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ABSTRACT

This paper proposes an image segmentation model based on the
active contour model, the Mumford-Shah functional and the im-
age decomposition process. Generally speaking, the active contour
model detects boundaries in images from sharp intensities vari-
ations and the Mumford-Shah model finds smooth regions from
homogeneous intensities. Our model merges these two comple-
mentary approaches while considering the Four Color Theorem to
globally partition any given image. We also consider the textural
part lying in natural images by separating it from the geometric
part, which contains the meaningful objects, to help the segmenta-
tion process. Our segmentation model is experimented with a 1-D
signal and 2-D images.

1. INTRODUCTION

One of the most fundamental issues in the fields of image process-
ing and computer vision is image segmentation. It is the basis of
higher level applications such as in medical imaging. Its objec-
tive is to determine a partition of an image into a finite number
of semantically important regions. This paper proposes a new im-
age segmentation model based on the active contour/snake model
and the image decomposition process. More precisely, the main
contributions of this paper are as follows:

1. definition of an image segmentation method based a global
minimization of the active contour model,

2. integration of the image (structures-textures) decomposi-
tion process in the segmentation process,

3. definition of a method to determine an initial condition close
to the optimal solution.

2. RELATED WORKS

2.1. Image Segmentation Based on Active Contours
Image segmentation consists of identifying homogeneous seman-
tic regions in images. One way to carry out the segmentation pro-
cess is to detect the boundaries between different semantic regions.
This is realized with the active contour or snake model, initially
proposed by Kass-Witkin-Terzopoulos in [1] and developed by
Caselles-Kimmel-Sapiro in [2] and Kichenassamy-Kumar-Olver-
Tannenbaum-Yezzi in [3]. The geodesic/geometric active contour
(GAC) model is a variational model which consists of finding the
curve C which minimizes the following energy:

EGAC(C) =

Z L(C)

0

gb(|∇f(C(s))|) ds, (1)

where ds is the Euclidean element of length, L(C) is the length
of the curve C and the function gb is an edge indicator function
that vanishes at object boundaries such as gb(|∇f |) = 1

1+β|∇f |2
,

where f is the original image and β is an arbitrary positive con-
stant. Hence, the energy functional (1) is actually a new length
obtained by weighting the Euclidean element of length ds by the
function gb which contains information concerning the boundaries
of objects [2]. The calculus of variations provides us the Euler-
Lagrange equation of the functional EGAC and the gradient de-
scent method gives us the flow that minimizes as fast as possible
EGAC (see [2]). The evolution equation of active contour is han-
dled with the level set method defined by Osher-Sethian [4], which
efficiently solves the contour propagation problem and deal with
topological changes.

Despite the many good numerical results obtained with this
segmentation model and strong theoretical properties, the snake/
GAC model is highly sensitive to the initial condition. Actually,
the quality of the segmentation result depends a lot on the choice of
the initial contour, which means that a bad initial contour can give
an unsatisfactory result. To overcome this drawback, several au-
thors introduced region-based evolution criteria into active contour
energy functionals built from intensity statistics and homogeneity
requirements. One of the most successful models is the active con-
tours without edges (ACWE) model developed by Chan-Vese [5].
The ACWE model is based on the Mumford-Shah (MS) model [6]
which provides an optimal piecewise smooth approximation of a
given image, in other words an image made up of homogeneous
intensities regions which common boundaries are sharp and piece-
wise regular. The MS functional is defined as follows:

FMS(s, C) =
R

Ω
|s − f |2dx +

µ
R

Ω\C
|∇s|2dx + νHN−1(C), (2)

where f is defined on a domain Ω, s corresponds to a piecewise
smooth approximation of the original image f , C is a disconti-
nuity set (representing the edges of s), the length of C is given
by the (N -1)-dimensional Hausdorff measure HN−1(C) (one can
say that H1 is the length and H2 the area) and µ, ν are positive
parameters. The first term of (2) is a fidelity term w.r.t. the given
data f , the second term is a regularization term that constraints
the function I to be smoothed inside the region Ω \ C and the
last term imposes a regularization constraint on the discontinuity
set C, i.e. the boundaries between smooth regions. The ACWE
model proposes to minimize the Mumford-Shah functional, which
is difficult to carry out in the original formulation, in the context of
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active contour, which is easier to realize with the calculus of vari-
ations. The ACWE model also corresponds to the piecewise con-
stant/cartoon case of the MS functional obtained when µ → ∞.
This case corresponds to the minimal partition problem, since the
optimal solution is an image composed of regions of approxima-
tively constant intensities equal to the mean value of intensities in
the corresponding region. Finally, Vese-Chan considered in [7] the
segmentation with the original Mumford-Shah energy (2).

As we said above, an usual problem when dealing the image
segmentation with the active contour model is the local minima,
which makes the initial guess critical to get satisfactory result. In a
recent work, Chan-Esedoḡlu-Nikolova [8] propose an approach to
overcome the limitation of local minima by determining a global
minimum to the ACWE model. Inspired by this work, Bresson-
Esedoḡlu-Vandergheynst-Thiran-Osher proposed in [9, 10] a model
to compute a global minimum to the standard snake model. In this
paper, we propose to extend the result of [9, 10] to the general case
of image segmentation based on the Four Color Theorem.

2.2. Image Decomposition
Image decomposition aims at splitting the structural/geometric part
and the textural part lying in images. Structural parts are repre-
sented by piecewise smooth regions which constitutes the mean-
ingful geometric components of images. Textural parts are, roughly
speaking, fine scale-details, usually with some periodicity and os-
cillatory nature [11]. Meyer suggests in [12] to decompose an im-
age f into a component s belonging to the space of functions with
bounded variation, BV , and a component t in the Banach space G
containing signals with large oscillations s.a. textures and noise.
The variational model of Meyer is as follows:

min
(s,t)∈BV ×G/f=s+t



FM (s, t, λ) =

Z

Ω

|∇s|dx + λ‖t‖G

ff

, (3)

Since Meyer, several variational approaches, based on partial
differential equations (PDEs), have been proposed to carry out the
image decomposition task. In this paper, we propose to introduce
the image decomposition process in the segmentation process to
improve its performance. Indeed, the separation of the textural
part and the geometric part will help us to segment the meaningful
regions which boundaries are easily visible in the geometric part.
The snake model will also help us to split the smooth part and the
textural part, which can be used for other high-level processing
tasks.

3. GENERAL IMAGE SEGMENTATION MODEL

We propose to compute a global minimum for the image segmenta-
tion model defined by Vese-Chan in [7]. More precisely, a global
minimum for the active contour model based on the general for-
mulation of the image segmentation method of MS is determined.
The MS model is very well adapted to segment smooth regions
lying in images but it does not take into account textures in its
original definition. One of the motivation of our method is to con-
sider textures in the MS model. In [7], Vese-Chan minimize the
MS energy (2) using a multiphase level set approach motivated by
the Four Color Theorem [13]. They use two level set functions to
represent four phases (and triple junctions) and these four phases
are sufficient to partition an image in a general way because each
phase can be used to “color”/delimit different adjacent regions in
an image according to the Four Color Theorem (see Figure 1).

Fig. 1. Illustration of the Four Color Theorem.

The variational model introduced in [7] to approximate the
general MS functional is:

min
ΩC1

,ΩC2
,sij



EV C(ΩC1
, ΩC2

, sij , λ, η) =
P

m=1,2 Per(ΩCm)

+λ
P

i,j=+,−

R

Ωij

“

η
`

sij(x) − f(x)
´2

+ |∇sij(x)|2
”

dx

ff

, (4)

where ΩCm are two closed subsets of the image domain Ω, λ, η are
two non-negative parameters, Per is the perimeter, f is the given
image and functions sij represent four phases, defined in Ωij ⊂ Ω,
to partition any given image s.t. Ω = ∪ijΩij and ∩ijΩij = ∅.

At this stage, we replace the L2-norm of the fidelity term in
the energy (4) by the L1-norm to separate textures from the struc-
tural parts. The gradient-based term in (4) is unchanged to capture
smooth regions. Thus, the energy (4) becomes:

E1(ΩC1
, ΩC2

, sij , λ, η) =
P

m=1,2 Per(ΩCm) +

λ
P

i,j=+,−

R

Ωij

“

η|sij − f | + |∇sij |
2
”

dx (5)

Minimizing (5) w.r.t. the functions sij leads to the variational
problem for each function sij :

min
sij

n

Z

Ωij

η|sij − f | + |∇sij |
2
dx
o

. (6)

A new function tij is introduced in the previous minimization
problem to extract textures:

min
sij ,tij


Z

Ωij

η|tij | +
1

2θs

`

sij − (f − tij)
´2

+ |∇sij |
2
dx

ff

, (7)

where the parameter θs > 0 is small so that we almost have f =
sij + tij in Ωij . Minimizing (7) w.r.t. the function sij , using the
calculus of variations, leads to:



sij − (f − tij) = 2θs∆sij in Ωij ,
∂sij

∂N = 0 on ∂Ωij ,
(8)

and minimizing (7) w.r.t. the function tij gives:

tij =

8

<

:

f − sij − θsη if f − sij ≥ θsη
f − sij + θsη if f − sij ≤ θsη
0 if |f − sij | ≤ θsη

(9)

In [7], regions sij are represented by two level set function,
namely φ1, φ2, s.t.

s(x) :=

8

>

<

>

:

s++(x) if φ1(x) > 0, φ2(x) > 0,
s+−(x) if φ1(x) > 0, φ2(x) < 0,
s−+(x) if φ1(x) < 0, φ2(x) < 0,
s−−(x) if φ1(x) < 0, φ2(x) > 0,

(10)



Thus, Energy (5) can be re-written as follows:

E
2(φ1, φ2, sij , tij , λ, η, θs) =

X

m=1,2

Z

Ω

|∇Hε(φm)| +

λ
X

i,j=+,−

Z

Ω

 

η|tij | +
1

2θs

`

sij − (f − tij)
´2

+

|∇sij |
2

!

H(iφ1)H(jφ2)dx, (11)

The flow minimizing the energy (11) is as follows:

∂tφm = H
′(φm)



div

„

∇φm

|∇φm|

«

− λrm(x, sij , tij , η, θs)

ff

(12)

where

rm(x, sij , tij , η, θs) =
X

i,j=+,−

(−i)2−m(−j)2−n
“

η|tij | +

1

2θs

`

sij − (f − tij)
´2

+ |∇sij |
2
”

H(jφn) (13)

for m, n = 1, 2 and m 6= n. If a non-compactly supported smooth
approximation of the Heaviside function is chosen, the steady state
solution of the gradient flow (11) is the same as:

∂tφm = div

„

∇φm

|∇φm|

«

− λrm(x, sij , tij , η, θs) (14)

and this equation is the gradient descent flow of the energy:

E
3(φ1, φ2, sij , λ, η, θs) =

X

m=1,2

Z

Ω

|∇φm|+

λ

Z

Ω

rm(x, sij , tij , η, θs)φm dx.

(15)

As a result of the previous developments, the following con-
strained minimization model is proposed to carry out the general
image segmentation process:

min
0≤um≤1



Em(um, sij , tij , λ, η, θs) =
X

m=1,2

Z

Ω

gb(x)|∇um|

+λ

Z

Ω

rm(x, sij , tij , η, θs)um dx

ff

. (16)

where gb is the edge detector function in the GAC model. The en-
ergy (16) provides us a global minimization for the active contour
model. The global minimization theorem is the same as in [9, 10].
Firstly, it consists of applying the coarea formula to notice that
R

Ω
gb(x)|∇(um = 1ΩCm

)| =
R

Cm
gbds = EGAC(Cm) as in

(1). Then, for fixed functions un6=m, sij , tij , a theorem establishes
that 1ΩCm

(µ)={x:um(x)>µ} for µ ∈ [0, 1] is a global minimizer of
(16).

The snake variational model proposes in this framework is
globally minimized, which is very important because a global min-
imization allows us to be independent of the initial condition. How-
ever, the proposed model is globally minimized only w.r.t. the
snakes, represented by u1, u2, but not w.r.t. the functions sij , tij .
Thus, the choice of the initial functions sij , tij is critical to get a
satisfactory segmentation result. The next section proposes a fast
way to compute initial sij , tij close to the optimal solution.

4. INITIAL CONDITION

We propose to determine a good initial condition for the functions
sij , tij to find the optimal segmentation solution. Two steps are
followed:

1. Computation of an initial smooth function s0 and an initial
texture function t0 as follows:

min
s0,t0


Z

Ω

η|t0| +
1

2θs

`

s0 − (f − t0)
´2

+ |∇s0|
2
dx

ff

. (17)

2. Determination of a function s1 from s0 with a region grow-
ing algorithm based on the Mumford-Shah model as de-
scribed in [14].

The initialization process takes less than one minute for the 2-D
images presented in the next section.

5. RESULTS

Firstly, our segmentation model is tested on the 1-D signal (Figure
2). Our model correctly detects the transitions between smooth re-
gions (see small red circles). The decomposition between smooth
(green curve) and textural parts (blue curve) provides us a good
approximation of the original signal (black curve).

Secondly, our model is experimented on Figure 3 which is
a linear combination of a smooth image, which intensities vary
between [0, 1], and a texture image, varying between [−0.6, 0.6].
The image also contains a triple junction which needs three phases
to be detected. Our model is able to find the triple junction, the
original smooth part and the texture part. The segmentation takes
a few minutes to converge.

Finally, the image segmentation model is tested on the bench-
mark image Barbara which contains textures. The model recovers
the smooth part of the given image and also the textures and several
meaningful boundaries. As previously, a few minutes are needed
to converge to the solution.
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[8] T.F. Chan, S. Esedoḡlu, and M. Nikolova, “Algorithms for
Finding Global Minimizers of Image Segmentation and De-
noising Models, UCLA CAM Report 04-54,” 2004.
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