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ABSTRACT

This paper studies the problem of sparse signal approx-
imation over redundant dictionaries. Our attention is
focused on the minimization of a cost function where the
error is measured by using the L1 norm, giving thus less
importance to outliers. We show a constructive equiv-
alence between the proposed minimization problem and
Linear Programming. A recovery condition is then pro-
vided and an example illustrates the use of such a tech-
nique for denoising.

1. INTRODUCTION

We want to approximate a signal f ∈ R
n over a redun-

dant set of unit norm functions D = {gi}i∈Ω, which from
now on will be called dictionary. Let us name d the car-
dinality of the dictionary, with |D| = d > n. Given the
overcompleteness of D, the solution to this problem is
non-unique and among all the possible approximations
we are interested in the one which contains the smallest
number of non-zero components, i.e. the sparsest one.

In [1] Chen, Donoho and Saunders introduced the Ba-
sis Pursuit Denoising (BPDN) paradigm that consists in
the following minimization problem, which can be solved
by Quadratic Programming (QP) techniques :

(P2−1) min
b

‖f − Db‖2
2 + γ‖b‖1. (1)

Here D is the n × d dictionary synthesis matrix, whose
columns are the elements of D, f is the column vector
corresponding to the signal to approximate and b is the
coefficient vector. BPDN can be seen as a convex relax-
ation of the non-convex, NP-complex Subset Selection
problem, where the sparsity constraint is given by the `0

quasi-norm of the coefficient vector:

(P2−0) min
b

‖f − Db‖2

2
+ τ2‖b‖0. (2)
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In the very last years, many interesting contributions
have shown how, under certain conditions on the dictio-
nary, solving the convex problem in (1) can provide the
sparsest approximation of the signal f over D, i.e. the
solution of (P2−0) [2, 3, 4]. In short, such sufficient con-
ditions pose a limit to the coherence of the redundant
dictionary.

In the problem we propose in this paper, an L1 data-
fidelity term substitutes for the classical `2 measure of
the error:

(P1−1) min
b

‖f − Db‖1 + γ‖b‖1. (3)

In this way the algorithm gives less importance to out-
liers, or “wild” signal samples.

Recently, the total variation based image denoising
model of Rudin, Osher, and Fatemi [5] has been modi-
fied by using the L1 norm to calculate the fidelity term
in the cost function [6, 7]. This change brings new in-
teresting implications, as can be seen for example in the
pioneering works of Nikolova [8]. In [9] the problem of
image restoration is considered, where an original scene f

has to be recovered given its observation f̂ . The problem
can be written as:

f̂ = Hf + w, (4)

where H is a blurring matrix and w the additive noise.
The authors of [9] propose to solve such a problem by
minimizing the following cost function:

min
f

‖f̂ − Hf‖1 + γ‖Rf‖1, (5)

where R is a regularization operator, usually a differ-
ence operator. Note the similarity between Eq. (5) and
(P1−1). Our choice to introduce (P1−1) from (P2−1),
follows a similar but independent idea, even if the back-
ground of the two problems is different.

The measure of the approximation error by means of
the `1 norm has been also used in [10]. Moreover, in
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the Discussion of [3] Tropp imagines a situation where
the Euclidean norm is not the most appropriate way to
measure the error in approximating the input signal, but
without giving further details. We also addressed a simi-
lar problem in [11], while working with multi-component
dictionaries, but without providing any theoretical anal-
ysis.

It is important to observe that the minimization of
Eq. (3) can be written as a Linear Programming (LP)
problem of the following form:

min
x

vT x s.t. Ax = s and x ≥ 0, (6)

where v is a vector of known coefficients. In order to
show this equivalence (see also [12]), one should cre-
ate a vector u = (u+,u−) with u+,u− ≥ 0 such that
b = u+ − u−. The vector u+ contains only the posi-
tive components of b, while the negative ones are in u−,
but with a positive sign. In this way one can see that
‖b‖1 = 1T u, where 1 is a vector of ones. In the same
way we define a vector r = (r+, r−), with r+, r− ≥ 0 and

r+ − r− = f − (D,−D) · u.

It is now clear that Eq. (3) can be written as

min
u,r

1T r + γ1T u s.t. A · (r,u) = f and u, r ≥ 0,

with A = (I,−I,D,−D), where I is a n × n identity
matrix. Here we find the form of Eq. (6), with v =
(1, γ1), x = (r,u) and s = f . In practice, solving a LP
is generally faster than solving a QP involved by BPDN.

2. A BAYESIAN APPROACH

Let us write the model of data approximation from a
Bayesian point of view: f = f̂ + r = Db + r, where f̂ is
the approximant and r the residual. Assuming r to be
an iid Laplacian set of variables, the probability that f̂

corresponds to f , given D and b is related to:

p(f |D,b) =
1

√

2πσ2
r

· exp

(

−‖f − Db‖1

2σ2
r

)

, (7)

where σ2
r is the variance of the residual. In the approx-

imation problem, one aims at maximizing the likelihood
p(b|f,D). Formally, by the Bayes rule, we have

p(b|f,D) =
p(f |D,b) · p(b)

p(f,D)
,

and thus, being p(f,D) uniform for a given signal and
dictionary, it follows that the most probable signal rep-
resentation is:

bP = arg max
b

p(f |D,b) · p(b). (8)

Let us now assume that the coefficients bi are indepen-
dent and have a Laplacian distribution with standard
deviation σi. From (8), by computing the logarithm, it
follows that

bP = arg min
b

(

‖f − Db‖1

2σ2
r

+
∑

i

√
2|bi|
σi

)

.

Making the hypothesis that σi is constant for every index
i, the previous equation means that the most probable b

is the one found by solving the problem (P1−1). On the
other hand, if r is Gaussian, the most probable coefficient
vector is provided by BPDN [13].

3. RECOVERY CONDITION

Let us now study the relationship between (P1−1) and
the following non-relaxed minimization problem, where
the error is still measured with the `1 norm:

(P1−0) min
c

‖f − Dc‖1 + τ2‖c‖0. (9)

The cost function of this problem is a trade-off between
the `0 measure of the sparseness of the approximation
and its distance from the input signal. Again (P1−0) is
non-convex and here we wonder when and how solving
(P1−1) can help us in finding the solution of (9).

Theorem 1 Let b∗ be the coefficient vector that mini-
mizes (P1−1) and let Γ ⊂ Ω be the optimal function sub-
set found by solving the non-convex problem (P1−0). DΓ

will be the sub-dictionary containing only the functions
indexed in Γ. Suppose that supi/∈Γ ‖D+

Γ
gi‖1 < 1, then we

can state that if

γ >

√
n

1 − supi/∈Γ ‖D+
Γ

gi‖1

(10)

then support(b∗) ⊂ Γ.

Proof: This proof is inspired by the proof of the
Correlation Condition Lemma that appears in [3]. Let
us call D

Γ
the complementary of DΓ on D, such that

D = DΓ ∪ D
Γ
. Suppose that b∗ contains (at least) one

element out of Γ, so we can write the cost function of
(P1−1) for both b∗ and its projection onto DΓ, that is
D+

Γ
Db∗. Since b∗ minimizes (P1−1), we have:

γ
(

‖b∗‖1 − ‖D+
Γ

Db∗‖1

)

≤ ‖f−DD+
Γ

Db∗‖1−‖f−Db∗‖1.

(11)
Let us now split the coefficient vector into two parts:
b∗ = bΓ+b

Γ
, where the former vector contains the com-

ponents with indexes in Γ, while the latter the remaining



components from Γ = Ω \ Γ. The left-hand term of (11)
can be bounded as in [3] obtaining:

γ

(

(1 − sup
i/∈Γ

‖D+
Γ

gi‖1) · ‖bΓ
‖1

)

≤ γ
(

‖b∗‖1 − ‖D+
Γ

Db∗‖1

)

.

(12)
We now work with the right-hand side of (11):

‖f − DD+
Γ

Db∗‖1 − ‖f − Db∗‖1 ≤
‖Db∗ − PΓDb∗‖1 = ‖(I − PΓ)Db

Γ
‖1 ≤

‖(I − PΓ)D‖1,1 · ‖bΓ
‖1,

where PΓ = DD+
Γ

= DΓD+
Γ

is an orthogonal projector.
Using this result together with (12) we obtain:

γ(1 − sup
i/∈Γ

‖D+
Γ

gi‖1) ≤ ‖(I − PΓ)D‖1,1. (13)

The right-hand side of the previous equation is the max-
imum `1 norm of the columns of (I − PΓD), i.e.

‖(I − PΓ)D‖1,1 = max
g∈D

Γ

‖g − PΓg‖1 ≤
max
g∈D

Γ

‖g − PΓg‖2 ·
√

n ≤
max
g∈D

Γ

‖g‖2 ·
√

n =
√

n.

(14)

Finally, we have

γ

(

1 − sup
i/∈Γ

‖D+
Γ

gi‖1

)

≤
√

n.

If this inequality fails, then b∗ is supported in Γ.

Unfortunately, since the optimal set of functions is
not known, the sufficient condition provided by the pre-
vious theorem cannot be tested before decomposing a
signal. Form (10), one can easily find an additional con-
dition based on the cumulative coherence µ1(m) defined
as:

µ1(m,D) , sup
|Λ|=m

sup
i∈Ω\Λ

∑

λ∈Λ

|〈gλ, gi〉| .

We know that 1−sup
i/∈Γ

‖D+
Γ

g‖1 > 0 whenever µ1(m−1)+

µ1(m) < 1 (e.g. see Proposition 3.7 in [3]). Applying this
to the results of Theorem 1, it turns out that if |Γ| ≤ m

and µ1(m − 1) + µ1(m) < 1 then support(b∗) ⊂ Γ if

γ =

√
n(1 − µ1(m − 1))

1 − µ1(m − 1) − µ1(m)
. (15)

This new sufficient condition, even if more pessimistic,
can be numerically checked. However, computing µ1(m)
for m and D not too small can be very computationally
expensive.

4. AN EXAMPLE

We offer now an example of the use of the proposed min-
imization problem. Let us call b∗ the approximation
found by solving (P1−1). This vector is thresholded, re-
moving the numerically negligible components, and in
this way we are able to individuate a sparse support
and thus a subset of the dictionary, called D∗. There
are no guarantees that the amplitudes of the coefficients
are optimal, thus these are recomputed projecting the
signal onto the subspace spanned by the elements of
D∗ and a new approximation b∗∗ is found. Of course,
support(b∗) = support(b∗∗). Formally, the approximant
found after the projection step is:

f∗∗ = D∗(D∗)
+f = Db∗∗. (16)

Thus, the minimization of Eq. (3) is used only to select
the dictionary subset. The same method can, of course,
be adopted for BPDN.

We now decompose a piecewise smooth signal af-
fected by impulse noise. The dictionary in use has re-
dundancy factor 2 and is composed by the union of a
wavelet Symmlet-4 orthonormal basis and the respective
family of footprints for all the possible translations of
the Heaviside function (see [14]). The latter is meant to
model the discontinuities, while the former should repre-
sent the smooth parts of the signal. Figure 1 shows the
original noisy signal, and two reconstructions obtained
by solving (P1−1) at the top and (P2−1) at the bottom,
and then recomputing the coefficients by orthogonal pro-
jection as in (16). The Mean Square Error (MSE) is 0.37
and 0.61 respectively, and remark that the MSE is not
an error measure favorable to (P1−1), since it is based
on the Euclidean norm. It is clear that (P1−1) is less
sensible to the wild samples given by the impulse noise,
thanks to the `1 penalization that allows the algorithm
to select a better subset of functions. This reflects the
fact of assuming r to be Laplacian in Eq. (7).

This example shows a case where the proposed prob-
lem can be useful, but it does not satisfy the sufficient
condition of equation (15), that turns out to be quite
pessimistic.

5. CONCLUSIONS

The first term in the expression “sparse approximation”
refers to the number of non-zero elements used to approx-
imate a target. Such a measure is often “relaxed” switch-
ing to a `1 norm in order to obtain a convex problem.
The term“approximation”says that an error is tolerated,
but how should such an error be measured? Usually an
Euclidean norm is used, however this is far from being
optimal for every circumstance. This paper presents a
minimization of a cost function where the data-fidelity is
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Fig. 1. The original, noisy signal and the approximants
obtained with 9 coefficients by solving (P1−1) (top) and
(P2−1) (bottom).

measured in L1. An interesting application is the elim-
ination of impulse noise, as shown in the example. Re-
mark that the goodness of the achieved results would not
be possible without the projection step that follows the
dictionary subset selection (see Eq. (16)).

The proposed approach can be also applied to image
denoising, provided that the LP problem involved in its
solution does not become too complex.
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