
Multi-layer hierarchical clustering of pedestrian trajectories for automatic
counting of people in video sequences

David Biliotti1, Gianluca Antonini2 and Jean Philippe Thiran2

Information Engineering Department1 Signal Processing Institute2

University of Siena Swiss Federal Institute of Technology
Siena, Italy, 53100 Lausanne, CH, 1015

Abstract

In this paper we propose an approach to count the num-
ber of pedestrians, given a trajectory data set provided by a
tracking system. The tracking process itself is treated as a
black box providing us the input data. The idea is to apply a
hierarchical clustering algorithm, using different data rep-
resentations and distance measures, as a post-processing
step. The final goal is to reduce the difference between the
number of tracked pedestrians and the real number of indi-
viduals present in the scene.

1 Introduction

The problem of detection and tracking of moving objects in
video sequences has been widely tackled in the last decades.
Despite the multitude of methods presented in literature
([1, 2, 3, 4, 5, 6, 7] among others), the problem of au-
tomatic counting of targets is far to be solved and most
of the difficulties met with it are intrinsic in the initializa-
tion step (i.e., robust object detection). We do not provide
here a detailed description of the state of the art of track-
ing techniques because out of the scopes of this paper. In
this context, we assume to have the trajectory data set gen-
erated by a behavioral-based tracking system ([8, 9]) which
over-estimates the real number of individuals present in the
scene. We aim to investigate how we can improve the es-
timation of the real number of targets without entering into
the tracking process itself. Our problem can be stated as
a pure clustering problem for post-processing of trajectory
data sets generated by a tracking system.

The three main steps of a clustering algorithm are 1) data
representation; 2) distance measures between patterns and
3) grouping rules. The first step can be identified with all
those transformations applied to the original data set in or-
der to obtain more discriminant data representations. This
problem includes the feature selection process and its fi-
nal goal is to find good data representations providing at

the same time dimensionality reduction. Typically, patterns
are represented as multidimensional vectors, where each di-
mension is a single feature ([10, 11]). A popular feature ex-
traction process is the principal component analysis which
does not depend on labeled data, can be used directly and
allows to obtain a dimensionality reduction on the data set.
Each clustering technique is based on a distance function.
The most popular metrics for continuous data representa-
tions are all the Minkowski metrics ([12]). They work well
when the data set has isolated clusters but often they need
a normalization of the data to avoid that the largest-scaled
data dominate the others. Mahalanobis distance is used
when the assumption is that the class conditional densi-
ties are multivariate Gaussian distributions. Interesting ap-
proaches are those proposed in [13] and [14] where similar-
ity measures and metrics are defined based on the definition
of specific relations between sets of points. Finally, based
on the different grouping rules, we have several approaches.
The partition of the data can be hard (partition into groups)
or fuzzy (each pattern described by a degree of membership
to different clusters, see [15, 16]). Hierarchical techniques
split or merge data based on a certain criterion generating a
cluster-tree structure ([17, 18, 19, 20, 21]). Partitional clus-
tering algorithms divide data in a certain number of groups
optimizing a clustering criterion ([22, 19, 20]). The choice
of the number of groups is made based on the a priori
knowledge on the data at hand. Additional techniques for
the grouping operation include probabilistic methods where
the underlying assumption is that the patterns to be clustered
are drawn from one of several distributions. The goal is to
identify the parameters of each of such distributions. Most
of the work has been done assuming a maximum likelihood
estimation for Mixture of Gaussians distributions ([23, 24]).

In this paper we propose an investigation of hierarchi-
cal clustering techniques applied to pedestrian trajectories
for automatic counting of people in video sequences. The
main idea is that trajectories arising from the same target are
more similar to each other than trajectories related to other
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targets, also in the case of high target density. This can be
useful to discriminate among two or more close pedestrians
walking togheter. Different representations for trajectory
data set are considered and different distance functions are
investigated. Finally, comparative results are illustrated.

The paper is organized as follows: we start describing
two different data representations in section 2. In section
3 we illustrate an overview of the multi-layer clustering al-
gorithm and in section 4 the different distance functions we
have used. Results are presented in section 5 and conclu-
sions and final remarks in section 6.

2 Trajectory representation

We consider two different trajectory representations and dif-
ferent clustering procedures to each of them, based on two
different distance measures.

2.1 Independent Component representation

Independent Component Analysis (ICA) ([25, 26]) is a gen-
erative model where a set of random variables, the obser-
vations, are supposed to be generated by a mixing process
starting from another set of statistically independent latent
(unobservable) variables, the sources, by means of an un-
known mixing matrix A. This model can be described by
the following equation:

X = As (1)

where X represents the observations and s the sources. The
number m of observations can differ from the number n
of sources. For a general discussion on ICA we can as-
sume, without loss of generality, that m = n. The basic
hypothesis of the ICA model is the statistical independence
of the latent variables. It is possible to show that indepen-
dence is strictly related to non-gaussianity. So, the main
assumption in ICA is the non-gaussianity of the source sig-
nals. ICA becomes interesting for our pourposes when we
consider its geometrical interpretation. To better understand
the characteristics of ICA, let us think to principal compo-
nent analysis. PCA is a well known unsupervised statistical
method to find useful data representations. Its goal is to
find a ’better’ basis so that in this new basis the data are
uncorrelated. The solution chosen by PCA is an orthogonal
matrix depending just on the second-order statistics of the
data (i.e. the covariance matrix). ICA can be seen as the
non-orthogonal extension of PCA. The chosen solution is
based on the high-order statistics of the data and represents
a non-orthogonal rotation finding directions with high con-
centrations of data. As a consequence, this transformation
changes the relative distances between points affecting sim-
ilarity and/or distance measures. For these reasons it can be
quite useful in classification and clustering problems. We

show in figure 1(a) some examples of trajectory data. These
9 trajectories are manually tracked placing three points on
three pedestrians: one on the head, one on the body and a
third one on the feet.

(a) Original trajectories (b) ICA trajectories

Figure 1: The ICA transformation has reduced the distances
between trajectories belonging to the same pedestrian.

In figure 1(b) we show the same set of 9 trajectories as in
figure 1(a) after ICA transformation. We note how the non-
orthogonal rotation has improved the discriminant power
reducing distances between that trajectories that belong to
the same individual.

2.2 The maximum of cross-correlation repre-
sentation

In this representation we fix any trajectory t1 of the data set
as the reference trajectory. We compute the similarity mea-
sure between two data sets as the cross-correlation function
between them. We can look at two trajectories t1 of length
M and t2 of length N as two real 2D discrete signals and
write the cross-correlation function c between them as:

c(m, n) = t1(−m,−n) ∗ t2(m, n) =
M−1∑

j=0

N−1∑

k=0

t1(−j,−k)t2(m − j, n − k) (2)

The two trajectories are represented by two matrices of size
Mx2 and Nx2 respectively so the size of the full cross-
correlation is (M+N−1)x3. We show in figure 2(b) the 3D
representation of the output c where the axes represent the
three columns of the cross-correlation. The new trajectory
representation is obtained mapping each pair of trajectories
with the maximum of their cross-correlation. The intuitive
idea is that, independently from the chosen reference trajec-
tory t1, the maximum of the cross-correlation between two
similar trajectories t2 and t3 with t1 maps t2 and t3 into two
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(a) Original trajectories

(b) Cross-correlation

Figure 2: The maximum-of-cross-correlation representa-
tion.

close spatial points. In a similar way, two strongly different
trajectories will be mapped into two farther spatial points.
In figure 2 we show this data representation. Three points
are placed on each of ten pedestrians and the resulting 30
trajectories are manually grabbed. In figure 2(b) we see how
the maximum of the cross-correlation between each pair of
trajectories belonging to each person form a well defined
cluster in the new domain.

3 Multi-layer hierarchical clustering: an
overview

3.1 Hierarchical clustering algorithms

We have no a-priori knowledge about the real number
of pedestrians present in the scene. So, the hierarchical
approach represents a natural way of grouping data over
a variety of scales. In our system we use two different
hierarchical clustering techniques: agglomerative and
divisive.

Agglomerative
Trajectories are paired into binary clusters, the newly
formed clusters are grouped into larger clusters until a hi-
erarchical tree is formed. The resulting tree can be analysed
at different levels to find out different resulting clusters.
An agglomerative algorithm yields a dendrogram represent-
ing the nested grouping of patterns and similarity levels at
which groupings change. Given n trajectories, the pairwise
distance information is represented by a vector of length
n(n − 1)/2. The linking method we use to generate the
hierarchical tree is based on the average distance measure.
Let be u and v two clusters of size nu and nv respectively
and let be xui the ith object in cluster u. We have:

d(u, v) =
1

nu · nv

nu∑

i=1

nv∑

j=1

dist(xui, xvj) (3)

where the average paired distance between all the object
pairs in the two clusters is used.

Divisive
Hierarchical divisive algorithms start with a single cluster
of all the given objects and keep splitting the clusters based
on some criterion to obtain a partition of singleton clusters.
We report here the main steps of this algorithm ([27]):

1) from the whole set of objects we choose any one to be
the first hub;
2) find the point which is farthest from this hub and make it
the second hub;
3) for each remaining object, assign it to the closer hub;
4) to decide for a one more hub:
4.a) find the average distance between the two hubs d;
4.b) compute the distance from each object to its hub. If
any distance is greater than d, we need another hub.
5) the new hub is the object which is farthest from its
respective hub;
6) re-calculate the distance of each point to the new hub
and reassing the point to the new hub in the case that the
new distance is less than the distance with the previous
assigned hub.
7) repeat the iteratively from step 4 until all points are
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within a distance d from their hub or all points are them-
selves hubs.

3.2 The multi-layer structure

The idea for a multi-layer hierarchical clustering arises from
the consideration that the comparison between trajectories
can be performed from different point of views. Trajecto-
ries of different lengths rarely belong to the same person.
Moreover, paths belonging to the same target likely start
from close spatial points. In figure 3 we illustrate the tree
structure of our clustering method.

First level Represents a length-based clustering where tra-
jectories having the same length are grouped together.

Second level Represents the spatial clustering on the tra-
jectories starting points. We assume that trajectories
belonging to the same pedestrian start at close spatial
positions.

Third level In the case of over-estimated trajectory data
sets, each spatial cluster (i.e., a second-level cluster)
corresponds to more pedestrians walking close to each
other or is generated by many trackers placed on the
same human body and its shadow. These situations
represent the main source of errors in the target num-
ber estimation. At this level of the tree we attempt to
count pedestrians.

4 Distance measures

4.1 Hausdorff distance

In the ICA representation the result of the transformation is
a new 3D data distribution in the coordinate system defined
by the estimated independent components. 1 To compute
the distances between the ICA-trajectories we use the well
known Hausdorff distance. Using the same notation as [14],
the Hausdorff distance dh between two sets A and B is de-
fined as:

dh(A, B) = max(maxa∈A(min d(a, b)|b ∈ B),
maxb∈B(min d(a, b)|a ∈ A)) (4)

where d(., .) represents a point-distance function (normally
the Euclidean metric). As it is well known, this metric is
very sensitive to outliers. The ICA transformation attempts
to reduce this sensitivity modifying the relative distances
between the trajectory points. On the other hand it has also

1We use the FastICA matlab toolbox for the ICA model estimation.

Figure 3: An overview of the multi-layer clustering

some quite good properties. First, it represents a metric and
not just a similarity. Second, we can easily apply this mea-
sure to sets of different sizes.

4.2 The Euclidean distance

In the case of the maximum-of-cross-correlation represen-
tation we use the hierarchical divisive clustering based on
the Euclidean distance. Infact the representation gives a set
of 3D spatial points representing the maximum of the cross-
correlation between two given trajectories and the grouping
is performed looking at their 3D spatial distribution.

5 Results

We have tested our algorithm on two real outdoor se-
quences. 2 We summerize the results in tables 1 and 2. The
columns e1 and e2 represent the missed pedestrians and the
over-counted pedestrians, respectively. By over-counted we
mean a pedestrian with more than one resulting cluster over
himself. We refer to missed pedestrian when no clusters are
attached to him. We do not report the errors coming from
wrong trajectories generated by the tracking system.

The first data set is composed by 31 trajectories dis-
tributed on 11 pedestrians (figure 4(a)). The density of the

2The elaborated and original video sequences can be found at
http://ltswww.epfl.ch/ltsftp/antonini/
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targets in the scene is high. In particular, we note that the
group of four pedestrians walking together (figure 5(a)) is
highly over-estimated by the detection/tracking algorithm.
The numerical results are presented in table 1. The cluster-
ing results on the trajectories are shown in figures 4(b) and
4(c) while visual examples are shown in figures 5(b) and
5(c).

num num num e1 e2
traj clsuters ped
Indipendent Component Analisys:
31 14 11 0 3

Cross-correlation:
31 12 11 0 1

Table 1: Results for the flon sequence.

The second data set is strongly over-estimated by the detec-
tion/tracking system. Eight pedestrians are present in the
scene but the trajectories obtained are 43. We report in ta-
ble 2 the relative numerical results. The clustering results
on the trajectories are shown in figures 6(b) and 6(c) while
visual examples are shown in figures 7(b) and 7(c).

num num num e1 e2
traj clsuters ped
Indipendent Component Analisys:
43 17 8 0 4

Cross-correlation:
43 9 8 0 1

Table 2: Results for the monaco sequence.

The two different representations we have used give compa-
rable results. We observe better performances related to the
max-of-cross-correlation representation. Other advantages
are its simplicity, reduction of dimensionality and low com-
putational cost. The limitation of the ICA approach resides
in an ambiguity intrinsic in the ICA model. In equation 1
both s and A are unknown. We can change the order of the
independent components keeping untouched the validity of
the model. Therefore the components are estimated up to a
permutation matrix. When the ICA model is used, for ex-
ample, as a dimensionality reduction method this doesn’t
change the results. On the contrary, in our case we use the
ICA model to estimate a transformation matrix to change
the representation of the data. Permuting the order of the
estimated components is the same as invert the axis of the
new representation system, changing the data representation
itself. This fact leads to different clustering results.

−6

−4

−2

0

2

4

6

10

12

14

16

18

20

22

24

100

110

120

130

 Y Coordinate

 X Coordinate

 T
im

e 

(a) The flon trajectory set
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(b) Cross-correlation-based clustering
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(c) ICA-based clustering

Figure 4: The results of the clustering on the flon trajectory
data set.5



(a) The final trajectory points without clustering

(b) The final trajectory points after the max-of-cross-
correlation clustering

(c) The same example after the ICA clustering

Figure 5: Visual examples for the flon sequence.
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(a) The monaco trajectory set
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(b) Cross-correlation-based clustering
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(c) ICA-based clustering

Figure 6: The results of the clustering on the monaco tra-
jectory data set.
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(a) The final trajectory points without clustering

(b) The final trajectory points after the max-of-cross-
correlation clustering

(c) The same example after the ICA clustering

Figure 7: Visual examples for the monaco sequence.

6 Conclusion and future works

In this paper we have presented a multi-layer hierarchical
clustering method for post-processing of the trajectory data
set generated by a detection/tracking system for pedestri-
ans. Such systems provide an over-estimation of the num-
ber of targets present in the scene. We do not focus on the
errors coming from the detection/tracking system but rather
we attempt to exploit the information provided by it. At
first, the data set is analysed based on the length and starting
point position of trajectories. On the resulting pre-clustered
data set, two different data representations have been used.
We apply the Hausdorff distance for ICA-transformed tra-
jectories, using an agglomerative hierarchical clustering.
The second representation is based on a maximum-of-cross-
correlation mapping for each pair of trajectories. This al-
lows us to reduce the dimensionality of the problem work-
ing with a spatial distribution of resulting 3D points. We
use here a divise clustering technique, more indicated for
spatial-based data representations. The results of the two
approaches show that the cross-correlation-based method is
computationally more effective and provides a unique so-
lution for the data representation problem. The same is not
true for the ICA transformation where the independent com-
ponents are estimated up to a permutation matrix, forcing us
to examine any possible combination of them. The system
is independent from the detection/tracking method which
generates the trajectories.

We are currently working to integrate the clustering pro-
cess to obtain an on-line feedback on the tracking system.
We aim to periodically re-initialize the trackers around the
centroids of each cluster.
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