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Abstract— We consider the problem of distributed packet selection and
scheduling for multiple video streams sharing a communication channel.
An optimization framework is proposed to enable the multiple senders
to coordinate their packet transmission schedules, such that the overall
quality over the video clients is maximized. The framework relies on
rate-distortion information that is used to characterize a video packet
and that consists of two quantities: the size of the packet inbits, and its
importance for the reconstruction quality of the corresponding stream.
Using the framework, each of the senders allocates to its ownvideo
packets a share of the bandwidth available on the communication channel,
that is proportional to the relative importance of these packets. Thereby,
a decentralized streaming strategy is provided that allowsfor trading-off
rate and distortion, not only within a single video stream, but also across
different streams. Simulation results demonstrate that, for the difficult
case of scheduling non-scalably encoded video streams, ourframework
substantially outperforms a conventional streaming system that does
not consider the relative importance of the video packets. The gains
in performance reach up to 8 dB in both streaming scenarios under
examination, namely adaptation to random packet loss and simultaneous
adaptation to packet loss and available bandwidth.

I. I NTRODUCTION

The demand for multimedia traffic sent over the Internet exhibits
an ever growing trend today [1]. Therefore, scenarios where multi-
ple media streams have to share common resources are becoming
increasingly frequent. Transmission of concurrent media streams in
a wireless LAN environment is one such example. In that context,
it becomes important to consider the performance of the whole
streaming system, in order to maximize the overall quality of service
to all users.

Performing proper video packet selection and scheduling in such
a setting can be an involved task. When a sender is allocated
an insufficient transmission bandwidth, it will need to reduce its
transmission rate in order to account for it. This in turn is achieved by
omitting packets prior to transmission due to their timing constraints
imposed by the underlying streaming application. Scalable coding
techniques [2] have been developed to solve these problems, where
the scalable encoding provides an inherent prioritization among the
compressed data which in turn provides a natural method for selecting
which portions of the compressed data to deliver, while meeting
the transmission rate constraints. However, scalable streams have not
gained a wide acceptance due to a few shortcomings, e.g., their coding
inefficiency. On the other hand, non-scalable or non-prioritized video
content, is predominantly used in streaming today, but it unfortunately
does not suggest a natural method of placing delivery priorities on
compressed video packets. Packet selection and scheduling for non-
scalably encoded video streams is the focus of this paper.

We propose a generic framework for rate-distortion optimized
distributed streaming over a shared communication channel. Though
our framework can be applied to any such setting, the paper mainly
focuses on the specific example of scheduling multiple video packet
streams in a wireless LAN scenario. Using the framework, each of
the senders individually allocates a portion of the available bandwidth

according to the importance of its packets such that the end-to-end
performance in terms of video quality, over all streams is maximized,
under given network constraints. The optimization relies on rate-
distortion information that is used to characterize a video packet
and that comprises the size of the packet in bits and the importance
of the packet in terms of reconstruction distortion for the video
stream. In essence, the framework enables the senders to trade-offin
a coordinated but still distributed fashion rate and distortion not only
over their respective video packets, but also across packets that belong
to different video streams. In conjunction with the framework, we
propose a strategy for dynamic bandwidth adaptation at each sender.

There is a substantial body of prior work on video streaming
over wireless LANs, and over wireless networks in general [3].
However, to the best of our knowledge, rate-distortion optimized
distributed streaming of multiple video sources as studied in the
present paper has not been investigated before. The most closely
related contemporaneous works are the following. [4] proposes a
cross-layer ARQ algorithm for video streaming in 802.11 wireless
networks which gives priority to perceptually more important packets
at (re)transmission. Only a single video stream is considered. In [5],
a transmission strategy is examined that provides adaptive quality-of-
service (QoS) to layered video for streaming over 802.11 WLANs.
Again, only a single video stream is considered and no rate-distortion
optimization is performed. Similarly, in [6, 7] hybrid transmission
techniques that combine Automatic Repeat reQuest (ARQ) and
Forward Error Correction (FEC) are proposed for improved real-time
video transport over WLANs.

II. PRELIMINARIES

A. Rate-Distortion Characterization

Let k be the index of a packet from a video stream. Then, the
rate-distortion (R-D) information associated with packetk consists
of the size of packetk in bits R(k) and the importance of packetk
for the reconstruction distortion of the video stream denoted asD(k).
Specifically,D(k) is the total increase in MSE distortion that will
affect the video stream if packetk is not delivered to the receiver on
time (td,k), and is computed asD(k) =

∑L

i=1 ∆dk
i , whereL is the

number of packets in the stream and∆dk
i is the increase in MSE

distortion associated with packeti given that packetk is missing at
the receiver. In addition,td,k is the delivery deadline by which packet
k must arrive at the receiver in order to be usefully decoded. Note
that ∆dk

i = 0 for i < k. Here, we assume that the decoder employs
error concealment to account for missing packets.

B. Packet Loss and Delay Probabilities

We model each direction of the network path between a sender/user
on the shared channel and its respective receiver as a time-invariant
packet erasure channel with random delays. For the forward (uplink)
direction to the receiver via the access point, this means that if a
sender transmits a data packet at timet, then the packet is lost with
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some probability, sayεF , independently oft. However, if the packet
is not lost, then it arrives at the receiver at some later timet′, where
the forward trip timeFTT = t′ − t is randomly drawn according
to a probability densitypF . The backward (downlink) direction from
the receiver via the access point to the user is similarly characterized
by the probability of packet lossεB and delay densitypB . Then,
these induce the probabilityεR = 1 − (1 − εF )(1 − εB) of losing
a packet in either the forward or backward direction, and the round
trip time distributionP{RTT > τ} = εR + (1 − εR)

∫∞

τ
pR(t)dt,

wherepR = pF ∗ pB is the convolution ofpF and pB . Note that
P{RTT > τ} is the probability that the user does not receive an
acknowledgement packet by timet + τ for a data packet sent to the
receiver at timet.

C. Multiple Access

We assume that a Time Division Multiple Access (TDMA) [8]
scheme is employed in order to allow for the multiple users to share
the wireless channel. In TDMA, each of the users is dynamically
assigned a time slot based on the user’s need for throughput. It is
only during this time slot that the user can transmit its data. The time
slot assignment is done by the access point that supports the WLAN
environment. We assume that each of the users reports its true need
for throughput as computed by the optimization algorithm.

III. O PTIMIZATION FRAMEWORK FORDISTRIBUTED STREAMING

Consider that there areN users sending video packets over the
shared medium simultaneously. We are interested in finding the best
transmission schedules for the video packets of each stream for a
given available bandwidth on the shared channel. The problem can
be formalized as follows. Assume that useri, for i = 1, . . . , N ,
has at time instantt a window Wi of packets that are considered
for (re)transmission. Note thatWi may include in particular packets
from earlier transmissions that have not been acknowledged yet by
the corresponding receiver and whose delivery deadlines occur after
t. The user needs to decide then on omitting/dropping a subset
of packetsk

(i) = {k1, k2, . . . , kP } (if any) from Wi prior to
transmission such that its assigned transmission bandwidth is not
exceeded. For example, if the allocated bandwidth is sufficient to
transmit all packets fromWi, thenk

(i) will be an empty set.
Now, the total increase in expected MSE distortion that will affect

streami if k
(i) is dropped prior to transmission can be computed as:

D̃(k(i)) =
∑

j∈k(i)

E[D(j)] +
∑

j∈Wi\k(i)

E[D(j)], (1)

where “\” denotes the operator “set difference”. Note that the above
model assumes additivity of the distortions associated with the
individual dropped packets, ignoring any interdependencies between
their effects on the distortion, which does not necessarily hold true
when the dropped packets are not spaced sufficiently far apart with
respect to the intra-refresh period. Furthermore, note that in (1) we
had to deal with expectations rather than with the actual distortion
values because of the random channel effects. In particular, a packet
sent over the channel may not necessarily arrive at its destination
on time because of random packet loss or delay experienced during
transmission. Therefore, the distortion contribution associated with
that packet may not necessarily be zero (despite its transmission)
and hence can only be accounted for as an expected value.

The expected distortion term associated with a video packetj in
(1) can be computed as

E[D(j)] =

{
D(j)P0(j) : j ∈ k

(i)

D(j)P0(j)P1(j) : j ∈ Wi \ k
(i),

(2)

whereP0 is the probability that a packet does not arrive at the receiver
by its delivery deadline due to previous transmissions, if any, andP1

is the probability that a packet does not arrive at the receiver due to
the present transmission. Using the channel models from Section II-
B these probabilities can be computed as follows. Let{t1, . . . , tM}
be the set of previous transmission instances of packetj and lettp

denote the present time. Then, we write

P0(j) =

M∏

m=1

P{FTT > td,j − tm|RTT > tp − tm},

P1(j) = P{FTT > td,j − tp}. (3)

Finally, R(Wi \ k
(i)) =

∑
j∈Wi\k(i) R(j) represents the corre-

sponding average transmission rate of useri over the windowWi.
We denote the available bandwidth of the shared channel asR∗.

The total transmission rate of all users should not exceed this quantity,
i.e., R(k) =

∑N

i=1 R(Wi \ k
(i)) ≤ R∗. We are interested in

minimizing the overall distortion over all streams, given asD̃(k) =∑N

i=1 γ(i)D̃(k(i)), such that the constraint on the total transmission
rate is satisfied, whereγ(i) is the weighting factor for streami that
depends on the user’s policy. (For example,γ(i) > 1 may signify
that streami is more important and that therefore should be given
a priority.) In other words, we would like to solve for the optimal
vector of dropping patterns

k
∗ = arg min

k : R(k)≤ R∗

D̃(k) , (4)

where k = (k(1), . . . , k(N)). We solve for the individual optimal
drop patternsk(i)∗ by casting (4) as a non-constrained optimization
problem using a Lagrange multiplier (λ > 0):

k
(i)∗ = arg min

k(i)∈Wi

D̃(k) + λR(k), i = 1, . . . , N. (5)

It can be shown that the solution to (5) reduces to dropping
every packetj ∈ Wi for a senderi such thatλj ≤ λ, where
λj = γ(i)P0(j)D(j)/R(j) is defined as the distortion per unit rate
utility for packetj. The rest of the packets fromWi are transmitted.
Hence, we have a distributed strategy where each user decides on
which of his own packets should be transmitted such that the end-to-
end distortion over all streams is minimized, while at the same time
the constraint on the overall transmission rate is satisfied.

The appropriate value of the Lagrange multiplierλ that corre-
sponds toR∗ and that should be common among the senders can be
computed by each one of them independently using methods such as
the bisection search or gradient descent. However, these techniques
are iterative and would require recursive running of the optimization
algorithm until an appropriate value forλ is found. This in turn would
incur excess computation on the side of each sender. Therefore, as an
alternative we propose for this scenario to track the value ofλ over
time as follows. Lettk, for k = 0, 1, . . ., be the current transmission
instance at which the users have just ran the optimization algorithm
and letRi(tk) be the corresponding transmission rate computed by
useri. Then, the value ofλ that is used in (5) at the next transmission
opportunity (tk+1) is computed as

λk+1 =

(
λk + θ

(
N∑

i=1

Ri(tk) − R∗

))+

, (6)

whereθ is a small constant and the function(x)+ is equal tox, for
x > 0, and to zero, otherwise. Note that (6) increases the value ofλ if
the current transmission rate of all users is aboveR∗, and vice-versa.
Whenλ is increased, the number of packets that are omitted at each



sender is also appropriately increased, thereby causing a reduction
in the transmission rate. Whenλ is decreased, the opposite effect
is achieved. Hence, in this way starting from an initial conservative
choice forλ each user is provided with a simple control strategy to
accordingly adjust its value over time.

IV. SIMULATION RESULTS

In this section, we examine via simulation experiments the per-
formance of the proposed framework for rate-distortion optimized
distributed streaming denoted henceforthRDOpt. We measure per-
formance in terms of the average luminance (Y) PSNR in dB of
the decoded video frames both individually at each receiver and also
jointly over all receivers as a function of different channel parameters,
namely, available data rate and packet loss rate. In particular, two
cases are studied in this context. In the first one, there is sufficient
data rate available on the shared channel to transmit every packet
of each video stream once, however the network is lossy and some
of the transmitted packets are lost. Hence, the senders needs to
decide at each transmission opportunity whether (1) to retransmit
a previous lost packet, or (2) to transmit a new packet which has not
been transmitted before. In the second case, we examine streaming
performance when simultaneously the available data rate on the
channel can be variable and the channel exhibits random packet loss
and delay. Finally, at the end we examine the performance of the
algorithm for tracking the Lagrange multiplier at each user proposed
in Section III.

The video sequences used in the experiments are coded using
JM 2.1 of the JVT/H.264 video compression standard [9]. Four
standard test sequences in QCIF format are used: Foreman, Carphone,
Mother & Daughter, and Salesman. In other words, the number of
users/streams sharing the wireless channel isN = 4. Each sequence
is encoded at a frame rate of 30 fps and an average Y-PSNR of about
36 dB. The specific rate-distortion encoding characteristics for the
four sequences are shown in Table I. The first frame of each sequence
is intra-coded, followed by all P-frames. Every 4 frames a slice is intra
updated to improve error-resilience by reducing error propagation (as
recommended in JM 2.1), corresponding to an intra-frame update
period ofM = 4 × 9 = 36 frames. An identical importance weight
γ = 1 is applied across all streams.

Sequence Rate (Kbps) Y-PSNR (dB)
Foreman 157.45 35.69
Carphone 171.30 36.60

Mother & Daughter 63.79 36.21
Salesman 64.31 35.01

TABLE I
ENCODING CHARACTERISTICS OF THE FOUR SEQUENCES.

We also study the performance of a conventional system for
distributed streaming denoted asBaseline, which does not consider
the distortion importance of different packets. In particular, when
making transmission decisions,Baselinedoes not distinguish between
two packets related to two different P-frames, except for the size
of the packets. Therefore,Baselinerandomly chooses between two
P-frame packets of the same size, for example, when it needs to
reduce the number of transmitted packets in order to adapt to the
allocated portion of the available bandwidth. Similarly, transmissions
of new packets and retransmissions of old lost packets are also
performed in a random order by this system. In both systems,RDOpt
and Baseline, each user considers packets for transmission in non-
overlapping windows of size 25.

A. Adapting to Packet Loss

In this scenario, the uplink (forward) channel to the access point
exhibits random packet loss caused by dropping corrupted packets
at the access point, which in turn is due to the presence of a non-
zero bit error rate on the uplink channel. Therefore, the users need
to decide whether they would retransmit previous lost packets or
instead transmit new packets which have not been transmitted yet. In
other words, in addition to the packets from the current transmission
windows, the senders also consider for the present transmission past
packets from previous transmission windows that have been lost
during transmission. These experiments assume an ideal feedback
channel, i.e., a sender is immediately notified of each lost packet,
that the forward channel exhibits no packet delay, and that successive
packet losses are independent and identically distributed.
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Figure 1 shows the overall performances ofRDOpt and Baseline
over all four sequences as a function of the packet loss rate (PLR)
measured in percent. It can be seen thatRDOptprovides substantial
gains overBaselineover the whole range of values considered for
the PLR (except of course for PLR = 0%). For example, at packet
loss rate of 5%, the performance improvement due to the optimized
transmission decisions is 5.5 dB, which is quite impressive. The
improved performance is due to the fact thatRDOpt exploits the
knowledge about the effect of loss of individual video packets on the
reconstructed video quality. Therefore, underRDOpt the users pref-
erentially (re)transmit packets from their transmission windows that
are most important for the reconstruction quality of the corresponding
video streams.

B. Adapting to Packet Loss and Available Bandwidth

This section investigates the end-to-end performance for the sce-
nario where the available data rate can be varied and the channel
exhibits random packet loss and delay on both forward and backward
directions. Now, each sender considers packets for transmission in
a sliding window of size 10 packets. For every arriving packet
on the forward channel the receiver returns immediately to the
sender an acknowledgement packet on the backward channel. At each
transmission opportunityBaselineconsiders for retransmission only
those packets from the transmission window whose last transmission
has not been acknowledged withinµR + 3 σR seconds from the
current transmission opportunity, whereµR andσR are respectively,
the mean and the standard deviation of the round-trip time. The play-
out delay for each of the videos is 500 ms, and the time interval
between transmission opportunities is 33 ms.

The forward and backward channels are modeled as follows.
Packets transmitted on these channels are dropped at random, with a
drop rateεF = εB = ε = 3 %. Those packets that are not dropped



experience a random delay, where the forward and backward delay
densitiespF andpB are modeled as shifted Gamma distributions with
parameters(n, α) and right shiftκ. These parameters are estimated
from actual traces of packet losses and packet delays collected in
wireless LANs.

400 410 420 430 440 450 460 470 480

24

26

28

30

32

34

36

Available data rate (Kbps)

A
ve

ra
ge

 Y
−

P
S

N
R

 (
dB

)

Rate and packet loss adaptation of 4 QCIF sequences

Baseline
RDOpt

Fig. 2. Y-PSNR (dB) vs. Available data rate (Kbps).

Figure 2 shows the overall Y-PSNR (dB) performances ofRDOpt
and Baselineover all four sequences as a function of the available
data rate (Kbps) on the shared channel. It can be seen that also in this
caseRDOptoutperformsBaselinewith quite a significant margin over
the whole range of values considered for the available data rate. For
example, at data rates of 450 Kbps, the performance improvement due
to the optimized scheduling decisions is around 8 dB. The improved
performance ofRDOpt is due to exploiting the knowledge of the
importance of the video packets, as discussed earlier.

Unfortunately, due to lack of space we are not able to include here
the performances for the individuals sequences (receivers) in each
of the two scenarios that we considered. In essence, these results
show thatRDOpt performs (re)transmission prioritization not only
among packets of a video stream, but also across packets of different
streams. This is due to the fact that each stream provides a different
rate-distortion trade-off, whichRDOpt takes advantage of.

C. Tracking the rightλ and rate control

In this section, we examine the performance of the technique
proposed in (6) to track the value of the Lagrange multiplierλ at
a sender. We examine the case when a user is added to the system.
In particular, the data rate constraint is 380 Kbps, and we have three
users active in the system sending respectively, Foreman, Carphone,
and Mother & Daughter. Then, at timet = 50 seconds a fourth user
joins the network and starts transmitting the fourth video used in
our experiments, Salesman. We examine how the system allocates
rates to the users after the new user joins in. Note that prior to the
increase in number of users the overall date rate available on the
channel is approximately sufficient to send all three streams at their
encoding rates. This can be easily verified from Table I. However,
after the fourth users starts sending video packets, the system needs
to adjust to the new situation and to reallocate data rates to each user
accordingly.

In Figure 3 we show the variations of allocated data rates over time.
It can be seen that after the fourth user joins the network, it starts
to increase gradually its date rate on the shared channel. However,
the system is quick to learn that in the new situation there is an
insufficient data rate to allow everyone to transmit at their encoding
rates. Therefore, the Lagrange multiplier is accordingly increased and
varied until a new equilibrium point is reached over time. Note that
the reallocated data rates actually affect only the last two users as
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shown in Figure 3. In particular, the system simply re-allocates to
the new user (Salesman) some of the data rate assigned previously to
the user Mother & Daughter. This behaviour was seen throughout the
experimental results reported in this paper and in essence it is due to
the different importance of the video packets for the reconstruction
quality of each stream, as explained earlier.

V. CONCLUSIONS

A framework for rate-distortion optimized distributed streaming
of multiple video sources over a shared communication channel has
been presented. The proposed framework enables the users to perform
optimal transmission decisions so that the overall video quality across
all streams is maximized for the given available data rate on the
shared channel. The framework relies on rate-distortion hint track
information that describes a video packet. We have examined the
performance of our framework for two canonical problems in video
streaming: packet loss adaptation and simultaneous bandwidth and
packet loss adaptation. Significant gains in performance ranging up
to 8 dB are registered in both of these scenarios over a conventional
system for distributed streaming which does not take into account the
distortion information associated with the video packets. Finally, in
conjunction with the framework we have proposed and examined the
performance of a simple tracking scheme for adaptively controlling
the data rate at which individual users can transmit on the channel.
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