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COMPUTATION OF LARGE INVARIANT SUBSPACES USING
POLYNOMIAL FILTERED LANCZOS ITERATIONS WITH

APPLICATIONS IN DENSITY FUNCTIONAL THEORY∗
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Abstract. The most expensive part of all electronic structure calculations based on density func-
tional theory lies in the computation of an invariant subspace associated with some of the smallest
eigenvalues of a discretized Hamiltonian operator. The dimension of this subspace typically depends
on the total number of valence electrons in the system, and can easily reach hundreds or even thou-
sands when large systems with many atoms are considered. At the same time, the discretization of
Hamiltonians associated with large systems yields very large matrices, whether with planewave or
real-space discretizations. The combination of these two factors results in one of the most significant
bottlenecks in computational materials science. In this paper we show how to efficiently compute a
large invariant subspace associated with the smallest eigenvalues of a symmetric/Hermitian matrix
using polynomially filtered Lanczos iterations. The proposed method does not try to extract individ-
ual eigenvalues and eigenvectors. Instead, it constructs an orthogonal basis of the invariant subspace
by combining two main ingredients. The first is a filtering technique to dampen the undesirable
contribution of the largest eigenvalues at each matrix-vector product in the Lanczos algorithm. This
technique employs a well-selected low pass filter polynomial, obtained via a conjugate residual-type
algorithm in polynomial space. The second ingredient is the Lanczos algorithm with partial reorthog-
onalization. Experiments are reported to illustrate the efficiency of the proposed scheme compared
to state-of-the-art implicitly restarted techniques.

Key words. polynomial filtering, conjugate residual, Lanczos algorithm, density functional
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1. Introduction and preliminaries. Ab initio electronic structure calcula-
tions, in the framework of density functional theory (DFT) [8, 11], have proven re-
markably accurate in providing a wealth of information concerning several important
physical properties of complex materials. However, DFT calculations are extremely
demanding and have stretched our computational capabilities to their very limits.
Therefore, advances in better simulation techniques and algorithms receive much at-
tention in this very active field of research.

The core problem in DFT calculations is the solution of the time-independent
Schrödinger equation

(1) A�Ψ� = EΨ�,
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398 C. BEKAS, E. KIKIOPOULOU, AND Y. SAAD

where � is the charge density of the electrons distribution, A� is the Hamiltonian
operator, Ψ� are the wavefunctions, and E is the energy of the system. Observe that
this is a nonlinear eigenvalue problem, since the Hamiltonian and the wavefunctions
depend upon each other through the charge density �. Recent decades have seen
many methods that attempt to efficiently solve (1). All of them utilize some sort of
iteration which aims to improve some initially selected wavefunctions so that at the
end of the iteration the approximate energy E is as small as possible, or in other
words the solution of (1) is self-consistent.

The charge density �(r) at a point r in space is calculated from the eigenfunctions
Ψi of the Hamiltonian A via the formula

(2) �(r) =

no∑
i=1

|Ψi(r)|2,

where the summation is taken over all occupied states (valence electrons) no of the
system under study. This is a crucial calculation in DFT since the potential V of the
Hamiltonian A = ∇2 + V depends on the charge density �, which in turn depends
on the eigenvectors Ψi of A (see (2)), and, as a result, an iterative loop is required
to achieve self-consistence. Computing the charge density �(r) via (2) requires eigen-
vectors, though it is more accurate to say that what is needed is an orthogonal basis
of the invariant subspace associated with the no algebraically smallest eigenvalues of
the Hamiltonian. This is because �(r) is invariant under orthogonal transformations
of the basis of eigenfunctions {Ψi}. If the symmetric matrix A is the discretization
of the Hamiltonian A and the vectors ψi are the corresponding discretizations of the
eigenfunctions Ψi(r) with respect to r, then the charge densities are the diagonal
entries of the “functional density matrix”

(3) P = QnoQ
�
no

with Qno = [ψ1, . . . , ψno ].

Specifically, the charge density at the jth point rj is the jth diagonal entry of P .
In fact, any orthogonal basis Q which spans the same subspace as the eigenvectors
ψi, i = 1, . . . , no, can be used. This observation has led to improved schemes which
do not focus on extracting individual eigenvectors. For example, [1] showed that
the semiorthogonal basis computed by the Lanczos algorithm with partial reorthog-
onalization can be used in order to extract accurate approximations to the charge
density. This scheme results in substantial savings relative to schemes which rely on
the full reorthogonalization of the Lanczos vectors and the accurate calculations of
the eigenvectors. When using standard diagonalization software, much attention is
paid to obtaining accurate eigenvectors, at a cost that is often quite high. If one
focuses on invariant subspaces, all that is needed is that a good basis of the subspace
be computed, but this basis does not need to be a basis of accurate eigenvectors.
For example, a set of m vectors which are linearly independent and which are known
to have no components in the undesired eigenvectors will constitute such a basis,
and an orthonormal basis can be obtained from it if we want to compute the charge
density �. Approximate eigenvectors can be extracted from this basis (by a Rayleigh–
Ritz projection process) but this is not necessary. Shifting the focus from individual
eigenvectors to bases of invariant subspaces can reduce the cost considerably.

In simple terms, the problem considered in this paper can be stated as follows.
Given a real symmetric (or complex Hermitian) matrix A ∈ R

n×n with eigenval-
ues λ1 ≤ λ2 ≤ · · · ≤ λn, compute the invariant subspace Sno associated with the
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eigenvalues which do not exceed a certain limit γ. In electronic structures, γ is the
Fermi energy level and the interval [a, γ] contains the (algebraically) smallest occu-
pied eigenstates λ1, . . . , λno . We assume that we are given an interval [α, β] which
(tightly) contains the spectrum of A. The nature of the algorithms used in this paper
also requires that α ≥ 0. If this is not satisfied, we shift matrix A by a scalar σ so that
A + σI does not have any negative eigenvalues. Methods for computing an interval
[α, β] when this is not readily available are discussed in section 3.1.

When the number of desired eigenvalues is rather small, say on the order of a few
dozen, the problem can be addressed by a number of successful algorithms. Among
these is an extensively used general purpose method based on implicitly restarted Lan-
czos iterations [33], and implemented in the software package ARPACK [16]. However,
the problem becomes much harder in the case when we seek to compute the invari-
ant subspace associated with a large number of eigenvalues that reach deep into the
interior of the spectrum of the matrix at hand. Indeed, in electronic structure calcu-
lations, the dimension of the corresponding invariant subspace is equal to the number
of occupied states no, which typically depends upon the number of free electrons of
the system under study. Current state-of-the-art calculations may involve hundreds
or even thousands of states. In addition, the dimension n of the Hamiltonian A also
depends on the number of atoms and the topology of the system and is typically on
the order of a few hundred thousand to several million.

The method proposed in this paper exploits two distinct and complementary tools
to address the problem stated above. The first is a filtering technique which is used
to dampen the undesirable contribution of the largest eigenvalues at each matrix-
vector product in the Lanczos algorithm. This technique employs a well-selected
low pass filter polynomial, obtained via a conjugate residual- (CR-)type algorithm
in polynomial space. The second ingredient is the Lanczos algorithm with partial
reorthogonalization. The main rationale for this approach is that filtering will help
reduce the size of the Krylov subspace required for convergence, and this will result
in substantial savings both in memory and in computational costs.

Earlier papers presented these two tools in the literature. For example, the fil-
ter polynomial used here is borrowed from [28], and earlier variants were used in
[12] and [6]. The use of the partial reorthogonalization Lanczos (PR-Lanczos) was
suggested in [1]. However, one of the difficulties with the method in [1] is that very
large bases are often required. Thus, the goal of the present paper is to show how
to effectively combine these two distinct and powerful tools, namely, polynomial fil-
tering on the one hand and PR-Lanczos on the other, to solve the difficult problem
of extracting large invariant subspaces. The motivation for using polynomial filter-
ing in various applications, including computing large invariant subspaces, was also
discussed in [28].

1.1. Previous work. An alternative viewpoint which appears in existing DFT
codes is to replace diagonalization by “direct minimization,” which in effect amounts
to computing the subspace of minimum trace, i.e., an orthogonal basis Q = [q1, . . . , qn0 ]
such that tr(QTAQ) is minimum. In fact, many publications of the mid 1990s focused
on avoiding orthogonality, which turned out to be hard to achieve. A method that was
explicitly based on “trace-minimization” was proposed by Sameh and Wisniewski [30]
as far back as 1982. Many methods used in planewave codes are variants of the same
theme and are similar to subspace iteration and trace-min iteration. They begin with
a certain subspace of size no (or close) and then improve each vector individually
while the others are fixed. Clearly, when iterating on the ith vector, orthogonality
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must be enforced against the first i− 1 vectors. While this does not refer directly to
eigenvectors, the algorithm implicitly computes these eigenvectors individually.

Other codes offered an alternative to this type of scheme in the form of the
block-Davidson algorithm. When planewave bases are used, it is easy to precondition
the eigenvalue problem for a number of reasons [25]. For example, preconditioners
for eigenvalue problems in which planewaves are used can be easily extracted from
matrices which use lower-dimensional representations of the Hamiltonian, i.e., Hamil-
tonians obtained from using fewer planewaves and extended to higher dimensions in
some simple way. The lower-dimensional Hamiltonians have good representatives of
the desired eigenvectors of the higher-dimensional ones, and this class of precondi-
tioners can be quite effective in this context. In real-space methods, the situation is
quite different. In this case, we found that preconditioning the eigenvalue problem is
much harder [29]. Generally the gains with the standard preconditioners that were
attempted were small, and these are outweighed by the additional cost of applying
the preconditioner and by the loss of the 3-term recurrence of the Lanczos procedure.
Specifically, one can potentially use the Lanczos procedure with an inexpensive form
of reorthogonalization, but this is no longer possible with the Davidson approach,
which requires a full orthogonalization at each step. In [1] we explored this approach.
The Lanczos algorithm was adapted in a number of ways, the most important of which
was to replace the reorthogonalization step by a partial reorthogonalization scheme
[15, 24, 31, 32].

The use of matrix polynomials and filtering has been used in other ways, and
the idea has played a prominent role in linear scaling and related methods; see, for
example, [9, 10, 17, 21, 22]. In some cases, these methods will consist of computing
the entire density matrix (3) [21] or a small part of it as an approximation [10].

1.2. The Lanczos procedure. The Lanczos algorithm [14] (see also [3, 4, 7,
24, 26]) builds a sequence of vectors q1, q2, . . . , qm which form an orthonormal basis
Qm ∈ R

n×m of the Krylov subspace

(4) Km(A, q1) = span{q1, Aq1, A
2q1, . . . , A

m−1q1},

where q1 is an arbitrary (typically random) initial vector with ‖q1‖ = 1. As is well
known, this sequence of vectors satisfies the 3-term recurrence

(5) βi+1qi+1 = Aqi − αiqi − βiqi−1.

Note that each step of the Lanczos algorithm requires the matrix A only in the form
of matrix-vector products, which can be quite appealing in some situations, such as
when A is available in stencil form.

If Qm = [q1, . . . , qm] and if Tm denotes the symmetric tridiagonal matrix

(6) Tm =

⎡
⎢⎢⎢⎢⎢⎢⎣

α1 β2

β2 α2 β2

. . .
. . .

. . .

βm−1 αm−1 βm

βm αm

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where the scalars αi, βi are computed by the Lanczos algorithm, then it can be verified
that AQm = QmTm + βm+1qm+1e

�
m, where em is the mth column of the canonical

basis and qm+1 is the last vector computed by the Lanczos algorithm.
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The eigenvalues of matrix A are approximated by those of matrix Tm. The
Lanczos algorithm quickly yields good approximations to extremal eigenvalues of A.
In contrast, convergence is typically much slower for the interior of the spectrum [24].

2. Computing large eigenspaces with the Lanczos procedure. In the
situation when large eigenspaces are to be computed by the Lanczos algorithm, the
number m of Lanczos steps required for all the desired eigenvectors to converge can
be quite large. Therefore, if the algorithm is to be applied without any form of
restarting or preconditioning, then we will have to deal with two related demands:
(1) the need to apply some form of reorthogonalization to the Lanczos vectors [1, 15,
24, 31, 32], and (2) the need to store the Lanczos basis Qm because it is needed by
the reorthogonalization steps. The first constraint increases computational cost, and
some care must be exercised for the reorthogonalization process not to become too
expensive. The second raises the issue of memory costs. Storing the Lanczos basis
Qm will require a large memory size, and may even force one to resort to secondary
storage.

Note that reorthogonalization will ultimately require all basis vectors to be fetched
from main memory and that the cost of orthogonalizing the vector qk against all pre-
vious ones will incur a cost of O(kn), which yields a quadratic total cost of O(m2n)
when summed over m steps. This cost will eventually overwhelm any other compu-
tation done, and it is the main reason why so many attempts have been made in the
past to avoid or reduce the orthogonalization penalty in electronic structures codes;
see, e.g., [5, 13, 18, 19, 36].

Note also that there is an additional severe penalty due to memory traffic as
the size of the system increases, because modern processors work at a much faster
rate than memory subsystems. It was argued in [1] that memory requirements do
not necessarily pose a significant problem for the matrix sizes encountered and the
machines typically in use for large calculations. For example, storing 2000 vectors of
length 1 million requires “only” 16 GB of memory, which is certainly within reach of
most high-performance computers.1 However, for larger calculations this will be an
enormous burden and out-of-core algorithms would be needed.

2.1. Use of partial reorthogonalization. A remarkable property of the Lan-
czos algorithm is that, in theory (exact arithmetic), it computes a basis of the Krylov
subspace, which is orthonormal. This is done with a simple 3-term recurrence. How-
ever, in practice, i.e., in the presence of finite precision arithmetic (e.g., double pre-
cision floating point arithmetic), the basis vectors quickly start to lose orthogonality.
The onset of loss of orthogonality is sudden and takes place as soon as one or more
eigenvectors start converging, as was discovered in the seminal work of Paige [23].
As soon as this happens, the orthogonality is completely lost very rapidly, indicating
an unstable underlying computation. As an illustration, consider the Hamiltonian
(n = 17077) corresponding to Si10H16, which was obtained by the real-space code
PARSEC.2 We test the orthogonality of the bases Qi, i = 1, . . . ,m, with m = 200
by computing the norm ‖Q�

i Qi − Ii‖2, where Ii is the identity matrix of size i. The
left plot in Figure 1 illustrates the rapid deterioration of orthogonality among basis
vectors.

A number of existing reorthogonalization schemes are often employed to remedy
the problem. The simplest of these consists of a full reorthogonalization approach,

1In modern high-performance computers this will typically be available in a single node.
2http://www.ices.utexas.edu/parsec/index.html
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Fig. 1. Levels of orthogonality of the Lanczos basis for the Hamiltonian (n = 17077) corre-
sponding to Si10H16. Left: Lanczos without reorthogonalization. Right: Lanczos with partial re-
orthogonalization. The number of reorthogonalizations was 34 with an additional 3400 inner vector
products.

whereby the orthogonality of the basis vector qi is enforced against all previous vectors
at each step i. This means that the vector qi, which in theory is already orthogo-
nal against q1, . . . , qi−1, is orthogonalized (a second time) against these vectors. In
principle, we no longer have a 3-term recurrence, but this is not an issue as the cor-
rections are small and usually ignored (see, however, Stewart [34]). However, full
reorthogonalization can be a costly procedure.

An alternative is partial reorthogonalization, which attempts to reorthogonalize
only when it is deemed necessary. The goal is not so much to guarantee that the
vectors are exactly orthogonal as to ensure that they are at least nearly orthogonal.
Typically, the loss of orthogonality is allowed to grow to roughly the square root of the
machine precision before a reorthogonalization is performed. A result by Simon [31]
ensures that we can get fully accurate approximations to the Ritz values (eigenvalues
of the tridiagonal matrix Tm) in spite of a reduced level of orthogonality among the
Lanczos basis vectors. Furthermore, a key to the successful utilization of this result is
the existence of clever recurrences which allow us to estimate the level of orthogonality
among the basis vectors [15, 32]. It must be stressed that the cost of updating the
recurrence is very modest. Let ωi,j = q�i qj denote the “loss of orthogonality” between
any basis vectors qi and qj . Then the following is the so-called ω-recurrence [32]:

(7) βiωi+1,j = (αj − αi)ωi,j + βj−1ωi,j−1 − βi−1ωi−1,j ,

where the scalars αi and βi, i = 1, . . . , are identical to the ones computed by the
Lanczos algorithm.

Thus, we can cheaply and efficiently probe the level of orthogonality of the current
vector (say qi) and determine whether a reorthogonalization step against previous ba-
sis vectors is required. The right plot in Figure 1 illustrates the corresponding level
of orthogonality when partial reorthogonalization is applied. Only 34 reorthogonal-
ization steps were required, compared with the 200 that would have been required if
full reorthogonalization was employed.

It was shown in [1] that partially reorthogonalized Lanczos combined with tech-
niques that avoid explicit computation of eigenvectors can lead to significant savings



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

POLYNOMIAL FILTERED LANCZOS ITERATIONS 403

in computing charge densities for electronic structure calculations. Partial reorthog-
onalization will play a key role in the algorithm to be described in the next section.

2.2. Polynomial acceleration and restarting techniques. The above dis-
cussion strongly suggests that it is critical to use a Lanczos basis that is as small as
possible. In order to achieve this, we can apply the Lanczos process not to the original
matrix A but rather on a matrix p(A), where p(t) is a polynomial of small degree,
designed to be close to zero for large eigenvalues and close to one for the eigenvalues
of interest. Of course, polynomial acceleration in Krylov techniques is not a new idea
(see, for example, [26] and the references therein). Typically, the goal is to restart
the Lanczos procedure after a fixed number of iterations with a starting vector from
which unwanted eigendirections have been filtered out. In this paper we follow a dif-
ferent approach. We do not employ any restarts, but rather filter each matrix-vector
product in the Lanczos process using a small number of CR-type iterations with the
matrix A. As can be expected, the proposed scheme will require a much smaller
number of basis vectors than without filtering. However, each matrix-vector product
is now more costly. Experiments will show that the trade-off is in favor of filtering.

Observe that in exact arithmetic, if the starting vector q1 is orthogonal to an
eigenvector ψj , then the Krylov subspace Km will never have any components in ψj ,
regardless of the number of steps m. Restarting techniques utilize this property to
speed up the computation of the desired invariant subspace. The goal is to pro-

gressively construct a starting vector q
(k)
1 , which at each restart k will have larger

components in desired eigendirections, and smaller ones in undesired eigendirections.
In contrast to the standard Lanczos procedure, the dimension of the Krylov subspace
is not allowed to grow indefinitely. When a maximum number of iterations Mmax

is reached, a new starting vector q
(k+1)
1 is selected and the process is restarted; see

[26, 33] for details.
Whether explicit or implicit, restarting can be designed to filter out eigendirec-

tions corresponding to eigenvalues λj > λno
. The goal is to accelerate convergence

towards the algebraically smallest eigenvalues. However, round-off will cause eigendi-
rections in the largest eigenvalues to quickly reappear. This is illustrated in Figure 2.
The matrix that is tested corresponds to a second order finite difference approxima-
tion of the two-dimensional Laplace differential operator. The starting vector is the
sum

q1 =

no∑
k=1

ψi

of the eigenvectors corresponding to the smallest no = 200 eigenvalues of the matrix.
The left plot of Figure 2 illustrates that at the first step of the Lanczos procedure,
the vector q1 is orthogonal (up to machine precision) to the unwanted eigenvectors.
However, it takes only m = 13 steps of Lanczos for the coefficients in the largest
eigenvectors to start dominating the last basis vector qm.

What happened can be easily explained. Let ε denote the machine precision and
assume that 〈q1, ψi〉 = ε for a given eigenvector ψi with i > no. Recall that the
Lanczos vector qm+1 is of the form qm+1 = zm(A)q1, where zm is a polynomial of
degree m, called the (m + 1)st Lanczos polynomial. The sequence of polynomials
zk, k = 1, . . . ,m, is orthogonal with respect to a certain discrete inner product.
Since the initial vector has very small components in the eigenvectors associated with
eigenvalues λi > λno

, it is to be expected that the Lanczos polynomial zm is such
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Fig. 2. Coefficients of the last basis vector qm of the Lanczos procedure (no partial reorthog-
onalization was required) for the discretization of the Laplacian, when the starting vector does not
have any components in undesired eigenvectors. Left: one step. Right: m = 13 steps.

that zm(λi) 	 1 for i > no. Therefore, we will have

〈qm+1, ψi〉 = 〈zm(A)q1, ψi〉
= 〈q1, zm(A)ψi〉
= zm(λi)〈q1, ψi〉
= zm(λi)ε.(8)

As a result, the small component ε will be amplified by the factor zm(λi), which is
likely to be very large.

The situation can be remedied by replacing A by an operator of the form B =
p(A), where p(λi) is small. If B is used in the Lanczos algorithm, then note that every
time we multiply q by B, a component in the direction ψi that is small (relative to
the others) will remain small.

Before we state the result in detail, we must recall that in inexact arithmetic, the
Lanczos relation (5) is replaced by a relation of the form

(9) Aqi = βi+1qi+1 + αiqi + βiqi−1 − zi,

where zi is an error vector which, in general, remains small.
Lemma 2.1. Consider any eigenvalue λ > λno and let ψ be its associated eigen-

vector and δ ≡ p(λ). Assume that the sequence {qi} satisfies the model (9) and define

εψi = 〈ψ, zi〉. Then the scalar sequence σi = 〈qi, ψ〉 satisfies the recurrence

(10) βi+1σi+1 + (αi − δ)σi + βiσi−1 = εψi

and, assuming βm+1e
�
1 (Tm − δI)−1em �= 0, then the component σm+1 of qm+1 along

ψ can be expressed as

(11) σm+1 =
ε�m(Tm − δI)−1e1 − σ1

βm+1e�m(Tm − δI)−1e1
,
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in which εm = [εψ1 , ε
ψ
2 , . . . , ε

ψ
m]� and Tm is the tridiagonal matrix (6).

Proof. Let B ≡ p(A). We begin with the relation

Bqi = βi+1qi+1 + αiqi + βiqi−1 − zi.

Taking the inner product with ψ yields

〈Bqi, ψ〉 = βi+1〈qi+1, ψ〉 + αi〈qi, ψ〉 + βi〈qi−1, ψ〉 − εψi .

Since Bψ = δψ, this readily yields the expression (10).
Define the vector sm = [σ1, σ2, . . . , σm]�. We can rewrite the relations (10) for

i = 1, . . . ,m in matrix form as

(Tm − δI)sm = εm − βm+1σm+1em,

which yields the relation sm = (Tm − δI)−1εm − βm+1σm+1(Tm − δI)−1em. Now, we
add the condition that σ1 is known:

σ1 = e�1 sm = e�1 (Tm − δI)−1εm − βm+1σm+1e
�
1 (Tm − δI)−1em,

from which we obtain the desired expression (11).
The main point of the above lemma is that it explicitly provides the amplification

factor for the coefficient in the direction ψ in terms of computed quantities. This
factor is the denominator of the expression (11). Note that in exact arithmetic, the
vector εm is zero and the initial error of σ1 in the direction of ψ is divided by the factor
βm+1e

�
1 (Tm − δI)−1em. We can obtain a slightly simpler expression by “folding” the

term σ1 into the vector εm. This is helpful if σ1 is of the same order as the εψi ’s as it
simplifies the expression. Set

ε̂m = εm − σ1(Tm − δI)e1.

Note that only εψ1 and εψ2 are modified into ε̂ψ1 = εψ1 − (α1 − δ)σ1 and ε̂ψ2 = εψ2 − β2σ1,

while the other terms remain unchanged, i.e., ε̂ψi = εψi for i > 2. Then (11) becomes

(12) σm+1 =
ε̂�m(Tm − δI)−1e1

βm+1e�m(Tm − δI)−1e1
.

Let us consider the unfavorable scenario first. When B ≡ A then Tm is simply
the tridiagonal matrix obtained from the Lanczos algorithm and δ is an eigenvalue of
A. Assume that λ = λn, the largest (unwanted) eigenvalue. Even if q1 has very small
components in the direction of λ, convergence will eventually take place (see (8)),
and Tm will tend to have an eigenvalue close to λ, so (Tm − δI)−1e1 ≡ ym is close
to an eigenvector of Tm associated with its largest eigenvalue. As is well known,
the last components of (converged) eigenvectors of Tm will tend to be much smaller
than the first ones. Therefore, if ε̂m is a small random vector, then σm will become
larger and larger because the numerator will converge to a certain quantity while the
denominator will converge to zero.

The use of a proper inner polynomial p(t) prevents this from happening early by
ensuring that convergence towards unwanted eigenvalues does not take place. In this
situation δ is an eigenvalue of B among many others that are clustered around zero,
so convergence is considerably slower towards the corresponding eigenvector. By the
time convergence takes place, the desirable subspace will have already been computed.
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βγ 

Fig. 3. The Heaviside function for the interval [γ, β].

3. The filtered Lanczos procedure. Partial reorthogonalization can signifi-
cantly extend the applicability of Lanczos in electronic structure calculations (see [1]),
but there are computational issues related to the use of very long Lanczos bases when
a large invariant subspace is sought. These issues can be addressed by employing
polynomial filtering in the Lanczos procedure.

In exact arithmetic, the ideal solution to this problem is to use an initial vector
which is filtered so that it has no eigencomponents associated with λi, i > no. How-
ever, we saw earlier that in the course of the Lanczos procedure, components along
the largest eigenvectors will quickly return. We discussed the reasons for this behavior
and suggested a simple remedy which consists of replacing the matrix-vector product
Aqi in the usual Lanczos algorithm by p(A)qi, where p(t) is a low-degree polynomial
filter that approximates the Heaviside function (see Figure 3). The interval [γ, β]
contains all the unwanted (largest) eigenvalues, which are approximately mapped by
p(t) to zero.

All that is required to implement the proposed filtered Lanczos scheme is to
substitute the matrix-vector product Aqi with a function P(A, qi, d) which evaluates
the product of the matrix polynomial p(A) with the vector qi. Let d be the degree
of the polynomial p(t). Then the cost per step of the filtered Lanczos procedure,
compared with the plain Lanczos procedure, is d additional matrix-vector products.

Observe that the filtered Lanczos process constructs an approximate invariant
subspace for the matrix p(A) which is also an invariant subspace for A itself. However,
while the restriction of p(A) on the orthogonal Lanczos basis Qm is a tridiagonal
matrix, i.e., Q�

mp(A)Qm = Tm is tridiagonal, this is no longer true for A, i.e.,

(13) Q�
mAQm = T̃m,

where T̃m is in general dense. The eigenvalues of A are approximated by those of T̃m,
while the eigenvalues of Tm approximate those of p(A). However, A and p(A) have the
same eigenvectors. Thus, if we consider the matrix of normalized eigenvectors Y of
Tm and Ỹ of T̃m, respectively, then approximations to the eigenvectors of A are given
either by the columns of the matrices QmY or QmỸ . Furthermore, approximations
to the eigenvalues of A are available from the eigenvalues of T̂m = Y �Q�

mAQmY .
Similarly to the Lanczos procedure, the basis vectors qi in the filtered Lanczos
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procedure are also expected to rapidly lose orthogonality. Thus, the partial reorthogo-
nalization techniques of section 2.1 will prove to be particularly useful in the practical
deployment of the method.

The larger the degree of the polynomial p(t), the closer it can be made to the
Heaviside function. On the other hand, using a larger degree d will induce a higher
computational cost. It is important to note that in practice we do not seek to approx-
imate the Heaviside function everywhere on its domain of definition. We would like
the polynomial p(t) to take small values on the region of the unwanted eigenvalues.
Section 4 discusses a CR-type iteration that achieves this goal. In order to describe
the filtered Lanczos iteration, it suffices for the time being to consider the application
of the filtering polynomial as a “black box” function P(A, qi, d).

3.1. The algorithm. In order to compute a basis for an invariant subspace Sno

for the no algebraically smallest eigenvalues of matrix A, we assume that we are given
an interval (γ, β], which contains all the unwanted eigenvalues λj > λno . Assuming
that the matrix A does not have any negative eigenvalues, it suffices to consider only
the left endpoint γ of the interval. In electronic structure calculations, the problem
is often a variation of this one, in that we wish to compute an invariant subspace
associated with the no smallest eigenvalues. However, there is an outer loop, and
previous information can be used to obtain a good interval on which to restrict the
search. There are also instances where the number of eigenvalues no is unknown, but
rather we are given an upper bound γ for the eigenvalues that need to be considered.

Starting vector. It is important that the starting vector q1 be free of compo-
nents in the undesired eigenvectors. To this end we apply a high-degree polynomial
filter ph on a random vector q̃, such that q1 = ph(A)q̃. The degree of this first polyno-
mial can be quite high (say dh = 200 or so) to get a good elimination of the undesired
components. A systematic way to stop this initial iteration is to monitor the norm of
the residual of the CR iteration, which indicates how well the sequence of the orthog-
onal CR polynomials approximate the base filter function. Once this norm, which is
cheap to compute (see section 4.1), falls below a user-specified tolerance, the iteration
is stopped. This in turn will guarantee that unwanted large eigendirections have been
adequately dampened.

Bounding intervals. If we are not given an interval [α, β] that tightly contains
the eigenvalues, then we employ a number of unrestarted Lanczos iterations in order
to obtain approximations for the bounds α and β. In practice, the number of these
iterations is kept low. Let r1 and rn be the residual vectors for the approximate
extremal eigenvalues λ̃1 and λ̃n of matrix A obtained from a few Lanczos steps. Then
we use the practical bounds α̃ = λ̃1 − ‖r1‖ and β̃ = λ̃n + ‖rn‖. If α̃ is negative,
then we shift the Hamiltonian so as to make all its eigenvalues positive. The “interval
of wanted eigenvalues” is user-defined. Standard “self-consistent field” iterations in
electronic structure methods are inherently nonlinear iterations and as such infor-
mation from previous iterations can be exploited to obtain a good estimate for the
wanted interval. At the beginning of the self-consistent field loop, there are adequate
initializations based on superposition of atomic wavefunctions that can be exploited.
The “unwanted” interval is readily defined from the above.

Inner polynomial transformation. The main Lanczos iteration will be per-
formed with a filter polynomial of A, i.e., the Lanczos algorithm is run with B = p(A).
The degree d of p is much smaller than that of ph, in order to reduce the overall cost.
Typically d ≡ 8.
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Convergence criterion. Equally important in limiting the computational cost
is the convergence test. Let (λ̃i, x̃i) be an approximate eigenpair, where xi = Qmyi
and (λ̃i, yi) is an eigenpair of the dense matrix T̃m (13). Then it is natural to monitor
the norm of the residual ri = Ax̃i − λ̃ix̃i. It is well known (see, e.g., [24]) that

‖ri‖ = ‖Ax̃i − λ̃ix̃i‖ = |βm+1| |ymi |,

where ymi is the last element of the eigenvector yi. In order to reduce the computa-
tional cost as well as the memory load, we opt to avoid calculating the eigenvectors
yi at every step. Thus, we choose to monitor, during the iteration, the sum of the
eigenvalues λ̃i of matrix T̃k, which correspond to those eigenvalues of A that are
smaller than the upper bound γ, sk =

∑
λ̃i<γ λ̃i. Only when the change in the sum

sk, in comparison to sk−1, is less than a user-defined tolerance do we calculate the
eigenvectors yi and thus check convergence by means of the residual norms ‖ri‖. If
all residual norms are adequately small, then we stop the iteration. Otherwise, we
continue the iteration and repeat the process. Further savings are achieved by not
performing the convergence test for sk at every Lanczos step, but only infrequently,
for example, at fixed intervals.

Computation of the projection matrix T̃m. Observe that

(14) T̃i = Q�
i+1AQi+1 = [Qi qi+1]

�A[Qi qi+1] =

[
Q�

i AQi Q�
i Aqi+1

q�i+1AQi q�i+1Aqi+1

]
.

Thus, matrix T̃m can be computed incrementally during the course of the algorithm.
Obviously, if T̃m is updated at every step i, then no additional memory is required.
However, a more efficient BLAS 3 implementation is possible if we postpone the update
of T̃m and rather perform it at fixed intervals (which can be made to coincide with
the intervals at which convergence is checked). This will come at the expense of a few
additional vectors in memory. In particular, we will have to store the vectors Aqi+1

for a number of consecutive steps.
Figure 4 shows a high-level algorithmic description of the filtered Lanczos itera-

tion.

4. Polynomial filters. This section focuses on the problem of defining and
applying the polynomial filter. Details on the algorithms described here can be found
in [28]. We begin with a brief summary of filtering techniques when solving linear
systems of equation by “regularization” [20]. In regularized solution methods, one
seeks to find an approximate solution to the linear system Ax = b by inverting A only
in the space associated with the largest eigenvalues, leaving the other part untouched.
As was explained in [28], computing a filtered solution amounts to computing a vector
s(A)b whose residual vector p(A)b = b−As(A)b is a certain filter polynomial, typically
one that is computed to be close to 1 for small eigenvalues and close to 0 for larger
eigenvalues. In other words, it would resemble the desired filter polynomial, such as
the one shown on the right of Figure 7.

The approximate solutions produced by Krylov subspace methods for solving a
linear system Ax = b are of the form sj(A)r0, where sj is a polynomial of degree ≤ j.
The corresponding residual vector is pj+1(λ) = 1−λsj(λ). This polynomial is of degree
j + 1 and has value 1 at λ = 0. In standard (unfiltered) methods one attempts to
make the polynomial λsj(λ) close to the function 1 on the (discrete) set of eigenvalues.
Chebyshev methods attempt to make the polynomial λs(λ) close to the function 1,
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Filtered Lanczos Algorithm.

(*Input*)
Matrix A ∈ R

n×n, starting vector q1, ‖q1‖2 = 1,
polynomial filter function P(A, q, d) that approximates the step function,
high polynomial degree dh, stride strd, upper bound γ

(*Output*)
Eigenvalues of A smaller than γ and orthogonal basis Q = [q1, q2, . . .] for
the invariant subspace associated with these eigenvalues

1. Set β1 = 0, q0 = 0
2. Thoroughly filter initial vector q1 = P(A, q1, dh), q1 = q1/‖q1‖
3. for i = 1, . . .
4. wi = P(A, qi, dl) − βiqi−1

5. αi = 〈wi, qi〉
6. wi = wi − αiqi
7. βi+1 = ‖wi‖2

8. if (βi+1 == 0) then stop

9. qi+1 = wi/βi+1

10. if rem(i, strd) == 0 then

11. Compute last row/column of matrix T̃i = Q�
i AQi

11. Compute all eigenvalues λ̃j of T̃i such that λ̃j < γ

12. Compute si =
∑

λ̃i<γ λ̃i

13. if (|(si − si−1)/si−1| < tol) then
14. Calculate residuals ‖ri‖ and if all ‖ri‖ < tol then break
15. end
16. end

Fig. 4. The filtered Lanczos algorithm. The inner product for vectors is denoted by 〈., .〉.

uniformly, on the (continuous) set [α, β] containing the spectrum (with 0 < α < β). A
number of other methods have been developed which attempt to make the polynomial
λs(λ) close to the function 1, in some least-squares sense, on the interval [α, β].

In the standard CR algorithm (see, e.g., [27]), the solution polynomial sj mini-
mizes the norm ‖(I −As(A))r0‖2, which is nothing but a discrete least-squares norm
when expressed in the eigenbasis of A:

‖(I −As(A))r0‖2 =

[
N∑
1

(1 − λis(λi))
2

]1/2

≡ ‖1 − λs(λ)‖D.

It is possible to write a CR-like algorithm which minimizes ‖1 − λs(λ)‖g for any
least-squares norm associated with a (proper) inner product of polynomials

〈p, q〉g.

The related generic CR algorithm is given in Figure 5.
It can be easily shown that the residual polynomial pj generated by this algorithm

minimizes ‖p(λ)‖g among all polynomials of the form p(λ) = 1 − λs(λ), where s is
any polynomial of degree ≤ j − 1. In other words, pj minimizes ‖p(λ)‖g among all
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Generic Conjugate Residual Algorithm.

1. Compute r0 := b−Ax0, p0 := r0, π0 = p0 = 1
2. Compute λπ0

3. for j = 0, 1, . . . , until convergence:
4. αj := 〈pj , λpj〉g/〈λπj , λπj〉g
5. xj+1 := xj + αjpj
6. rj+1 := rj − αjApj pj+1 = pj − αjλπj

7. βj := 〈pj+1, λpj+1〉g〈pj , λpj〉g
8. pj+1 := rj+1 + βjpj πj+1 := pj+1 + βjπj

9. Compute λπj+1

10. end

Fig. 5. Generic CR algorithm.

polynomials p of degree ≤ j, such that p(0) = 1. In addition, the polynomials λπj are
orthogonal to each other.

In order to add filtering to the above algorithm, note that filtering amounts to
minimizing some norm of φ(λ) − λs(λ), where φ is the given filter function. One
must remember that φ(A)v is not necessarily easy to evaluate for a given vector v. In
particular, φ(A)r0 may not be available.

The relation between regularized filtered iterations and polynomial iterations,
such as the one we are seeking for the eigenvalue problem, may not be immediately
clear. Observe that the residual polynomial pm(t) can be used as a filter polynomial
for a given iteration. For example, the residual polynomial shown on the right of
Figure 7, which is of the form p(λ) = 1 − λs(λ), can be used for computing all
eigenvalues in the interval [0, 1.7]. The dual filter 1 − p(λ) has small values in [0, 1.7]
and can be used to compute the invariant subspace associated with the eigenvalues
in the interval [2.3, 8], though this may possibly require a large subspace. Notice that
one of the main difficulties with this class of techniques is precisely the issue of the
dimension of the subspace, as there is no inexpensive way of knowing in advance how
many eigenvalues there are in a given interval.

4.1. Corrected CR algorithm. The standard way of computing the best poly-
nomial is to generate an orthogonal sequence of polynomials and expand the least-
squares solution in it. This approach was taken in [6] and more recently in [12].

The formulation of the solution given next is based on the following observation.
The polynomials associated with the residual vectors of the (standard) CR algorithm
are such that {λπj} is an orthogonal sequence of polynomials, and so it can be used as
an intermediate sequence in which to express the solution. We can generate the resid-
ual polynomial which will help obtain the pi’s: the one that would be obtained from
the actual CR algorithm, i.e., the same r vectors as those of the generic CR algorithm
(see Figure 5). It is interesting to note that with this sequence of residual vectors,
which will be denoted by r̃j , it is easy to generate the directions pi which are the same
for both algorithms. The idea becomes straightforward: obtain the auxiliary residual
polynomials p̃j that are those associated with the standard CR algorithm and exploit
them to obtain the πi’s in the same way as in the CR algorithm. The polynomials λπj

are orthogonal and therefore the expression of the desired approximation is the same.
The algorithm is described in Figure 6, where now p̃j is the polynomial associated
with the auxiliary sequence r̃j .
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Filtered Conjugate Residual Polynomials Algorithm.

1. Compute r̃0 := b−Ax0, p0 := r̃0 π0 = p̃0 = 1
2. Compute λπ0

3. for j = 0, 1, . . . , until convergence:
4. α̃j := 〈p̃j , λp̃j〉w/〈λπj , λπj〉w
5. αj := 〈φ, λπj〉w/〈λπj , λπj〉w
6. xj+1 := xj + αjpj
7. r̃j+1 := r̃j − α̃jApj p̃j+1 = p̃j − α̃jλπj

8. βj := 〈p̃j+1, λp̃j+1〉w/〈p̃j , λp̃j〉w
9. pj+1 := rj+1 + βjpj πj+1 := p̃j+1 + βjπj

10. Compute λπj+1

11. end

Fig. 6. The filtered CR polynomials algorithm.

The only difference with a generic CR-type algorithm (see, e.g., Figure 5) is that
the updates to xj+1 use different coefficients αj from the updates to the vectors r̃j+1.
Observe that the residual vectors r̃j obtained by the algorithm are just auxiliary
vectors that do not correspond to the actual residuals rj = b − Axj . Needless to
say, these actual residuals, the rj ’s, can also be generated after line 5 (or 6) from
rj+1 = rj −αjApj . Depending on the application, it may or may not be necessary to
include these computations.

The solution vector xj+1 computed at the jth step of the corrected CR algorithm
is of the form xj+1 = x0 + sj(A)r0, where sj is the jth degree polynomial:

(15) sj(λ) = α0π0(λ) + · · · + αjπj(λ).

The polynomials πj and the auxiliary polynomials p̃j+1(λ) satisfy the orthogonality
relations,

(16) 〈λπj(λ), λπi(λ)〉w = 〈λp̃j(λ), p̃i(λ)〉w = 0 for i �= j.

In addition, the filtered residual polynomial φ−λsj(λ) minimizes ‖φ−λs(λ)‖w among
all polynomials s of degree ≤ j − 1.

It is worth mentioning that there is an alternative formula for αj , which is

(17) αj = α̃j −
〈1 − φ, λπj〉
〈λπj , λπj〉

,

whose merit, relative to the expression used in line 4 of the algorithm, is that it clearly
establishes the new algorithm as a corrected version of the generic CR algorithm of
Figure 5. In the special situation when φ ≡ 1, αi = α̃i, and the two algorithms
coincide as expected.

4.2. The base filter function. The solutions computed by the algorithms just
seen consist of generating polynomial approximations to a certain base filter function
φ. It is generally not a good idea to use φ as the step function because this function is
discontinuous and approximations to it by high-degree polynomials will exhibit very
wide oscillations near the discontinuities. It is preferable to take as a “base” filter,
i.e., the filter which is ultimately approximated by polynomials, a smooth function
such as the one illustrated in Figure 7.
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Fig. 7. A typical filter function φ and its dual filter 1 − φ.

The filter function in Figure 7 can be a piecewise polynomial consisting of two
pieces: A function which increases from 0 to 1 when λ increases smoothly from 0 to
γ, and the constant function unity in the interval [γ, β]. Alternatively, the function
can begin with the value 0 in the interval [0, γ1], then increase smoothly from 0 to 1
in a second interval [γ1, γ2], and finally take the value 1 in [γ2, β]. This second part
of the function (the first part for the first scenario) bridges the values 1 and 1 by a
smooth function and was termed a “bridge function” in [6].

A systematic way of generating base filter functions is to use bridge functions
obtained from Hermite interpolation. The bridge function is an interpolating polyno-
mial (in the Hermite sense) depending on two integer parameters m0,m1 and denoted
by Θ[m0,m1] which satisfies the following conditions:

(18)
Θ[m0,m1](0) = 0; Θ′

[m0,m1]
(0) = · · · = Θ

(m0)
[m0,m1]

(0) = 0,

Θ[m0,m1](γ) = 1; Θ′
[m0,m1]

(γ) = · · · = Θ
(m1)
[m0,m1]

(γ) = 0.

Thus, Θ[m0,m1] has degree m0+m1+1 and m0, m1 define the degree of smoothness
at the points 0 and α, respectively. The ratio m1

m0
determines the localization of the

inflection point. Making the polynomial increase rapidly from 0 to 1 in a small interval
can be achieved by taking high-degree polynomials, but this has the effect of slowing
down convergence toward the desired filter, as it causes undesired oscillations. Two
examples are shown in Figures 8 and 9.

Once the base filter is selected, the filtered CR algorithm can be executed. It
remains, however, to define the inner products. Details on the weight functions and the
actual techniques for computing inner products of polynomials can be found in [28].
We only mention that it is possible to avoid numerical integration by defining the inner
products by using classical weights (e.g., Chebyshev) in each subinterval of the whole
interval where the base filter is defined. Since the base filter is a standard polynomial
in each of these subintervals, inner products in these intervals can be evaluated without
numerical integration. This, in effect, is equivalent to using Gaussian quadrature in
each of these subintervals.

The support of the bridge function, an interval in which the base function drops
from 1 to 0, can be determined by the interval of wanted eigenvalues and the largest
eigenvalue of the matrix. We already discussed how to get the required bounds for
the largest and smallest eigenvalues of A from a few steps of the Lanczos algorithm.
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Fig. 8. The base filter Θ[4,4] in [0, 2] and one in [2, 8] (left) and its polynomial approximation
of degree 15 (right).
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Fig. 9. The base filter Θ[10,2] in [0, 2] and one in [2, 8] (left) and its polynomial approximation
of degree 15 (right).

The bridge interval should be large enough so as to include all the eigenvalues of the
wanted set, but not so large as to contain too many unwanted eigenvalues. In prac-
tice, augmenting the interval of wanted eigenvalues slightly only minimally hampers
performance but helps improve the robustness of the procedure.

There are a number of parameters which can be exploited to yield a desired filter
polynomial. In addition to the degrees of the polynomials m0,m1, one can also define
the weight functions differently. For example, more or less emphasis can be placed
in each subinterval. Our experience shows that using an equal weighting scheme for
each subinterval is a very reasonable choice for most applications, including electronic
structure calculations.

5. Numerical experiments. This section reports on a few numerical experi-
ments with matrices taken from electronic structure calculations and from the
Harwell–Boeing collection. Two other good reference points for a useful compar-
ison would be the partially reorthogonalized Lanczos (which was used in [1]) and
the implicitly restarted Lanczos iteration as it is implemented in the popular pack-
age ARPACK [16, 33]. We compare these two algorithms with the filtered Lanczos
(F. Lanczos) algorithm with partial reorthogonalization.
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All the experiments which follow were performed on an SGI Origin 2000 system
using a single R12000 processor at 300 MHz clock. The filtered Lanczos code is
available from the authors upon request. F. Lanczos is implemented purely in C
while ARPACK is implemented in Fortran 77. The Lanczos algorithm with partial
reorthogonalization is based in the Fortran 77 code PLANSO [35]. The convergence
tolerance was set to 10−10 for all methods. Notice that although in electronic structure
calculations the convergence tolerance is typically taken 2–3 orders of magnitude
larger, F. Lanczos (similar to ARPACK and Lanczos) can be used for other applications
as well (this is why we include the test matrix from the Harwell–Boeing collection). In
order to conduct a rather strict test we have chosen the above convergence tolerance.
For ARPACK the maximum dimension of the Lanczos basis was always set equal to
twice the number of requested eigenvalues. Thus, the number of implicit QR steps in
ARPACK was equal to the number of the wanted eigenvalues. We point out that these
settings are typically used in ARPACK.

For F. Lanczos the number of filtered Lanczos iterations for the initial vector
was set to 200, while the degree of the inner CR polynomial was 8. In the latest
(stabilized) version of the code we use 2 intervals for the base function: one for the
wanted and another for the unwanted ones. The degrees m1,m2 for the smooth base
function are set to m1 = 5 and m2 = 15. The number of Lanczos iterations for the
determination of the bounding interval [α, β] for the spectrum was determined by a
convergence tolerance of 10−6. The above settings were the same for all test cases.

For partial reorthogonalization we used the default parameters defined in the
PLANSO code. It is worth mentioning that the maximum loss of orthogonality allowed
was set to the square root of the machine precision.

In implicitly restarted techniques, such as those implemented in ARPACK, a basis
of length equal to the number of required eigenvalues is updated at each restart.
Thus, such methods are not designed to compute all eigenvalues in a given interval.
This, of course, is in contrast to the filtered Lanczos iteration, as well as to the
unrestarted Lanczos algorithm. In order to facilitate a performance comparison we
have used the following setting: for each test matrix, we are interested in a given
number of its algebraically smallest eigenvalues. We compute these using ARPACK.
Then we use the filtered Lanczos iteration and the unrestarted Lanczos iteration
with partial reorthogonalization to compute all eigenvalues that are smaller than or
equal to the largest of the requested eigenvalues computed by ARPACK. Of course,
this comparison is not carried out on completely equal terms. However, our goal
is to demonstrate that a strategy of exchanging memory accesses with additional
matrix-vector products can significantly lower the overall computational cost. This
was previously shown in [1], however, at the important expense of additional memory,
relative to implicitly restarted techniques. The experiments that follow clearly show
that the filtered Lanczos iteration can achieve both goals: it can operate on limited
memory while significantly reducing the overall computational cost.

Test matrices. We have used four matrices from electronic structure calcula-
tions for the tests. These are Hamiltonians obtained from a real-space code [2]. In
addition, we have also used a test matrix, namely, the Andrews matrix, from the
University of Florida sparse matrix collection,3 so as to give an example of applicabil-
ity of our method in other applications as well. Table 1 provides the characteristics
of the test matrices. For the Hamiltonians the number of the requested eigenvalues

3http://www.cise.ufl.edu/research/sparse/



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

POLYNOMIAL FILTERED LANCZOS ITERATIONS 415

Table 1

Characteristics of test matrices: nnz is the total number of nonzeros, so the last column shows
the average number of nonzeros per row.

Matrix Size n nnz nnz/n
Si10H16 17077 875923 51.3
Ge99H100 94341 6332795 67.2
Ge87H76 94341 5963003 63.2
Si34H36 97569 5156379 52.8
Andrews 60000 760154 12.7

generally correspond to physical properties of the corresponding molecular system.
For example, Si10H16 has 28 occupied states, while Si34H36 has 86, Ge87H76 has 212,
and Ge99H100 has 248. In order to test the scalability of the methods under study,
we requested additional eigenvalues as well. For the matrix Andrews we arbitrarily
requested 100–400 eigenvalues. We point out that all statistics for the F. Lanczos

algorithm include an initial call to the unrestarted Lanczos algorithm, with partial
reorthogonalization, in order to approximate (upper and lower) bounds for the ex-
tremal eigenvalues. Observe that our choice of matrices spans different degrees of
sparsity in order to demonstrate the effect of the latter on the overall cost, since the
F. Lanczos algorithm makes heavy use of matrix-vector products.

Discussion. The experimental results clearly illustrate that the F. Lanczos al-
gorithm achieves significant improvements over the other two competing methods.
The performance improvement becomes more evident as the number of requested
eigenvalues increases.

All of our test matrices are sparse. However, the degree of sparsity (as measured
by the average number of nonzeros per row, shown in the last column of Table 1)
differs significantly between the “denser” Ge99H100 Hamiltonian and the “sparser”
Andrews matrix. A careful look in the results illustrated in Table 2 clearly suggests
that the improvements in run-times of the F. Lanczos algorithm over ARPACK is more
pronounced for the sparser test matrices. Thus, although the number of matrix-vector
products in F. Lanczos increases relative to ARPACK, a significant gain results from
avoiding the updating of a large number of eigenvectors, which standard methods do
at every step.

The use of partial reorthogonalization is indeed beneficial in both F. Lanczos and
Partial Lanczos. However, the main advantage of F. Lanczos is the reduction of traffic
in memory. For example, let us look at the case of Si34H36 and no = 200 (last row
of subtable, Table 2). Observe that F. Lanczos uses 640 basis vectors, while Partial
Lanczos has to move 3580 basis vectors from memory. For ARPACK we have 30 restarts,
and at each restart the algorithm will “touch” 400 vectors (twice the number of sought
eigenvalues); thus we have a total of at least 12000 basis vectors moving between
memory and CPU (including other costs such as full reorthogonalization).

In electronic structure calculations the required accuracy is close to 0.5 · 10−6,
which is larger than the semiorthogonality level of 10−8 that is ensured by partial re-
orthogonalization. However, in applications that have stricter accuracy requirements,
semiorthogonality of basis vectors may not be adequate. If this is the case, then we
can use full reorthogonalization in F. Lanczos. Of course, we can expect the benefits
over ARPACK to reduce somewhat; however, the major improvement which results from
the small basis of F. Lanczos and its unrestarted nature, and thus its much lesser use
of memory, is still there. On the other hand, using a large convergence tolerance could
prove tricky in ARPACK as this code relies on deflation techniques in order to improve
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Table 2

Summary of experimental results for all 5 test matrices. MV denotes the total number of matrix-
vector products, which for the Lanczos algorithm with partial reorthogonalization is also the dimen-
sion of the Lanczos basis used. For the F. Lanczos algorithm, the numbers in parentheses in the MV

column denote the dimension of the Lanczos basis. RTH denotes the number of reorthogonalization
steps. RES is the number of restarts for ARPACK. MEM denotes the required memory in Mbytes and t

is the total time in secs. Finally, no is the number of requested eigenvalues.

Andrews

F. Lanczos Partial Lanczos ARPACK

no MV RTH MEM t MV RTH MEM t MV RES MEM t

100 3320 (290) 130 133 330 1390 111 636 530 1616 24 92 2000
200 6110 (600) 186 275 803 2360 213 1080 1633 2769 21 183 6682
300 8270 (840) 224 385 1364 3120 298 1428 2976 3775 19 275 13572
400 10610 (1100) 267 504 2274 3970 393 1817 4997 4978 19 366 23762

Si10H16
F. Lanczos Partial Lanczos ARPACK

no MV RTH MEM t MV RTH MEM t MV RES MEM t

28 1144 (100) 21 13 48 539 16 72 24 592 27 7.5 58
50 1864 (180) 40 23 86 930 35 124 61 1039 31 13.3 187
150 4384 (460) 86 60 244 1940 97 259 273 2129 21 40 1111
200 5284 (560) 88 73 315 2190 114 292 360 2676 20 53 1847

Si34H36
F. Lanczos Partial Lanczos ARPACK

no MV RTH MEM t MV RTH MEM t MV RES MEM t

86 2317 (230) 42 171 778 1440 36 1098 605 1537 24 131 2877
100 3127 (320) 54 238 1105 1810 50 1380 907 2164 32 152 4800
150 4657 (490) 102 365 1799 2880 96 2195 2191 3085 32 229 9993
200 6007 (640) 134 476 2496 3580 129 2729 3431 3803 30 305 16099

Ge87H76
F. Lanczos Partial Lanczos ARPACK

no MV RTH MEM t MV RTH MEM t MV RES MEM t

212 4476 (470) 88 338 1895 2710 88 1951 1993 2867 20 306 12145
300 8256 (890) 172 641 4130 4010 153 2887 4448 4673 25 432 28359
424 11406 (1240) 240 893 6624 5740 252 4132 9804 6059 23 611 51118

Ge99H100
F. Lanczos Partial Lanczos ARPACK

no MV RTH MEM t MV RTH MEM t MV RES MEM t

248 5194 (550) 102 396 2379 3150 109 2268 2746 3342 20 357 16454
350 8794 (950) 178 684 4648 4570 184 3289 5982 5283 24 504 37371
496 12934 (1410) 270 1015 8374 6550 302 4715 13714 6836 22 714 67020

convergence. Thus, poorly converged (large) eigenvectors will reenter in the iteration,
slowing convergence towards small eigenvalues.

In comparison with the unrestarted partially reorthogonalized Lanczos procedure,
observe that the filtered Lanczos method always requires far less memory. In fact, the
amount of additional memory in comparison to ARPACK is quite modest. Typically, the
new method will require a Lanczos basis with length close to three times the number
of computed eigenvalues. We also observe that for rather dense matrices and small
number of eigenvalues (i.e., Si34H36 and Si10H16) the unrestarted Lanczos method
with partial reorthogonalization is the fastest of the three methods. However, when
a large invariant subspace is sought, then the unrestarted Lanczos method will tend
to require a long basis, ultimately causing even infrequent reorthogonalizations and a
significant increase in memory traffic, and to dramatically prolong the run-times.

6. Conclusions. This paper presented a filtered Lanczos iteration for comput-
ing large invariant subspaces associated with the algebraically smallest eigenvalues
of very large and sparse matrices. In contrast to restarted techniques (e.g., ARPACK),
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which repeatedly update a fixed number of basis vectors, filtered Lanczos is allowed to
augment the search subspace until all eigenvalues smaller than a predetermined upper
bound have converged. The loss of orthogonality of the Lanczos basis vectors is treated
by a partial reorthogonalization scheme [31]. One technique which filtered Lanczos
and explicit/implicit restarted Krylov subspace algorithms have in common is the
use of filtering polynomials, designed to dampen eigencomponents along “unwanted”
parts of the spectrum. However, while restarted techniques apply these polynomials
periodically (i.e., at each restart), the filtered Lanczos procedure applies a fixed, pre-
computed, low-degree polynomial of A to the working Lanczos vector, which amounts
to a polynomial preconditioning technique applied to A. We showed that if the un-
wanted eigendirections are thoroughly filtered from the starting vector of the Lanczos
algorithm, then the application of the aforementioned small-degree polynomial suc-
cessfully prevents the unwanted directions from reappearing into the iteration, thus
expediting convergence towards the desired invariant subspace. Earlier work (see,
e.g., [28]) showed how one can design a CR-type iteration that efficiently applies a
low pass filter in order to solve regularized linear systems. The low-degree polynomial
which is involved in this procedure is used in the filtered Lanczos algorithm.

Experimental evidence clearly shows that the new method achieves significant per-
formance improvements over the most sophisticated restarted technique (i.e., ARPACK),
while at the same time incurring very modest additional memory requirements. These
gains in efficiency are obtained by essentially trading the repeated and costly updates
of the working eigenbasis, which is inherit in restarted techniques, for additional
matrix-vector products. Thus, the method will work quite well whenever matrix-
vector products are not expensive.
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made use of the PLANSO code developed by Wu and Simon [35] and the ARPACK code of
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