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AbstratPrinipal omponent analysis (PCA) is an extensivelyused dimensionality redution tehnique, with impor-tant appliations in many �elds suh as pattern reog-nition, omputer vision and statistis. It employs theeigenvetors of the ovariane matrix of the data toprojet it on a lower dimensional subspae.However, the requirement of PCA eigenvetors isa omputational bottlenek whih poses serious hal-lenges and limits the appliability of PCA-based meth-ods, espeially for real-time omputations. This paperproposes an alternative framework, relying on polyno-mial �ltering whih enables eÆient implementations ofPCA. We showase the appliability of the proposedsheme on fae reognition. In partiular, we on-sider the eigenfaes methods whih employ PCA. Thenumerial experiments reported indiate that the pro-posed tehnique ompetes with the PCA-based methodin terms of reognition rate, while being muh more ef-�ient in terms of omputational and storage ost.Keywords Prinipal Component Analysis, Polyno-mial Filtering, Fae Reognition.1 IntrodutionPrinipal omponent analysis (PCA) [5℄ is one of themost popular dimensionality redution tehniques. Ithas numerous appliations in many areas suh as pat-tern reognition, omputer vision, statistis and dataanalysis. PCA has been suessfully applied in auto-mated fae reognition [14℄, resulting in the so alledmethod of eigenfaes introdued by Kirby and Sirovih[6℄, Sirovih and Kirby [12℄ and Turk and Pentland [10℄,[13℄. The eigenfaes method is one of the most popu-lar appearane-based holisti approahes (see e.g., [1℄,[13℄) whih employs PCA on the ovariane matrix C,onstruted by the training data.�Work supported by the Minnesota Superomputing Institute

Typial implementations of the eigenfaes methodrely upon eigendeomposition of the ovariane matrix.However, when the datasets are dynami and of largesale, the appliability of the above methods is limiteddue to their high omputational ost (whih is O(n3)for dense matries). This is even more evident in thease of real-time and adaptive algorithms (see e.g. [9℄).In these ases, the eigendeomposition must be updatedfrequently and the time onstraints are very strit. Tothat end, a lot of researh e�orts have been devotedto eÆient eigenspae update shemes suh as the oneproposed in [4℄.In this paper we propose an alternative implementa-tion sheme whih approximates diretly the similaritysore without omputing the eigendeomposition of Cor any other matrix deomposition. Denoting by A thedata matrix in the input spae, the new method relieson polynomial �ltering, where a well de�ned polyno-mial  of the matrix AA> or A>A is applied on thenew fae image and yields an approximation to the sim-ilarity sore that is very lose to the one obtained usingeigendeomposition. The polynomial  is hosen appro-priately suh that it is a good approximation of the stepfuntion.The polynomial �ltering framework was appliedsuessfully in [7℄ for dimensionality redution in infor-mation retrieval. In this paper we showase the appli-ability of this tehnique in a di�erent ontext, that offae reognition. We laim that the proposed frame-work an be applied in any method employing PCA toestimate similarities among data vetors. Numerial ex-periments indiate that the proposed framework is quitelose to the PCA methods in terms of reognition ratewithout su�ering from their omputational and storagelimitations.The remaining setions of this paper are organizedas follows: Setion 2 provides an overview of the eigen-faes method using eigenvalue deomposition. In Se-tion 3 the eigenfaes method is interpreted in terms of
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Singular Value Deomposition (SVD). Next, in Setion4 the implementation of fae reognition using eigen-faes, via polynomial �ltering is desribed. Finally, Se-tion 5 provides a series of numerial results verifying thepratial advantages of the proposed sheme.2 The method of eigenfaes2.1 Constrution of the fae spae Suppose thata fae image onsists of N pixels, so it an be repre-sented lexiographially by a vetor x of dimension N .Let fxiji = 1; : : : ;Mg be the training set of fae images.The mean fae is given by� = 1M MXi=1 xi:(2.1)The ovariane matrix of the translated training data isC = 1MAA> 2 RN�N ;(2.2)where A = [~x1; :::; ~xM ℄ 2 RN�M is the matrix of thetranslated data points~xi = xi � �; i = 1; : : : ;M:(2.3)The eigenvetors ul; l = 1; : : : ;M of the ovariane ma-trix C are usually alled \eigenfaes", sine they re-semble faes when reshaped and illustrated in a pito-rial fashion. In pratie only a small number, say k,of eigenvetors orresponding to the largest eigenvaluesare omputed and then used for performing PrinipalComponent Analysis (PCA) for fae identi�ation. Thesubspae spanned by the eigenfaes is alled fae spae.2.2 Fae reognition using eigenfaes The faereognition proedure onsists of two stages; the train-ing stage and the reognition stage. In the training stageeah fae image xi of the known individuals is projetedon the fae spae and a k-dimensional vetor Pi is ob-tained Pi = U>k (xi � �); i = 1; : : : ;M;(2.4)where Uk = [u1; : : : ; uk℄ is the matrix with orthonormalolumns, whih are the eigenvetors assoiated with thek largest eigenvalues.In the reognition stage, the new image x 2 RN tobe proessed, is translated and then projeted into thefae spae to obtain the vetorPx = U>k (x� �):(2.5)The distane between Px and eah fae image is de�nedby d2i = kPx � Pik22= kPxk22 + kPik22 � 2P>x Pi; i = 1; : : : ;M;(2.6)

where k:k2 is the Eulidean norm. Furthermore, inorder to disriminate between fae images and non-fae images, the distane � between the original imagex and its reonstruted image from the fae spae,xf = UkPx + �, is also omputed:� = kx� xfk2:(2.7)Note in passing that� = kx� �� UkPxk2= k(x� �)� UkU>k (x� �)k2;and therefore � represents simply the distane betweenx�� and its orthogonal projetion onto spanfUkg, i.e.,�2 = k(I � UkU>k )(x� �)k22(2.8) = kx� �k22 � kPxk22:(2.9)This metri is used to deide whether or not a givenimage is a fae.3 Eigenfaes in terms of the SVDIn this setion we interpret the above training andreognition stages in terms of the trunated singularvalue deomposition of A. The SVD [3℄ of a retangularN �M matrix A of rank r, is de�ned asA = U�V >;(3.10) U>U = IN 2 RN�N ;(3.11) V >V = IM 2 RM�M ;(3.12)where U = [u1; : : : ; uN ℄ and V = [v1; : : : ; vM ℄ areunitary matries and � = diag(�1; �2; : : : ; �M ); �1 ��2 � : : : � �r > �r+1 = : : : = �M = 0. The �i'sare the singular values of A and the ui's and vi's arerespetively the left and right singular vetors assoiatedwith �i; i = 1; : : : ; r. We de�ne the i-th singular tripletof A as fui; �i; vig. It follows from the SVD that thematrix A an be expressed as a sum of r rank-onematries, A = rXi=1 �iuiv>i :Additionally, it is well known thatminrank(B)�k kA�BkF = kA�AkkFwhere Ak = Pki=1 �iuiv>i and k:kF is the Frobeniusnorm. It is helpful for what follows to rewrite the matrixAk as Ak = Uk�kV >k ;(3.13)where Uk (resp. Vk), onsists of the �rst k olumns ofU (resp. V ), and �k is a diagonal matrix of size k � k.



Thus, if we trunate the SVD to keep only the k largestsingular triplets we obtain the losest (in a least-squaressense) approximation to A.Observe that the matrix Uk ontaining the k largestleft singular vetors of ~A = 1pMA, is exatly the matrixomputed by PCA ontaining the largest eigenvetors ofthe ovariane matrix. This follows from the fat thatC = ~A ~A> = U�V >V �>U> = U��>U>;is the eigendeomposition of the ovariane matrix.Using this observation, equation (2.4) an be writtenin the formPi = U>k ~xi = U>k ~Aei= U>k [Uk UN�k℄ � �k 00 �M�k � � V >kV >M�k � ei= [Ik 0℄ � �kV >k�M�kV >M�k � ei= �kV >k ei; i = 1; : : : ;M:Denote by P = �kV >k the matrix whose olumns arethe projetions Pi; i = 1; : : : ;M , of every known faeimage to the fae spae. Assuming that all vetors arenormalized, the similarity measurement (2.6) among thenew image x and all known images, an be equivalentlyomputed by the similarity vetor sk,sk = P>Px = Vk�>k U>k (x� �)(3.14) = ~A>k (x� �);ontaining a similarity sore between the new faeimage and eah of the known images. Thus, theomputation of the similarity vetor sk employs a rankk approximation of the translated matrix A. We disussthe assumption of normalized projeted vetors in thefollowing setion.Note also that using the SVD, equation (2.8) ex-presses the metri � as the distane from x � � to thespae spanfUkg of the dominant left singular spae. Inthe sequel, we show how to approximate the similarityvetor sk in (3.14), as well as the distane � in (2.8) with-out using eigendeompositions. The proposed shemerelies on polynomial �ltering.4 Eigenfaes using polynomial �lteringPolynomial �ltering allows to losely approximate thee�et of redued rank approximation used in PCAmodels. Denote by  (A) a matrix polynomial of degreed on the matrix A, i.e., (A) = �dAd + �d�1Ad�1 + : : :+ �1A+ �0I:Assuming that A is normal (i.e., A>A = AA>) andletting A = Q�Q> be its eigendeomposition, observe

that  (A) =  (Q�Q>) = Q (�)Q>. Therefore, thepolynomial on A is translated to a polynomial on itseigenvalues. We are now ready to desribe how one anuse polynomial �ltering to approximate the similarityvetor diretly, avoiding ompletely eigenvalue ompu-tations.Let ~x = x � � be the translated new image. Inorder to estimate the similarity measurement, we use apolynomial  of ~A> ~A suh thats =  ( ~A> ~A) ~A>~x=  (V �>�V >)V �>U>~x= V  (�>�)V >V �>U>~x= V  (�>�)�>U>~x:(4.15)Compare the last expression above with (3.14). Choos-ing the polynomial  (t) appropriately will allow us tointerpretate this approah as a ompromise between theorrelation [2℄ and the PCA approahes. Assume nowthat  is not restrited to being a polynomial but an beany funtion (even disontinuous). When  (t) = 1 8x,then  (�>�) beomes the identity operator and theabove sheme would be equivalent to the orrelationmethod. On the other hand, taking  to be the stepfuntion  (t) = � 0; 0 � t � �2k1; �2k � t � �21(4.16)results in  (�>�) = � Ik 00 0 � where Ik is the identitymatrix of size k and 0 is a zero matrix of an appropriatesize. Then, equation (4.15) may be re-written as:s = V  (�>�)�>U>~x= � Vk Vn�k � � �>k 00 0 � � U>kU>m�k � ~x= � Vk�>k 0 � � U>kU>m�k � ~x= Vk�>k U>k ~x= ~A>k ~x(4.17)whih is preisely the rank-k approximation provided inequation (3.14).Using polynomial �ltering we an also approximatethe \faeness" (i.e., whether or not a given imageontains a fae) of an image as it is expressed byequation (2.8). Using the SVD, observe that (C)(x� �) =  ( ~A ~A>)(x� �)=  (U�V >V�>U>)(x� �)= U (��>)U>(x� �):(4.18)Note that if  is exatly the step funtion (4.16), thenk (C)(x��)k2 = kUkU>k (x��)k2 = kPxk2 whih would



allow to obtain � from (2.8). If the polynomial  is anapproximation of the step funtion, this will provide anestimate of the distane metri �, needed to deide onthe faeness of an image, without the availability of Uor Uk.Therefore, the approah of polynomial �ltering inPCA models an give virtually the same result as eigen-deomposition, without resorting to the ostly eigen-value deomposition or any other matrix deomposi-tion. Furthermore, the need to store additional (denseor sparse) matries as is the ase in PCA, is ompletelyavoided as is the need to update these matries, whenthe subspae used for learning hanges dynamially.The seletion of the ut-o� point is somewhat similarto the issue of hoosing the parameter k in the PCAmethod. However, there is a salient di�erene betweenthe two: hoosing a large k in PCA may render themethod muh more expensive, while seleting a highut-o� in polynomial �ltering does not a�et ost sig-ni�antly.Reall that in the omputation of the similarityvetor we assumed that the projeted vetors Pi haveunity norm. Here are two solutions to overome thisproblem. Before applying the proposed sheme wenormalize all input data vetors xi. Next, we omputethe similarity sore and sort the samples in desendingorder. Then we have two options. Using the �rstk � M samples, either we an employ PCA or we anuse k-nearest neighbor lassi�ation. Observe that sinek � M , the ost of exat PCA will be very limited,and ertainly orders of magnitude smaller than PCA onthe original data matrix. Similarly, applying k-nearestneighbor lassi�ation on a very small set of data pointswill have very limited ost. We observed empiriallythat the �rst option yields slightly better results andthis is the option that we inluded in our experiments(Setion 5) with k = 30.5 Numerial resultsAll experiments are implemented in MATLAB 6.5 ona Xeon�2.4GHz. We use three datasets that arepublially available: YALE, ORL and a subset ofAR. The YALE database [1℄ ontains 165 images of15 individuals that inlude variation in both faialexpression and lighting. In the preproessing phase,eah fae image is losely ropped, and the size ofimages after the ropping phase is dereased to 112�92.The ORL (formerly Olivetti) database [11℄ ontains 40individuals and 10 di�erent images for eah individual.In this ase no preproessing is done. Finally, the ARfae database [8℄ ontains 126 subjets with 4 di�erentfaial expressions for eah individual.In what follows, error rates are estimated using a

k = 40 ORL (%) YALE (%) AR (%)=2 2.5 26.06 8.33=3 3.5 25.45 8.53=4 2.75 26.06 7.14=5 3 26.06 6.15Table 1: Error rates of the PPF method for variousvalues of , on all fae databases.
ross validation \leave-one-out" strategy. In order toompute the error rate with respet to a ertain faialexpression, the image assoiated with it is used as a testimage. In order to reognize the test image, all images,exluding the test one, are projeted to the reduedsubspae. Then, the test image is projeted as well andreognition is performed using a nearest neighbor rule.Denote by ei as the number of misses ounted arossthe subjets for a given faial expression i. Denote alsoby Nf the number of di�erent faial expressions/posesassoiated with eah individual in the database. De�nee = 1Nf PNfi=1 ei; i = 1; :::; Nf : Thus, e is the mean errorrate averaged aross all di�erent faial expressions. Inwhat follows, denote by PCA the \eigenfaes" methodand by PPF the polynomial �ltering method.Example 1 In the �rst example we investigate thebehavior of the PPF method with respet to the degreeof the polynomial  . Table 1 illustrates the error rateof PPF with respet to . The parameter  a�etsthe degree of the polynomial approximation to the stepfuntion. The higher the value of  the higher the degreeof the polynomial. Observe that in most ases the value = 4 seems to give the most satisfatory results. Tothat end, in what follows, we use  = 4 for PPF.Example 2 We now investigate the e�et of thedimension k of the redued spae on the reognitionperformane of the methods. We use MATLAB's svdbuiltin funtion sine the matrix is dense and this waywe avoid the expliit use of the matries AA> or A>A.We experiment with k = 20 : 20 : 100 (in MATLABnotation) and measure the error rate (%) for all faedatabases.Table 2 illustrates the error rate e versus the dimen-sion k measured on the ORL, YALE and AR datasetsrespetively. All tables ontain the orresponding timemeasurements t (in se) for eah method. The timingsfor PCA methods measure the time needed to onstrutthe subspae (i.e., omputing the eigenvetors) and per-form the reognition of the test image (i.e., one step of\leave-one-out" ross validation). The timings for PPFmethods measure the time needed to reognize the testdata point via polynomial �ltering.Conerning the ORL database, observe that PPF



ORL PCA PPFe t e tk=20 3.5 32.74 3 2.52k=40 2.75 30.68 2.75 2.49k=60 3.25 30.93 3.25 2.48k=80 3.25 32.96 3 2.52k=100 3 32.03 3 2.49YALE PCA PPFe t e tk=20 29.70 5.93 25.45 1.15k=40 27.88 6.02 26.06 1.16k=60 27.27 6.10 25.45 1.14k=80 27.27 6.22 25.45 1.16k=100 26.06 6.33 25.45 1.15AR PCA PPFe t e tk=20 8.34 82.02 6.35 5.71k=40 6.75 82.02 7.34 5.71k=60 6.15 83.12 7.14 5.71k=80 6.15 83.67 6.75 5.70k=100 5.75 83.64 6.35 5.71Table 2: Error rates e (%) and timings t (in se) ofboth methods for various values of k, on all the faedatabases.
ompetes with PCA in terms of error rate. Further-more, the PPF method is muh more eÆient ahievingsigni�ant speedups over its PCA ounterpart. On theYALE dataset, the results are quite similar with PPFoutperforming PCA not only in timings but in error rateas well. Finally, on the AR dataset, the results are sim-ilar to ORL, with the PPF methods being quite loseto PCA in terms of error rate and being muh moreeÆient in terms of omputational ost.6 ConlusionWe have desribed an alternative framework for imple-menting PCA without eigenvalue alulations. The pro-posed framework relies on polynomial �ltering, in or-der to render the same e�et as PCA, for dimension-ality redution. We illustrated the appliability of theproposed tehnique in the eigenfaes method for faereognition. The numerial experiments indiated thatthe new sheme has very lose performane to the PCAmethod, while being muh more eÆient in terms ofomputational ost and storage.
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