weighted differently in the final formula. The
third state of the art metric, mqm combines several simple
metrics to classify the errors into split and merge errors, de-
tection failures and false alarms. None of the state of the art
objective methods includes the characterization of artifact
perception in their models.

Second, this paper proposes a new objective metric which
includes the study and characterization of segmentation ar-
tifact perception obtained by means of subjective experi-
ments. Four spatial artifacts are deeply analyzed, namely,
added regions, added background, inside holes and border
holes. Two temporal effects are also studied, namely, the
temporal flickering and the expectation effect. Objective
measures are proposed to estimate these artifacts. Through
subjective experiments the objective measures are modeled
by psychometric curves found to assess the annoyance of
the artifact perception. In the combined artifact subjective
experiment, the relationship between the individual spatial
artifact weights and the overall annoyance is found. It was
found that added region weight is smaller than that of the
inside hole and added background, and almost half of the
border hole artifact weight (the most annoying artifact).

Finally, an overall perceptual objective metric was pro-
posed on the basis of the results described above. The per-
formance of the new metric was analyzed in terms of corre-
lation with subjective scores and compared to those of the
three considered state of the art metrics. It could be shown
that the proposed perceptual objective metric provides supe-
rior performance to those of the state of the art MPEGqm,
wqm and mqm.
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